Educational Course Preclinical Imaging

 Organizers: Kevin M. Bennett, Ph.D. & Mark D. Pagel, Ph.D.

 Room 701 A
 08:00-16:00

 Moderators: Kevin M. Bennett, Ph.D. & Julio Cárdenas-Rodríguez, Ph.D.

Anatomy & Microstructure

08:00	<u>Anatomy & Microstructure: Introduction</u> Kevin M. Bennett
08:30	Quantitative Susceptibility Mapping for Preclinical Imaging <i>Luke Xie</i>
09:00	Diffusion Techniques to Image Microstructrure Harish Poptani
09:30	Quantitation Barjor Gimi
10:00	Break - Meet the Teachers
Physiology & Met	abolism
10:30	Physiology & Metabolism: Introduction Jeff F. Dunn
11:00	Spectroscopy David L. Morse
11:30	<u>fMRI</u> Shella D. Keilholz
12:00	Perfusion Afonso C. Silva
12:30	Break - Meet the Teachers
Genotyping, Phen	otyping & Morphology
14:00	Molecular Imaging & MEMRI Robia G. Pautler
14:30	Quantitative Phenotyping R. Mark Henkelman
15:00	Morphology & Development Daniel H. Turnbull
15:30	Imaging in Cancer Sabrina M. Ronen
16:00	Adjournment & Meet the Teachers

Educational Course Clinical Cancer MRI: Case-Based

Organizer: Masoom A. Haider, M.D.

Room 701 B 08:30-17:15

Moderators: Masoom A. Haider, M.D. & Evis Sala, M.D., Ph.D.

Guidelines & Reporting Standards

- 08:30 <u>Liver MRI & HCC (LiRads)</u> Claude B. Sirlin
- 09:00 <u>Rectal MRI: Adoption of Gudielines & Standards</u> Laurent Milot
- 09:30 <u>Imaging of Lymph Nodes: Update</u> Mukesh Harisinghani
- 10:00 Roundtable
- 10:15 Break Meet the Teachers

Addressing Clinical Needs

- 10:30 <u>Staging Uterine & Cervical Cancer</u> Caroline Reinhold
- 11:00
 Rising PSA & Prior Negative Biopsy in Prostate Cancer

 Daniel J. A. Margolis
- **Finding Cancer in the Dense Breast: MRI or Tomosynthesis**
 Emily F. Conant
- 12:00 Roundtable
- 12:15 Break Meet the Teachers

New Horizons

13:30	<u>Applications of 7T in Cancer</u> Tom W. J. Scheenen
14:00	Theranostics: Chemotherapy Response in Breast Cancer Nola M. Hylton
14:30	DWI Is a Relevant Biomarker in Cancer Dow-Mu Koh

- 15:00 Roundtable
- 15:15 Break Meet the Teachers

Benign, Indolent or Aggressive

15:30	Prostate MRI (PiRads)
	Jelle O. Barentsz

16:00 <u>Small Renal Mass</u> Ivan Pedrosa

16:30	Nodule in Cirrhosis
	Jeong M. Lee

17:00 Roundtable

17:15 Adjournment & Meet the Teachers

Educational Course

Neuro 1 Organizer: Jonathan H. Gillard, M.D., FRCR, MBA & Howard A Rowley, M.D. <u>Room 714 A/B</u> 07:30-18:00

Acute Stroke

Moderators: Jeffry R. Alger, Ph.D. & Kei Yamada, M.D

- 07:30 Acute Stroke: What the Clinician Wants Michael D. Hill
- <u>Acute Stroke: What the Radiologist Provides</u> Max Wintermark 08:00
- Acute Stroke: What the Physicist Can Add 08:30 Richard Frayne
- 09:00 Discussion
- Break Meet the Teachers 09:30

Carotid Disease

Moderators: Martin J. Graves, Ph.D. & Steven W. Hetts, M.D.

10:00	<u>Carotid Disease: What the Clinician Wants</u> Thomas S. Hatsukami
10:30	Carotid Disease: What the Radiologist Provides Alan Moody
11:00	Carotid Disease: What the Physicist Can Add Chun Yuan
11:30	Discussion
12:00	Break - Meet the Teachers
Parenchymal CNS Moderators: E. Ma	Hemorrhage rk Haacke, Ph.D. & Karen A. Tong, M.D.
13:30	Parenchymal CNS Hemorrhage: What the Clinician Wants <i>Edip M. Gurol</i>
14:00	Parenchymal CNS Hemorrhage: What the Radiologist Provides Patrick A. Turski
14:30	Parenchymal CNS Hemorrhage: What the Physicist Can Add <i>Tetsuya Yoneda</i>

15:00	Discussion

Break - Meet the Teachers 15:30

Head & Neck Cancer Moderators: Leon J. van Rensburg, Ph.D. & Osamu Sakai, M.D., Ph.D.

16:00	Head & Neck Cancer: What the Clinician Wants Ian J. Witterick	
16:30	Head & Neck Cancer: What the Radiologist Provides Lawrence Ginsberg	
17:00	Head & Neck Cancer: What the Physicist Can Add Andreas Boss	
17:30	Discussion	
18:00	Adjournment & Meet the Teachers	
Education Cardiac Organizers Room 716	Onal Course MRI: Function, Perfusion & Viability ::Daniel B. Ennis, Ph.D. & Thomas K. F. Foo, Ph.D. A/B 08:00-12:55 Moderators: Victor A. Ferrari, M.D. & Michael Jerosch-Herold, Ph.D.	
The Basics	of a Cardiac MRI Exam	
08:00	<u>The Basic Cardiac MRI Examination: Physical Principles</u> Martin J. Graves	
08:30	<u>Clinical Workflow, Anatomy, Cardiac Views, 17-Segment Model, Contrast Agents</u> Ulrich Kramer	
Evaluation	of Cardiac Function	
09:00	<u>Clinical Needs: Heart Failure (5-Min Background) & How We Image It</u> Michael Salerno	
09:25	<u>Technical Foundations: Physics of Bright Blood Imaging</u> Subashini Srinivasan	
09:50	Research Promises: Real-Time/Free-Breathing/Ungated Functional Assessment <i>Tobias Block</i>	
10:15	Break - Meet the Teachers	
Evaluation	of Cardiac Perfusion	
10:30	<u>Clinical Needs: Ischemic Heart Disease & How We Image It</u> Bobak Heydari	
10:55	<u>Technical Foundations: Physics of Perfusion Imaging</u> Daniel Kim	
11:20	Research Promises: Real-Time/Free-Breathing/Ungated Perfusion Edward DiBella	

Evaluation of Late Gadolinium Enhancement

11:45	<u>Clinical Needs: Inflammation/Sarcoid/Non-Ischaemic Applications & How We Image It</u> Joao Lima
12:10	<u>Technical Foundations: Physics of LGE Imaging</u> Peter Kellman
12:35	Research Promises: Parametric Mapping Richard B. Thompson
12:55	Adjournment & Meet the Teachers
Education Cardiovas Organizers:I Room 716 A	al Course cular MRI: Vascular Flow & Angiography Daniel B. Ennis, Ph.D. & Harald Kramer, M.D. /B 14:00-17:50 Moderators: Kim-Lien Nguyen, M.D. & Pauline W. Worters, Ph.D.
The Basics of	a Vascular MRI Exam
14:00	Basic Contrast & Non-Contrast Methods Frank R. Korosec
14:30	<u>Anatomy, Stenoses/Coarct, Shunts, Dissections, Contrast Agents & Application Protocols</u> Konstantin Nikolaou
15:00	Break - Meet the Teachers
15:10	<u>Clinical Needs: Flow in Abdominal Disease (5-Min Background) & How We Image It</u> Thomas M. Grist
15:35	<u>Technical Foundations: PC-MRI, Eddy Currents, ROIs & Accuracy/Precision</u> Aurelien F. Stalder
16:00	<u>Research Promises: Faster Methods, 4D</u> Michael Markl
16:25	Break - Meet the Teachers
16:35	<u>Clinical Needs: Congenital Heart Disease (5-Min Background) & How We Image It</u> Bernd J. Wintersperger
17:00	<u>Technical Foundations: CE-MRA, Acceleration Methods</u> Stanislas Rapacchi
17:25	Research Promises: Advanced Acceleration Methods, Cardiac Gated MRA Peng Hu
17:50	Adjournment & Meet the Teachers
Education	al Course
Perfusion	Imaging Brain & Body
<i>Organizers:</i> I Room 718 A	David L. Buckley, Ph.D. & Linda Knutsson, Ph.D. 08:00-12:20 <i>Moderators</i> :Susan T. Francis, Ph.D. & Linda Knutsson, Ph.D.
08:00	What Is Perfusion, and How Is It Measured? Bradley J. MacIntosh

08:40	<u>Perfusion Measured by MRI Using an Intravascular Tracer</u> Ronnie Wirestam
09:20	<u>Perfusion Measured by MRI Using an Extravacular Tracer</u> Michael S. Ingrisch
10:00	Break - Meet the Teachers
10:20	Perfusion Measured by MRI Using a Diffusive Tracer Susan T. Francis
11:00	<u>Applications of Perfusion MRI in the Brain</u> Greg Zaharchuk
11:40	<u>Applications of Perfusion MRI in the Body</u> Mike Notohamiprodjo
12:20	Adjournment & Meet the Teachers
Educational (Quantitative Organizers: Jonat Room 718 A	Course Physiology han R. Polimeni, Ph.D. & Eric C. Wong, M.D., Ph.D. 14:00-17:50 <i>Moderators</i> : Richard B. Buxton, Ph.D. & Arno Villringer, M.D.
14:00	From Neurons to BOLD Anna Devor
14:30	From BOLD to Neurons Richard B. Buxton
15:00	<u>Neurometabolic & Neurovascular Couplings Underlying Quantitative BOLD</u> Fahmeed Hyder
15:30	Break - Meet the Teachers
15:50	Imaging Oxvgenation Divya S. Bolar
16:20	Vascular Permeability Imaging & Quantitative ASL Danny J. J. Wang
16:50	4D Flow Imaging of Vascular & CSF Dynamics <i>Michael Markl</i>
17:20	Diffusion-Weighted Functional MRI Allen W. Song
17:50	Adjournment & Meet the Teachers

Educational Course Advanced fMRI: Techniques & Applications

Organizers: Jay J. Pillai, M.D. & Jonathan R. Polimeni, Ph.D.

Moderators: Jay J. Pillai, M.D. & Jonathan R. Polimeni, Ph.D.

Room 718 B	08:30-11:50	Moderators: Jay J. Pillai, M.D. & Jonathan R. Polimeni, Ph.D.
08:30	<u>Data Driven & Exploratory Analyses</u> Vesa J. Kiviniemi	
09:00	Dynamic Functional Connectivity Catherine E. Chang	
09:30	<u>Comparing fMRI with Electrophysiologics</u> Afonso C. Silva	al Eecordings
10:00	Break - Meet the Teachers	
10:20	<u>fMRI Using CBF, CBV, & CMRO2</u> Daniel Bulte	
10:50	Simultaneous fMR-PET Imaging Joseph B. Mandeville	
11:20	Emerging Clinical Applications of fMRI Beau M. Ances	
11:50	Adjournment & Meet the Teachers	
Educational	Course	
Introduction	to Functional MRI	
Organizers:Pet	er Jezzard, Ph.D. & James J. Pekar, Ph.D.	
Room /18 B	14:00-17:50 Mo	oderators: James J. Pekar, Ph.D. & Joshua S. Shimony, M.D., Ph.D.
14:00	<u>The Physiological Basis of the fMRI Signa</u> Claudine Gauthier	1
14:30	Data Acquisition Considerations Fa-Hsuan Lin	

- Paradigm Design Jeoen C. W. Siero 15:00
- **Break Meet the Teachers** 15:30
- 15:50 Pre-Processing of fMRI Data Stephen C. Strother
- Analyzing Data Using the General Linear Model 16:20 Robert L. Barry
- Introduction to Resting-State fMRI & Functional Connectivity 16:50 Joshua S. Shimony
- 17:20 **Example Applications of fMRI in Basic & Clinical Neuroscience** Natalie L. Voets

17:50	Adjournment & Meet the Teachers	
Educational MR Systems Organizer: Chris Room 801 A/B	I Course s Engineering ristopher M. Collins, Ph.D. 08:30-17:00 Moder	rators Ed B. Boskamp, Ph.D. & Maxim Zaitsey, Ph.D.
Introduction		<u></u>
08:30	MR System Overview (What Is Required to Accomplish Shin-ichi Urayama	<u>MRI?)</u>
Magnets & Shim	ms	
09:00	Magnet Design, Manufacture & Installation Michael Mallett	
09:30	Shimming: Superconducting, Static & Active Anke Henning	
10:00	Break - Meet the Teachers	
Gradients		
10:30	Gradient Coil Design & Manufacture William B. Handler	
11:00	Gradient Train: Power Amplification Through Chiller I Blaine A. Chronik	Requirements
11:30	Eddy Current Calibration & Gradient Preemphasis ^o Thomas Witzel	
12:00	Break - Meet the Teachers	
RF & The Conso	sole	
13:30	<u>RF Transmit & Receive Chains</u> <i>Greig C. Scott</i>	
14:00	<u>Control in Execution: Pulse Sequences to Waveforms &</u> Maxim Zaitsev	Real-Time Controllers
14:30	Signal Processing & Reconstruction: FIDs to Images Graeme C. McKinnon	
15:00	Break - Meet the Teachers	
Safety & Field Ir	Interactions	
15:30	<u>MR Safety</u> Alayar Kangarlu	
16:00	SAR & RF Power Monitoring Ingmar Graesslin	
16:30	Safety of Devices & Implants in MR Gregor Schaefers	

8

17:00 Adjournment & Meet the Teachers

Educational Course

Physics for Physicists Organizers: Jürgen R. Reichenbach, Ph.D. & N. Jon Shah, Ph.D. John Bassett Theatre 102 08:30-18:00 Moderators: Jürgen R. Reichenbach, Ph.D. & N. Jon Shah, Ph.D. NMR Physics: Firming Up the Foundations 08:30 **Quantum Mechanical Description of NMR** James Tropp 09:00 Problems in MR That Really Need Quantum Mechanics: The Density Matrix Approach Robert V. Mulkern 09:30 Multiple Quantum Coherence, Editing & Multidimensional NMR Jianhui Zhong 10:00 **Break - Meet the Teachers** 10:30 From Bloch Equation to MR Contrasts: Relaxation & Physical Bases of Tissue Contrast Greg J. Stanisz 11:00 Other Contrast: Polarization Transfer, Chemical Exchange & Magnetization Transfer Penny A. Gowland 11:30 Bloch Equation in the Rotating Frame, Multidimensional Excitation John M. Pauly 12:00 Bloch-Torrey Equation & Diffusion Imaging (DWI, DTI, q-Space Imaging) Dmitrv S. Novikov 12:30 **Break - Meet the Teachers Electromagnetic Fields in MRI: from Theory to Practice** 14:00 Maxwell Equations & EM Field Modeling for MRI Andreas K. Bitz 14:30 Static Magnetic Field: Magnetic Field (In)Homogeneity, Susceptibility-Related Contrast & Artifcats Ferdinand Schweser 15:00 Understanding Gradients from an EM Perspective: (Gradient Linearity, Eddy Currents, Maxwell Terms, & Peripheral Nerve Stimulation) Johan A. Overweg 15:30 **Break - Meet the Teachers**

- 16:00
 <u>RF Coils & B1 Mapping</u>

 Pierre-Francois A. Van de Moortele
- 16:30
 B1 Shimming & Parallel Transmission

 Martijn A. Cloos
- 17:00 <u>Signal Detection, Reciprocity, Noise & SNR</u> Klaas P. Prüssmann

- 17:30
 Descerning Electrical Properties & Electrical Field Distributions from MR Images Ulrich Katscher
- 18:00 Adjournment & Meet the Teachers

Educational Course Molecular Imaging

Organizers: Kristine Glunde, Ph.D. & Mark D. Pagel, Ph.D.Room 701 A08:30-17:00

Moderators: Robert Bartha, Ph.D. & Chris A. Flask, Ph.D.

08:30	Quantitative Preclinical Imaging: Strategies, Pitfalls & Alternatives Chris A. Flask
09:15	CEST Agents Mark Woods
10:00	Break - Meet the Teachers
10:30	PET-MR Advantages & Challenges Ambros J. Beer
11:00	Optical-MRI Advantages & Challenges Keith D. Paulsen
11:30	<u>Multimodal Contrast Agents</u> Xiaoyuan Chen
12:00	Break - Meet the Teachers
13:30	Multimodal Molecular Imaging for Image Guided, Ultrasound Triggered & Drug Delivery Chrit T. Moonen
14:00	Imaging of Nucleic Acid-Based Therapies Anna V. Moore
14:30	Reporter Genes Michal Neeman
15:00	Break - Meet the Teachers
15:30	<u>Fundamentals of Hyperpolarization</u> Matthew Merritt
16:00	How to Detect HP Agents: Pulse Sequences John P. Mugler, III
16:30	How to Use HP Agents John Kurhanewicz
17:00	Adjournment & Meet the Teachers
Educational	Course

Body MRI- Optimize Your Clinical Practice

*Organizers:*Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, M.D., Ph.D., M.Ed., FRCR Room 701 B 08:00-16:30

Approach to Setting Up a Body MRI Practice *Moderator*:Scott B. Reeder, M.D., Ph.D.

Sunday

08:00	How to Run a Successful Body MRI Practice Russell N. Low		
08:30	Sequences: General Approach to Body MRI (Abdomen & Pelvis) Donald G. Mitchell		
09:00	<u>Contrast Agents</u> Bachir Taouli		
09:30	Break - Meet the Teachers		
Focal Liver Lesion Moderator: Lorenz	ns zo Mannelli, M.D., Ph.D.		
10:00	MRI of Focal Lesions in the Non-Cirrhotic Liver Kartik S. Jhaveri		
10:30	MRI in the Cirrhotic Liver Hero K. Hussain		
GI Moderator: Ivan P	edrosa, M.D.		
11:00	MR Enterography Gabrielle Masselli		
11:30	Rectal CA Staging Gina Brown		
12:00	Break - Meet the Teachers		
Pelvis Moderators: Richa	rd Kinh Gian Do, M.D., Ph.D. & Reena C. Jha, M.D.		
13:30	<u>Uterus: Benign Disease</u> Caroline Reinhold		
14:00	<u>Uterus: Malignant Disease</u> Andrea G. Rockall		
14:30	<u>Adnexal Masses</u> Evis Sala		
15:00	Break - Meet the Teachers		
GU			
15:30	<u>Adrenal & Renal</u> Peter L. Choyke		
16:00	MRU & Bladder CA Staging Maryellen Sun		
16:30	Adjournment & Meet the Teachers		

Educational Course

Neuro 2

Organizers: Jonathan H. Gillard, M.D., FRCR, MBA & Howard A Rowley, M.D. Room 714 A/B 07:30-17:45

Brain Tumors

Moderators: Thomas L. Chenevert, Ph.D. & John R. Griffiths, M.B.B.S., D.Phil.

07:45	Brain Tumors: What the Clinician Wants Andrew Sloan	
08:15	Brain Tumors: What the Radiologist Provides Marco Essig	
08:45	Brain Tumors: What the Physicist Can Add Benjamin M. Ellingson	
09:15	Discussion	
09:45	Break - Meet the Teachers	
Multiple Sclerosis Moderators: Aaron	S. Field, M.D., Ph.D. & Seth A. Smith, Ph.D.	
10:00	<u>Multiple Sclerosis: What the Clinician Wants</u> Eric C. Klawiter	
10:30	Multiple Sclerosis: What the Radiologist Provides <i>Rolf Jager</i>	
11:00	<u>Multiple Sclerosis: What the Physicist Can Add</u> <i>Mark J. Lowe</i>	
11:30	Discussion	
12:00	Break - Meet the Teachers	
Pediatric Epilepsy Moderators: Steven	n M. Stufflebeam, M.D. & Michael M. Zeineh, M.D., Ph.D.	
13:30	Pediatric Epilepsy: What the Clinician Wants Edward J. Novotny	
14:00	Pediatric Epilepsy: What the Radiologist Provides Elysa Widjaja	
14:30	<u>Pediatric Epilepsy: What the Physicist Can Add</u> Graeme D. Jackson	
15:00	Discussion	
15:30	Break - Meet the Teachers	

Schizophrenia Moderators: Sofia Chavez, Ph.D. & Nancy J. Lobaugh, Ph.D.

15:45

<u>A Systems Biology Approach Towards Schizophrenia & Neuro Psychiatric Disease</u> John- Paul J. Yu

16:15	<u>Schizophrenia: What the Radiologist Provides</u> John D. Port		
16:45	<u>Schizophrenia: What the Physicist Can Add</u> Vincent A. Magnotta		
17:15	Discussion		
17:45	45 Adjournment & Meet the Teachers		
Educational Clinical Inter Organizers: Willi Room 716 A/B	Course pretation & Advanced Imaging iam B. Morrison, M.D., & Ravinder R. Regatte, Ph.D. 08:00-17:45 <i>Moderators</i> : William B. Morrison, M.D. & Ravinder R. Regatte, Ph.D.		
Basic			
08:00	Shoulder Philip Robinson		
08:30	Elbow Tetyana A. Gorbachova		
09:00	Wrist & Hand William E. Palmer		
09:30	<u>Pelvis & Groin</u> Johannes B. Roedl		
10:00	Break - Meet the Teachers		
10:30	Hip Florian M. Buck		
11:00	Knee Lawrence M. White		
11:30	Ankle/foot Mark Schweitzer		
12:00	Break - Meet the Teachers		
Advanced			
12:30	<u>Rapid Three-Dimensional Musculoskeletal Imaging Techniques</u> Richard Kijowski		
13:00	Dynamic Contrast-Enhanced MRI (DCEMRI) - Clinical Uses Mary K. Jesse		
13:30	Cartilage Mapping Techniques & Applications Timothy J. Mosher		
14:00	<u>Neurography: How Do I Do It?</u> Alissa J. Burge		

14:30	Break - Meet the Teachers	
15:00	Spectroscopy of Musculoskeletal Tumors & More Laura M. Fayad	
15:30	<u>MR-PET in Musculoskeletal</u> <i>Garry E. Gold</i>	
16:00	<u>Ultra High Field MRI</u> Guillaume N. Madelin	
16:30	Metal Artifact Suppression	

Eric Y. Chang

17:00 Adjournment & Meet the Teachers

Educational Course Imaging Microstructure

Organizers: Daniel C. Alexander, Ph.D., Adam W. Anderson, Ph.D., & Derek K. Jones, Ph.D., DipIPSM Room 718 A 09:00-16:40

Moderators: Adam W. Anderson, Ph.D. & Karin Shmueli, Ph.D.

09:00	Relaxometry Basics
	Cornelia Laule

- 09:20 <u>Relaxometry Modelling</u> Sean C. L. Deoni
- 09:40 <u>Magnetisation Transfer Basics</u> Greg J. Stanisz
- **10:00** <u>Magnetisation Transfer Modelling</u> John G. Sled¹
- 10:20 Break Meet the Teachers
- 11:00Diffusion Basics
Louise E. Emsell
- 11:20Advanced Diffusion SequencesEvren Ozarslan
- 11:40 Diffusion Modelling Markus Nilsson

12:00 Break - Meet the Teachers

Moderators: Cornelia Laule, Ph.D. & Greg J. Stanisz, Ph.D.

- 13:30Susceptibility Basics
Karin Shmueli
- 13:50 <u>Susceptibility Modelling</u> Chunlei Liu

14:10	<u>Multi-Modal Modelling</u> Nikola A. Stikov	
14:30	<u>Microstructure Informed Tractography</u> Saâd Jbabdi	
14:50	Break - Meet the Teachers	
15:20	<u>Applications in Neuroscience</u> Yaniv Assaf	
15:40	<u>Applications in Neurology</u> Michael M. Zeineh	
16:00	Applications in Cancer Eleftheria Panagiotaki	
16:20	Applications Elsewhere in the Body Roger M. Bourne	
16:40	Adjournment & Meet the Teachers	
Big Data: A Organizers:Br Room 718 B	A Primer on Models & Methods ian B. Avants, Ph.D. & James C. Gee, Ph.D. 08:00-12:00	Moderators: Brian B. Avants, Ph.D. & James C. Gee, Ph.D.
08:00	Frontiers in Massive/Big Data Analysis Vince D. Calhoun	
08:30	<u>Kernelized Methods</u> Tom Fletcher	
09:15	Graph-Theoretical Methods Danielle S. Bassett	
10:00	Break - Meet the Teachers	
10:30	<u>Statistical Learning</u> Ruslan Salakhutdinov	
11:15	Mutivariate/Modal Modeling & Analysis Brian Avant	
12:00	Adjournment & Meet the Teachers	
Educationa A Practical Organizers: M Room 718 B	I Course Guide to MR Safety ichael Bock, Ph.D. & Mark E. Ladd, Ph.D. 13:30-17:30	Moderators: Michael Bock, Ph.D. & Mark E. Ladd, Ph.D.
13:30	MR Safety: Where Do the Risks Come From? Harald Kugel	

Sunday

14:00	<u>Planning an MR Suite: What Can Be Done to Ensure MR Safety?</u> Emanuel Kanal
14:30	Screening the Patient: How to Deal with the Individual Subject Anne Marie Sawyer
15:00	Break - Meet the Teachers
15:30	Side Effects of High Magnetic Fields Richard W. Bowtell
16:00	Contrast Agent Use in the Age of NSF Tim Leiner
16:30	MR Safety of Implants: How to Separate the Good from the Bad & the Ugly Oliver Kraff
17:00	MRI Safety Events: Lessons Learned Robert E. Watson
17:30	Adjournment & Meet the Teachers

Educational Course

RF Engineering - CoilsOrganizers: Christopher M. Collins, Ph.D. & Nicola F. De Zanche, Ph.D.Room 801 A/B08:30-16:15Moderators: And Moderators: Andreas K. Bitz, Ph.D. & Graeme C. McKinnon, Ph.D.

08:30	Basics of Transmission Lines & Wave Guidance Steven M. Wright
09:00	<u>Volume & Surface Coils</u> Ed B. Boskamp
09:30	<u>Multi-Tuned Coils</u> Ryan J. Brown
10:00	Break - Meet the Teachers
10:30	Receive Arrays & Circuitry Boris R. Keil
11:00	<u>Transmit Arrays & Circuitry</u> Mark E. Ladd
11:30	RF Modelling Bei Zhang
12:00	Break - Meet the Teachers
14:00	Dielectric Materials & Resonators Sebastian A. Aussenhofer
14:30	Dipoles & Traveling Waves (Was Coils for Hybrid Systems) Alexander J.E. Raaijmakers

Sunday

	15:00	Break - Meet the Teachers		
	15:30	Construction of Rx Arrays - Chronik Blaine A. Chronik Kyle M. Gilbert Ravi S. Menon		
	16:15	Adjournment & Meet the Teachers		
Educational Course Imaging Acquisition & Reconstruction Organizers:N. Jon Shah, Ph.D. & Xiaohong Joe Zhou, Ph.D., D.A.B.R. John Bassett Theatre 102 08:30-17:30 Moderators: Priti Balchandani, Ph.D. & Maxim Zaitsev, Ph.D.				
	Pulse Sequence B	uilding Blocks		
	08:30	<u>RF Pulses Designs: From Basics to the State-Of-The-Art</u> <i>Michael Garwood</i>		
	09:00	Gradients: Spatial Encoding, Contrast Manipulation & Artifact Management Yong Zhou		
	09:30	Dealing with Motion: Gating, Triggering & Sampling Frederick H. Epstein		
	10:00	Break - Meet the Teachers		
Contrast Manipulation				
	10:30	Magnetization-Preparation Modules (Saturation, Inversion & T2-Preparation) Pippa Storey		
	11:00	Pulse Sequence Modules II: (Tagging, Labeling, Diffusion Sensitization & MT) Peter Jezzard		
	11:30	Flow Contrast Without Using Exogenous Agent Yiping P. Du		

12:00 Break - Meet the Teachers

Advanced Acquisition Strategies

13:30	Echo-Train Pulse Sequences: EPI, RARE & Beyond
	Oliver Speck

- 14:00
 Non-Cartesian K-Space Sampling

 Kevin F. King
- 14:30
 Spoiled & Balanced Gradient-Echo Sequences

 Brian A. Hargreaves
- 15:00 Break Meet the Teachers

Image Reconstruction

15:30	Reconstruction of Non-Cartesian K-Space Data Ricardo Otazo
16:00	Parallel Imaging Reconstruction Felix Breuer
16:30	<u>Phase-Sensitive Image Reconstruction (Dixon, Temperature Mapping, Phase Imaging, SWI, PS-IR, MRE, Etc.)</u> E. Mark Haacke
17:00	Compressed Sensing William A. Grissom
17:30	Adjournment & Meet the Teachers

Opening ReceptionExhibition Hall17:45-19:15

Plenary Sessi	on	
Lauterbur Le	ecture	
Plenary Hall FG	07:30-09:15	Moderators: Daniel C. Alexander, Ph.D. & James C. Gee, Ph.D.
07:30	Welcome & Awards Jeffrey Joseph Neil, M.D., Ph.D.	
08:30	Lauterbur Lecture: About Recent Collaborative Effort of Academic Franz Schmitt, Ph.D.	Developments of Gradients, Magnets & RF & its Impact on MR Imaging: A Research & MR Industry
Plenary Sessi	on	
Big Data: Pop	oulation - Scale Imaging	
Organizers: Dani	el C. Alexander, Ph.D. & James C	C. Gee, Ph.D.
Plenary Hall FG	09:15-10:15	Moderators: Daniel C. Alexander, Ph.D. & James C. Gee, Ph.D.
09:15 0001.	What Is Big Data? <i>Paul Thompson</i> ¹ ¹ University of California	
09:35 0002.	Collecting Big Data <i>Monique Breteler</i> ¹ ¹ Erasmus Medical Center	
09:55 0003.	Big Data in Action Viren Jain ¹ ¹ Janelia Research Campus	
10:15	Adjournment	
Traditional P	oster Session: Muscoskele	tal
Exhibition Hall	10:45-12:45	(no CME credit)
Traditional P Exhibition Hall	Poster Session: Cancer 10:45-12:45	(no CME credit)
Electronic Po	ster: Diffusion	
Exhibition Hall	10:45-11:45	(no CME credit)
Flectronic Po	star. Parfusion	
Electronic 1 o		(no CMF credit)
	10.75-11.75	(no civil crean)
Study Group	Session	
Psychiatric N	IR Spectroscopy & Imagin	g
Reception Hall 1	04 BCD 10:45-12:45	(no CME credit)
Power Pitch S	Session: Microstructure in	CNS
Power Pitch Thea	atre, Exhibition Hall	10:45-11:45 (no CME credit)
Moderators:Shar	nnon Kolind, Ph.D. & Robert V. N	Aulkern, Jr., Ph.D.
0004. ISMRM MERIT AWARD SUMMMA CUM LAUDE	Whole-Brain In-Vivo Measuremen Siawoosh Mohammadi ¹ , Daniel Car Marco Reisert ⁵ , Nikolaus Weiskopf ⁴ ¹ Department of Systems Neuroscience. U	hts of the Axonal G-Ratio in a Group of 19 Healthy Volunteers <i>ey², Fred Dick², Joern Diedrichsen³, Martina F. Callaghan⁴, Marty Sereno²,</i> University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ² Birkbeck/UCL Centre
	for NeuroImaging, London, United King	dom; ³ UCL Institute of Cognitive Neurology, London, United Kingdom; ⁴ Wellcome Trust

Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom; ⁵University of Freiburg Medical Center, Freiburg, Germany

0005. In Vivo Mapping of Myelin G-Ratio in the Human Spinal Cord

mrm merit award umma cum laude

T. Duval¹, S. Lévy¹, N. Štikov¹, ², A. Mezer³, T. Witzel⁴, B. Keil⁴, V. Smith⁴, L. L. Wald⁴, E. Klawiter⁴, J. Cohen-Adad¹, ⁵ ¹Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada; ²Montreal Neuronal Institute, McGill University, Montréal, Québec, Canada; ³Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel; ⁴A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ⁵Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Québec, Canada

summa cum laude

0006. Physiological Noise Compensation in Gradient Echo Based Myelin Water Imaging Yoonho Nam¹, Jongho Lee¹

¹Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

0007. Comparison of ViSTa Myelin Water Imaging with DTI and MT

Han Jang¹, Yoonho Nam¹, Yangsoo Ryu¹, Jongho Lee¹ ¹Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

0008. The Role of Myelin Geometry on Magnetic Susceptibility-Driven Frequency Shifts: Toward Realistic Geometries

Tianyou Xu¹, Sean Foxley¹, Michiel Kleinnijenhuis, Karla Miller ¹ Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, Oxfordshire, United Kingdom

- 0009. Understanding Signal Sources of MT Asymmetry and Inhomogeneous MT for Imaging Myelination Jae-Woong Kim¹, Seung Hong Choi², Sung-Hong Park¹ ¹Korea Advanced Institute of Science and Technology, Daejeon, Korea; ²Seoul National University, Seoul, Korea
- 0010. Fast Absolute Myelin Water Mapping Without an External Water Standard Thanh D. Nguyen¹, Sneha Pandya¹, Pascal Spincemaille¹, Susan A. Gauthier¹, Yi Wang¹ ¹Weill Cornell Medical College, New York, NY, United States

0011. Frequency Difference Mapping for Measurement of White Matter Microstructure Benjamin Tendler¹, Samuel Wharton¹, Richard Bowtell¹

summa cum land

ismem merit award magna cum laudo

- ¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
- 0012. Modelling the Effect of White Matter Microstructure on Gradient Echo Signal Evolution Benjamin Tendler¹. Samuel Wharton¹. Richard Bowtell¹ ¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

0013. Possible Contribution of the Extracellular Matrix to the MRI Contrast in the Brain

Riccardo Metere¹, Markus Morawski², Henrik Marschner¹, Carsten Jäger², Tobias Streubel¹, Stefan Geyer¹, Katja Reimann¹, Andreas Schäfer¹, Harald E. Möller¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ²Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany

- 0014. Signatures of Microstructure in Conventional Gradient and Spin Echo Signals Pippa Storey¹, Sohae Chung¹, Noam Ben-Eliezer¹, Gregory Lemberskiy¹, Yvonne W. Lui¹, Dmitry S. Novikov¹ ¹Radiology Department, New York University School of Medicine, New York, NY, United States
- 0015. Dependance of the Apparent T₁ on Magetization Transfer Peter van Gelderen¹, Xu Jiang¹, Jeff H. Duyn¹ ¹AMRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States

0016. Towards an Optimized and Standardized Amide Proton Transfer (APT) MRI Sequence and Protocol for Clinical Applications

ismem merit award magna cum laude

Hye-Young Heo¹, Yi Zhang¹, Jochen Keupp², Yansong Zhao³, Michael Schar¹, Dong-Hoon Lee¹, Peter C.M van Zijl¹, ⁴, Jinyuan Zhou¹, ⁴

¹Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ²Philips Research, Hamburg, Germany; ³Philips Healthcare, Cleveland, OH, United States; ⁴F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

0017. Can Nuclear Overhauser Enhancement Mediated Chemical Exchange Saturation Transfer (NOE-CEST) Offer a New Insight in Acute Stroke Diagnosis?

Yee Kai Tee¹, George WJ Harston², Nicholas Blockley³, Robert Frost³, Thomas W. Okell³, Sivarajan Thandeswaran², Fintan Sheerin⁴, Peter Jezzard³, James Kennedy², Stephen Payne⁵, Michael Chappell⁵ ¹Department of Mechatronics and BioMedical Engineering, Universiti Tunku Abdul Rahman, KL, Malaysia; ²Acute Stroke Programme, Radcliffe Department of Medicine, Oxford University, Oxfordshire, United Kingdom; ³Oxford Centre of Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, Oxford University, Oxfordshire, United Kingdom; ⁴Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxfordshire, United Kingdom; ⁵Department of Engineering Science, Institute of Biomedical Engineering, Oxford University, Oxfordshire, United Kingdom

0018. GluCEST Imaging in a Primate Model of Alzheimer's Disease

Julien Flament¹,², Charlotte Gary²,³, James Koch²,⁴, Fabien Pifferi⁵, Emmanuel Comoy⁶, Jean-Luc Picq⁷, Julien Valette²,³, Marc Dhenain²,³

¹INSERM US27, CRC-MIRCen, Fontenay-aux-Roses, France; ²CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France; ³CNRS URA 2210, Fontenay-aux-Roses, France; ⁴Department of Psychology, University of Wisconsin, Oshkosh, WI, United States; ⁵CNRS-MNHN UMR 7179, Brunoy, France; ⁶CEA/DSV/iMETI/SEPIA, Fontenay-aux-Roses, France; ⁷EA 2027, Université Paris 8, Saint-Denis, France

New Insights & Innovations in Cardiovascular MRI

 Constitution Hall 105
 10:45-12:45
 Moderators: Daniel Kim, Ph.D. & Sonia Nielles-Vallespin, Ph.D.

 10:45
 0019.
 Novel Biomarkers of Mitochondrial Function: The Mitochondrial Index and the Crossing Point of Glucose and Oxygen Consumption Curves Obtained In Vivo by Dynamic Deuterium Magnetic Resonance

Gheorghe D. Mateescu¹, Chris A. Flask², ³, Allen Ye⁴, Bernadette Erokwu⁵, Michael Twieg⁶, Karishma Gupta⁵, Mark Griswold, ³⁵

¹Chemistry, Case Western Reserve University, Cleveland, OH, United States; ²Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ³Case Western Reserve University, OH, United States; ⁴Bioengineering, University of Indiana at Chicago, IN, United States; ⁵Radiology, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering, Case Western Reserve University, OH, United States; ⁶Biomedical Engineering,

10:57 0020. Chronic Diabetes Reprograms Carbohydrate Metabolism in the Heart and Kidney: A Hyperpolarised 13C Magnetic Resonance Spectroscopy Study

*Marie A. Schroeder*¹, ², *Albert P. Chen*², ³, *Albert Tsui*⁴, *M Mitchell*⁴, *Jean-Francois Desjardins*⁴, *Golam Kabir*⁴, *Charles H. Cunningham*², *Kim A. Connelly*², ⁴

¹Singapore Bioimaging Consortium, Agency for Science, Technology and Research, Singapore, Singapore, ²Schulich Heart Research Program, Sunnybrook Health Science Centre, Toronto, ON, Canada; ³GE-Healthcare, Toronto, ON, Canada; ⁴Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada

11:09 0021. Cardiac Metabolic Adaptations in Diabetic Mice Protect the Heart from Pressure Overload-Induced Failure: A Combined In Vivo MRI, MRS, and PET Approach Desiree Abdurrachim¹, Miranda Nabben¹, Verena Hoerr², ³, Michael T. Kuhlmann⁴, Philipp R. Bovenkamp², Michael

Schäfers⁴, Klaas Nicolay¹, Cornelius Faber², Sven Hermann⁴, Jeanine J. Prompers¹ ¹Biomedical NMR, Eindhoven University of Technology, Eindhoven, Netherlands; ²Department of Clinical Radiology, University Hospital Münster, Münster, Germany; ³Institute of Medical Microbiology, Jena University Hospital, Jena, Germany; ⁴European Institute for Molecular Imaging, Münster, Germany

11:21 0022. Alterations in Myofiber Architecture in Response to Left Ventricular Pressure Overload Are Associated with the Upregulation of Genes Encoding for Cell Adhesion and Matrix Remodeling Choukri Mekkaoui¹, Howard H. Chen¹, Yin-Ching Iris Chen¹, Marcel P. Jackowski², William J. Kostis¹, Timothy G. Reese¹, Ronglih Liao³, David E. Sosnovik¹

¹Harvard Medical School-Massachusetts General Hospital, Boston, MA, United States; ²University of São Paulo, São Paulo, Brazil; ³Brigham and Women's Hospital, Boston, MA, United States

11:33 0023. Flexible Time-Resolved Golden Angle Dual-Inversion Recovery Acquisition to Facilitate Sequence Timing in High-Resolution Coronary Vessel Wall MRI at 3T

Summa cum laude

Giulia Ginami¹, ², Jérôme Yerly¹, ², Matthias Stuber¹, ² ¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne and Geneva, Switzerland

11:45 0024. In Vivo Measurement of Vessel Wall Diffusion Anisotropy in Carotid Arteries

Peter Opriessnig¹, Harald Mangge¹, Rudolf Stollberger², David Porter³, Hannes Deutschmann⁴, Gernot Reishofer⁵ ¹Clinical Institute for Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria; ²Institute of Medical Engineering, Graz University of Technology, Austria; ³MR R&D, Siemens AG, Healthcare Sector, Erlangen, Germany; ⁴Department of Radiology, Division of Vascular and Interventional Radiology, Medical University of Graz, Austria; ⁵Department of Radiology, Division of Neuroradiology, Medical University of Graz, Austria

11:57 0025. Steady-State Real-Time Cine Imaging of Stress/Rest Myocardial Perfusion for Rapid Detection of High-Grade Coronary Stenosis

Behzad Sharif¹, Reza Arsanjani¹, Hsin-Jung Yang¹, Rohan Dharmakumar¹, Noel Bairey Merz¹, Daniel S. Berman¹, Debiao Li¹

¹Biomedical Imaging Research Institute, Dept. of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States

12:09 0026. MR Fingerprinting for Quantification of Myocardial T1, T2, and M0

Jesse I. Hamilton¹, Yun Jiang¹, Yong Chen², Dan Ma¹, Wei-Ching Lo¹, Mark Griswold, ¹², Nicole Seiberlich¹, ² ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States

12:21 0027. Five-Dimensional Cardiac and Respiratory Motion-Resolved Whole-Heart MRI

Li Feng¹, Simone Coppo², Davide Piccini², ³, Ruth P. Lim⁴, Matthias Stuber², Daniel K. Sodickson¹, Ricardo Otazo¹ ¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ⁴Department of Radiology, Austin Health and The University of Melbourne, Melbourne, Victoria, Australia

12:33 0028. Improved Free-Running Self-Navigated 4D Whole-Heart MRI Through Combination of Compressed Sensing and Parallel Imaging.

Simone Coppo¹, Li Feng², Davide Piccini³, ⁴, Jérôme Chaptinel¹, Gabriele Bonanno¹, Gabriella Vincenti⁵, Juerg Schwitter⁵, Ricardo Otazo², Daniel K. Sodickson², Matthias Stuber¹

¹Department of Radiology, University Hospital (CHUV), University of Lausanne (UNIL), Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ²Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, United States; ³Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ⁴Department of Radiology, University Hospital (CHUV), University of Lausanne (UNIL), Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ⁵Department of Cardiology, University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland

Young Investigator Awards Presentations

Room 701 A 10:45-12:45

 10:45 0029. Selective Magnetic Resonance Imaging of Magnetic Nanoparticles by Acoustically Induced Rotary Saturation (AIRS) Bo Zhu¹, ², Thomas Witzel¹, Shan Jiang³, Susie Y. Huang¹, Bruce R. Rosen¹, ⁴, Lawrence L. Wald¹, ²
 ¹Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ²Harvard-MIT Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; ³David H Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁴Department of Meridian & Acupuncture, Collaborating Center for Traditional Medicine, East-West Medi, Kyung Hee University, Seoul , Korea

11:05 0030. Spin Echoes in the Regime of Weak Dephasing Jakob Assländer¹, Steffen Glaser², Jürgen Hennig¹

¹Dept. of Radiology - Medical Physics, University Medical Center, Freiburg, Germany; ²Dept. of Chemistry, Technische Universität München, Germany

11:25 0031. k-T FASTER: Acceleration of fMRI Data Acquisition Using Low Rank Constraints

Mark Chiew¹, Stephen M. Smith¹, Peter J. Koopmans¹, Nadine N. Graedel¹, Thomas Blumensath¹, Karla L. Miller¹ ¹FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom

11:45

0032. Free-Breathing Pediatric MRI with Nonrigid Motion Correction and Acceleration Joseph Yitan Cheng¹, ², Tao Zhang¹, ², Nichanan Ruangwattanapaisarn³, Marcus T. Alley², Martin Uecker⁴, John M. Pauly¹, Michael Lustig⁴, Shreyas S. Vasanawala²

¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Ramathibodi Hospital, Mahidol University, Bangkok, Thailand; ⁴Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States

12:05 0033. In Vivo Visualization of Mesoscopic Anatomy of Healthy and Pathological Lymph Nodes Using 7T MRI: A Feasibility Study

Martin Thomas Freitag¹, Mathies Breithaupt², Moritz Berger², Reiner Umathum², Armin M. Nagel², Jessica Hassel³, Mark E. Ladd², Wolfhard Semmler², Bram Stieltjes⁴, Heinz-Peter Schlemmer⁴

¹Section Quantitative Imaging Based Disease Characterization, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany; ²Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany; ³Department of Dermatology, National Center for Tumor Diseases (NCT), University of Heidelberg, Heidelberg, Germany; ⁴Department of Radiology, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany

12:25 0034. Automatic and Quantitative Assessment of Total and Regional Muscle Tissue Volume Using Multi-Atlas Segmentation

Anette Karlsson¹,², Johannes Rosander³, Joakim Tallberg⁴, Anders Grönqvist²,⁵, Magnus Borga¹,², Olof Dahlqvist Leinhard², '

¹Department of Biomedical Engineering (IMT), Linköping University, Linköping, Sweden, Sweden; ²Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; ³Advanced MR Analytics (AMRA) AB,, Linköping, Sweden; ⁴Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; ⁵Department of Radiation Physics and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; Department of Medical and Health Sciences (IMH), Linköping University, Linköping, Sweden

Thermometry & Thermotherapy

10:45-12:45 Room 701 B Moderators: Allison H. Payne, Ph.D. & Elena A. Kaye, Ph.D. 10:45 0035. MRI-Guided Focal Laser Ablation for Localized Prostate Cancer: a Single Center Report on Technique and Intermediate-Term Outcomes Sherif G. Nour¹, ², Tracy E. Powell, ²³, Peter J. Rossi⁴, ⁵ ¹Radiology & Imaging Sciences, Emory University, Atlanta, GA, United States; ²Interventional MRI Program, Emory University, GA, United States; ³Radiology & Imaging Sciences, Emory University, GA, United States; ⁴Radiation Oncology, Emory University, GA, United States; 5School of Medicine, Emory University, GA, United States 10:57 0036. Multi-Parametric MRI Assessment of Tumor Response to High-Intensity Focused Ultrasound in a Rat Glioma Model Yi Zhang¹, Dong-Hoon Lee¹, Kai Zhang¹, Antonella Mangraviti², Chen Yang¹, Hye-Young Heo¹, Betty Tyler², Ari Partanen³, Keyvan Farahani¹, ⁴, Paul Bottomley¹, Peter van Zijl¹, ⁵, Jinyuan Zhou¹, ⁵ ¹Division of MR Research, Department of Radiolgoy, Johns Hopkins University, Baltimore, MD, United States; ²Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, United States; ³Clinical Science MR Therapy, Philips Healthcare, Andover, MA, United States; ⁴National Cancer Institue, Bethesda, MD, United States; ⁵F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States 11:09 0037. MR-Guided Blood-Brain Barrier Disruption by Transcranial Focused Ultrasound: Preclinical Testing on a Trans-Human Skull Pig Model Yuexi Huang¹, Ryan Alkins¹, Michael L. Schwartz², Kullervo Hynynen¹, ³ ¹Sunnybrook Research Institute, Toronto, ON, Canada; ²Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ³Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

11:21 0038. Isuan meeri awaro magna cum laude	Respiration Artifact Correction in PRF MR Thermometry Using Phase Navigators <i>Bryant T. Svedin¹, ², Allison Payne, ¹³, Dennis L. Parker¹, ⁴</i> ¹ Utah Center for Advanced Imaging Research, Salt Lake City, UT, United States; ² Physics, University of Utah, Salt Lake City, UT, United States; ³ Mechanical Engineering, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University of Utah, Salt Lake City, UT, United States; ⁴ Radiology, University Otah, Salt City, UT, United States; ⁴ Radiology, University Otah, Salt City, UT, United States; ⁴ Radiology, University, UT, United States; ⁴ Radiology, University, UT, United States; ⁴ Radiology, UNIV,
11:33 0039.	White-Matter-Nulled MP-RAGE Permits Patient-Specific Tracking of Focused Ultrasound Thalamic Ablation
summa cum Laude	for Essential Tremor $L_{2000} \text{ Su}^4$ Therman Tournelian ² Managing and Sanguethers ³ Cases, Helpourt ⁴ Kim, Butta, Bauh ³ Laimia, Handaman ⁴
2011 ···· 104	Pejman Ghanouni ³ , Brian K. Rutt ³
	¹ Electrical Engineering, Stanford University, Stanford, CA, United States; ² Neuroradiology, Bordeaux University Hospital, Bordeaux, France; ³ Neuroradiology, Stanford University, Stanford, CA, United States; ⁴ Neurosurgery, Stanford University, Stanford, CA, United States
11:45 0040.	Screen Printed HIFU Compatible Receive Coil Joseph Russell Corea ¹ , Patrick Ye ² , Anita Flynn ¹ , Kim Butts-Pauly ² , Ana Claudia Arias ¹ , Michael Lustig ¹ ¹ University of California Berkeley, Berkeley, CA, United States: ² Radiology, Stanford, Stanford, CA, United States
11:57 0041.	Hybrid MR/US-Guided HIFU for Abdominal Targets: <i>In Vivo</i> Demonstration of 3D Motion Correction and Focal Point Locking on an Absolute Reference Marker <i>Lorena Petrusca¹, Gibran Manasseh², Zarko Celicanin³, Romain Breguet, Oliver Bieri³, Vincent Auboiroux⁴, Christoph D. Becker, Sylvain Terraz, Rares V. Salomir² ¹University of Geneva, Geneva, Geneva, Switzerland; ²Radiology, University Hospitals of Geneva, Geneva, Switzerland; ³University Hospital Basel, Basel, Switzerland; ⁴LETI CEA, Grenoble, France, France</i>
12:09 0042.	Motion Correction Strategies for Cardiac MR Thermometry During RF-Ablation. Valéry Ozenne ¹ , Solenn Toupin ¹ , ² , Baudouin Denis de Senneville ³ , Pierre Bour ¹ , Fanny Vaillant ¹ , Matthieu Lepetit-Coiffé ² , Pierre Jaïs ¹ , Bruno Quesson ¹

¹L'Institut de Rythmologie et Modélisation Cardiaque, Bordeaux, France; ²SIEMENS Healthcare, Saint Denis, France; ³IMB, UMR 5251 CNRS/University of Bordeaux, Bordeaux, France

12:21 0043.	Model-Based Multi-Echo Water/Fat-Separated MR Thermometry			
ismen merit award magna cum laude	<i>Megan E. Poorman</i> ¹ , ² , <i>Chris J. Diederich</i> ³ , <i>Graham Sommer</i> ⁴ , <i>Kim Butts Pauly</i> ⁴ , <i>William A. Grissom</i> ¹ , ² ¹ Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ² Institute of Imaging Science, Vanderbilt University,			
	Nashville, TN, United States; ³ Radiation Oncology, University of California, San Francisco, CA, United States; ⁴ Radiology, Stanford			
	University, Stanford, CA, United States			

12:33 0044. Interventional Magnetic Resonance Elastography for MRI-Guided Percutaneous Procedures. Nadège Corbin¹, Jonathan Vappou¹, Elodie Breton¹, Quentin Boehler¹, Laurent Barbé¹, Pierre Renaud¹, Michel de Mathelin¹ ¹ICube, Université de Strasbourg, CNRS, IHU Strasbourg, Strasbourg, France

fMRI: Resting-State Functional Connectivity

Room 714 A/B	10:45-12:45	Moderators: Mark J. Lowe, Ph.D. & T.B.A.
10:45 0045.	Comparison of BOLD and C	BV-Weighted Resting State Connectivity to an Anatomical 'gold Standard' in the
ismen menit award Suinnia cum laude	Motor Network of the Squirn Yurui Gao ¹ , ² , Feng Wang ² , ³ , ¹ W. Anderson ¹ , ² , Zhaohua Ding ¹ Department of Biomedical Engen Vanderbilt University, Nashville, Nashville, TN, United States; ⁴ Dep Engeneering, Vanderbilt Universit	rel Monkey Brain <i>Twona Stepniewska⁴</i> , Ann S. Choe ¹ , ² , Kurt G. Schilling, ¹² , Landman A. Bennett ² , ⁵ , Adam g ² , ³ , Limin Chen ² , ³ , John C. Gore ² , ³ eering, Vanderbilt University, Nashville, TN, United States; ² Institute of Imaging Science, TN, United States; ³ Department of Radiology and Radiological Science, Vanderbilt University, partment of Psychology, Vanderbilt University, TN, United States; ⁵ Department of Electrical y, Nashville, TN, United States

10:57 0046.	Remodeled Resting State Functional Connectivity Pattern in the Default Mode Network and Cortico – Striatal Circuitry of GPR88 Knock-Out Mouse Brain Tanzil Mahmud Arefin ¹ , ² , Anna Mechling ² , ³ , Thomas Bienert ² , Hsu-Lei Lee ² , Sami Ben Hamida ⁴ , Dominik V. Elverfeldt ² , Jürgen Hennig ² , Brigitte Kieffer ⁵ , Laura-Adela Harsan ² ¹ Computational Neuroscience, Bernstein Center Freiburg, University of Freiburg, Freiburg, Baden - Württemberg, Germany; ² Diagnostic Radiology, Medical Physics, University Hospital Freiburg, Freiburg, Baden - Württemberg, Germany; ³ Faculty of Biology, University of Freiburg, Baden - Württemberg, Germany; ⁴ AInstitut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France; ⁵ Douglas Research Center, McGill University, Montreal, Canada
11:09 0047.	Voxel-Scale Mapping of the Mouse Brain Functional Connectome <i>Adam Liska^l</i> , ² , <i>Alberto Galbusera^l</i> , <i>Adam J. Schwarz³</i> , <i>Alessandro Gozzi^l</i> ¹ Center for Neuroscience and Cognitive Systems @ UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy; ² Center for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy; ³ Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
11:21 0048. ^{15 мини менит} ачкар падпа сит Laude	Mapping Resting-State Dynamics on Spatio-Temporal Graphs: A Combined Functional and Diffusion MRI Approach Alessandra Griffa ¹ , ² , Kirell Benzi ³ , Benjamin Ricaud ³ , Xavier Bresson ³ , Pierre Vandergheynst ³ , Patric Hagmann, ¹² , Jean-Philippe Thiran ¹ , ² ¹ Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ² Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; ³ Signal Processing Laboratory 2 (LTS2), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland;
11:33 0049.	Does Vasomotion Alter Functional Connectivity? a Multi-Modal Study Using Optical Imaging Spectroscopy and BOLD fMRI Priya Patel ¹ , Aneurin James Kennerley ¹ , Luke Boorman ¹ , Myles Jones ¹ , Jason Berwick ¹ ¹ Psychology, University of Sheffield, Sheffield, South Yorks, United Kingdom
11:45 0050.	Can Resting State fMRI Be Used to Map Cerebrovascular Reactivity? <i>Peiying Liu¹, Babu G. Welch², Darlene King², Yang Li¹, Marco Pinho¹, ³, Hanzhang Lu¹</i> ¹ Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ² Neurological Surgery Clinic, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³ Department of Radiology, University of Texas Southwestern Medical Center, TX, United States
11:57 0051.	Subject-Specific Modeling of Physiological Noise in Resting-State fMRI at 7T Sandro Nunes ¹ , Marta Bianciardi ² , Afonso Dias ¹ , Rodolfo Abreu ¹ , Juliana Rodrigues ¹ , L. Miguel Silveira ³ , Lawrence L. Wald ² , Patricia Figueiredo ¹ ¹ Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; ² Department of Radiology, A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, United States; ³ INESC-ID and Department of Electrical and Computer Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
12:09 0052.	Inter-Scanner Reliability of Graph-Theoretic Brain Network Metrics Thomas Welton ¹ , Dorothee P. Auer ¹ , Robert A. Dineen ¹ ¹ Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
12:21 0053.	Anisotropy of Local Functional Connectivity (LFC) in Resting State fMRI Time Series: What Does It Say About the fMRI Signal? Michael J. Tobia ¹ , David Gallagher ¹ , Rahul Dewal ¹ , Prasanna Karunanayaka ¹ , Sebastien Rupprecht ¹ , Qing X. Yang ¹ ¹ Center for NMR Research, Penn State University, Hershey, PA, United States
12:33 0054.	fMRI-Derived Functional Connectivity Density Mapping as a Biomarker of State Changes as Reflected by Glucose Metabolism Garth John Thompson ¹ , Valentin Riedl ² , ³ , Timo Grimmer, ³⁴ , Alexander Drzezga ⁵ , Peter Herman ¹ , Fahmeed Hyder ¹ , ⁶ ¹ Diagnostic Radiology, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States; ² Neuroradiology, Nuclear Medicine, Universität München, München, Germany; ³ Technische, Universität München - Neuroimaging Center, München,

Germany; ⁴Psychiatry, Universität München, München, Germany; ⁵Nuclear Medicine, Uniklinikum, Koeln, Germany; ⁶Biomedical Engineering, Yale University, New Haven, CT, United States

New Encoding Methods for MRS & Non-Proton MRI

Room 716 A/B	10:45-12:45 <i>Moderators</i> :Daniel M. Spielman, Ph.D. & Assaf Tal, Ph.D.
10:45 0055.	Hybrid Encoding for Quantitative Electron Paramagnetic Resonance Imaging <i>Hyungseok Jang¹, ², Chandramouli Gadisetti³, Devasahayam Nallathamby⁴, Murali C. Krishna⁴, Alan B. McMillan¹</i> ¹ Radiology, University of Wisconsin, Madison, WI, United States; ² Electrical and Computer Engineering, University of Wisconsin, Madison, WI, United States; ³ GenEpria Consulting Inc., Columbia, MD, United States; ⁴ Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
10:57 0056.	Efficient Quantification of Metabolite Concentration and T ₁ Relaxation by ³¹ P Spectroscopic Magnetic Resonance Fingerprinting Charlie Yi Wang ¹ , Mark Alan Griswold ² , Xin Yu ² ¹ Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ² Radiology, Case Western Reserve University, Cleveland, OH, United States
11:09 0057.	Accelerated Multi Voxel MR Spectroscopy Vincent Boer ¹ , Dennis Klomp, Peter Barker ² ¹ Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ² Radiology, Johns Hopkins University, baltimore, MD, United States
11:21 0058.	Quantitative Proton MR Spectroscopy of Non-Enhancing Lesions and Pre-Lesional Tissue in Early Multiple Sclerosis <i>Ivan I. Kirov¹</i> , ² , <i>Shu Liu¹</i> , ² , <i>William E. Wu¹</i> , ² , <i>Assaf Tal³</i> , <i>Matthew Davitz¹</i> , ² , <i>Henry Rusinek¹</i> , ² , <i>Joseph Herbert⁴</i> , <i>Oded Gonen¹</i> , ² ¹ Radiology, New York University School of Medicine, New York, NY, United States; ² Center for Advanced Imaging Innovation and Research (CAI2R), New York University, New York, NY, United States; ³ Chemical Physics, Weizmann Institute of Science, Israel; ⁴ Neurology, New York University School of Medicine, New York, NY, United States
11:33 0059.	<i>In Vivo</i> Quantitative MR Spectroscopy Using Relaxation Enhancement: Unassigned Brain Metabolite Resonances at 21T Upon Stroke <i>Tangi Roussel¹, Jens T. Rosenberg², ³, Samuel C. Grant², ³, Lucio Frydman¹</i> ¹ Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel; ² National High Magnetic Field Laboratory, Tallahassee, FL, United States; ³ Chemical & Biomedical Engineering, The Florida State University, Tallahassee, FL, United States
11:45 0060.	Accelerated Echo Planer J-Resolved Spectroscopic Imaging of Insular Cortex and Putamen in Obstructive Sleep Apnea Manoj Kumar Sarma ¹ , Paul Michael Macey ² , Rajakumar Nagarajan ¹ , Ravi Aysola ³ , M.Albert Thomas ¹ ¹ Radiological Sciences, UCLA School of Medicine, Los angeles, CA, United States; ² School of Nursing, UCLA School of Medicine, Los angeles, CA, United States; ³ Division of Pulmonary and Critical Care Medicine, UCLA School of Medicine, Los angeles, CA, United States
11:57 0061.	Validation of Accelerated TE-Averaged Echo-Planar Spectroscopic Imaging in Healthy and HIV Youths <i>Zohaib Iqbal¹, Neil E. Wilson¹, Brian L. Burns¹, Margaret A. Keller¹, Michael Albert Thomas¹</i> ¹ University of California - Los Angeles, Los Angeles, CA, United States
12:09 0062.	Multiband MR Spectroscopic Imaging in Human Brain Jullie W. Pan ¹ , Tiejun Zhao ² , Victor Yushmanov ¹ , Hoby Hetherington ¹ ¹ University of Pittsburgh, Pittsburgh, PA, United States; ² Siemens Medical Systems, PA, United States
12:21 0063.	Synchronous Sodium (²³Na) and Proton (¹H) Radial Imaging of the Human Knee on a Clinical MRI Scanner Joshua Kaggie ¹ , Bijaya Thapa ¹ , Nabraj Sapkota ¹ , Glen Morrell ¹ , Neal Bangerter ² , Kyle Jeong ¹ , Xianfeng Shi ³ , Eun- Kee Jeong ¹

¹Utah Center for Advanced Imaging Research, Radiology, University of Utah, Salt Lake City, UT, United States; ²Electrical and Computer Engineering, Brigham Young University, Provo, UT, United States; ³The Brain Institute, Psychiatry, University of Utah, Salt Lake City, UT, United States

12:33

0064. Fast Sodium Imaging at 9.4 Tesla *Christian Mirkes*¹,², *G. Shajan*¹, *Klaus Scheffler*¹, ² ¹High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tuebingen, BW, Germany; ²Department for Biomedical ismem merit award magna cum laude Magnetic Resonance, University of Tübingen, Tuebingen, BW, Germany

Brain Tumor Imaging - Focus on Treatment

Constitut	ion Hall	107	10:45-12:45 Moderators: Janine M. Lug	<u>50, Ph.D. & T.B.A.</u>
10:45	0065.	MRI T Rasha Swayan ¹ Physic ³ Radiati MI, Uni	Fracked Tumor Physiology in the Hours After 20 Gy Single-Fraction Radiation <i>M. Elmghirbi¹</i> , ² , <i>Stephen L. Brown³</i> , <i>Tavarekere N. Nagaraja⁴</i> , <i>Madhava P. Aryal²</i> , ⁵ , <i>Kelly mprav Panda²</i> , <i>Hassan Bagher-Ebadian²</i> , <i>James R. Ewing</i> , ¹² s, Oakland University, Rochester, MI, United States; ² Neurology, Henry Ford Health System, Detroit, N ion Oncology, Henry Ford Health System, Detroit, MI, United States; ⁴ Anesthesiology, Henry Ford Health System ited States; ⁵ Radiation Oncology, University of Michigan, Ann Arbor, MI, United States	Ann Keenan ⁴ , AI, United States; Ilth System, Detroit,
10:57	0066.	Applic	cation of 3D High-Resolution Multi-Echo TOF-SWI Acquisition in Radiation-Induced (Cerebral
ISAAM MER Summa Cu	ir awaro in laude	Xiaowa Nelson ¹ Univer States; Applied Francisc	<i>ei Zou¹, Wei Bian², Jonathan I. Tamir³, Suchandrima Banerjee⁴, Susan M. Chang⁵, Michael u¹, Janine M. Lupo¹</i> sity of California San Francisco, San Francisco, CA, United States; ² Radiology, Stanford University, S ³ Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, United ⁴ Science Laboratory, GE Healthcare, Menlo Park, CA, United States; ⁵ Neurological Surgery, University co, San Francisco, CA, United States	<i>Lustig³, Sarah J.</i> tanford, CA, United l States; ⁴ Global y of California San
11:09	0067.	Differ	entiation Between Progressive Disease and Treatment Necrosis in Patients with Gliobla	stoma Using
isman werr magna cun	r award n Laude	Dynan Moran Ben Ba ¹ Functio Aviv, Is Tel Avi Sagol S	nic Contrast Enhancement MRI Artzi ¹ , ² , Gilad Liberman ¹ , ³ , Guy Nadav ¹ , ⁴ , Deborah T. Blumenthal ⁵ , Felix Bokstein ⁵ , Orna ashat ¹ , ⁶ onal Brain Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ² Sackler Faculty of Medicine, T srael; ³ Department of Chemical Physics, Weizmann Institute, Rehovot, Israel; ⁴ Faculty of Engineering, ⁷ iv, Israel; ⁵ Neuro-Oncology Service, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁶ Sackler Faculty School of Neuroscience, Tel Aviv University, Tel Aviv, Israel	Aizenstein ¹ , Dafna Yel Aviv University, Tel Tel Aviv University, Ity of Medicine and
11:21	0068.	Dose a Iska M Laught	and Volume Effects of Radiation on White Matter in Children Treated for Medulloblas loxon-Emre ¹ , ² , Eric Bouffet ¹ , Michael D. Taylor ¹ , ² , Normand Laperriere, ²³ , Michael Sharpo lin ¹ , Nadia Scantlebury ¹ , Nicole Law ¹ , ² , David Malkin ¹ , ² , Jovanka Skocic ¹ , Logan Richard ¹ ,	toma <i>e</i> , ²³ , Suzanne , ² , Donald Mabbott ¹ ,
		¹ Hospit Networ	al for Sick Children, Toronto, Ontario, Canada; ² University of Toronto, Toronto, Ontario, Canada; ³ Uni k, Toronto, Ontario, Canada	versity Health
11:33	0069.	The E f Associ <i>Peter I</i> ¹ UH Ca	ffect of Systemic Chemotherapy on White Matter Tracts Involved with Cognition in Cl ated Optic Pathway Gliomas <i>MK de Blank¹, Michael J. Fisher², Timothy PL Roberts², Jeffrey I. Berman²</i> ase Medical Center, Cleveland, OH, United States; ² The Children's Hospital of Philadelphia, PA, United	nildren with NF1- States
11:45	0070.	Compa Melissa Schma ¹ Radiola Milwau College	arison of Diffusion and Perfusion Parameters in Distinguishing Radiation Effect and N <i>a A. Prah¹, Mona M. Al-Gizawiy¹, Wade M. Mueller², Raymond G. Hoffmann³, Mahua Dasg</i> <i>inda¹,</i> ⁴ ogy, Medical College of Wisconsin, Milwaukee, WI, United States; ² Neurosurgery, Medical College of kee, WI, United States; ³ Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴ Bio e of Wisconsin, Milwaukee, WI, United States	ecrosis from GBM gupta ³ , Kathleen M. Wisconsin, physics, Medical
11:57	0071.	Tissue	e Mapping in Brain Tumors with Partial Volume Magnetic Resonance Fingerprinting (PV-MRF)

Anagha Deshmane¹, Chaitra Badve², Matthew Rogers³, Alice Yu³, Dan Ma¹, Jeffrey Sunshine², Vikas Gulani², Mark Griswold²

¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, University Hospitals, Cleveland, OH, United States; ³School of Medicine, Case Western Reserve University, Cleveland, OH, United States

12:09 0072. Parameterization of Delayed Contrast Enhancement Maps for the Depiction of Necrosis in Glioblastoma

Mary A. McLean¹, Stephen J. Price², Ferdia A. Gallagher³, John R. Griffiths¹ ¹Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridge, Cambridge, University of Neurosurgery, University of Cambridge, C

12:21 0073. Abnormal Tumor and Peritumor Vasculature and Metabolism Differentiate Primary from Metastatic Brain Tumors

Ingrid Digernes¹, Frédéric Courivaud¹, Cathrine Saxhaug², Marco C. Pinho³, Oliver M. Geier¹, Einar Vik-Mo⁴, Knut Haakon Hole⁵, Grete Lovland¹, Svein Are Vatnehol¹, Torstein R. Meling⁴, Otto Rapalino⁶, Atle Bjornerud, ¹⁷, Kyrre E. Emblem¹

¹The Intervention Centre, Oslo University Hospital, Oslo, Norway; ²Department of Radiology, Oslo University Hospital, Oslo, Norway; ³Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75235, United States; ⁴Department of Neurosurgery, Oslo University Hospital, Oslo, Norway; ⁵Departement of Radiology, Oslo University Hospital, Oslo, Norway; ⁶Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; ⁷Department of Physics, University of Oslo, Oslo, Norway

12:33 0074. ¹³C MRS of Hyperpolarized [1-13C] Pyruvate Can Differentiate Between SAHA Resistant and Sensitive Glioblastoma Cells

Pia Eriksson¹, Myriam M. Chaumeil1, Joydeep Mukherjee^{2, 3}, Russell O. Pieper^{2, 3}, Sabrina M. Ronen^{1, 3} ¹Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Neurological Surgery, University of California San Francisco, San Francisco, CA, United States; ³Brain Tumor Research Center, University of California San Francisco, CA, United States

Novel Image Reconstruction Methods

John Bassett Theatre 102 10:45-12:45 Moderators: Justin P. Haldar, Ph.D. & Daniel S. Weller, Ph.D. 0075. Acquisition-Free Nyquist Ghost Correction for Parallel Imaging Accelerated EPI 10:45 Eric Peterson¹, Murat Aksoy¹, Julian Maclaren¹, Roland Bammer⁴ ¹Department of Radiology, Stanford University, Stanford, CA, United States 10:57 0076. Externally Calibrated Parallel Imaging in the Presence of Metallic Implants Curtis N. Wiens¹, Nathan S. Artz¹,², Hyungseok Jang¹, Alan B. McMillan¹, Scott B. Reeder¹,³ Summa cum laude ¹Department of Radiology, University of Wisconsin, Madison, WI, United States; ²Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, United States; ³Department of Medical Physics, University of Wisconsin, Madison, WI, United States 11:09 0077. Joint Compressed Sensing and Sparse Phase Retrieval: Reconstruction from a Combination of Complex and Magnitude-Only K-Space Measurements Mehmet Akcakaya¹, Vahid Tarokh², Reza Nezafat¹ ¹Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; ²Harvard University, Cambridge, MA, United States 0078. Simultaneous Multi-Slice MRI Reconstruction Using LORAKS 11:21 Tae Hyung Kim¹, Justin P. Haldar¹ ismen merit award magna cum laude ¹Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States 11:33 0079. Complex-Difference Constrained Reconstruction for Accelerated Phase Contrast Flow Imaging Aiqi Sun¹, Bo Zhao², Rui Li¹, Chun Yuan¹, ³ magna cum laude ¹Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China; ²Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Department of radiology, University of Washington, WA, United States

11:45 0080.		Total Generalized Variation Based Joint Multi-Contrast, Parallel Imaging Reconstruction of Undersampled K-Space Data <i>Adrian Martin¹, ², Itthi Chatnuntawech¹, Berkin Bilgic³, Kawin Setsompop³, ⁴, Elfar Adalsteinsson¹, ⁵, Emanuele Schiavi ¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Araplied Mathematica, Universided Bay Iwan Carlos Mostelos, Modrid Spain, ³A, A. Martines Conter for Riomedical Imaging</i>		
		Department of Radiology, Massachusetts General hospital, Charlestown, MA, United States; ⁴ Harvard Medical School, Boston, MA, United States; ⁵ Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States		
11:57	0081.	Non-Linear Phase Correction in Model-Based Reconstruction of the Diffusion Tensor <i>Jose Raya^l</i> , ² , <i>Florian Knoll^l</i> , ² ¹ Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ² Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States		
12:09	0082.	Wave-CS: Combining Wave Encoding and Compressed Sensing Andrew T. Curtis ¹ , Berkin Bilgic ² , Kawin Setsompop ² , Ravi S. Menon ³ , Christopher K. Anand ¹ ¹ Computing and Software, McMaster University, Hamilton, Ontario, Canada; ² Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³ Robarts Research Institute, London, Ontario, Canada		
12:21	0083.	TrueCISS: Genuine BSSFP Signal Reconstruction from Undersampled Multiple-Acquisition SSFP Using Model-Based Iterative Non-Linear Inversion <i>Tom Hilbert¹</i> , ² , <i>Damien Nguyen³</i> , <i>Tobias Kober¹</i> , ² , <i>Jean-Philippe Thiran²</i> , <i>Gunnar Krueger¹</i> , ² , <i>Oliver Bieri³</i> ¹ Siemens ACIT – CHUV Radiology, Siemens Healthcare IM BM PI & Department of Radiology CHUV, Lausanne, Switzerland; ² LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ³ Radiological Physics, Department of Radiology, University of Basel, Basel, Switzerland		
12:33	0084.	Multiscale Image Reconstruction for MR Fingerprinting <i>Eric Y. Pierre¹, Dan Ma¹, Yong Chen², Chaitra Badve², Mark A. Griswold¹, ²</i> ¹ Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ² Department of Radiology, Case Western Reserve University & University Hospitals, Cleveland, OH, United States		
Combir Quantit	ned Eo tative	lucational & Scientific Session Biomarkers in Liver MRI: How to Use Them in the Real World		
Room 71	8 A	10:45-12:45 <i>Moderators</i> :Catherine D. G. Hines, Ph.D. & Kartik S. Jhaveri, M.D.		
10:45		Introduction		
10:48		Liver Fat Quantification - Seriously, Who Cares? Mustafa Rifaat Bashir		

11:03 0085. Systematic Comparison Between Modified Dixon MRI Techniques, MR Spectroscopic Relaxometry, and Different Histologic Quantification Methods in the Assessment of Fatty Liver Disease Guido Matthias Kukuk¹, Alois Martin Sprinkart¹, Wolfgang Block¹, Holger Eggers², Jürgen Gieseke¹, ³, Kanishka Hittatiya¹, Patrick Kupczyk¹, Julian Luetkens¹, Rami Homsi¹, Vera Keil¹, Michael Meier-Schroers¹, Milka Marinova¹, Asadeh Lakghomi¹, Dariusch Hadizadeh¹, Hans Heinz Schild¹, Frank Träber¹ ¹University of Bonn, Bonn, NRW, Germany; ²Philips Research Europe, Hamburg, Germany; ³Philips Healthcare, Best, NL, Netherlands

11:15 0086. Multi-Site, Multi-Vendor Validation of Accuracy, Robustness and Reproducibility of Fat Quantification on an Oil-Water Phantom at 1.5T and 3T Diego Hernando¹, Mustafa R. Bashir², Gavin Hamilton³, Jean M. Shaffer², Samir D. Sharma¹, Claude B. Sirlin³, Keitaro Sofue², ⁴, Nikolaus M. Szeverenyi³, Takeshi Yokoo⁵, ⁶, Qing Yuan⁵, Scott B. Reeder¹, ⁷ ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Radiology, Duke University, Durham, NC, United States; ³Radiology, University of California, San Diego, San Diego, CA, United States; ⁴Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ⁵Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁷Medical Physics, University of Wisconsin-Madison, Mi, United States

11:27 Iron Takeshi Yokoo

11:42 0087. Quantitative Ultra-Short Echo Time Imaging for Massive Iron Overload Assessment: A Way to Make It Happen

Axel J. Krafft¹, ², Ralf B. Loeffler¹, Ruitian Song¹, Mary E. McCarville¹, Matthew D. Robson³, Jane S. Hankins⁴, Claudia M. Hillenbrand¹

¹Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, United States; ²Radiology - Medical Physics, University Medical Center Freiburg, German Cancer Consortium (DKTK), Heidelberg, Germany; ³Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ⁴Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States

11:54 0088. A T2* MRI Prospective Survey on Pancreatic Iron in Thalassemia Major Patients Treated with Deferasirox, Deferiprone and Desferrioxamine

Antonella Meloni¹, Gennaro Restaino², Stefania Renne³, Massimiliano Missere², Maria Chiara Resta⁴, Vincenzo Positano¹, Daniele De Marchi¹, Gaetano Roccamo⁵, Nicola Romano⁶, Maria Giovanna Neri¹, Alessia Pepe¹ ¹CMR Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; ²Dipartimento di Radiologia, Università Cattolica del Sacro Cuore, Campobasso, Italy; ³Struttura Complessa di Cardioradiologia-UTIC, P.O. "Giovanni Paolo II", Lamezia Terme, Italy; ⁴Struttura Complessa di Radiologia, OSP. SS. Annunziata ASL Taranto, Taranto, Italy; ⁵Unità di Prevenzione e Cura delle Mictrocitemie, PO di S. Agata di Militello (ASP-ME), S. Agata di Militello (ME), Italy; ⁶S.C. Medicina Trasfusionale, AO Arcispedale "S. Maria Nuova", Reggio Emilia, Italy

12:09 MR Imaging of Liver Fibrosis Laurent Huwart

12:21 0089. Evaluation of Spin-Echo Based Sequences for MR Elastography of Liver with Iron Overload Bogdan Dzyubak¹, Yogesh K. Mariappan², Kevin J. Glaser¹, Sudhakar K. Venkatesh¹, Richard L. Ehman¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Philips Healthcare, Bangalore, Karnataka, India

12:33 0090. Analysis of Clinical and Histopathological Changes That Influence Liver Stiffness Measured by MR Elastography $W_{23} = D_{23} = Ch_{23} = Ch_{23}$

Wen-Pei Wu¹, ², Ran-Chou Chen, ²³, Chen-Te Chou¹, Chih-Wei Lee¹, Cheng-In Hoi², Yi-Chun Wang², ⁴, Kwo-Whei Lee¹ ¹Radiology, Chang-Hua Christian Hospital, Chang-Hua, Taiwan, Taiwan, ²Biomedical Imaging and Radiological Science, National Yang-Ming Medical University, Taiwan, Taiwan; ³Radiology, Taipei city Hospital, Taipei, Taipei, Taiwan, Taiwan; ⁴Taoyuan general hospital ministry of health and welfare, Taiwan, Taiwan

12:45 Adjournment & Meet the Teachers

Educational Course

Osteoarthritis: Who, Where & Why?

Organizers: Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., & Ravinder R. Regatte, Ph.D.

Room 718 B	10:45-12:45	Moderators: Garry E. Gold, M.D. & Richard Kijowski, M.D.
10:45	Meniscal & Ligament Tears: Role in Knee Timothy J. Mosher	Degeneration
11:15	Hip Arthritis: Does Primary OA Exist? Jonelle Petscavage	
11:45	Rotator Cuff Arthropathy <i>Michael J. Tuite</i>	
12:15	Population Based OA Research: What Has Ali Guermazi	s It Shown?
12:45	Adjournment & Meet the Teachers	

Combined Educational & Scientific Session Hyperpolarized C-13 Imaging Organizers: Peter Caravan, Ph.D. & Matthew Merritt, Ph.D.

Room 801 A/B	10:45-12:45 Moderators: Llovd Lumata Ph D & Mor Mishkovsky Ph D
10:45	Introduction to Hyperpolarized C-13 MR: What Is It? How Do You Do It? Matthew Merritt
11:05	Acquisition & Reconstruction Strategies: State of the Art Charles H. Cunningham
11:25	Imaging Metabolism with Hyperpolarized 13C-Labelled Cell Substrates <i>Kevin M. Brindle</i>
11:45 0091.	 Hyperpolarized [1-¹³C]octanoate: A Probe of Myocardial β-Oxidation Hikari A. I. Yoshihara¹, ², Jessica A. M. Bastiaansen, ²³, Magnus Karlsson⁴, Mathilde Lerche⁴, Arnaud Comment, ²⁵, Juerg Schwitter¹ ¹Division of Cardiology and Cardiac MR Center, Lausanne University Hospital, Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Department of Radiology, Lausanne University Hospital and University of Lausanne, Switzerland; ⁴Albeda Research ApS, Copenhagen, Denmark; ⁵Institute of Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Switzerland
11:57 0092.	Hyperpolarized ¹³ C-Alpha-Ketobutyrate, a Pyruvate Analog Cornelius von Morze ¹ , Robert A. Bok ¹ , Michael A. Ohliger ¹ , Daniel B. Vigneron ¹ , John Kurhanewicz ¹ ¹ Department of Radiology & Biomedical Imaging, UCSF, San Francisco, CA, United States
12:09 0093. ISMEN MERT AWARD Magna cum Lande	Slice Blipped EPI Trajectory for Compressed Sensing Acquisition of 3D Time Resolved Imaging of Hyperpolarized [1- ¹³ C]Pyruvate and [1- ¹³ C]Lactate Benjamin J. Geraghty ¹ , ² , Justin Y.C. Lau ¹ , ² , Albert P. Chen ³ , William Dominguez-Viqueira ¹ , Charles H. Cunningham ¹ , ² ¹ Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ² Dept. of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ³ GE Healthcare, Toronto, Ontario, Canada
12:21 0094. Ismen Meerit Award magina cum laude	Parallel Imaging Using a Concentric Rings Trajectory and Application to Hyperpolarized ¹³ C MR Spectroscopic Imaging Wenwen Jiang ¹ , Michael Lustig ² , Peder E.Z. Larson ³ ¹ Bioengineering, UC Berkeley/UCSF, Berkeley, CA - California, United States; ² EECS, UC Berkeley, Berkeley, CA, United States; ³ Radiology and Biomedical Imaging, UCSF, San Francisco, CA - California, United States
12:33 0095.	Hyperpolarized Metabolic MR Imaging of Acute Myocardial Changes and Recovery Upon Ischemia- Reperfusion Patrick Wespi ¹ , Darach O h-Ici ¹ , ² , Julia Busch ¹ , Lukas Wissmann ¹ , Marcin Krajewski ¹ , Kilian Weiss ¹ , Andreas Sigfridsson ¹ , Daniel Messroghli ² , Sebastian Kozerke ¹ , ³ ¹ Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ² Department of Congenital Heart Disease and Pediatric Cardiology, German Heart Institute, Berlin, Germany; ³ Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
12:45	Adjournment & Meet the Teachers
Gold Corpor	ate Symposium
Plenary Hall FG	13:00-14:00 (no CME credit)

(no CME credit) (no CME credit) (no CME credit)

Study Group Session MR Spectroscopy

Study Group Session

Exhibition Hall

Exhibition Hall

Exhibition Hall

Constitution Hall 105 14:15-16:15

Reception Hall 104 BCD 14:15-16:15

Power Pitch Theatre, Exhibition Hall 14:15-15:15 Moderators: Michael S. Hansen, Ph.D. & Nicole E. Seiberlich, Ph.D. 0096. Field-Map-Free First-Order Dynamic Shimming Yuhang Shi¹, Johanna Vannesjo¹, Karla Miller¹, Stuart Clare¹ Summa cum laude ¹Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Oxford, United Kingdom 0097. Spatial Motion Model Driven by the Noise Covariance Matrix of a Receive Array. Anna Andreychenko¹, Baudouin Ďenis de Senneville¹,², Robin J.M. Navest¹, Jan J.W. Lagendijk¹, Cornelis A.T. van den Berg¹ ¹Imaging Division, UMC Utrecht, Utrecht, Netherlands; ²IMB, UMR 5251 CNRS/University of Bordeaux, Bordeaux, France 0098. Improved Reconstruction of Nonlinear Spatial Encoding Techniques with Explicit Intra-Voxel Dephasing Kelvin Layton¹, Stefan Kroboth¹, Feng Jia¹, Sebastian Littin¹, Huijun Yu¹, Maxim Zaitsev¹ summa cum laude ¹Medical Physics, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany 0099. Magnification Imaging by Radiofrequency-Induced Nonlinear Phase Encoding hin Shen ¹NIMH, Bethesda, MD, United States 0100. Reliable Phase Gradient Mapping and Phase Unwrapping for Low-SNR Images: A Novel Procedure Based on **K-Space Energy Peak Quantification** Pei-Hsin Wu¹, Hsiao-Wen Chung¹, Nan-Kuei Chen² ¹Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ²Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States 0101. Orthogonally Combined Motion- And Diffusion-Sensitized Driven Equilibrium (OC-MDSDE) Preparation for Improved Vessel Signal Suppression in 3D TSE Imaging of Peripheral Nerves magna cum laude Barbara Cervantes¹, Jinnan Wang², Jan S. Bauer³, Hendrik Kooijman⁴, Peter Börnert⁵, Axel Haase⁶, Ernst J.

Rummeny¹, Klaus Wörtler¹, Dimitrios C. Karampinos¹ ¹Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany; ²Philips Research North America, Seattle, WA, United States; ³Neuroradiology, Technische Universität München, Munich, Germany; ⁴Philips Healthcare, Hamburg, Germany; ⁵Philips Research Laboratory, Hamburg, Germany; ⁶Zentralinstitut für Medizintechnik, Technische Universität München, Garching, Germany

Electronic Poster Session: Engineering

Electronic Poster Session: MR Safety

Electro-Magnetic Tissue Properties (SWI)

Power Pitch Session: Powerful Acquisition

Electronic Poster Session: UHF

14:15-16:15

14:15-16:15

14:15-16:15

(no CME credit)

(no CME credit)

Monday

(no CME credit)

0102. Off-Resonance Positive Contrast Flow Imaging Using Extraneous Paramagnetic Biomarker-Induced Spin Labeling magna cum laude

Jessica A.M. Bastiaansen¹,², Helene Feliciano¹,², Andrew Coristine¹,², Matthias Stuber¹,² ¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland

0103. Hierarchically Semiseparable Generalized Encoding Matrix Compression for Fast Distortion Corrected Inverse Imaging

Stephen F. Cauley¹,², Kawin Setsompop¹,², Dan Ma³, Yun Jiang³, Elfar Adalsteinsson⁴, Lawrence Wald¹,², Mark Griswold³.

¹Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, United States; ²Dept. of Radiology, Harvard Medical School, Boston, MA, United States; ³Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ⁴Harvard-MIT Div. of Health Sci. and Tech., Dept. of Electrical Engineering and Computer Science, Cambridge, MA, United States; ⁵Dept. of Radiology, , Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, United States

0104. Accelerated Multiparameter Mapping Using Low-Rank Tensors

Anthony G. Christodoulou¹, Zhi-Pei Liang ismen merit award magna cum laudo

¹Beckman Institute and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

0105. Use of Pattern Recognition for Unaliasing Simultaneously Acquired Slices in Simultaneous MultiSlice Magnetic **Resonance Fingerprinting** ismem merit award magna cum laude

Yun Jiang¹, Dan Ma¹, Himanshu Bhat², Huihui Ye³, ⁴, Stephen F. Cauley³, Lawrence L. Wald³, ⁵, Kawin Setsompop³, Mark A. Griswold¹,⁶

¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Siemens Medical Solutions USA Inc., Charlestown, MA, United States; ³Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ⁴Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; ⁵Department of Electrical Engineering and Computer Science; Harvard-MIT Division of Health Sciences a, MIT, Cambridge, MA, United States; ⁶Department of Radiology, Case Western Reserve University, Cleveland, OH, United States

0106. Non-CPMG Multi-Spectral PROPELLER for Diffusion-Weighted Imaging Near Metal Implants

Kevin M. Koch¹, Ajeet Gaddipati², Ali Ersoz³, Robert Peters², Valentina Taviani⁴, Brian A. Hargreaves⁴, L. Tugan Muftuler

¹Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²GE Healthcare, Milwaukee, WI, United States; ³Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Radiology, Stanford University, Stanford, CA, United States; ⁵Neurosurgery and Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States

0107. Two-Dimensional Multiband Diffusion Weighted Imaging

summa cum laud

Summa cum Laub

Valentina Taviani¹, Suchandrima Banerjee², Bruce L. Daniel¹, Shreyas S. Vasanawala¹, Brian A. Hargreaves¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States

0108. In Vivo Simultaneous Acquisition of Diffusion Tensor Imaging (DTI) and MR Elastography (MRE) in Mouse Brain

Ziying Yin¹, Steven Kearney², Richard L. Magin¹, Dieter Klatt¹

¹Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ²2Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States

0109. Rapid and Accurate PTX B1 Mapping Using 3DREAM with Dual Interferometry

Daniel Brenner¹, Desmond H. Y. Tse², ³, Patrick J. Ledden⁴, Claudine Neumann¹, Tony Stöcker¹, ⁵ ¹German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ²Faculty of Psychology, Maastricht University, Maastricht, Netherlands; ³Department of Radiology, Maastricht University Medical Centre, Maastricht, Netherlands; ⁴Nova Medical, Inc., Wilmington, MA, United States; ⁵Department of Physics and Astronomy, University of Bonn, Bonn, Germany

0110. Accelerating Bloch-Siegert B1+ Mapping Using Modified Iterative SENSE and ESPIRiT (iSENSE) Mohammad Mehdi Khalighi¹, Peng Lai¹ ¹Applied Science Lab, GE Healthcare, Menlo Park, CA, United States

Cartilage Imaging: Technical Developments			
<u>Room 701 A</u>	14:15-16:15 <i>Moderators:</i> Xiaojuan Li, Ph.D. & Miika T. Nieminen, Ph.D.		
14:15 011 summa meen ovaao summa cum laude	1. Response of Quantitative MRI to Artificial Collagen Cross-Linking of Articular Cartilage Jari Rautiainen ¹ , ² , Mikko J. Nissi ¹ , ² , Elli-Noora Salo ³ , Harri Kokkonen ² , ⁴ , Shalom Michaeli ³ , Silvi Mangia ⁵ , Olli Gröhn ⁶ , Juha Töyräs ² , ⁴ , Miika T. Nieminen ¹ , ³ ¹ Medical Research Center Oulu and Department of Diagnostic Radiology, University of Oulu, Oulu, Finland; ² Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; ³ Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; ⁴ Diagnostic Imaging Center, Kuopio University Hospital, Kuopio, Finland; ⁵ Center for Magnetic Resonance Research, University of Minnesota, MN, United States; ⁶ Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland		
14:27 011	2. Validation of Diffusion Tensor Imaging of Articular Cartialge in an Animal Model of Posttraumatic Osteoarthritis Jose G. Raya ¹ , Ignacio Rossi ¹ , Oran Kennedy ¹ , Natalie Danna ¹ , Bryan Beutel ¹ , You Jin Lee ¹ , Thorsten Kirsch ¹ 'NYU Langone Medical Center, New York, NY, United States		
14:39 011 Isman Merit Award Summa cum lande	3. Rapid T1 and T2 Mapping of the Hip Articular Cartilage with Radial MR Fingerprinting <i>Martijn A. Cloos¹, Leeor Alon¹, Christian Geppert², Daniel K. Sodickson¹, Riccardo Lattanzi¹</i> ¹ Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ² Siemens AG Healthcare, Erlangen, Germany		
14:51 011	4. Correlation Between Cartilaginous Endplate Defects and Intervertebral Disc Degeneration: An In Vivo MRI Study at 3.0 Tesla Dong Xing ¹ , Jiao Wang ¹ , Yunfei Zha ¹ , Lei Hu ¹ , Hui Lin ² , Yuan Lin ¹ ¹ Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; ² GE Healthcare China, Shanghai, China		
15:03 011	5. Metal Artifact Reduction Using a 3D UTE-MSI Sequence with Time-Frame Regularized Compressed Sensing Reconstruction <i>Yifei Lou¹, Qun He², Xun Jia³, Eric Chang², Christine B. Chung², Jiang Du²</i> ¹ Department of Mathematical Sciences, University of Texas Dallas, Dallas, TX, United States; ² Radiology, University of California, San Diego, CA, United States; ³ Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States		
15:15 011	6. Effects of Bath Solutions on the Quantitative Determination of Relaxation Times in Compressed Articular Cartilage by Microscopic MRI Nian Wang ^l , Yang Xia ^l ¹ Department of Physics and Center for Biomedical Research, Oakland University, Rochester, MI, United States		
15:27 011	7. Determination of Correlation Time in Articular Cartilage by T1rho Relaxation Dispersion Matti Hanni ¹ , ² , Mikko J. Nissi ³ , ⁴ , Jari Rautiainen, ³⁴ , Simo Saarakkala, ²⁵ , Jutta Ellermann ⁶ , Miika T. Nieminen, ²⁷ ¹ Department of Radiology, University of Oulu, Oulu, Finland; ² Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; ³ Department of Radiology, and Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland; ⁴ Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; ⁵ Department of Diagnostic Radiology, Oulu University Hospital, Department of Medical Technology, University of Oulu, Oulu, Finland; ⁶ Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ⁷ Department of Diagnostic Radiology, University of Oulu and Oulu University Hospital, Oulu, Finland		
15:39 011	8. Magnetic Resonance Imaging as Biomarker of Adverse Local Tissue Reactions in Total Hip Arthroplasty Matthew E. Koff ^d During II. Shah ^l Aligg Purge ^d Mauro Mingu de ¹ Christian Espacite ² Elimits Purge ¹ Theorem W		

^{13MM HERT AVAND magna cam laube} Matthew F. Koff⁴, Parina H. Shah¹, Alissa Burge¹, Mauro Miranda¹, Christina Esposito², Elexis Baral², Thomas W. Bauer³, Allina Nocon⁴, Kara Fields⁴, Stephen Lyman⁴, HSS Adult Reconstruction & Joint Replacement Division⁵, Douglas Padgett⁵, Timothy Wright², Hollis G. Potter¹ ¹Department of Radiology and Imaging - MRI, Hospital for Special Surgery, New York, United States; ²Department of Biomechanics, Hospital for Special Surgery, New York, United States; ³Department of Anatomic Pathology, Cleveland Clinic, Cleveland, OH, United States; ⁴Healthcare Research Institute, Hospital for Special Surgery, New York, United States; ⁵Adult Reconstruction & Joint Replacement Division, Hospital for Special Surgery, New York, United States

15:51 0119. Quantitative Susceptibility Mapping (QSM) to Correlate with Histology and Quantitative Parametric Mapping in Surgically Induced Juvenile Osteochondritis Dissecans

*Luning Wang¹, Mikko J. Nissi,*¹², *Ferenc Toth, Michael Garwood¹, Cathy Carlson, Jutta Ellermann¹* ¹Center for Magnetic Resonance Research, University of Minnesota, Twin Cities, Minneapolis, MN, United States; ²Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland

16:03 0120. Cartilage MR T1ρ and T2 Quantifications: Longitudinal Reproducibility and Variations Using Different Coils and Scanners at Single and Multi-Sites

Xiaojuan Li¹, Valentina Pedoia¹, Deepak Kumar¹, Drew Lansdown¹, Cory Wyatt¹, Julien Rivorie¹, Narihiro Okazaki¹, Dragana Savic¹, Matthew F. Koff², Joel Felmlee³, Williams Steven³, Sharmila Majumdar¹ ¹University of California, San Francisco, CA, United States; ²Hospital for Special Surgery, New York, NY, United States; ³Mayo Clinic, Rochester, MN, United States

Relaxometry Applications Throughout the Body

<u>Room 701 B</u>	14:15-16:15	Moderators: Oliver Bieri, Ph.D. & Rexford D. Newbould, Ph.D.
14:15 01	21. Regional Brain T1 and T2 Rel	axometry in Healthy Volunteers Using Magnetic Resonance Fingerprinting
ismem merit award Summa cum laudo	<i>Chaitra Badve¹, Alice Yu², Matt.</i> ¹ Radiology, University Hospitals Ca States	<i>hew Rogers², Dan Ma², Jeffrey Sunshine¹, Vikas Gulani¹, Mark Griswold¹</i> se Medical Center, Cleveland, OH, United States; ² Case Western Reserve University, OH, United

14:27 0122. In Vivo Assessment of Age-Related White Matter Differences Using T₂* Relaxation Erika P. Raven¹, ², Peter van Gelderen², Jacco A. de Zwart², Diana H. Fishbein³, John VanMeter¹, ⁴, Jeff H. Duyn² ¹Georgetown University, Washington, DC, United States; ²Advanced MRI, LFMI, NINDS, NIH, Bethesda, MD, United States; ³University of Maryland School of Medicine, Baltimore, MD, United States; ⁴Georgetown Center for Functional and Molecular Imaging, Washington, DC, United States

14:39 0123. Extensive and Intensive Measures of Corpus Callosum Health in Multiple Sclerosis Manoj K. Sammi¹, Yosef A. Berlow¹, John G. Grinstead², Dennis M. Bourdette³, William D. Rooney¹ ¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ²Siemens Healthcare, OR, United States; ³Department of Neurology, Oregon Health & Science University, Portland, OR, United States

14:51 0124. Quantitative 3D Whole Liver T1rho Mapping at 3.0T

Weibo Chen¹,², Xin Chen³, Guangbin Wang³, Queenie Chan⁴, He Wang⁵, Jianqi Li⁶, Xuzhou Li⁷, Shanshan Wang³, Bin Yao³, Dongrong Xu⁷,⁸

¹Shanghai Key Laboratory of Magnetic Resonance and Department of Physics,East China Normal University, Shanghai, China; ²Philips Healthcare, shanghai, China; ³Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China; ⁴Philips Healthcare, Hongkong, China; ⁵Philips Research China, shanghai, China; ⁶Shanghai Key Laboratory of Magnetic Resonance and Department of Physics,East China Normal University, Shanghai, China; ⁷Key laboratory of Brain Functional Genomics (MOE & STCSM), Institute of Cognitive Neuroscience, East China Normal University, shanghai, China; ⁸Epidemiology Division & MRI Unit,Columbia University Department of Psychiatry, NY, United States

15:03 0125. Leveraging Transverse Relaxation Processes and Dixon Oscillations to Achieve High-Quality Segmentation of Bone Marrow

*Mukund Balasubramanian*¹, ², *Delma Y. Jarrett*¹, ², *Robert V. Mulkern*¹, ² ¹Department of Radiology, Boston Children's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States

15:15 0126. Significant Alterations on T2-Spectra Observed in the Calf of Myopathic Patients

Ericky Caldas de Almeida Araujo¹, Pierre G. Carlier¹, ² ¹NMR Laboratory, Institute of Myology, Paris, Île-de-France, France; ²NMR Laboratory, CEA/I2BM/MIRCen, Paris, Île-de-France, France
15:27 0127. Endogenous Assessment of Diffuse Myocardial Fibrosis with T1p-Mapping in Patients with Dilated Cardiomyopathy Joep van Oorschot¹, Johannes Gho¹, Sanne de Jong¹, Aryan Vink¹, Fredy Visser², Jacques de Bakker³, Steven Chamuleau¹. Peter Luiiten¹. Tim Leiner¹. Jaco Zwanenburg¹ ¹University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Noord-Brabant, Netherlands; ³AMC, Amsterdam, Netherlands 15:39 0128. What Are the Blood T1 and T2 Values in Neonates? Peiying Liu¹, Lina Chalak², Lisa Krishnamurthy¹, Imran Mir², Shin-Lei Peng¹, Hao Huang¹, Hanzhang Lu Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Pediatrics, University of Texas Southwestern Medical Center, TX, United States 15:51 0129. Combined T₁ and T₂ Measurement for Non-Invasive Evaluation of Blood Oxygen Saturation and Hematocrit Summa cum laude

Sharon Portnoy¹, Mike Seed², Julia Zhu², John G. Sled, ¹³, Christopher K. Macgowan, ¹⁴ ¹Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; ³Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; ⁴Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada

16:03 0130. Delta Relaxation Enhanced Magnetic Resonance (DreMR) Imaging of a Healthy Mouse for Determination of Spin-Lattice Relaxation Rates and R₁ Dispersion at 1.5 T magna cum laude Yonathan T. Araya¹, Francisco M. Martinez-Santiesteban¹, Chad T. Harris², William B. Handler³, Blaine A. Chronik³, Timothy J. Scholl¹. ¹Medical Biophysics, Western University, London, ON, Canada; ²Synaptive Medical, Toronto, ON, Canada; ³Physics and Astronomy, Western University, London, ON, Canada; ⁴Robarts Research Institute, Western University, London, ON, Canada

fMRI Applications, Including Optogenetics

Room 714 A/B	14:15-16:15	Moderators: Victoria L. Morgan, Ph.D. & T.B.A.		
14:15 0131.	Hunting the Source of a Unique Negative fMR Daniel Albaugh ¹ , Garret Stuber ² , Yen-Yu Ian Shi ¹ Curriculum in Neurobiology, University of North Caro University of North Carolina at Chapel Hill, Chapel Hi Carolina at Chapel Hill, Chapel Hill, NC, United States	of a Unique Negative fMRI Signal in the Striatum Using Optogenetics <i>rret Stuber², Yen-Yu Ian Shih³</i> ology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ² Department of Psychiatry, olina at Chapel Hill, Chapel Hill, NC, United States; ³ BRIC, Department of Neurology, University of North Chapel Hill, NC, United States		
14:27 0132.	Spatial Correlations of Neurovascular Couplin Jack A. Wells ¹ , Isabel N. Christie ¹ , Sergey Kaspa ¹ Centre for Advanced Biomedical Imaging, University Pharmacology, University of Bristol, Bristol, United K London, London, United Kingdom	ng Studied Using Single Pulse Opto-fMRI rov ² , Alexander Gourine ³ , Mark F. Lythgoe ¹ College London, London, United Kingdom; ² Department of Physiology and ngdom; ³ Neuroscience, Physiology & Pharmacology, University College		
14:39 0133.	Intrahippocampal and Hippocampal-Cortical Stimulation <i>Russell W. Chan¹, ², Alex T.L. Leong¹, ², Joe S. C.</i> <i>Wu¹, ²</i> ¹ Laboratory of Biomedical Imaging and Signal Process Electrical and Electronic Engineering, The University of	Interactions Driven by Frequency Specific Optogenetic heng ¹ , ² , Partick P. Gao ¹ , ² , Shu-Juan J. Fan ¹ , ² , Kevin K. Tsia ² , Ed X. ing, The University of Hong Kong, Hong Kong, China; ² Department of f Hong Kong, Hong Kong, China		

0134. Uncovering the Functional Network of Medial Prefrontal Cortex in Awake Rodents Using Optogenetic fMRI Zhifeng Liang¹, ², Glenn D.R. Waston, ²³, Kevin D. Alloway, ²³, Gangchea Lee⁴, Thomas Neuberger⁴, Nanyin Zhang, ²⁴ ¹Dept. of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States; ²Center for Neural 14:51 magna cum laude Engineering, The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States; ³Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States; ⁴Dept. of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States

15:03 0135.	Frequency Specific Optogenetic Recruitment of Evoked Responses in the Somatosensory Thalamocortical
ISMRM MERIT AWARD Summa cum laude	<i>Circuit</i> <i>Alex T.L. Leong</i> ¹ , ² , <i>Russell W. Chan</i> ¹ , ² , <i>Patrick P. Gao</i> ¹ , ² , <i>Joe S. Cheng</i> ¹ , ² , <i>Jevin W. Zhang</i> ¹ , ² , <i>Shu-Juan J. Fan</i> ¹ , ² , <i>Kevin K. Tsia</i> ² , <i>Kenneth K.Y. Wong</i> ² , <i>Ed X. Wu</i> ¹ , ²
	¹ Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, SAR, China; ² Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR, China
15:15 0136.	Characterizing Cortical Responses to the Stimulation of Single Mechanoreceptive Afferents Using fMRI at 7 T <i>Rosa Maria Sanchez Panchuelo¹, Rochelle Ackerley², Paul Glover¹, Richard Bowtell¹, Francis McGlone³, Johan</i>
	<i>Wessberg</i> , <i>Susan Francis</i> ¹ University of Nottingham, Nottingham, United Kingdom; ² University of Gothenburg, Gothenburg, Sweden; ³ Liverpool Johns Moore University, Liverpool, United Kingdom
15:27 0137.	Odor-Evoked fMRI Maps Are Coupled to Calcium-Sensitive Dye Imaging Patterns of Input Activity in the Olfactory Bulb
	Basavaraju G. Sanganahalli ¹ , Michelle R. Rebello ² , Peter Herman ¹ , Gordon M. Shepherd ³ , Justus V. Verhagen ² , ⁴ , Fahmeed Hyder ¹ , ⁵
	¹ Diagnostic Radiology, Yale University, New Haven, CT, United States; ² The John B. Pierce Laboratory, Yale University, New Haven, CT, United States; ³ Neurobiology, Yale University, New Haven, CT, United States; ⁴ Neurobiology, Yale University, CT, United States; ⁵ Biomedical Engineering, Yale University, New Haven, CT, United States
15:39 0138.	MEG and fMRI Localization of Infrasonic and Low-Frequency Sound Markus Weichenberger ¹ , Rüdiger Brühl ² , Martin Bauer ² , Robert Kühler ² , Albrecht Ihlenfeld ² , Johannes Hensel ² ,
	<i>Christian Koch², Bernd Ittermann², Simone Kühn¹, Tilmann Sander²</i> ¹ Max Planck Institute for Human Development, Berlin, Germany; ² Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany
15:51 0139.	Encoding Self-Motion and External Motion During Pursuit Eye Movement, a Study at 9.4T $E_{\text{Molgori}} Vanaghi^{l/2}$ Longs $Bauga^{l}$ Philipp $Ehga^{l}$ Klaus Schefflag ^l Andreas $Bautals^{2}$
	¹ High Field Magnetic Resonance, Max-Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg, Germany; ² Center for Integrative Neuroscience (CIN), Vision and Cognition Lab, Tübingen, Baden-Württemberg, Germany
16:03 0140. Issues Meerr Payano magna cum laude	Endogenous GABA Concentration and Haemodynamic Responses to Graded Visual Contrast <i>Mark Mikkelsen¹, C. John Evans¹, Alan J. Stone¹, ², Esther A. H. Warnert¹, Krish D. Singh¹</i> ¹ CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; ² FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom

Hepatobiliary 1

<u>Room 716 A/B</u>	14:15-16:15	Moderators: Mustafa Shadi R. Bashir, M.D. & T.B.A.
14:15 0141.	Correlating Post-Operative Who	le Mount Immunohistochemistry to Functional MRI Parameters in Pancreatic
ISMRM MERIT AWARD Siumina cum Lande	Cancer <i>Remy Klaassen¹</i> , ² , <i>Anne Steins¹</i> , ² , <i>Tienhoven⁵</i> , <i>Marc G.H. Besselink⁶</i> , <i>Hanneke W.M. van Laarhoven¹</i> ¹ Department of Medical Oncology, Aca Radiobiology, Academic Medical Center Amsterdam, Netherlands; ⁴ Department Oncology, Academic Medical Center, <i>A</i> Netherlands; ⁷ Department of Pathology.	Oliver J. Gurney-Champion ³ , Maarten F. Bijlsma ² , Hessel Wijkstra ⁴ , Geertjan van Johanna W. Wilmink ¹ , Mark J. van de Vijver ⁷ , Jaap Stoker ³ , Aart J. Nederveen ³ , demic Medical Center, Amsterdam, Netherlands; ² Laboratory for Experimental Oncology and er, Amsterdam, Netherlands; ³ Department of Radiology, Academic Medical Center, of Urology, Academic Medical Center, Amsterdam, Netherlands; ⁶ Department of Surgery, Academic Medical Center, Amsterdam, Academic Medical Center, Amsterdam, Netherlands; Academic Medical Center, Amsterdam, Academic Medical Center, Amsterdam, Academic Medical Center, Amsterdam, A

14:27 0142. Feasibility Study on Reduced FOV Diffusion Imaging of the Pancreas Using Navigator Triggering Technique Lorenzo Mannelli¹, Maggie M. Fung², Gregory Nyman¹, Sabrina Lopez¹, Richard Kinh Gian Do¹ ¹Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States; ²Global MR Applications and Workflow, GE Healthcare, New York, NY, United States

14:39 0143. Free-Breathing Fat-Water-Separated Liver MRI Using a Multi-Echo 3D Stack-Of-Stars Technique

Tess Armstrong¹, ², Isabel Dregely¹, Fei Han³, Ziwu Zhou¹, Kyung Sung¹, ², Peng Hu¹, ², Holden Wu¹, ² ¹Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ²Biomedical Physics, University of California Los Angeles, Los Angeles, Los Angeles, Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences, University of California Los Angeles, CA, United States; ³Radiological Sciences; ³Radiolo

14:51 0144. Accuracy of Liver Fat Quantification by CT, MRI and US: a Prospective Comparison with Magnetic Resonance Spectroscopy (MRS)

Harald Kramer¹, ², Mark A. Kliewer², Perry J. Pickardt², Diego Hernando², Guang-Hong Chen², Scott B. Reeder² ¹Department of Clinical Radiology, University of Munich, Munich, Bavaria, Germany; ²Department of Radiology, University of Wisconsin - Madison, Madison, WI, United States

15:03 0145. MRS and MRI-Determined Hepatic Proton Density Fat Fraction: Comparison of ROI Sampling Methods in Patients with Type 2 Diabetes

Kim Nhien Vu¹, Guillaume Gilbert¹, ², Marianne Chalut¹, Miguel Chagnon³, Gabriel Chartrand⁴, Jacques de Guise⁴, An Tang¹

¹Radiology, University of Montreal, Montreal, Qc, Canada; ²Philips Healthcare Canada, Montreal, Qc, Canada; ³Mathematics and Statistics, University of Montreal, Montreal, Qc, Canada; ⁴Imaging and Orthopaedics Research Laboratory (LIO), École de technologie supérieure, Montreal, Qc, Canada

15:15 0146. MR Tagging-Based Liver Elasticity Study with the Use of Full Strain Tensor Analysis for Better Understanding of Mechanical Alterations in NAFLD

Anna Orzylowska¹, Krzysztof Jasinski¹, Pawel T. Jochym², Edyta Maslak³, Tomasz Skorka¹ ¹Department of Magnetic Resonance Imaging, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland; ²Department of Materials Research by Computers, Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland; ³Department of Endothelium Experimental Pharmacology, Jagiellonian Center for Experimental Therapeutics (JCET), Krakow, Poland

15:27 0147. Interplatform Variability of Liver and Spleen MR Elastography

Temel Kaya Yasar¹, Octavia Bane¹, Cecilia Besa¹, Stephan Kannengiesser², Bachir Taouli¹ ¹Icahn School of Medicine at Mount Sinai, New York, NY, United States; ²Siemens Healthcare, Germany

15:39 0148. In Vivo Multifrequency MR Elastography for the Assessment of Portal Hypertension Before and After Transjugular Intrahepatic Portosystemic Shunt (TIPS) Implantation

Jing Guo¹, Christian Althoff⁴, Carsten Büning², Eckart Schott³, Thomas Kröncke⁴, Jürgen Braun⁵, Ingolf Sack¹ ¹Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ²Krankenhaus Waldfriede, Akademisches Lehrkrankenhaus der Charité, Berlin, Germany; ³Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ⁴Clinic for Diagnostic Radiology and Neuroradiology, Klinikum Augsburg, Bavaria, Germany; ⁵Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany

15:51 0149. The Usefulness of Magnetic Resonance Elastography in Predicting Progression of Cirrhosis from Child-Pugh

Tomohiro Takamura¹, Utaroh Motosugi¹, Shintaro Ichikawa¹, Katsuhiro Sano¹, Hiroyuki Morisaka¹, Tomoaki Ichikawa¹, Nobuyuki Enomoto², Hiroshi Onishi¹ ¹Department of Radiology, University of Yamanashi, Kofu, Yamanashi, Japan; ²First Department of Internal Medicine, University of Yamanashi, Yamanashi, Japan

16:03 0150. 4D-Flow MRI for Risk Stratification of Gastroesophageal Varices in Cirrhotic Patients

Utaroh Motosugi¹, ², Peter Bannas¹, ³, Alejandro Roldan-Alzate¹, Sean G. Kelly⁴, Adnan Said⁴, Oliver Wieben⁵, Scott B. Reeder¹, ⁵

¹Radiology, University of Wisconsin, Madison, WI, United States; ²Radiology, University of Yamanashi, Chuo-shi, Yamanashi, Japan; ³Radiology, University Hospital Hamburg-Eppendorf, Humburg, Germany; ⁴Gastroenterology and Hepatology, University of Wisconsin, Madison, WI, United States; ⁵Medical Physics, University of Wisconsin, Madison, WI, United States

Diffusion Phantoms & Validation

Constitution	Hall	107	14:15-16:15	Moderators: Els Fieremans, Ph.D. & Markus Nilsson, Ph.D.
14:15 0	151.	Valida	ation of Orientation Distributio	n Functions in 3D Using Confocal Microscopy
Summa cum lau	nd DC	Kurt S	chilling ¹ , Yurui Gao ¹ , Vaibhav Jo	unve ¹ , Iwona Stepniewska ² , Prasanna Parvathaneni ³ , Hua Li ¹ , Bennett A.
78.001	25.	Landm	nan', Adam W. Anderson'	
		Fngine	ering Vanderbilt University, Nashville, I	N, United States; Psychology, Vanderbilt University, Nasvnille, United States; Electrical ited States; ⁴ Flectrical Engineering, Vanderbilt University, Nashville, TN, United States
		Engine	ening, vanderbilt eninversity, 110, en	the states, Electrical Engineering, value on on onsky, rushvine, rr, onder states
14:27 0	152.	Diffus	ivity in Crossing and Diverging	Fibers: A Multi-Site Phantom Experiment
		Matthe	an W.A. Caan ¹ , Ezequiel Farrher	² , James Cole ³ , Dirk H.J. Poot ⁴ , ⁵ , Farida Grinberg ² , ⁶ , N. Jon Shah ² , ⁶
		¹ Depart	tment of Radiology, Academic Medio	al Center, Amsterdam, Netherlands; ² Institute of Neuroscience and Medicine-4,
		Forschu	ungszentrum Juelich, Juelich, German	ny; ³ Computational, Cognitive, and Clinical Neuroimaging Laboratory, Division of Brain
		Science	es, Imperial College London, London	, United Kingdom; 'Quantitative imaging Group, Department of Imaging Physics, Defitients'
		⁶ Depart	tment of Neurology, Faculty of Medi	cine, JARA, RWTH Aachen University, Aachen, Germany
14:39 0	153.	Chara	cterization of the Wallerian De	generation Process in the Rat Spinal Cord with DIAMOND and NODDI:
ISMRM MERIT AWAI	RD	Comp	arison with Histological Oberv	ations.
Summa tum tau	lue	Damie	en Jacobs ¹ , Benoit Scherrer ² , Alei	ksandar Jankovski ³ , Anne des Rieux ⁴ , Maxime Taquet ¹ , Bernard Gallez ⁴ , Simon
		K. Wa	rfield ² , Benoit Macq ¹	
		ICTEA	AM, Universite catholique de Louvair	1, Louvain-La-Neuve, Belgium; "Computational Radiology Laboratory, Boston Childrens
		Univers	site catholique de Louvain, Brussels,	Belgium
			····· ································	
14:51 0	154.	Quant	titative Histological Correlates	of NODDI Orientation Dispersion Estimates in the Human Spinal Cord
ISMRM MERIT AWAR	10 De	France	esco Grussu ¹ , Torben Schneider ¹	Richard L. Yates ² , Mohamed Tachrount ³ , Hui Zhang ⁴ , Daniel C. Alexander ⁴ ,
2		Gabrie	ele C. DeLuca ² , Claudia A. M. W	heeler-Kingshott
		'NMR	Research Unit, Department of Neuro Kingdom: ² Nuffield Department of C	nflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England,
		³ Depart	tment of Brain Repair and Rehabilita	ion UCL Institute of Neurology London England United Kingdom ⁴ Department of
		Compu	ter Science and Centre for Medical In	nage Computing, University College London, London, England, United Kingdom
15:03 0	155.	Valida	ation of Double Diffusion Scher	nes of Microscopic Fractional Anisotropy
		Henrik	K Lundell, 11m B. Dyrby, Penny	L. Hubbara Cristinacce, ', Feng-Lei Znou', ', Geoffrey J.M. Parker', ', Sune N.
		¹ Centre	tor Functional and Diagnostic Imagi	ng and Research, Copenhagen University Hospital, Hvidovre, Denmark; ² Centre for
		Imagin	g Sciences, The University of Manch	ester, United Kingdom; ³ Biomedical Imaging Institute, The University of Manchester,
		United	Kingdom; ⁴ The School of Materials,	The University of Manchester, United Kingdom; ⁵ CFIN/MINDLab, Aarhus University,
		Denma	rk; Department of Physics and Astro	nomy, Aarhus University, Denmark
15:15 0	156.	Estim	ating Microstructural Properti	es of a Biomimetic Tumour Tissue Phantom Using Diffusion-Weighted
10.110 0	1001	MRI		is of a Biominical Famour Fissue Financom Conig Binasion (Cogneta
		Damie	en J. McHugh ¹ , ² , Fenglei Zhou ¹ , ¹	¹ , Penny L. Hubbard Cristinacce ¹ , ² , Josephine H. Naish ¹ , ² , Geoff J M Parker ¹ , ²
		¹ Centre	e for Imaging Sciences, The Universit	y of Manchester, Manchester, United Kingdom; ² Biomedical Imaging Institute, The
		Univers	sity of Manchester, Manchester, Unit	ed Kingdom; 'Materials Science Centre, The University of Manchester, Manchester,
		United	Kingdoin	
15:27 0	157.	Reduc	tion of Susceptibility-Induced	Field Gradients in Anisotropic Diffusion Fibre Phantoms Using
		Susce	ptibility Matching	i i i i i i i i i i i i i i i i i i i
		Johan	nes Lindemeyer ¹ , Ezequiel Farrh	er ¹ , Farida Grinberg ¹ , ² , Ana-Maria Oros-Peusquens ¹ , N. Jon Shah ¹ , ²
		¹ Institu	te of Neuroscience and Medicine 4, I	NM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, Jülich, Germany;
		Facult	y of Medicine, Department of Neurol	ogy, KW1H Aachen University, JAKA, Aachen, Germany
15:39	158	A Pro	cessing Pineline and Anisotron	c Diffusion Phantom to Calibrate DTI Experiments
10.07 0	100.	Alexan	idru V. Avram ¹ , Michal E. Komlo	sh ¹ , ² , Alan S. Barnett ¹ , ² , Elizabeth Hutchinson ¹ , ² . Dan Beniamini ¹ , ³ . Peter J.
		Basser	"I	, , , , , , <u> , , </u>
		¹ Section	n on Tissue Biophysics and Biomime	tics, NICHD, National Institutes of Health, Bethesda, MD, United States; ² The Henry
		Jackson	n Foundation, Bethesda, MD, United	States; 'Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv, Israel

15:51	0159.	A Novel Phantom for Quantitative Diffusion MRI Based on Acetone and Deuterium Oxide Xiaoke Wang ¹ , Scott B. Reeder ² , ³ , Diego Hernando ² ¹ Biomedical Engineering, University of Wisconsin, Madison, WI, United States; ² Radiology, University of Wisconsin, Madison, WI, United States; ³ Medical Physics, University of Wisconsin, Madison, WI, United States
16:03	0160.	Hyperpolarized Gas MR Diffusion Simulations and Experiments in Realistic 3D Models and Phantoms of Human Acinar Airways Juan Parra-Robles ¹ , Bart Veeckmans ² , Madhwesha Rao ¹ , James C. Hogg ³ , Jim M. Wild ¹

Juan Parra-Robles', Bart Veeckmans', Maanwesha Rao', James C. Hogg', Jim M. Wila' ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²Materialise, Leuven, Belgium; ³University of British Columbia, Vancouver, British Columbia, Canada

Neurovascular & Stroke 1

John Bass	sett The	atre 102 14:15-16:15	Moderators: Tilak Das, M.D., Ph.D. & T.B.A.
14:15	0161.	Changes in White-Matter Integrity and Evoked fMRI Res <i>Yunxia Li¹, ², Qian Wang¹, Qiang Shen¹, Shiliang Huang¹, Lo</i> ¹ Research Imaging Institute, The University of Texas Health Science ² Department of Neurology, Tongji Hospital, Tongji University, Shan	sponses in Chronic Hypertension or a Talley Watts ¹ , Timothy Q. Duong ¹ Center at San Antonio, San Antonio, TX, United States; ghai, China

14:27 0162. Multi-Modality 4D Stroke Template for the Characterization of Arterial Ischemic Stroke Evolution Over Time Samantha J. Ma¹, David S. Liebeskind¹, Songlin Yu¹, Holly Wilhalme², David Elashoff², Xin J. Qiao³, Nerses Sanossian¹, Sidney Starkman¹, ⁴, Latisha K. Ali¹, Fabien Scalzo¹, Bryan Yoo³, Jeffrey L. Saver¹, Noriko Salamon³, Danny JJ Wang¹ ¹Neurology, UCLA, Los Angeles, CA, United States; ⁴Emergency Medicine, UCLA, Los Angeles, CA, United States; ³Radiology, UCLA, Los Angeles, CA, United States; ⁴Emergency Medicine, UCLA, Los Angeles, CA, United States

14:39 0163. Variations in Cerebral Haemodynamics and Capillary Transit Time Heterogeneity in Patients Before and After Carotid Endarterectomy

Amit Mehndiratta¹, ², Chang Sub Park², David E. Crane³, Ediri Sideso⁴, James Kennedy⁵, Bradley J. MacIntosh³, Stephen J. Payne², Michael A. Chappell²

¹CBME, Indian Institute of Technology Delhi, New Delhi, Delhi, India; ²IBME, University of Oxford, Oxford, Oxfordshire, United Kingdom; ³Medical Biophysics, Sunnybrook Research Institute, Toronto, ON, Canada; ⁴Nuffield Department of Surgery, University of Oxford, Oxford, Oxford, Oxfordshire, United Kingdom; ⁵Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom; ⁵Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, Oxford, Oxford, Oxfordshire, United Kingdom; ⁵Acute Vascular Imaging Centre, Radcliffe Department of Medicine, University of Oxford, O

14:51 0164. A Multi-Parametric Investigation of Vascular Alterations in Elderly with Hypertension

 $\underset{\text{magina cum laube}}{\text{Ismaw ment award}} \qquad Min Sheng^{l}, Kevin S. King^{2}, Adam Sheffield^{3}, Harshan Ravi^{l}, Shin-Lei Peng^{l}, Peiying Liu^{l}, Zohre German^{4}, Hanzhang Lu^{l}$

¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Medical program, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Neurology, University of Texas Southwestern Medical

15:03 0165. A Non-Invasive Method for Measuring Perfusion in Moyamoya Disease with Functional Magnetic Resonance Imaging

Tianyi Qian¹, Zhiwei Zuo², Yituo Wang², Yuanyuan Kang³, Penggang Qiao², Gongjie Li² ¹MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ²Radiology, Affiliated hospital of Academy of Military Medical Sciences, Beijing, China; ³Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China

15:15 0166. Postischemic Hyperperfusion on Arterial Spin Labeled Perfusion MRI Is Linked to Hemorrhagic Transformation in Stroke

Songlin Yu¹, David S. Liebeskind¹, Sumit Dua², Holly Wilhalme³, David Elashoff³, Xin J. Qiao², Jeffry R. Alger¹, ², Nerses Sanossian¹, Sidney Starkman¹, ⁴, Latisha K. Ali¹, Fabien Scalzo¹, Xin Lou¹, ⁵, Jeffrey L. Saver¹, Noriko Salamon², Danny J.J. Wang¹, ²

¹Neurology, UCLA, Los Angeles, CA, United States; ²Radiology, UCLA, Los Angeles, CA, United States; ³Medicine Statistics Core, UCLA, Los Angeles, CA, United States; ⁴Emergency Medicine, UCLA, Los Angeles, CA, United States; ⁵Radiology, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China

15:27 0167.	Hemodynamics of the Cerebral Border Zone Regions in Healthy, Young Volunteers Sophie Schmid ¹ , Wouter Teeuwisse ¹ , Hanzhang Lu ² , Matthias van Osch ¹ ¹ Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands; ² UT Southwestern Medical Center, Dallas, TX, United States
15:39 0168.	Velocity and Wall Shear Stress in the Circle of Willis in Sickle Cell Disease Using 4D Flow MRI Lena Vaclavu ¹ , Henk-Jan Mutsaerts ¹ , Wouter Potters ¹ , Veronica van der Land ¹ , Karin Fijnvandraat ¹ , Michael Markl ² , Charles Majoie ¹ , Aart Nederveen ¹ , Pim van Ooij ¹ ¹ Academic Medical Center AMC, Amsterdam, Noord-Holland, Netherlands; ² Radiology & Biomedical Engineering,, Northwestern University, Chicago, IL, United States
15:51 0169.	Automatic Segmentation of the Venous Vessel Network Based on Quantitative Susceptibility Maps and Its Application to Investigate Blood Oxygenation Barthélemy Serres ¹ , Andreas Deistung ¹ , Andreas Schäfer ² , Marek Kocinski ³ , Andrzej Materka ³ , Jürgen Reichenbach ¹ ¹ Medical Physics Group, Institute for Diagnosis and Interventional Radiology, University Hospital Jena - Friedrich Schiller University Jena, Jena, Germany; ² Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ³ University of Lodz, Lodz, Poland
16:03 0170.	Longitudinal Characterization of Brain Microstructure and Visuomotor Behavior Following Acute Ocular Hypertension Using Diffusion Tensor Imaging, Magnetization Transfer Imaging and Optokinetics Yolandi van der Merwe ^{1, 2} , Leon C. Ho ^{1, 3} , Xiaoling Yang ^{1, 4} , Michael B. Steketee ⁴ , Seong-Gi Kim ^{1, 5} , Gadi Wollstein ⁴ , Joel S. Schuman, ²⁴ , Kevin C. Chan ^{1, 4} ¹ Neuroimaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States; ² Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States; ³ Department of Electronic Engineering, University of Hong Kong, Pokfulam, Hong Kong, China; ⁴ Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ⁵ Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea

Educational Course ISMRM/SMRT Joint Forum: Whole Body DWI

Organizers: Ma	rk A. Griswold, Ph.D. & Jan	nes J. Stuppino, B.S., R.T.(R)(MR)
<u>Room 718 A</u>	14:15-16:15	Moderators: Mark A. Griswold, Ph.D. & James J. Stuppino, B.S., R.T.(R)(MR)
14:15	DWI of the Liver	
	Ihab Kamel	
14:40	Diffusion-Weighted Imagin <i>Russell N. Low</i>	g in the Extrahepatic Abdomen & Pelvis
15:05	Sequence and Magnet Opti Ben Allen Kennedy	mization, Post Processing & New Applications
15:30	WB DWI Lecture - How to James Stirling	Do It – Bone Metastases and Therapy Response
15:55	Summary Discussion	
16:15	Adjournment & Meet the T	Teachers
Combined E	Educational & Scientifi	c Session
Dementia		
Organizers: Jon	athan H. Gillard, M.D., FRC	R, MBA & Howard A Rowley, M.D.
Room 718 B	14:15-16:15	Moderators: Howard A. Rowley, M.D. & Greg Zaharchuk, M.D., Ph.D.

Room 718 B14:15-16:15Moderators: H14:15Recent Advances in the Understanding of Dementias
Aya M. Tokumaru

14:45	0171.	Magnetic Resonance Elastography of Normal Pressure Hydrocephalus Nikoo Fattahi ¹ , Arvin Arani ¹ , Kevin J. Glaser ¹ , Armando Manduca ¹ , Nicholas M. Wetjen ² , Perry Avital ² , Richard L. Ehman ¹ , John Huston III ¹ ¹ Radiology, Mayo Clinic, Rochester, MN, United States; ² Neurosurgery, Mayo Clinic, Rochester, MN, United States	
15:05 Ismrm Me magna c	0172.	Diffusion Tensor Imaging Detects White Matter Changes in Preclinical Stages of Alzheimer Disease <i>Qing Wang¹, Yong Wang¹, Joshua S. Shimony¹, Anne M. Fagan², John C. Morris², Tammie L.S. Benzinger¹, ³</i> ¹ Radiology, Washington University School of Medicine, St. Louis, MO, United States; ² Neurology, Washington University School of Medicine, St. Louis, MO, United States; ³ Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States	f
15:25	0173.	APOE & Allele Status Influences Early Neurodevelopment Justin M. Remer ¹ , Douglas C. Dean III ¹ , ² , Jonathan O'Muircheartaigh ³ , Sara D'Arpino ¹ , Holly Dirks ¹ , Sean C.L. Deoni ¹ , ⁴ ¹ Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI, United States; ² Waisman Lab for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, United States; ³ Department of Neuroimaging, King's College London Institute of Psychiatry, London, United Kingdom; ⁴ Department of Pediatric Radiology, Children's Hospital Colorado, Aurora, CO, United States	,
15:45		Imaging Dementias with MRI Mykol Larvie	
16:15		Adjournment & Meet the Teachers	
Cance Organiz Room 8 14:15	r Ther: <i>cers</i> :Krist 01 A/B	anostics & Monitoring Therapy with MRI ine Glunde, Ph.D. & Marty D. Pagel, Ph.D. 14:15-16:15 Moderators:Kristine Glunde, Ph.D. & Guanshu Liu, Ph.D. Theranostic Imaging in Cancer Zaver M. Bhujwalla	<u>).</u>
14:45		Theranostic Near Infrared Photoimmunotherapy <i>Hisataka Kobayashi</i>	
15:15		Predictive MRI Biomarkers to Assess Therapeutic Outcome in Cancer Bachir Taouli	
15:45		Monitoring Tumor Response to Therapy with MRI Alan Jackson	
16:15		Adjournment & Meet the Teachers	
Tradit	tional P	Poster Session: Nuero A	
<u>Exhibiti</u>	on Hall	16:30-18:30 (no CME credit	<u>t)</u>
Electro Exhibiti	onic Po on Hall	oster Session: Relaxation 16:30-17:30 (no CME credit	<u>t)</u>
Electro	onic Po	oster Session: Magnetic Susceptibility	
Exhibiti	on Hall	16:30-17:30 (no CME credi	t)

Electronic Poster Session: Magnetization Transfer

Exhibition Hall 16:30-17:30

Electronic Poster Session: Pulse Sequences A

Exhibition Hall	16:30-17:30	•	(no CME credit)

(no CME credit)

(no CME credit)

(no CME credit)

Study Group Session MR Safety Reception Hall 104 BCD 16:30-18:30

Study Group Session Diffusion

Constitution Hall 105 16:30-18:30

Power Pitch Session: The Cardiovascular Power Hour

 Power Pitch Theatre, Exhibition Hall
 16:30-17:30
 (no CME credit)

Moderators: Daniel B. Ennis, Ph.D. & Reza Nezafat, Ph.D.

0174. Gradient-Induced Voltages on 12-Lead ECGs During High-Duty-Cycle MRI Sequences and a Theoretically Based Method to Remove Them HuaLei Zhang¹, Zion Tsz ho Tse², Charles L. Dumoulin³, Ronald Watkins⁴, Wei Wang¹, Jay Ward⁵, Raymond Kwong¹,

HuaLei Zhang', Zion Tsz ho Tse', Charles L. Dumoulin', Ronald Watkins', Wei Wang', Jay Ward', Raymond Kwong', William Stevenson¹, Ehud J. Schmidt¹

¹Brigham and Women's Hospital, Boston, MA, United States; ²University of Georgia, GA, United States; ³Cincinnati Children's Hospital Medical Center, Cincinnati, United States; ⁴Stanford University, CA, United States; ⁵E-TROLZ, Inc, Andover, MA, United States

0175. Automatic Detection of Inflammatory 'hotspots' in Abdominal Aortic Aneurysms to Identify Patients at Risk of Aneurysm Expansion and Rupture

Yolanda Georgia Koutraki¹, ², ²Chengjia Wang¹, ³, Jennifer Robson², Olivia Mcbride², Rachael O. Forsythe², Tom J. MacGillivray¹, Calum D. Gray¹, Keith Goatman³, J. Camilleri-Brennan², David E. Newby¹, ², Scott I. Semple¹, ² ¹Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom; ³Toshiba Medical Visualization System - Europe, Edinburgh, United Kingdom

0176. In-Vivo Lipid Quantification in Carotid Plaques Using Multi-Slice T2 Mapping: Histological Validation Luca Biasiolli¹, ², Joshua T. Chai¹, Linqing Li³, Ashok Handa⁴, Peter Jezzard³, Robin P. Choudhury¹, Matthew D. Robson²

¹AVIC, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ²OCMR, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ³FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; ⁴Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom

0177. Coronary Endothelial Function Assessment Using Self-Gated Cardiac Cine MRI with Golden Angle Acquisition and K-T Sparse SENSE

*Jerome Yerly*¹, ², *Giulia Ginami*¹, ², *Giovanna Nordio*¹, ², *Matthias Stuber*¹, ² ¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland

0178. Inter-Study Repeatability of Self-Gated Quantitative Myocardial Perfusion MRI

Devavrat Likhite¹, Promporn Suksaranjit², Chris McGann², Brent Wilson², Imran Haider², Ganesh Adluru¹, Edward DiBella¹

¹UCAIR, University of Utah, Salt Lake City, UT, United States; ²Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States

0179. Initial Experience in Patients for Highly Accelerated Free-Breathing Whole-Heart Coronary MRA *Christoph Forman¹*, *Christoph Tillmanns²*, *Michael O. Zenge¹*, *Michaela Schmidt¹* ¹Siemens AG, Healthcare, Imaging and Therapy Systems, Magnetic Resonance, Erlangen, Germany; ²Diagnostikum Berlin, Berlin, Germany

Summa cum laude

0180. Accelerated Four-Dimensional, Multiphase, Steady-State Imaging with Contrast Enhancement (MUSIC) Using Parallel Imaging and Compressed Sensing

Ziwu Zhou¹, Fei Han¹, Stanislas Rapacchi¹, Ihab Ayad², Isidro Salusky³, Adam Plotnik¹, Paul Finn¹, Peng Hu¹ ¹Radiology, UCLA, Los Angeles, CA, United States; ²Anesthesiology, UCLA, Los Angeles, CA, United States; ³Pediatrics, UCLA, Los Angeles, CA, United States

0181. Dual Agent Relaxivity Cancellation (DARC) Imaging, a Novel Imaging Method for Dark Blood Post-Contrast Imaging: Application to MR Lymphangiography ismen merit award magna cum laude

Jeffrey H. Maki¹, Noah Briller¹, Peter C. Neligan², Gregory J. Wilson¹ ¹Radiology, University of Washington, Seattle, WA, United States; ²Plastic Surgery, University of Washington, Seattle, WA, United States

0182. CMR-Footprinting: Quantifying Tissue Parameters with Clinical Pulse Sequence Simulations Improves Measurement Accuracy - An Example with MOLLI T1 Mapping

Christos G. Xanthis¹, ², Sebastian L. Bidhult¹, Georgios Kantasis¹, ², Mikael Kanski¹, Einar Heiberg¹, ³, Håkan Arheden¹, Anthony H. Aletras¹,²

¹Cardiac MR group Lund, Dept. of Clinical Physiology, Lund University, Lund, Skåne, Sweden; ²Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece; ³Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Skåne, Sweden

0183. Modified Wideband 3D Late Gadolinium Enhancement (LGE) MRI for Patients with Implantable Cardiac Devices

Summa cum Laude

Summa cum Laude

Shams Rashid¹, Stanislas Rapacchi¹, Kalyanam Shivkumar, ¹², Adam Plotnik¹, J. Paul Finn¹, ³, Peng Hu¹, ³ ¹Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States; ²UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, CA, United States; ³Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, United States

0184. Black Blood Late Gadolinium Enhancement (BB-LGE) Using a Joint T₂ Magnetization Preparation and **Inversion Preparation** ismem merit award magna cum laude

Tamer Basha¹, Sébastien Roujol¹, Kraig V. Kissinger¹, Beth Goddu¹, Warren J. Manning¹, ², Reza Nezafat¹ ¹Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States; ²Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

0185. "Squashing the Peanut": What It Means for *In-Vivo* Cardiac DTI Andrew D. Scott¹,², Sonia Nielles-Vallespin,¹³, Pedro Ferreira¹,², Laura-Ann McGill,¹², Dudley Pennell¹,², David Firmin.¹²

¹NIHR Cardiovascular Biomedical Research Unit, The Royal Brompton Hospital, London, United Kingdom; ²National Heart and Lung Institute, Imperial College London, London, United Kingdom; ³National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States

0186. Diffusion-Tensor Imaging Study of Myocardial Architecture of Situs Inversus and Situs Solitus Mutant Mouse Hearts

Yijen Lin Wu¹,², Yu Chen¹, XiaoQin Liu¹, Fang-Cheng Yeh³, T. Kevin Hitchens⁴, George C. Gabriel¹, Cecilia Wen Ya Lo^{I}

¹Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States; ²Rangos Research Center Imaging Core, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States; ³Psychology, Carnegie Mellon University, Pittsburgh, PA, United States; ⁴Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States

Daniel A. Auger¹, Sophia X. Cui¹, Xiao Chen¹, Jeffrey W. Holmes¹, Kenneth C. Bilchick², Frederick H. Epstein¹, ³ ¹Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ²Department of Medicine, Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States; ³Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States

0188. A Bayesian Approach for Accelerated Phase Contrast MRI

Adam Rich¹, Lee C. Potter¹, Ning Jin², Joshua Ash¹, Orlando Simonetti³, Rizwan Ahmad³ ¹Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States; ²Siemens Medical Solution, Columbus, OH, United States; ³Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States

0189. Validation of Radially Undersampled 4D-Flow-MRI in an Animal Model of Portal Hypertension

Alex Frydrychowicz¹, Alejandro Roldan-Alzate², Emily Winslow², Dan Consigny², Camilo Campo², Utaroh Motosugi², Kevin M. Johnson², Christopher J. François², Oliver Wieben², Scott B. Reeder² ¹Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Hosltein, Campus Lübeck, Lübeck, Schleswig-Holstein, Germany; ²University of Wisconsin - Madison, WI, United States

Perfusion & Permeability: Contrast Agent Methods

Room 701 A	<u>16:30-18:30</u> <u>Moderators:Hassan Bagher-Ebadian, Ph.D. & Stefan A. Reinsberg, Ph.D.</u>
16:30 019	0. Real-Time Automatic Resolution Adaption (AURA) for Dynamic Contrast-Enhanced MRI
ismem merit award magna cum laude	Ina Nora Kompan ¹ , ² , Benjamin Richard Knowles ³ , Matthias Guenther ¹ , ² ¹ Fraunhofer MEVIS, Bremen, Germany; ² mediri GmbH, Heidelberg, Baden-Württemberg, Germany; ³ Universitätsklinikum Freiburg, Freiburg, Baden-Württemberg, Germany
16:42 019	 Mitigating Bias and Variance Associated with Fat Signal in Quantitative DCE of the Breast James H. Holmes¹, Kang Wang¹, Courtney K. Morrison², Frank R. Korosec³, Ersin Bayram⁴, Roberta M. Strigel³, Diego Hernando³, Scott B. Reeder³, Edward F. Jackson², Ryan J. Bosca² ¹Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ²Medical Physics, University of Wisconsin- Madison, WI, United States; ³Radiology, University of Wisconsin-Madison, WI, United States; ⁴Global MR Applications and Workflow, GE Healthcare, Houston, WI, United States
16:54 019	2. In Vivo Cross-Validation Study of Contrast Kinetic Model Analysis with Simultaneous B ₁ /T ₁ Estimation Jin Zhang ^{1, 2} , Kerryanne Winters ^{1, 2} , Sungheon Gene Kim ^{1, 2} ¹ Center for Advanced Imaging Innovation and Research (CAI2R), Dept. Radiology, NYU School of Medicine, New York, NY, United States; ² Bernard and Irene Schwartz Center for Biomedical Imaging, Dept. Radiology, NYU School of Medicine, New York, NY, United States
17:06 019 Isman Merit Award Summa cum Vaude	3. Improving the Arterial Input Function in Dynamic Contrast Enhanced MRI by Fitting the Signal in the Complex Plane Frank FJ Simonis ¹ , Alessandro Sbrizzi ² , Ellis Beld ¹ , Jan JW Lagendijk ¹ , Cornelis AT van den Berg ¹ ¹ Radiotherapy, UMC Utrecht, Utrecht, Netherlands; ² Radiology, UMC Utrecht, Utrecht, Netherlands
17:18 019 Ismen Menit Award Magna cum Laude	4. Interleaved Acquisition of a Radial Projection Based AIF with a Multi-Slice DCE Experiment Jen Moroz ¹ , Andrew Yung ¹ , Piotr Kozlowski ² , ³ , Stefan Reinsberg ¹ ¹ Physics and Astronomy, UBC, Vancouver, BC, Canada; ² Radiology, UBC, Vancouver, BC, Canada; ³ MRI Research Centre, UBC, Vancouver, BC, Canada
17:30 019 ISMRIN MERIT AWARD SUMMING CUM LAUDE	5. Should DSC-MRI Based Blood Volume and Vessel Size Measures Be Corrected for Contrast Agent T2 Leakage Effects? Ashley M. Stokes ¹ , C. Chad Quarles ¹ ¹ Institute of Imaging Science, Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
17:42 019	6. Accelerated DCE MRI Using Constrained Reconstruction Based on Pharmaco-Kinetic Model Dictionaries Sajan Goud Lingala ¹ , Yi Guo ¹ , Yinghua Zhu ¹ , Samuel Barnes ² , R. Marc Lebel ³ , Krishna S. Nayak ¹ ¹ Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ² Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; ³ GE Healthcare, Calgary, Canada
17:54 019	7. 4-D Spatio-Temporal MR Perfusion Deconvolution Via Tensor Total Variation Ruogu Fang ¹ ¹ School of Computing and Information Sciences, Florida International University, Miami, FL, United States

18:06 0198. Quantification of Water Exchange Between Intravascular and Extravascular Compartments Using Independent Component Analysis

Hatef Mehrabian^{1, 2}, Anne L. Martel¹, ², Johann Le Floc'h¹, Hany Soliman¹, ³, Arjun Sahgal¹, ⁴, Greg J. Stanisz¹, ² ¹Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; ²Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ³Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ⁴Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

18:18 0199. Multi-Compartment Analysis on Water Dynamics in Rat Brain by Heavy Water Perfusion

^{13MBM MERT AWARD</sub> ^{13MBM MERT AWARD} ^{13MBM Mert Cum Laube} ¹³Biomedical Engineering and Environmental Sciences, National Tsing Hua University, HsinChu, Taiwan; ²Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan}

New Methodological Approaches for MRS

<u>Room 701</u>	В	16:30-18:30	Moderators: Ovidiu C. Andronesi, M.D., Ph.D. & Stefan Bluml, Ph.D.
16:30	0200.	Detection of Cerebral NAD+ in Huma	ns at 7 T
		Robin A. de Graaf ^d , Henk M. De Feyter ^d	, Peter B. Brown ¹ , Terence W. Nixon ¹ , Douglas L. Rothman ¹ , Kevin L. Behar ¹
		¹ MRRC, Yale University, New Haven, CT, U	inited States

16:42 0201. GABA Concentration in the Superior Temporal Gyrus Predicts Gamma-Band Oscillations and Multisensory Perception

Ralf Mekle¹, Johanna Balz², Julian Keil², Yadira Roa-Romero², Semiha Aydin¹, Florian Schubert¹, Bernd Ittermann¹, Juergen Gallinat³, Daniel Senkowski²

¹Medical Physics, Physikalisch-Technische Bundesanstalt, Berlin, Germany; ²Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin, Berlin, Germany; ³Department of Psychiatry and Psychotherapy, University Hospital Hamburg-Eppendorf, Hamburg, Germany

16:54 0202. About Differences of the Transverse Relaxation Time (T₂) of 18 Brain Metabolites in Gray and White Matter at 3T

Patrik Oliver Wyss¹,², Andreas Hock¹,³, Milan Scheidegger¹,³, Niklaus Zoelch¹, Markus Rudin¹,⁴, Spyros Kollias², Anke Henning,¹⁵

¹Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; ²Institute of Neuroradiology, University Hospital Zurich, Zurich, Switzerland; ³Department of Psychiatry, Psychotherapy and Psychosomatics Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; ⁴Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; ⁵Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

17:06	0203.	A Comparison of MEGA-SLASER and STEAM for <i>In Vivo</i> Quantification of GABA at 7T
ISMRM MERIT AWARD		Chen Chen ¹ , Peter Morris ¹ , Susan Francis ¹ , Penny Gowland ¹
summa cum la	ude	¹ Sir Peter Mansfield Imaging Centre (SPMIC), University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

17:18 0204. Optimized Combination of Magnetic Resonance Spectroscopy Signal from Multi-Element Coil Arrays Liang Fang¹, ², Minjie Wu¹, Hengyu Ke², Anand Kumar¹, Shaolin Yang¹, ³ Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; ²School of Electronic Information, Wuhan University, Wuhan, Hubei, China; ³Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States

17:30	0205.	Improvement of 2-Hydroxyglutarate Detectability by Optimized Triple-Refocusing at 3T In Vivoongxu An ¹ ,
ISMRM MERIT AWARD		Sandeep Ganji ¹ , Elizabeth A. Maher ¹ , Dianne Mendelsohn ¹ , Marco Pinho ¹ , Kevin Choe ¹ , Changho Choi ¹
magna tum	um tauve	¹ University of Texas Southwestern Medical Center, Dallas, TX, United States

- **17:42 0206.** Assessment of Hepatic Glycogen Turnover in Mice by *In Vivo* ¹³C-MRS *Andreas Boss¹, Andor Veltien¹, Arend Heerschap¹* ¹Radiology and Nuclear Medicine, Radboudumc, Nijmegen, Gelderland, Netherlands
- 17:54 **0207.** In Vivo Detection of ¹³C Labeling of Glutamate and Glutamine Using Proton MRS at 7T Li An¹, Shizhe Li¹, Maria Ferraris Araneta¹, Christopher Johnson¹, James B. Murdoch², Jun Shen¹

Monday

¹National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; ²Toshiba Medical Research Institute USA, Mayfield Village, OH, United States

18:06	0208.	Real-Time Tool to Forecast the Adequacy of Shim and to Define the Number of Acquisitions Needed to Answer
ISMRM MERIT AWARD		the Clinical Question at Hand with the Prescribed 1H MR Spectroscopy Exam
magna ti	um taubt	Sreenath Pruthviraj Kyathanahally ¹ , Roland Kreis ¹
		¹ Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland

18:18 0209. Kinetic Analysis of Dynamic Deuterium MR Spectra for Simultaneous Assessment of Cerebral Glucose Consumption Rate and TCA Cycle Flux Ming Lu^l, Xiao-Hong Zhu^l, Wei Chen^l ¹Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States

fMRI: Physiology

Room 714 A/B	16:30-18:30 Moderators:Richard G. Wise, Ph.D. & J. Jean Chen, Ph.D.
16:30 0210.	fMRI Post-Stimulus Undershoots in Visual Cortex Are Neuronal in Origin
	Karen J. Mullinger ¹ , ² , Matthew Cherukara ¹ , Susan T. Francis ¹ , Stephen D. Mayhew ²
	¹ SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ² BUIC,
	School of Psychology, University of Birmingham, Birmingham, West Midlands, United Kingdom
16.42 0211	Unrovalling the Neurophamical Machanism of Positive and Negative POLD Desponses: A Combined fMPL
IU.42 UZIII.	fMRS Study
magna cum laude	Adam Berrington ¹ , Andre Gouws ² , Stuart Clare ¹ , Peter Jezzard ¹ , Uzay Emir ¹
	¹ FMRIB Centre, University of Oxford, Oxford, United Kingdom; ² York Neuroimaging Centre, University of York, York, United Kingdom
16:54 0212.	Application of Quantitative, Multimodal fMRI to the Estimation of the Cerebral Metabolic Response to CO2
	and a Visual Stimulus in Hypoxia
	 Adron Benjamin Simon, Zachary Smith, Richard Buxton, David Dubowitz ¹Bioengineering, University of California San Diego, La Jolla, CA, United States; ²Radiology, University of California San Diego, La Jolla, CA, United States
17:06 0213.	Multiband BOLD Acquisition Enhances the Sensitivity of Cerebrovascular Reactivity (CVR) Mapping
ISMRM MERIT AWARD	Harshan Ravi ¹ , ² , Peiying Liu ¹ , Shin-Lei Peng ¹ , Hanzhang Lu ¹
magna cam cauoc	¹ Advanced Imaging Research Center, University of Texas at South Western Medical Center, Dallas, Tx, United States; ² Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
17:18 0214.	The Impact of Normoxic and Hyperoxic Baseline Periods in Block Paradigms of Hypercarbic Cerebrovascular
ISMRM MERIT AWARD magna cum laude	Reactivity Studies
	Carlos C. Faraco', Jeroen C.W. Siero', Megan K. Strother', Daniel F. Arteaga', Manus J. Donahue' ¹ Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States; ² Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
17.20 0215	Security for a Truly "ice Matchelia" Cas Challenge for the Use in Calibrated fMDI and Carebrayescular
17:50 0215.	Reactivity Manning
summa cum laude	Shin-Lei Peng ¹ , Harshan Ravi ¹ , Min Sheng ¹ , Binu Thomas ¹ , Hanzhang Lu ¹
	¹ Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
17:42 0216.	Calibration of BOLD fMRI Motor Activation Maps Using BOLD Breath Hold Cerebrovascular Reactivity
ISMRM MERIT AWARD	Mapping for Effective Compensation of Brain Tumor-Related Neurovascular Uncoupling
Summa tum andt	Shruti Agarwal', Raag Airan', Sachin K. Gujar', Haris I. Sair', Jay J. Pillai'
	School of Medicine, Baltimore, MD, United States

17:54 ISMRM MERIT Magna cum	0217.	Task-Correlated Physiology Reveals Vascular-Neural Networks <i>Molly Gallogly Bright¹, Joseph Whittaker¹, Ian Driver¹, Kevin Murphy¹</i> ¹ CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom
18:06 ISMRM MERIT	0218.	 Baseline Oxygenation in the Brain: Correlation with BOLD and Comparison Between Susceptibility and Respiratory-Calibration Methods Audrey P. Fan¹, Andreas Schaefer², Laurentius Huber², Steffen N. Krieger², Harald E. Moeller², Arno Villringer², Claudine J. Gauthier², ³ ¹Richard M. Lucas Center for Imaging, Stanford University, Stanford, CA, United States; ²Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ³Concordia University, Montreal, Quebec, Canada
18:18	0219.	A Streamlined Approach to Mapping the Oxygen Extraction Fraction (OEF) and Deoxygenated Blood Volume (DBV) Using the Quantitative BOLD Technique Alan J. Stone ¹ , Nicholas P. Blockley ¹ ¹ FMRIB, Nuffield Department of Clinical Neurosciences,, Oxford, United Kingdom
Cancer	: Prec	clinical Studies of Animal Models
Room 710 16:30	<u>6 A/B</u> 0220.	16:30-18:30 Moderators: Zaver M. Bhujwalla, Ph.D. & E. Jim Delikatny, Ph.D. Tumour Response to Cabozantinib in a Transgenic Mouse Model of Neuroblastoma Assessed by
		Multiparametric MRI Gilberto S. Almeida ¹ , Philippa King ² , Yann Jamin ¹ , Albert Hallsworth ² , Hannah Webber ² , Sergey Popov ³ , Louis
		<i>Chesler²</i> , <i>Simon P. Robinson¹</i> ¹ Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, Surrey, United Kingdom; ² Clinical Studies, The Institute of Cancer Research, Sutton, Surrey, United Kingdom; ³ Molecular Pathology, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
16:42	0221.	Diffusion Weighted MRI for Early Detection and Progression Monitoring of Prostate Cancer in a Transgenic
		Deborah K. Hill ¹ , ² , Eugene Kim ¹ , ² , Jose R. Teruel ¹ , ² , Siver A. Moestue ¹ , ² , Tone F. Bathen ¹ ¹ Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Sør Trøndelag, Norway; ² St. Olavs University Hospital, Trondheim, Sør Trøndelag, Norway
16:54	0222.	In Vivo and Ex Vivo Diffusion Tensor Imaging Parameters Follow Collagen 1 Fiber Distribution in Breast
ISMRM MERI Summa cur	t award 11 Laude	Samata M. Kakkad ¹ , ² , Jiangyang Zhang ¹ , Alireza Akhbardeh ¹ , Desmond Jacob ¹ , Meiyappan Solaiyappan ¹ , Michael A. Jacobs ¹ , Venu Raman ¹ , Dieter Leibfritz ² , Kristine Glunde ¹ , Zaver M. Bhujwalla ¹ ¹ Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ² University of Bremen, Bremen, Germany
17:06	0223.	Investigating the Impact of a Primary Tumor on Metastasis and Dormancy Using MRI: New Insights Into the Mechanism of Concomitant Tumor Resistance Paula Foster ¹ , ² , Amanda Hamilton ¹ , Carmen Simedrea ¹ ¹ Imaging, Robarts Research Institute, London, Ontario, Canada; ² Medical Biophysics, Western University, London, Ontario, Canada
17:18 ISMRM MERIT SUMMIN CUT	0224.	Iron-Oxide Driven Decrease in T2 Relaxation Times Correlates with Tumor Associated Macrophages (TAMs) in Postpartum Pregnancy Associated Breast Cancer Xenografts J.C. Montejano ¹ , K.M. Huber ¹ , V.F. Borges ¹ , P.J. Schedin ² , N.J. Serkova ¹ ¹ University of Colorado Anschutz Medical Campus, Aurora, CO, United States; ² Oregon Health and Science University, OR, United States
17:30	0225.	<i>In-Vivo</i> Quantification of Iron Oxide Nanoparticles at High Concentration in a Murine Breast Tumor Model Using Positive Contrast Jinjin Zhang ¹ , Alicia A. Petryk ² , Russell Reeves ³ , Djaudat Idiyatullin ¹ , Hattie L. Ring, ¹⁴ , P. Jack Hoopes ² , ³ , Michael Garwood ¹

Monday

¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ²Thayer School of Engineering, Dartmouth College, NH, United States; ³Geisel School of Medicine, Dartmouth College, NH, United States; ⁴Department of Chemistry, University of Minnesota, MN, United States

17:42	0226.	Combined PET-MRI: Is It Possible to Quantify FDG Perfusion Based on Gd-DTPA Pharmacokinetics?
Summa cum	award 1 Laude	Marie Anne Richard ¹ , Vincent Turgeon ¹ , Jérémie P. Fouquet ¹ , Luc Tremblay ¹ , Réjean Lebel ¹ , Martin Lepage ¹ ¹ Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke, Sherbrooke, Québec, Canada

17:54	0227.	Dynamic Contrast Enhanced Magnetic Resonance Imaging Evaluates Early Therapeutic Effect of Anti-
		EMMPRIN Antibody with Cisplatin or X-Radiation in Head and Neck Cancer Mouse Models
		Hyunki Kim ¹ , Yolanda Hartman ¹ , Guihua Zhai ¹ , Thomas Chung ¹ , Melissa Korb ¹ , Tong Zhou ¹ , Eben Rosenthal ¹
		¹ University of Alabama at Birmingham, Birmingham, AL, United States

- 18:06 0228. Effect of Oxygen Challenge on MR Imaging of Tumor Microenvironment *Zhongwei Zhang¹*, *Qing Yuan¹*, *Heling Zhou¹*, *Ralph P. Mason¹* ¹Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States
- 18:18 0229. MR Microscopy Ultra-High Resolution 7T MRI in Pathologic Analysis of Resected Breast and Lymph Tissue Brittany Dashevsky¹, Krishna Juluru, ¹², Timothy D'Alfonso¹, Elizabeth Sutton², Eric Aronowitz¹, Ashley E. Giambrone¹, Doug Ballon¹
 ¹Weill Cornell Medical College, New York, NY, United States; ²Memorial Sloan Kettering Cancer Center, New York, NY, United States

Mechanisms of Neural Degeneration & Damage

Constitution	Hall	107 16:30-18:30 Moderators: Shinji Naganawa, M.D. & T.B.A.
16:30 0.	230.	Diagnosis of Early-Stage Idiopathic Parkinson's Disease: Feasibility of Nigrosome 1 Imaging at 3T Eung Yeop Kim ¹ , Young Noh ² , Young-Hee Sung ² , Jongho Lee ³ Radiology, Gachon University Gil Medical Center, Incheon, ., Korea; ² Neurology, Gachon University Gil Medical Center, Incheon, ., Korea; ³ Electrical and Computer Engineering, Seoul National University, Seoul, ., Korea
16:42 0	231.	Can MRI of the Nigrosomes Provide a Biomarker for Progression of Parkinson's Disease? Stefan Schwarz ¹ , Olivier Mougin ¹ , Yue Xing ¹ , Ania Blazejewska ¹ , Lesley Martin ¹ , Nin Bajaj ² , Dorothee Auer ¹ , Penny Gowland ¹ 'Sir Peter Mansfield Imaging Cetre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ² Division of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, Nottinghamshire, United Kingdom
16:54 0	232.	Differentiation of Early-Stage Parkinsonisms with Diffusion Kurtosis Imaging Using the Diffusion Magnetic Resonance Parkinsonism Index Kenji Ito ¹ , Makoto Sasaki ¹ , Chigumi Ohtuka ² , Suguru Yokosawa ³ , Taisuke Harada ¹ , Ikuko Uwano ¹ , Fumio Yamashita ¹ , Satomi Higuchi ¹ , Yasuo Terayama ² Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan; ² Department of Neurology and Gerontology, Iwate Medical University, Morioka, Iwate, Japan; ³ Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan
17:06 0	233.	Memory Circuit Involvement in Systematic Lupus Erythematosus Patients <i>Ivana De Lucia¹, An Vo¹, Meggan Mackay², Peter B. Kingsley³, Bruce Volpe², Cynthia Aranow², David Eidelberg¹, Betty M. Diamond², Aziz M. Ulug¹, ⁴ 'Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, United States; ²Center for Autoimmune Diseases, Feinstein Institute for Medical Research, Manhasset, NY, United States; ³North Shore University Hospital, Manhasset, NY, United States; ⁴Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey</i>
17:18 0. ISMRM MERIT AWARI Magina cum laud	234.	Deterioration of Neuronal and Glial Intermediary Metabolism, Neurochemical Profiles and Brain Morphology in Insulin-Resistant Goto-Kakizaki Rats: A Multimodal Magnetic Resonance Study In Vivoeya-Merret Girault ¹ , Rolf Gruetter ¹ , ² , Joao M.N. Duarte ¹

¹LIFMET, EPFL, Lausanne, Vaud, Switzerland; ²Radiology, UNIL and UNIGE, Lausanne and Geneva, Vaud, Switzerland

17:30 0235. Diffusion Tensor Imaging and Contrast-Enhanced MRI of the Eye and the Central Visual Pathway in Streptozotocin-Induced Diabetes

Swarupa Kancherla¹, Ed X. Wu², Kevin C. Chan¹, ³ ¹Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; ³Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States

17:42 0236. Investigation of Glymphatic Impairment in Diabetes Using MRI and Distributed RC Line Model

Esmaeil Davoodi Bojd¹, Li Zhang¹, Guangliang Ding¹, Siamak Nejad-Davarani¹, ZhengGang Zhang¹, Lian Li¹, *QingJiang Li^l, Michael Chopp¹, Quan Jiang¹* ¹Neurology, Henry Ford Health System, Detroit, MI, United States

17:54 0237. SWI Monitoring Iron Tagged Dextran Transportation in Normal and Hydrocephalus Rat Brains Via Intrathecal Delivery

Satish Krishnamurthy¹, Jie Li¹, Yimin Shen², E Mark Haacke² ¹Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, United States; ²Radiology, Wayne state university, Detroit, MI, United States

18:06 0238. Blood-Brain-Barrier Permeability and Lesion Volume Changes in Acute Japanese Macaque Encephalomyelitis Ian Tagge^{1, 2}, Steven Kohama³, Jim Pollaro¹, Lawrence Sherman³, Dennis Bourdette⁴, Randy Woltjer⁴, Scott Wong³, William Roonev¹, ¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ²Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States; ³Oregon National Primate Research Center, Oregon Health & Science University, OR, United States; ⁴Neurology, Oregon Health & Science University, Portland, OR, United States

18:18 0239. Metabolism Reflects Progressive HIV-1 Associated Neuropathology in Humanized Mice

Michael D. Boska¹, Prasanta K. Dash², Jaclyn Knibbe², Adrian A. Epstein¹, ², Robin High³, Edward Makarov², Harris A. Gelbard⁴, Larisa Poluektova², Howard E. Gendelman², Santhi Gorantla² ¹Radiology, University of Nebraska Medical Center, Omaha, NE, United States; ²Pharmacology and Experimental Neurosciences,

University of Nebraska Medical Center, Omaha, NE, United States; ³College of Public Health, Biostatistics, University of Nebraska Medical Center, Omaha, NE, United States; ⁴5Department of Neurology, Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, NY, United States

Simultaneous Multi-Slice Imaging

John Bassett The	atre 102 16:30-18:30 <i>Moderators</i> : Felix Breuer, Ph.D. & David Feinberg, M.D., Ph.D.
16:30 0240.	RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI Borjan Gagoski ¹ , Berkin Bilgic ² , Cornelius Eichner ² , Himanshu Bhat ³ , P. Ellen Grant ¹ , Lawrence L. Wald ² , Kawin Setsompop ² ¹ Boston Children's Hospital, Boston, MA, United States; ² Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³ Siemens Medical Solutions, Charlestown, MA, United States
16:42 0241. ^{15 мин мент аулар} тадпа сит Laude	Rapid Online Multiband RF Peak Power Minimization for CAIPIRINHA and PTX-Multi-Slice Shims by Inter- Slice Phase Relaxation Alessandro Sbrizzi ¹ , Benedikt Poser ² , Desmond H Y Tse ² , Hans Hoogduin ¹ , Peter R. Luijten ¹ , Cornelis A. van den Berg ¹ ¹ UMC Utrecht, Utrecht, Netherlands; ² Faculty of Psychology and Neuroscience, Maastricht University, Limburg, Netherlands
16:54 0242.	Simultaneous Multi-Slice Airway Compliance Measurement Using Sparse Golden-Angle Radial CAIPIRINHA <i>Ziyue Wu^l</i> , <i>Michael C.K. Khoo^l</i> , <i>Krishna S. Nayak^l</i> ¹ University of Southern California, Los Angeles, CA, United States

17:06 0243. Simultaneous Multi-Slice Imaging with Chemical Shift Separation

Sjoerd Crijns¹, Alessandro Sbrizzi¹, Bjorn Stemkens¹, Cornelis van den Berg¹, Peter Luijten¹, Jan Lagendijk¹, Anna Andreychenko¹

¹UMC Utrecht, Utrecht, Netherlands

17:18	0244.	Simultaneous Multi-Slice Magnetic Resonance Fingerprinting Reconstruction Using GROG+slice-GRAPPA (GsG) Huihui Ye ^l , ² , Borjan Gagoski ³ , Berkin Bilgic ¹ , Stephen F. Cauley ¹ , Dan Ma ⁴ , Yiping Du ² , Lawrence L. Wald ¹ , Mark A. Griswold ⁴ , Kawin Setsompop ¹ ¹ MGH/HST Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ² Zhejaing University, Hangzhou, Zhangjiang, China; ³ Boston Children's Hospital, MA, United States; ⁴ Case Western Reserve University, OH, United States
17:30 ISMRM MERIT SUMMA CUM	0245.	Self-Calibrated Simultaneous Multi-Slice PROPELLER <i>Ola Norbeck¹, Magnus Mårtensson², ³, Enrico Avventi³, Mathias Engström, ¹³, Stefan Skare¹, ³</i> ¹ Dept. of Neuroradiology,, Karolinska University Hospital, Stockholm, Sweden; ² EMEA Research and Collaboration, GE Applied Science Laboratory, GE Healthcare, Stockholm, Sweden; ³ Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
17:42 ISMRM MERIT magna cum	0246.	Phase-Cycled Multiband SSFP Imaging with CAIPIRINHA for Efficient Banding Removal <i>Yi Wang¹, Thomas Martin¹, Steen Moeller², Essa Yacoub², Danny JJ Wang¹</i> ¹ Neurology, UCLA, Los Angeles, CA, United States; ² Center of Magnetic Resonance Research, University of Minnesota, MN, United States
17:54	0247.	Accelerating Magnetic Resonance Fingerprinting Using T-Blipped Simultaneous Multi-Slice Acquisition Huihui Ye ¹ , ² , Dan Ma ³ , Yun Jiang ³ , Stephen F. Cauley ¹ , Yiping Du ² , Lawrence L. Wald ¹ , Mark A. Griswold ³ , Kawin Setsompop ¹ ¹ MGH/HST Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ² Zhejaing University, Hangzhou, Zhangjiang, China; ³ Case Western Reserve University, OH, United States
18:06	0248.	EPI 2D Ghost Correction and Integration with Multiband : Application to Diffusion Imaging at 7T. Steen Moeller ¹ , Edward Auerbach ¹ , An T. Vu ¹ , Christophe Lenglet ¹ , Stamatios N. Sotiropoulos ² , Kamil Ugurbil ¹ , Essa Yacoub ¹ ¹ Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ² FMRIB-Centre, Oxford,, Oxfordshire, United Kingdom
18:18	0249.	Evaluation of Multiband-DABS ASL for Resting-State fMRI <i>Keren Yang¹, Rosa Sanchez Panchuelo¹, Martin Buehrer², Richard Bowtell¹, Susan Francis¹</i> ¹ University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ² Gyrotools, Zurich, Switzerland
Combin Musculo	ed Ed oskele	lucational & Scientific Session etal Functional Imaging: Mechanics & More

 Organizers:Eric Y. Chang, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Regatte, Ph.D. & Siegfried Trattnig, M.D.

 Room 718 A
 16:30-18:30
 Moderators:Matthew F. Koff, Ph.D. & Bruce M. Damon, Ph.D.

 16:30
 Techniques: Joint Mechanics & Gait
Thor Franciscus Besier

 17:00
 Clinical Applications
Garry E. Gold

17:30 0250. Evaluation of the Relationship Between IVIM Microvascular Blood Flow and Exercise Duration in Shoulder Muscles After Lift-Off Test Christian Federau¹, Jean-Baptiste Ledoux¹, Patrick Omoumi¹, Fabio Becce¹

¹CHUV, University Hospital Lausanne, Lausanne, Vaud, Switzerland

17:42	0251.	Quantitative NMR Imaging of the Short-T2 Components in the SKM Tissue: Alterations Observed in Myopathic Patients <i>Ericky Caldas de A. Araujo¹, Noura Azzabou¹, Alexandre Vignaud², Geneviève Guillot³, Pierre G. Carlier¹, ⁴</i> ¹ NMR Laboratory, Institute of Myology, Paris, Île-de-France, France; ² CEA/DSV/I2BM/NeuroSpin/UNIRS, Gif Sur Yvette, Île-de- France, France; ³ IR4M/UMR8081/CNRS, University Paris-SUD, Orsay, Île-de-France, France; ⁴ NMR Laboratory, CEA/I2BM/MIRCen, Paris, Île-de-France, France
17:54 ISMRM ME magna ci	0252.	<i>In Vivo</i> Diffusion MR Study at 7T of Hindlimb Muscles in a Mouse Model of Duchenne Muscular Dystrophy <i>Paola Porcari¹, Elizabeth Greally², Volker Straub², Andrew M. Blamire¹</i> ¹ Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom; ² Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
18:06	0253.	The Relationship of Walking Speed Metrics to Phosphorus Magnetic Resonance Spectroscopy (³¹ P-MRS) Bioenergetic Measurements in the Baltimore Longitudinal Study of Aging (BLSA) Seongjin Choi ¹ , David A. Reiter ² , Kenneth W. Fishbein ² , Eleanor M. Simonsick ¹ , Richard G. Spencer ² , Luigi Ferrucci ³ ¹ Translational Gerontology Branch, NIH/National Institute on Aging, Baltimore, MD, United States; ² Laboratory of Clinical Investigation, NIH/National Institute on Aging, Baltimore, MD, United States; ³ Intramural Research Program, NIH/National Institute on Aging, Baltimore, MD, United States
18:18	0254.	Mitochondrial NADH <i>In Vivo</i> : Functional Test Reveals a Natural Indicator of Oxidative Phosphorylation in 31P Spectrum. Kevin E. Conley ¹ , Amir Ali ¹ , Sharon Jubrias ¹ ¹ Radiology, University of Washington, Seattle, WA, United States
18:30		Adjournment & Meet the Teachers
Combi Quant <i>Organiz</i> M.D., Pl	ined Ec itative ers:Lore h.D., M.I	lucational & Scientific Session Biomarkers in Renal MRI: From Morphology to Physiology nzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, Ed., FRCR
Room 7	18 B	16:30-18:30 Moderators:Rotem S. Lanzman, Ph.D. & Glen Morrell, M.D., Ph.D.
16:30		Introduction
16:33		Arterial Spin Labelling Susan T. Francis
16:48	0255.	Correlation Analysis Between Renal Perfusion and Estimated Glomerular Filtration Rate in Volunteers and Patients with Chronic Kidney Disease: An Arterial Spin Labeling in 3.0T MRI Study Yuelang Zhang ¹ , Chenxia Li ¹ , Jie Gao ¹ , Xiang Li ¹ , Jian Yang ¹ ¹ Department of Diagnostic Radiology, The First Hospital of Medical School, Xi'an Jiaotong University, Xi ₁ ⁻ an, Shaanxi, China
17:00	0256.	Evaluation of Readout Schemes for Arterial Spin Labelling in the Human Kidney

- *Charlotte E. Buchanan¹*, ², *Eleanor F. Cox¹*, *Susan T. Francis¹* ¹SPMIC, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, Nottingham, United Kingdom
- **Blood Oxygen Level Dependent** *Pottumarthi V. Prasad* 17:12

17:27	0257.	Determination of Technically and Physiologically Caused Variation of Parameters from DTI and BOLD MRI in
ISMRM MERIT magna cun	n laude	Native Kidneys: a Repeatability Study Maryam Seif ¹ , Chris Boesch ¹ , Peter Vermathen ¹
		¹ Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland

Monday

17:39	0258.	Blood Oxygen Level Dependent (BOLD) and Diffusion Tensor (DTI) Imaging of the Kidneys in Patients with Type 1 Diabetes: Preliminary Clinical Experience with Reference to Healthy Control Subjects Elissa Botterill ¹ , Windell Ang ¹ , Jas-mine Seah ¹ , Claire Mulcahy ² , Elif Ekinci ¹ , ³ , George Jerums ¹ , ³ , Richard MacIsaac, ³⁴ , Pippa Storey ⁵ , Eric Sigmund ⁵ , Tim Spelman ⁶ , Ruth P. Lim ¹ , ³ ¹ Austin Health, Melbourne, Victoria, Australia; ² The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; ³ The University of Melbourne, Victoria, Australia; ⁴ St Vincent's Hospital, East Melbourne, Victoria, Australia; ⁵ CAIIR, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine, New York, NY, United States; ⁶ Burnet Institute, Melbourne, Victoria, Australia	
17:51		Diffusion Rotem S. Lanzman	
18:06 ISMAN MERITAW Magna cum lat	0259.	Diffusion-Weighted Magnetic Resonance Imaging in Partially Nephrectomized Kidneys <i>Moritz Jörg Schneider¹, Olaf Dietrich¹, Katharina Stella Winter¹, Maximilian Reiser¹, Michael Staehler², Mike</i> <i>Notohamiprodjo</i> ³ ¹ Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Bavaria, Germany; ² Department of Urology, Ludwig-Maximilians-University Hospital Munich, Bavaria, Germany; ³ Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Baden-Württemberg, Germany	
18:18	0260.	Detecting the Acute Renal Allograft Rejection in Early Stage: A Comparison of Different MR Sequences <i>Xinyao Zhao¹, Tianyi Qian², Xiaoqin Kong¹, Kezhou Xing¹, Hao Shi¹</i> ¹ Radiology, Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China; ² MR Collaborations NE Asia, Siemens Healthcare, Beijing, China	
18:30		Adjournment & Meet the Teachers	
Educatio	nal (Course	
MR Phys	sics &	Techniques for Clinicians	
Organizers.	:Marc	us T. Alley, Ph.D., Michael Markl, Ph.D., Brian Hargraves, Ph.D., & Nicole Seiberlich, Ph.D.	
Room 801	A/B	16:30-18:30 <i>Moderators</i> : Marcus T. Alley, Ph.D. & Nicole E. Seiberlich, Ph.D.	
16:30		Spin Gymnastics 1 Walter Kucharczyk	
17:10		Spin Gymnastics 2 Donald B. Plewes	

17:50 **K-Space**

Kevin M. Koch

18:30 Adjournment & Meet the Teachers

Manuscript Reviewing for ISMRM's Scientific Journals Organizers: Matt A. Bernstein, Ph.D. & Mark A. Schweitzer, M.D, FRCPSC

Room 701 A Moderators: Matt A. Bernstein, Ph.D. & Mark A. Schweitzer, M.D, FRCPSC 18:45-19:45

Sunrise Educational Course Addressing Clinical Challenges in the Body with MRI

Organizers: Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, M.D., Ph.D., M.Ed., FRCR

Room 701 A 07:00-07:50 *Moderators*: Mustafa Shadi R. Bashir, M.D. & Gabrielle Masselli, M.D.

Assessment of Inc	idental Cystic Lesions with MRI
07:00	Pancreas
	Masoom A. Haider
07:25	Kidney
	Andrew B. Rosenkrantz
07:50	Adjournment & Meet the Teachers
Sunrise Educ	ational Course
How Can MF Constitution Hall	RI of Mouse Models Provide Value for Cancer Studies?
07:00	How Can MRI of Mouse Models Provide Value for Cancer Studies? Lacey McNally
07:50	Adjournment & Meet the Teachers
Sunrise Educ	ational Course
Fast Cardiac	Imaging
Organizers: Dani	el B. Ennis, Ph.D. & Harald Kramer, M.D.
Room 714 A/B	07:00-07:50 <i>Moderators</i> :Daniel B. Ennis, Ph.D. & Michael S. Hansen, Ph.D.
07:00	k-Space Based Acceleration Methods Daniel A. Herzka
07:16	KT-Based Acceleration Methods Daniel Kim
07:32	Compressed Sensing <i>Reza Nezafat</i>
07:50	Adjournment & Meet the Teachers
Sunrise Educ	ational Course
UTE: Applica	ations & Advances
Organizers:Neal	K. Bangerter, Ph.D.
<u>Room 716 A/B</u>	07:00-07:50 <i>Moderators</i> :Neal K. Bangerter, Ph.D. & Matthew D. Robson, Ph.D.
07:00	UTE: Past, Present & Future Graeme M. Bydder
07:25	Solid-State MRI for the Study of Calcified Tissues Felix W. Wehrli
07:50	Adjournment & Meet the Teachers

Sunrise Educ	ational Course
Contrast by E	Body Part: How & Why?
Organizers: Brian	A. Hargreaves, Ph.D. & Manojkumar Saranathan, Ph.D.
Room 718 A	07:00-07:50 <i>Moderators</i> : Manojkumar Saranathan, Ph.D. & Holden H. Wu, Ph.D.
07:00	General Tools to Address Fat, Motion & Inhomogeneity Anja C. S. Brau
07:25	Musculoskeletal Sequences: How & Why? Edwin H.G. Oei
07:50	Adjournment & Meet the Teachers
Sunrise Educ	ational Course
Brain Networ	'ks
Organizers:Jame	s J. Pekar, Ph.D., & Jonathan R. Polimeni, Ph.D.
<u>Room 718 B</u>	07:00-07:50 <i>Moderators</i> :Catherine E. Chang, Ph.D. & James J. Pekar, Ph.D.
07:00	How to Construct a Brain Network from MRI Data Christopher J. Honey
07:25	How to Analyze a Network Martijn P. Van Den Heuvel
07:50	Adjournment & Meet the Teachers
Sunrise Educ Cartilage Stru Organizers: Eric Regatte, Ph.D. & Room 801 A/B	ational Course acture & Function Y. Chang, M.D., Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Siegfried Trattnig, M.D. 07:00-07:50 <i>Moderators:</i> Richard Kijowski, M.D. & Ravinder Reddy, Ph.D.
Cartilage Structu	re & Function
07:00	Collagen Structure: DTI & T2 Mapping Jose Maria G. Raya
07:25	GAG: Sodium & T1rho Ari Borthakur
07:50	Adjournment & Meet the Teachers
Sunrise Educational Course	
Organizers: Ionat	han H Gillard M D FRCR MBA & Howard A Rowley M D
Room 701 B	07:00-07:50 Moderators: Christopher G Filippi M D & Tchovonson Lim M D
07:00	CNS Infection in the West: The Value of MRI Walter Kucharczyk
07:25	CNS Infection in Asia: The Value of MRI Rakesh K. Gupta
07:50	Adjournment & Meet the Teachers

Sunrise Educational Course

Nuts & Bolts of Advanced Imaging

Organizers: Alexey Samsonov, Ph.D., N. Jon Shah, Ph.D. & Jeffrey Tsao, Ph.D., M.B.A.John Bassett Theatre 102 07:00-07:50Moderators: Michael S. Hansen, Ph.D. & Tamer S. Ibrahim, Ph.D.

Introductory Talks: Excitation & Reconstruction Software Tools

07:00	Coils, RF Shimming & SAR Tamer S. Ibrahim
07:12	Parallel Transmit Pulse Design <i>William A. Grissom</i>
07:25	The Image Reconstruction Pipeline <i>Michael S. Hansen</i>
07:37	Parallel Imaging & Beyond <i>Philip J. Beatty</i>
07:50	Adjournment & Meet the Teachers

Plenary Session

MR Imaging of Patients with Implanted Devices

Organizers: Daniel Ennis, Ph.D.

Plenary	Hall FG	08:30-09:30	Moderators: Daniel Ennis, Ph.D. & T.B.A.
08:30	0261.	MR Safety Considerations for Patients with Implanted Devices <i>Niels Kuster</i>	
08:50	0262.	MR Imaging of Patients with Implanted Metal Devices <i>Brian A. Hargreaves</i>	
09:10	0263.	MRI in the Setting of Permanent Pacemakers and Implantable Saman Nazarian	Defibrillators
09:30		Adjournment	
Tradi	tional P	Poster Session: Body	
<u>Exhibit</u>	ion Hall	10:00-12:00	(no CME credit)
Tradi Exhibit	tional P ion Hall	Poster Session: Interventional 10:00-12:00	(no CME credit)
Electr Exhibit	onic Po ion Hall	oster Session: Molecular Imaging 10:00-12:00	(no CME credit)
Study MR in Recepti	Group	Session Research	(no CME credit)
<u>Recepti</u>		0+ DCD 10.00-12.00	(no CME creati)
Study	Group	Session	
Cardi Constitu	ac MR ution Hall	105 10:00-12:00	(no CME credit)

Power Pitch S	Session: ASL Methods: Neuro		
Power Pitch The	atre, Exhibition Hall 10:00-11:00 (no CME credit)		
Moderators:Susa	an T. Francis, Ph.D. & Jun Hua, Ph.D.		
0264. ISMRM MERIT AWARD SUMMINA CUM LAUDE	Time- And Vessel Encoded PCASL: A Free Lunch with All the Trimmings <i>Thomas W. Okell*¹, Wouter Teeuwisse*², ³, Michael A. Chappell¹, ⁴, Matthias J.P. van Osch², ³</i> ¹ FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom; ² dept. of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands; ³ Leiden Institute for Brain and Cognition, Leiden, Netherlands; ⁴ IBME, Department of Engineering Sciences, University of Oxford, Oxford, Oxford, United Kingdom		
0265. Ismrm merit award Summa cum lande	A Novel Multiphase Scheme for Simultaneous ASL and BOLD Acquisition Paula Croal ¹ , Emma Hall ¹ , Penny Gowland ¹ , Susan Francis ¹ ¹ Sir Peter Mansfield Imaging Centre, Department of Physics & Astronomy, The University of Nottingham, Nottingham, Nottinghamshire, United Kingdom		
0266.	Wedge-Shaped Slice-Selective Adiabatic Inversion Pulse for Bolus Temporal Width Control in Pulsed Arterial Spin Labeling Jia Guo ¹ , Richard B. Buxton ¹ , Eric C. Wong ¹ , ² ¹ Radiology, UC San Diego, La Jolla, CA, United States; ² Psychiatry, UC San Diego, La Jolla, CA, United States		
0267.	Multiband Background Suppressed Turbo-FLASH Imaging with CAIPIRINHA for Whole-Brain Distortion- Free PCASL Imaging at 3 and 7T Yi Wang ¹ , Steen Moeller ² , Xiufeng Li ² , An T. Vu ² , Kate Krasileva ¹ , Kamil Ugurbil ² , Essa Yacoub ² , Danny JJ Wang ¹ 'Neurology, UCLA, Los Angeles, CA, United States; ² Center of Magnetic Resonance Research, University of Minnesota, MN, United States		
0268. ISMEM MERIT AWARD magna cum laude	Single-Shot 3D-EPI PCASL with Background Suppression <i>Markus Boland¹, Rüdiger Stirnberg¹, Daniel Brenner¹, Tony Stöcker¹, ²</i> ¹ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ² Department of Physics and Astronomy, University of Bonn , Germany		
0269. Isman went award magna cum laude	Single-Shot Whole-Brain Background-Suppressed PCASL MRI with 1D Accelerated 3D RARE Stack-Of- Spirals Readout Marta Vidorreta ¹ , Ze Wang ² , ³ , Yulin V. Chang ¹ , ⁴ , María A. Fernández-Seara ⁵ , John A. Detre ¹ ¹ Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; ² Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province, China; ³ Departments of Radiology and Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; ⁴ Department of Radiology, University of Pennsylvania, PA, United States; ⁵ Functional Neuroimaging Laboratory, CIMA, University of Navarra, Navarra, Spain		
0270. ISMRM MERIT AWARD magna cum Laude	Improving Motion Robustness of Pseudo-Continuous Arterial Spin Labeling by Using Real-Time Motion Correction Michael Helle ¹ , Peter Koken ¹ , Julien Sénégas ¹ ¹ Philips Research, Hamburg, Germany		
0271.	Prospective Motion Correction for Artefact Reduction in Pseudo-Continuous Arterial Spin Labelling with a 3D GRASE Readout.		

Benjamin Knowles¹, Federico von Samson-Himmelstjerna², ³, Matthias Guenther², ⁴, Maxim Zaitsev¹ ¹Medical Physics, University Medical Centre, Freiburg, Germany; ²Fraunhofer Mevis, Bremen, Germany; ³Charité Medical University, Center for Stroke Research, Berlin, Germany; ⁴University of Bremen, Germany

0272. An Off-Resonance Correction Method for Vessel-Encoded Pseudo-Continuous Arterial Spin Labeling Using the Optimized Encoding Scheme

ismen merit award magna cum laude

Eleanor S K Berry¹, Peter Jezzard¹, Thomas W. Okell¹ ¹FMRIB centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom

0273. 3D Weighted Least Squares Algorithm for Partial Volume Effect Correction in ASL Images

Pablo García-Polo¹,², Adrian Martín³,⁴, Virginia Mato⁵, Alicia Quirós⁶, Fernando Zelaya⁷, Juan Antonio Hernandez-Tamames⁵

¹A. A. Martinos Center for Biomedical Imaging, Mass. General Hospital, M+Visión Advanced Fellowship, Charlestown, MA, United States; ²Centre for Biomedical Technology - Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain; ³Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁴3Applied Mathematics, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ⁵Department of Electrical Technology, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ⁶Cardiology, Hospital Clínico San Carlos, Madrid, Spain; ⁷Department of Neuroimaging, King's College London, London, United Kingdom

ismem merit award Summa cum laude

magna cum laude

0274. Dynamic 3D ASL in 20 Seconds Per Frame with Model-Based Image Reconstruction

Li Zhao¹, Samuel W. Fielden², Xue Feng², Max Wintermark³, John P. Mugler III⁴, Josef Pfeuffer⁵, Craig H. Meyer², ⁴ ¹Radiology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States; ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³Radiology, Stanford University, Stanford, CA, United States; ⁴Radiology, University of Virginia, Charlottesville, VA, United States; ⁵Application Development, Siemens Healthcare, Erlangen, Germany

0275. Subtraction Free Arterial Spin Labeling: A New Bayesian-Inference Based Approach for Gaining Perfusion Data from Time Encoded Data

Federico C A von Samson-Himmelstjerna¹, ², *Michael A. Chappell³*, *Jan Sobesky²*, *Matthias Günther¹* ¹Fraunhofer MEVIS, Bremen, Germany; ²Center for Stroke Research (CSB), Charité University Medicine Berlin, Berlin, Germany; ³Institute of Biomedical Engineering & FMRIB Centre, University of Oxford, Oxforshire, United Kingdom

0276. Arterial Spin Labeling Without Control/label Pairing and Post-Labeling Delay: An MR Fingerprinting Implementation Implementation

Pan Su¹, Deng Mao¹, Peiying Liu¹, Yang Li¹, Babu G. Welch², Hanzhang Lu¹ ¹Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, United States

0277. Diffusion Sensitivity of 3D-GRASE in ASL Perfusion

Xiang He¹, Thang Le², Hoi-Chung Leung², Parsey Ramin³, Mark Schweitzer¹ ¹Department of Radiology, Stony Brook University, Stony Brook, NY, United States; ²Department of Psychology, Stony Brook University, NY, United States; ³Department of Psychiatry, Stony Brook University, NY, United States

0278. Comparison of Cerebral Blood Flow and Arterial Transit Time Mapping Methods: Look-Locker ASL,

Hadamard Encoded ASL, and Multi-TI ASL with Variable Bolus and TR Megan Johnston¹, Youngkyoo Jung¹, ² ¹Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, United States; ²Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States

Applications of Quantitative Susceptibility Mapping (QSM)

 Room 701 A
 10:00-12:00
 Moderators:Petra Schmalbrock, Ph.D. & Andreas Schäfer, Ph.D.

 10:00
 0279.
 Longitudinal Changes of White Matter Following Mild Traumatic Brain Injury by Diffusion, T2 and Susceptibility MRI
Wei Li¹, ², Justin Long¹, Lora Watts¹, Qiang Shen¹, Timothy Q. Duong¹, ²
¹Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States;
²Ophthalmology, University of Texas Health Science Center at San Antonio, TX, United States

 10:12
 0280.
 Magnetic Susceptibilities Measured by Quantitative Susceptibility Mapping (QSM) Indicate Brain Iron Levels

Correlate with Genetic Burden in Prodromal Huntington's Disease Jiri M.G. van Bergen¹, ², Jun Hua¹, ², Paul G. Unschuld³, ⁴, Issel Anne L. Lim¹, ², Craig K. Jones¹, ², Russell L. Margolis⁴, ⁵, Christopher A. Ross⁴, ⁵, Peter C.M. van Zijl¹, ², Xu Li¹, ² ¹Radiology, Johns Hopkins School of Medicine, Baltimore, MD, United States; ³Division of Psychiatry Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland; ⁴Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States; ⁵Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States

Tuesday

10:24 0281. Quantitative Susceptibility Mapping of Lesions in Multiple Sclerosis Ahmed M. Elkady¹, Hongfu Sun¹, Andrew J. Walsh¹, Gregg Blevins², Zhuozhi Dai¹, Alan H. Wilman¹ ¹Dept. of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada; ²Division of Neurology, University of Alberta, Edmonton, AB, Canada 10:36 0282. Measurement of the Oxygen Extraction Fraction in Patients with Steno-Occlusive Cerebrovascular Diseases Using Quantitative Susceptibility Mapping at 7T Using Value 1 Male Cerebrovascular Value 1 (1997)

Ikuko Uwano¹, Makoto Sasaki¹, Kohsuke Kudo², Ryota Sato³, Yuiko Sato⁴, Yasushi Ogasawara⁴, Hiroaki Saura⁴, Kuniaki Ogasawara⁴, Taisuke Harada¹, Kenji Ito¹, Fumio Yamashita¹, Jonathan Goodwin¹, Satomi Higuchi¹ ¹Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan; ²Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; ³Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan; ⁴Department of Neurosurgery, Iwate Medical University, Morioka, Iwate, Japan

10:48 0283. Quantitative Susceptibility Mapping Displays Pallidofugal Fiber Tracts

Till Schneider¹, Andreas Deistung², Uta Biedermann³, Sabine Heiland¹, Martin Bendszus¹, Jürgen Reichenbach² ¹Neuroradiology, University of Heidelberg, Heidelberg, Germany; ²Department of Medical Physics, University of Jena, Jena, Germany; ³Department of Anatomy, University of Jena, Jena, Germany

11:00 0284. Cortical Mapping of Magnetic Susceptibility and R2* Reveals Insights Into Tissue Composition

Andreas Deistung⁷, Andreas Schäfer², Ferdinand Schweser³, ⁴, Jürgen Rainer Reichenbach¹ ¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; ²Department of Neurophysics, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ³Buffalo Neuroimaging Analysis Center, Dept. of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States; ⁴MRI Molecular and Translational Imaging Center Institution, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States

11:12 0285. High Conspicuity Imaging and Initial Quantification of the Habenula on 3T QSM Images of Normal Human Brain

John Schenck¹, Dominic Graziani¹, Ek Tsoon Tan¹, Seung-Kyun Lee¹, Luca Marinelli¹, Thomas Foo¹, Christopher Hardy¹, Tian Liu², Yi Wang³

¹MRI Laboratory, General Electric Global Research, Schenectady, NY, United States; ²MedImageMetric, New York, United States; ³Radiology, Cornell Medical College, New York, United States

11:24 **0286.** Susceptibility Mapping in Sickle Cell Anaemia Patients with and Without Chronic Blood Transfusions *Karin Shmueli¹, Jamie M. Kawadler², David W. Carmichael², Chris A. Clark², Fenella J. Kirkham³* ¹Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom; ²Imaging & Biophysics Unit, UCL Institute of Child Health, London, United Kingdom; ³Neurosciences Unit, UCL Institute of Child Health, London, United Kingdom; ⁴

11:36 028 summa cum laude

0287. Whole-Heart Myofiber Tractography Derived from Conjoint Relaxation and Susceptibility Tensor Imaging Russell Dibb¹, ², Chunlei Liu³, ⁴

¹Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States; ²Biomedical Engineering, Duke University, Durham, NC, United States; ³Brain Imaging & Analysis Center, Duke University Medical Center, Durham, NC, United States; ⁴Radiology, Duke University Medical Center, Durham, NC, United States

```
11:48 0288. Imaging Magnetic Susceptibility of the Human Knee Joint at 3 and 7 Tesla
Hongjiang Wei<sup>1</sup>, Bin Wang<sup>1</sup>, Xiaopeng Zong<sup>2</sup>, Weili Lin<sup>2</sup>, Nian Wang<sup>1</sup>, Chunlei Liu<sup>1</sup>, <sup>3</sup>
<sup>1</sup>Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; <sup>2</sup>Biomedical Research Imaging Center, University
of North Carolina at Chapel Hill, NC, United States; <sup>3</sup>Depatment of Radoilogy, School of Medicine, Duke University, NC, United
States
```

Neurovascular & Stroke 2

Deem 7		If & SUICKE 2 10:00 12:00 Moderators: Tilek Des M.D. Dh.D. & T.P.A.
<u>KOOM /</u>	0200	<u>10:00-12:00</u> <u>Moderators: 111aK Das, M.D., Ph.D. & I.B.A.</u>
10:00	0289.	Benjamin Lemasson ¹ , ² , Alexis Broisat ³ , ⁴ , Ligia S. B. Boisserand ¹ , ² , Mitra Ahmadi ³ , ⁴ , Sandrine Bacot ³ , ⁴ , Audrey Soubies ³ , ⁵ , Olivier Detante ¹ , ⁶ , Catherine Ghezzi ³ , ⁴ , Chantal Rémy ¹ , ² , Emmanuel L. Barbier ¹ , ² ¹ Inserm, U836, Grenoble, -, France; ² Univ. Grenoble Alpes, GIN, Grenoble, -, France; ³ Inserm, U1039, Grenoble, -, France; ⁴ Univ. Grenoble Alpes, Radiopharmaceutiques Biocliniques, Grenoble, -, France; ⁵ Univ. Grenoble Alpes, Radiopharmaceutiques Biocliniques, Grenoble, -, France; ⁵ Univ. Grenoble, -, France; ⁶ CHU de Grenoble, GIN, Grenoble, -, France
10:12	0290.	Towards Characterization of the Cerebral Venous Vessel Network Using QSM: Extraction of Vessel Radii and Lengths Barthélemy Serres ¹ , Andreas Deistung ¹ , Andreas Schäfer ² , Marek Kocinski ³ , Andrzej Materka ³ , Jürgen Reichenbach ¹ ¹ Medical Physics Group, Institute for Diagnosis and Interventional Radiology, University Hospital Jena - Friedrich Schiller University Jena, Jena, Germany; ² Max Plank Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ³ University of Lodz, Lodz, Poland
10:24	0291.	Estimation of a PET AIF Using DSC MRI John Lee ¹ , Colin Derdeyn ¹ , Joshua Shimony ¹ ¹ Washington University School of Medicine, Saint Louis, MO, United States
10:36	0292.	High-Speed, High-Resolution Whole-Head Sparse Contrast-Enhanced MR Angiography Aurelien F. Stalder ¹ , Harald H. Quick ² , ³ , Michael O. Zenge ⁴ , Peter Schmitt ¹ , Qiu Wang ⁵ , Marc Schlamann ⁶ , Stefan Maderwald ² , Mariappan Nadar ⁵ , Michaela Schmidt ¹ ¹ Siemens Healthcare, Erlangen, Germany; ² Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Germany; ³ High Field and Hybrid MR Imaging, University Hospital Essen, Germany; ⁴ Siemens Healthcare, NY, United States; ⁵ Imaging and Computer Vision, Siemens Corporate Technology, NJ, United States; ⁶ Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany
10:48	0293.	Exploring the Limits of Resolution in Contrast Enhanced MRA with Ultrashort Echo Time Imaging <i>Kevin Michael Johnson¹, Yijing Wu¹, Patrick A. Turski²</i> ¹ Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ² Radiology, University of Wisconsin-Madison, Madison, WI, United States
11:00	0294.	Detection of Intracranial Vessel Wall Lesions in an Elderly Asymptomatic Population Using 7T MRI <i>A.A. Harteveld¹, A.G. van der Kolk¹, H.B. van der Worp², N. Dieleman¹, F. Visser¹, ³, P.R. Luijten¹, J.J.M.</i> <i>Zwanenburg¹, ⁴, J. Hendrikse¹</i> ¹ Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ² Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands; ³ Philips Healthcare, Best, Netherlands; ⁴ Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
11:12	0295.	Cerebral Venous Thrombosis: Direct Thrombus Imaging with Sub-Millimeter Isotropic Resolution Dark-Blood MRI <i>Zhaoyang Fan¹, Qi Yang¹, ², Xiaofeng Qu¹, ³, Yibin Xie¹, ⁴, Guoxi Xie⁵, Tianyi Qian⁶, Xiaoming Bi⁷, Yutaka Natsuaki⁷, Debiao Li¹ ¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Radiology, Xuanwu Hospital, Beijing, China; ³Radiology, The Second Hospital OF Dalian Medical University, Dalian, China; ⁴Bioengineering,</i> University of California, Los Angeles, CA, United States; ⁵ Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong, China; ⁶ MR Collaboration NE Asia, Siemens Healthcare, Beijing, China; ⁷ MR R&D, Siemens Healthcare, Los Angeles, CA, United States
11:24	0296.	A One-Stop-Shop for Hemodynamic Imaging in Moyamoya Disease Peiying Liu ¹ , Babu G. Welch ² , Darlene King ² , Yang Li ¹ , Marco Pinho ¹ , ³ , Hanzhang Lu ¹ ¹ Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ² Neurological Surgery Clinic, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³ Department of Radiology, University of Texas Southwestern Medical Center, TX, United States

Tuesday

11:36	0297.	Intravoxel Incoherent Motion Imaging Exposes Abnormal Parenchyma and Microvasculature in Cerebral Small Vessel Disease Sau May Wong ¹ , Eleana Zhang ² , Frank C.G. Bussel ¹ , Julie E.A. Staals ² , Cécile R.L.P.N. Jeukens ¹ , Paul A.M. Hoj Robert J. van Oostenbrugge ² , Walter H. Backes ¹ , Jacobus F.A. Jansen ¹ ¹ Radiology, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ² Neurology, Maastricht University Medic Center, Maastricht, Limburg, Netherlands	
11:48	0298.	Transient Cerebral Ischemia in Rodents Exposed to Chronic Intermittent Hypoxia Bianca Gonzales Ceraueira ¹ , Yuhao Sun ¹ , Shiliang Huang ¹ , Glenn Tonev ² , Timothy O, Duong ¹	

Bianca Gonzales Cerqueira¹, Yuhao Sun¹, Shiliang Huang¹, Glenn Toney², Timothy Q. Duong¹ ¹Research Imaging Institute, Univ. of TX Health Science Center, San Antonio, TX, United States; ²Physiology, Univ. of TX Health Science Center, TX, United States

Implantable Medical Devices & Modelling

Room 71	4 A/R	10:00-12:00	Moderators T B A & T B A
<u>10:00</u>	0299	Subject Specific Body Model Creation Using MR Fingerprinting	
		<i>Leeor Alon¹</i> , ² , <i>Martijn Cloos¹</i> , ² , <i>Assaf Tal³</i> , <i>Daniel K. Sodickson¹</i> , ² , <i>Christoph</i> ¹ Center for Advanced Imaging Innovation and Research (CAI2R), New York University States; ² Center for Biomedical Imaging, Department of Radiology, New York University States; ³ Weizmann Institute, Rehovot, Israel	<i>er M. Collins¹,</i> ² School of Medicine, New York, NY, United School of Medicine, New York, NY, United
10:12	0300.	Analysis of DNA Double-Strand Breaks in Human Peripheral Blood Mono MRI	onuclear Cells After Exposure to 7T
		Mahsa Fatahi ¹ , Annika Reddig ² , Bjoern Friebe ³ , Dirk Reinhold ⁴ , Oliver Speck ¹ ¹ Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeb Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, German Medicine, Otto-von-Guericke-University Magdeburg, Germany	ourg, Magdeburg, Germany; ² Institute of ny; ³ Department of Radiology and Nuclear
10:24	0301.	Simplified Computational Models of Medical Devices for Accurate RF Hes Reduced Computational Cost	ating Simulations with Significantly
		Alan Ross Leewood', Beth J. Hess ¹ , Matthew Huser ¹ , Sharath Gopal ¹ , Gonzalo Wolfgang Kajig ² Sundar S. Pajan ² Leonardo M. Angelone ²	G. Mendoza ² , Maria Ida Iacono ² ,
		¹ MED Institute, Inc., West Lafayette, IN, United States; ² Center for Devices and Radiolo Administration, Silver Spring, MD, United States	gical Health, U.S. Food and Drug
10:36	0302.	What Is the SAR for Routine Clinical MRI Exams at 1.5T? Deborah Anne Langman ¹ , Subashini Srinivasan ¹ , ² , Daniel B. Ennis ¹ , ² ¹ Radiological Sciences, UCLA, Los Angeles, CA, United States; ² Bioengineering, UCLA	A, Los Angeles, CA, United States
10:48	0303.	Ensuring Safety and Functionality of Electroglottography Measurements	During Lung MRI
		Ali Caglar Ozen ² , Louisa Traser ⁴ , ⁵ , Tetiana Dadakova ² , Michael Burdumy ⁴ , Michael Center, Freiburg, Germany; ³ Department of Otolaryngology, Univers ⁴ Institute of Musicians Medicine, University Medical Center, Freiburg, Germany	<i>atthtas Echternach', Michael Bock</i> any; ² Institute of Musicians Medicine, sity Medical Center Freiburg, Germany;
11:00	0304.	From Real-Time SAR Assessment to Temperature Distributions in Corona	arv Stents at 7T
ISMRM MERIT magna cun	r award n Laude	Lukas Winter ¹ , Eva Oberacker ¹ , Celal Özerdem ¹ , Yiyi Ji ¹ , Florian von Knobels Bernd Ittermann ³ , Frank Seifert ³ , Thoralf Niendorf ¹ , ²	dorff-Brenkenhoff ¹ , ² , Gerd Weidemann ³ ,
		¹ Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicin Clinical Research Center (ECRC), a joint cooperation between the Charité and the Max-I Berlin, Germany; ³ Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Ber	e, Berlin, Germany; ² Experimental and Delbrueck Center for Molecular Medicine, lin, Germany
11:12	0305.	Comprehensive Analysis of Temperature Rise Generated by a Titanium R	od Inside 1.5T MRI RF Whole Body
		Coil Mikhail Kozlov ^{1/2} Gragor Schaefers ¹	
		¹ MR:comp GmbH, Gelsenkirchen, North Rhine Westphalia, Germany; ² MPI, Leipzig, Sa	axony, Germany

11:24	0306.	A Quadraure RF Coil with Reduced Heating of DBS Implants
		Hai Lu ¹ , Shumin Wang ¹
		¹ Auburn University, Auburn, AL, United States

11:36	0307.	A System for Attenuating and Monitoring Acoustic Noise During Infant MRI Studies
		Michael Valente ¹ , ² , Lei Zhou ³ , Longchuan Li ¹ , ² , Sarah Shultz ¹ , ² , Xiaoping Hu ³
		¹ Pediatrics, Emory University, Atlanta, GA, United States; ² Marcus Autism Center, Children's Healthcare of Atlanta, Atlanta, GA,
		United States; ³ Biomedical Engineering, Emory University, Atlanta, GA, United States

11:48 0308. An Assessment of Radio Frequency Induced Heating of a Vascular Stent During Magnetic Resonance Imaging of a Pig

David C. Gross¹, ², Orlando P. Simonetti³, ⁴ ¹Biomedical Engineering, The Ohio State University, Columbus, OH, United States; ²Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; ³Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH, United States; ⁴Radiology, The Ohio State University, Columbus, OH, United States

Translations MR Imaging of Musculoskeletal Physiology

Room 716 A/B	<u> </u>
10:00 0309	. UTE 3D Cones Trajectory with T1 ρ Weighted Imaging for MSK Applications
	Robert Nikolov', Michael Carl', Eric Chang', Christine Chung', Graeme Bydder', Jiang Du' ¹ Radiology, University of California, San Diego, San Diego, CA, United States: ² GE Healthcare, Waukesha, WI, United States:
	³ Radiology, VA San Diego Healthcare System, La Jolla, CA, United States
10:12 0310.	A Mechanism for Quantifiable MRI-Based Detection of Cobalt-Chromium Particulate Deposits Near Total Hip Poplacements
	Kevin M. Koch ¹ , Matthew F. Koff ² , Parina Shah ² , Hollis G. Potter ² , ³
	¹ Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ² Radiology and Imaging, Hospital for
	Special Surgery, NYC, NY, United States; ³ Weill Cornell Medical College of Cornell University, NYC, NY, United States
10:24 0311	Direct Visualization of Cartilage Delamination in FAI at 3T Using Multiband Acceleration
	Jutta Ellermann ¹ , Abraham Padua ² , Edward Auerbach ¹ , Dingxin Wang, ¹³
	¹ CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ² Siemens Healthcare, Houston, TX,
	United States; Stemens Healthcare, Minneapons, MIN, United States
10:36 0312	Quantitative Assessment of the Normal and Abnormal Achilles Tendon In Vivo Using a 3D Cones Sequence
ISMRM MERIT AWARD magna cum laude	Hongda Shao ¹ , Michael Carl ² , Eric Chang ¹ , Christine B. Chung ¹ , Graeme M. Bydder ¹ , Jiang Du ¹
	Radiology, University of California, San Diego, CA, United States; 'GE Healthcare, San Diego, CA, United States
10:48 0313	High-Resolution 3D MR Neurography of the Wrist Using Phase-Cycling Diffusion-Sensitized Driven-
	Equilibrium (PcDSDE)
	Masami Yoneyama', Makoto Obara', Yuriko Ozawa', Hajime Tanji', Masanobu Nakamura', Tomoyuki Okuaki', Takashi Tahuchi ² , Satoshi Tatsuno ² , Punii Sashi ² , Mara Van Cautoran ¹
	¹ Philips Electronics Japan, Tokyo, Japan; ² Yaesu Clinic, Tokyo, Japan; ³ Imaging Center, Kita-Fukushima Medical Center, Fukushima,
	Japan
11.00 0314	Domoving the Confounding Effect of the Fat Component in ADC Quantification of the Vertebral Rone Marrow
ISMRM MERIT AWARD	Water Component
magna cum laude	Michael Dieckmeyer ¹ , Stefan Ruschke ¹ , Holger Eggers ² , Hendrik Kooijman ³ , Ernst J. Rummeny ¹ , Jan S. Bauer ⁴ ,
	Thomas Baum ¹ , Dimitrios C. Karampinos ¹
	⁴ Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany; ⁴ Philips Research Laboratory, Hamburg, Germany; ³ Philips Healthcare, Hamburg, Germany; ⁴ Diagnostic and Interventional Neuroradiology, Technische Universität
	München, Munich, Germany

11:12 0315. Isman ment award Summa cum laude	Assessment of Extracellular Matrix Degradation in Intervertebral Disc Degeneration by Diffusion Weighted MRS and Chemical Exchange Saturation Transfer Anna M. WANG ¹ , ² , Adrian Tsang ¹ , ² , Ed X. Wu ¹ , ² ¹ Laboratory of Biomedical Imaging and Signal Processing, Hong Kong, Hong Kong; ² Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong
11:24 0316.	T1ρ and T2-Based Quantitative Technique for Characterization of Regional Variations in Intervertebral Discs to Detect Early Degenerative Changes. Prachi Pandit ¹ , Martin Kretzschmar ¹ , Valentina Pedoia ¹ , William Dillon ¹ , Sharmila Majumdar ¹ ¹ Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
11:36 0317.	Assessment of Glycosaminoglycan Content in Lumbar Intervertebral Discs with Chemical Exchange Saturation Transfer Imaging: Comparison with T1-Rho Measurement Osamu Togao ¹ , Akio Hiwatashi ¹ , Tatsuhiro Wada ² , Koji Yamashita ¹ , Kazufumi Kikuchi ¹ , Chiaki Tokunaga ² , Yuriko Suzuki ³ , Jochen Keupp ⁴ , Hiroshi Honda ¹ ¹ Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ² Division of Radiology, Department of Medical Technology, Kyushu University Hospital, Fukuoka, Japan; ³ Philips Electronics Japan, Tokyo, Japan; ⁴ Philips Research, Hamburg, Germany
11:48 0318.	Spatial Maps of DCEMRI Enhancement in Endplates of Degenerating Intervertebral Discs Reveal Major Pathologic Changes Volkan Emre Arpinar ¹ , Ali Ersoz ² , L Tugan Muftuler ¹ , ³ ¹ Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ² Department of Boiphysics, Medical College of Wisconsin, WI, United States; ³ Center for Imaging Research, Medical College of Wisconsin, WI, United States

It's a Polarized World

 Constitution Hall 107
 10:00-12:00
 Moderators: T.B.A. & T.B.A.

 10:00
 0319.
 Resonance Frequency-Shifting Nitroxide for Probing Proteolytic Activity In Vivo Using the Overhauser-Enhanced MRI Technique

 Neha KOONJOO¹, Gérard Audran², Lionel Bosco², Paul Brémond², Elodie Parzy¹, Philippe Massot¹, Matthieu Lepetit-Coiffé¹, ³, Jean-Michel Franconi¹, Sylvain R.A Marque², Eric Thiaudière¹, Philippe Mellet¹, ⁴

 ¹Centre de Résonance Magnétique des Systèmes Biologiques, Bordeaux, France, Metropolitan; ²UMR 7273 Aix-Marseille Université, Marseille, France, Metropolitan; ³Siemens, Saint-Denis, France, Metropolitan; ⁴INSERM, Université de Bordeaux Segalen, Bordeaux, France, Metropolitan

10:12 0320. Dynamic *In Vivo* Free Radical Imaging with Overhauser-Enhanced MRI

Mathieu Sarracanie¹, ², Fanny Herisson⁵, Najat Salameh¹, ², David E J Waddington¹, ⁴, Cenk Ayata³, Matthew S. Rosen¹, ² ¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Department of Physics, Harvard University, Cambridge, MA, United States; ³Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Charlestown, School of Physics, Harvard University, School

Charlestown, United States; ⁴ARC Center for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, Australia

10:24 0321. Towards Targeted Molecular Imaging of Colorectal Cancer by Hyperpolarized Silicon Particles Functionalized with Mucin Antibody

with Mucin Antibody Jingzhe Hu¹, ², Nicholas Whiting³, Pamela Constantinou⁴, Niki Zacharias Millward³, David Menter⁵, Daniel Carson⁴, Pratip Bhattacharya³

¹Bioengineering, Rice University, Houston, TX, United States; ²MD Anderson Cancer Center, Houston, TX, United States; ³Cancer Systems Imaging, MD Anderson Cancer Center, Houston, TX, United States; ⁴BioSciences, Rice University, Houston, TX, United States; ⁵Cancer Biology, MD Anderson Cancer Center, Houston, TX, United States

10:36 0322. The Tumor Exception That Proves the Rule: Hyperpolarized ¹³C MRS Cannot Be Used to Detect the Presence of Mutant IDH1 Glioma or Their Responses to Temozolomide Therapy

Myriam Marianne Chaumeil¹, Marina Radoul¹, Pia Eriksson¹, Michael D. Blough², Charles Cheneslong², Russell O. Pieper³, ⁴, Joanna J. Phillips³, ⁴, J Gregory Cairncross², Sabrina M. Ronen¹, ⁴

¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; ³Neurological Surgery, University of California San Francisco, San

Francisco, CA, United States; ⁴Brain Tumor Research Center, University of California San Francisco, San Francisco, CA, United States

 10:48 0323. Application of Good's Buffers to PH Imaging Using Hyperpolarized 13C-MRI Robert R. Flavell¹, David Korenchan¹, Cornelius von Morze¹, Mark Van Criekinge¹, Renuka Sriram¹, Sukumar Subramaniam¹, Robert Bok¹, Joseph Blecha¹, Daniel Vigneron¹, Peder Larson¹, Kayvan R. Keshari², John Kurhanewicz¹, David M. Wilson¹
 ¹Radiology and biomedical imaging, University of California, San Francisco, San Francisco, CA, United States; ²Memorial Sloan-Kettering Cancer Center, New York, NY, United States

- 11:00 0324. Dynamic Imaging of Hyperpolarized ⁶Li Cerebral Distribution at Pharmacological Concentration *Mor Mishkovsky¹, Andrea Capozzi², Najat Salameh², Jean-Noel Hyacinthe³, Rolf Gruetter¹, ⁴, Arnaud Comment² ¹Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ²Institute of the Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ³Haute Ecole de Santé, University of Applied Sciences Western Switzerland, Geneva, Switzerland; ⁴Center of biomedical imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland*
- 11:12 0325. Effect of Epinephrine on Metabolism of HP [1-¹³C]pyruvate in Low-Flow Myocardial Ischemia Chalermchai Khemtong¹, Wei Chen¹, Weina Jiang¹, Craig R. Malloy¹, ², A. Dean Sherry¹, ³ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Veterans Affairs North Texas Health Care System, Dallas, TX, United States; ³Chemistry, University of Texas at Dallas, Richardson, TX, United States
- 11:24 0326. Flow-Sensitizing Gradients for First-Pass Perfusion Imaging Using Hyperpolarized 13C Urea in the Rat Heart Angus Z. Lau¹, ², Jack J. Miller², ³, Damian J. Tyler¹, ² ¹Department of Cardiovascular Medicine, University of Oxford, Oxford, Oxford, Shire, United Kingdom; ²Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom; ³Department of Physics, University of Oxford, Oxford, Oxfordshire, United Kingdom

11:36 0327. Metabolic Flux Analysis of Hepatic Mitochondrial Oxidation of Hyperpolarized [1-¹³C] and [2-¹³C] Pyruvate In

Emine Can¹, Jessica A.M. Bastiaansen², ³, Hikari A.I. Yoshihara¹, ⁴, Rolf Gruetter⁵, ⁶, Arnaud Comment¹ ¹Institute of Physics of Biological Systems, EPFL, Lausanne, Switzerland; ²Department of Radiology, University Hospital Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ³Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ⁴Department of Cardiology, University Hospital Lausanne (CHUV), Lausanne, Switzerland; ⁵Laboratory for Functional and Metabolic Imaging, EPFL, Lausanne, Switzerland; ⁶Department of Radiology, University of Lausanne, University of Geneva, Switzerland

11:48 0328. Detection of Lung Mitochondrial Dysfunction Using Hyperpolarized [1-13C] Pyruvate Metabolism Hoora Shaghaghi¹, Stephen Kadlecek¹, Mehrdad Pourfathi¹, Sarmad Siddiqui¹, Maurizio Cereda², Hooman Hamedani¹, Harrilla Profka¹, Yi Xin¹, Rahim R. Rizi¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States

Parametric Mapping

John Ba	ssett The	atre 102 10:00-12:00	Moderators: Mariya Doneva, Ph.D. & Diego Hernando, Ph.D.
10:00	0329.	Magnetic Resonance Fingerprinting wi	th Chemical Exchange (MRF-X) for Quantification of Subvoxel T1, T2,
		Volume Fraction, and Exchange Rate	
		Jesse I. Hamilton ¹ , Anagha Deshmane ¹ , S	Stephanie Hougen ² , Mark Griswold, ¹³ , Nicole Seiberlich ¹ , ³
		¹ Biomedical Engineering, Case Western Reser	ve University, Cleveland, OH, United States; ² Physics, Case Western Reserve
		University, Cleveland, OH, United States; ³ Rad	liology, Case Western Reserve University, Cleveland, OH, United States

10:12 0330. Magnetic Resonance Fingerprint Compression

Martijn A. Cloos¹, ², Tiejun Zhao, ²³, Florian Knoll¹, ², Leeor Alon¹, ², Riccardo Lattanzi¹, ², Daniel K. Sodickson¹, ² ¹Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, United States; ³Siemens Medical Solutions USA Inc., Malvern, PA, United States

10:24 0331. Fast and Direct Generation of Encoding Gradients for the MRF-Music Acquisition

Iswen went award magna cum laude Dan Ma¹, Mark Griswold² Biomedical Engineering, Cas

¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, OH, United States

10:36 0332. A Fast Simultaneous Water/fat Decomposition and T1, T2 Quantification Method Using Dual TR BSSFP Dongyeob Han¹, Min-Oh Kim¹, Dosik Hwang¹, Dong-Hyun Kim¹

10:48 0333. Simultaneous Frequency and T2 Mapping, Applied to Thermometry and to Susceptibility-Weighted Imaging Cheng-Chieh Cheng¹, Chang-Sheng Mei², Pelin Aksit Ciris³, ⁴, Robert V. Mulkern, ⁴⁵, Mukund Balasubramanian, ⁴⁵, Hsiao-Wen Chung¹, Tzu-Cheng Chao⁶, Lawrence P. Panych³, ⁴, Bruno Madore³, ⁴
¹Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ²Department of Physics, Soochow University, Taipei, Taiwan; ³Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; ⁴Harvard Medical School, Boston, MA, United States; ⁵Department of Radiology, Boston Children's Hospital, Boston, MA, United States; ⁶Department of Computer Science and Information Engineering, National Cheng-Kung University, Taiman, Taiwan

11:00 0334. K-Space Based Estimation for R2* Mapping

11:12 0335. High Resolution Water/Fat Imaging in Animal Models

Abraam S. Soliman¹,², Lanette J. Friesen-Waldner³, Kevin J. Sinclair³, Timothy R.H Regnault⁴,⁵, Charles A. McKenzie,¹³

¹Biomedical Engineering, University of Western Ontario, London, Ontario, Canada; ²Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ³Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ⁴Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada; ⁵Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada

11:24 0336. *In Vivo* Assessment of Cold Stimulation Effects on the Fat Fraction of Brown Adipose Tissue Using Dixon MRI

¹Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany; ²Department of Radiology, German Cancer Research Center, Heidelberg, Germany; ³Molecular Metabolic Control, German Cancer Research Center, Heidelberg, Germany; ⁴Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany; ⁵Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany

11:36 0337. Bias in Liver Fat Quantification Using Chemical Shift-Encoded Techniques with Short Echo Times Diego Hernando¹, Utaroh Motosugi¹, ², Scott B. Reeder¹, ³ ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Radiology, University of Yamanashi, Japan; ³Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

11:48 0338. Comparison of T2* Correction Methods for Vertebral Bone Marrow Fat Quantification Using Chemical Shift Encoding-Based Water-Fat Imaging Dimitrios C. Karampinos¹, Stefan Ruschke¹, Michael Dieckmeyer¹, Holger Eggers², Hendrik Kooijman³, Ernst J. Rummeny¹, Jan S. Bauer⁴, Thomas Baum¹ ¹Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany; ²Philips Research Laboratory, Hamburg, Germany; ³Philips Healthcare, Hamburg, Germany; ⁴Neuroradiology, Technische Universität München, Munich, Germany

Educational Course

MRI in the Emergency Room

Organizers:Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, M.D., Ph.D., M.Ed., FRCR

m.D., 1 m.D., 10	LEG., I KEK	
Room 718 A	10:00-12:00	Moderators: Michele A. Brown, M.D. & Michael D. Repplinger, M.D., M.S.
10:00	Rapid MRI Protocols & Acquisitio <i>Martin P. Smith</i>	ons for Emergency Patients
10:30	Acute Abdomen/Appendicitis Bobby T. Kalb	
11:00	Pulmonary MRA Christopher J. François	
11:30	MRV Shreyas S. Vasanawala	
12:00	Adjournment & Meet the Teacher	'S

Educational Course

fMRI Analysis

Analyze This! Practicalities of fMRI & Diffusion Data Analysis

Organizers: Daniel C. Alexander, Ph.D., Adam W. Anderson, Ph.D., Peter Jezzard, Ph.D., James J. Pekar, Ph.D., Jonathan R.

Polimeni, Ph.D., Stamatios Sotiropoulos, Ph.D. & Eric C. Wong, M.D., Ph.D.

Room 718 B	10:00-12:00	Moderators: Peter A. Bandettini, Ph.D. & Claudia A. Wheeler-Kingshott, Ph.D.
10:00	Introduction & Overview	

10:05	fMRI Analysis Using FSL Stephen M. Smith
10:15	fMRI Analysis Using SPM Thomas Zeffiro
10:25	fMRI Analysis Using AFNI Ziad S. Saad
10:35	Discussion
Diffusion Analysi	6
11:00	Diffusion Analysis Using FSL Michiel Cottaar, Ph.D.
11:08	Diffusion Analysis Using Camino <i>Philip A. Cook</i>
11:16	Diffusion Analysis Using MR Trix Jacques-Donald Tournier
11:24	Diffusion Analysis Using Track Vis <i>Brian L. Edlow</i>
11:32	Diffusion Analysis Using MRI Studio Susumu Mori
11:40	Discussion

12:00 Adjournment & Meet the Teachers

Educational Course Research Meets Clinical: Incidental Findings Room 801 A/B 10:00-12:00

10:00 **Expert Panelists** Blair Henry Ben Allen Kennedv Paul M. Matthews Josef P. Debbins Greg Zaharchuk 12:00 Adjournment & Meet the Teachers **Gold Corporate Symposium** Siemens Healthcare GmbH Gold Corporate Symposia Plenary Hall FG 12:15-13:15 (no CME credit) **Traditional Poster Session: Relaxation** Exhibition Hall 13:30-15:30 (no CME credit) **Traditional Poster Session: Magnetic Susceptibility** Exhibition Hall 13:30-15:30 (no CME credit) **Traditional Poster Session: Magnetization Transer** Exhibition Hall 13:30-15:30 (no CME credit) **Electronic Poster Session: Pulse Sequence B** Exhibition Hall 13:30-15:30 (no CME credit) **Study Group Session MR Flow & Motion Ouantitation** Reception Hall 104 BCD 13:30-15:30 (no CME credit) **Study Group Session High Field Systems & Applications** Constitution Hall 105 13:30-15:30 (no CME credit) Power Pitches: The Cutting Edge of Diffusion MRI Power Pitch Theatre, Exhibition Hall 13:30-14:30 (no CME credit) Moderators: Helen Zhou, Ph.D. & David Raffelt, Ph.D.

13:30
 0339. SLIce Dithered Enhanced Resolution Simultaneous MultiSlice (SLIDER-SMS) for High Resolution (700 Um) Diffusion Imaging of the Human Brain Kawin Setsompop¹, Berkin Bilgic¹, Aapo Nummenmaa¹, Qiuyun Fan¹, Stephen F. Cauley¹, Susie Huang¹, Itthi Chatnuntawech², Yogesh Rathi³, Thomas Witzel¹, Lawrence L. Wald¹
 ¹Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Massachusetts Institute of Technology, Cambridge, MA, United States; ³Brigham and Women's Hospital, Boston, MA, United States

13:31 0340. Higher-Order Spin-Echo Selection for Reduced FOV Diffusion Imaging of the Brainstem at 7T Bertram Jakob Wilm¹, Signe Johanna Vannesjo¹, Klaas Paul Pruessmann¹ ¹University and ETH Zurich, Zurich, Switzerland

13:32	0341.	Navigated PSF Mapping for Distortion-Free High-Resolution <i>In-Vivo</i> Diffusion Imaging at 7T <i>Myung-Ho In¹, Posnansky Oleg¹, Oliver Speck¹</i> ¹ Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany
13:33	0342.	Compressed-Sensing-Accelerated Spherical Deconvolution Jonathan I. Sperl ¹ , Tim Sprenger, ¹² , Ek T. Tan ³ , Marion I. Menzel ¹ , Christopher J. Hardy ³ , Luca Marinelli ³ ¹ GE Global Research, Munich, BY, Germany; ² IMETUM, Technical University Munich, Munich, BY, Germany; ³ GE Global Research, Niskayuna, NY, United States
13:34	0343.	3D Myofiber Reconstruction from <i>In Vivo</i> Cardiac DTI Data Through Extraction of Low Rank Modes <i>Martin Genet¹</i> , <i>Constantin von Deuster¹</i> , ² , <i>Christian T. Stoeck¹</i> , ² , <i>Sebastian Kozerke¹</i> , ² ¹ Institut for Biomedical Engineering, ETHZ, Zurich, Switzerland; ² Imaging Sciences and Biomedical Engineering, KCL, London, United Kingdom
13:35 ISMRM MERIT magna cum	0344.	<i>In Vivo</i> and <i>Ex Vivo</i> Characterization of Extracellular Space (ECS) in Mouse GBM Using PGSE and OGSE Olivier Reynaud ¹ , ² , Kerryanne V. Winters ¹ , ² , Dung Minh Hoang ¹ , ² , Youssef Zaim Wadghiri ¹ , ² , Dmitry S. Novikov ¹ , ² , Sungheon Gene Kim ¹ , ² ¹ Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ² Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
13:36	0345.	Detection of Curvature and Microscopic Anisotropy of Neurites at Short Length Scales Jonathan Scharff Nielsen ¹ , Tim B. Dyrby ¹ , Henrik Lundell ¹ ¹ Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
13:37	0346.	Assessing Diffusion Time Effects on Microstructural Comparament Estimates in Human White Matter Using 7T DwSTEAM Silvia De Santis ¹ , ² , Derek K. Jones ¹ , Alard Roebroeck ² ¹ CUBRIC Cardiff University, Cardiff, United Kingdom; ² Maastricht University, Maastricht, Netherlands
13:38	0347.	Why Should Axon Diameter Mapping Use Low Frequency OGSE? Insight from Simulation <i>Ivana Drobnjak¹, Hui Zhang¹, Andrada Ianus¹, Enrico Kaden¹, Daniel C. Alexander¹</i> ¹ Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
13:39	0348.	Evaluating a Semi-Continuous Multi-Compartmental Intra-Voxel Incoherent Motion (IVIM) Model in the Brain: How Does the Method Influence the Results in IVIM? <i>Vera Catharina Keil¹, Burkhard Maedler², Hans Heinz Schild¹, Dariusch Reza Hadizadeh¹</i> ¹ Radiology, UK Bonn, Bonn, NRW, Germany; ² Radiology MRI Unit, PHILIPS Healthcare, Hamburg, Germany
13:40 ISMARM MERIT SUMMA CUM	0349.	Tissue-Type Segmentation Using Non-Negative Matrix Factorization of Multi-Shell Diffusion-Weighted MRI Images Ben Jeurissen ¹ , Jacques-Donald Tournier ² , ³ , Jan Sijbers ¹ ¹ iMinds-Vision Lab, Dept. of Physics, University of Antwerp, Antwerp, Belgium; ² Centre for the Developing Brain, King's College London, London, United Kingdom; ³ Dept. of Biomedical Engineering, King's College London, London, United Kingdom
13:41 ISMARIM MERIT SUMMINA CUM	0350.	On Evaluating the Accuracy and Biological Plausibility of Diffusion MRI Tractograms <i>David Romascano¹, Alessandro Dal Palú², Jean-Philippe Thiran¹, ³, Alessandro Daducci¹, ⁴</i> ¹ Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ² Department of Mathematics and Computer Science, University of Parma, Parma, Italy; ³ Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Vaud, Switzerland; ⁴ Center for Biomedical Imaging, Signal Processing Core., Lausanne, Vaud, Switzerland

Tuesday

13:42 (0351.	A Generative Model of White Matter Axonal Orientations Near the Cortex Michiel Cottaar ¹ , Saad Jbabdi ¹ , Matthew F. Glasser ² , Krikor Dikranian ² , David C. van Essen ² , Timothy E. Behrens ¹ , Stamatios N. Sotiropoulos ¹ ¹ FMRIB Centre, University of Oxford, Oxford, United Kingdom; ² Washington University School of Medicine, Saint Louis, MO, United States
13:43	0352.	Dynamic' Seeding: Informed Placement of Streamline Seeds in Whole-Brain Fibre-Tracking <i>Robert Elton Smith¹, J-Donald Tournier², ³, Fernando Calamante¹, ⁴, Alan Connelly¹, ⁴</i> ¹ Imaging division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; ² Centre for the Developing Brain, King's College London, London, United Kingdom; ³ Department of Biomedical Engineering, King's College London, London, United Kingdom; ⁴ Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
13:44 (0353. NRD 100	A Machine Learning Based Approach to Fiber Tractography Peter F. Neher ¹ , Michael Götz ¹ , Tobias Norajitra ¹ , Christian Weber ¹ , Klaus H. Maier-Hein ¹ ¹ Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
fMRI: Ac	cquis	sition Techniques & Cortical Layers
13:30 (A 0354.	Spin-Lock Functional MRI at Low Locking Fields Shows Improved Microvascular Specificity <i>Swati Rane¹, John T. Spear², Carlos Faraco², Manus Donahue², ³, John C. Gore², ⁴</i> ¹ Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ² Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³ Neurology, Vanderbilt University, Nashville, TN, United States; ⁴ Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
13:42 (0355.	Direct Measurement of Delta Frequency Oscillations Using fMRI Laura D. Lewis ¹ , Jonathan R. Polimeni ² , Kawin Setsompop ² , Bruce R. Rosen ² ¹ Society of Fellows, Harvard University, Cambridge, MA, United States; ² Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology,, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
13:54 (ISMRM MEETIT AVA magna cum lan	0356.	Real-Time Shim Correction During Functional MRI Using a Volumetric Navigator <i>A Alhamud¹, Paul Taylor¹, ², Jia Fan¹, Ernesta Meintjes¹, André J.W. van der Kouwe³</i> ¹ Human Biology,MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, Western Cape, South Africa; ² African Institute for Mathematical Sciences (AIMS), Western Cape, South Africa; ³ Massachusetts General Hospital, Charlestown, MA, United States
14:06 (0357.	Laminar Differences in Neural Activity During Positive and Negative Bold Conditions Daniel Zaldivar ¹ , Nikos Logothetis ¹ , Jozien Goense ¹ , ² ¹ Logothetis, Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Württemberg, Germany; ² Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, United Kingdom
14:18 (ISMRM MERIT AWA SUMMA CUM LAN	0358. ARD UDC	Layer-Dependent Calibrated BOLD Response in Human M1 Maria Guidi ¹ , Laurentius Huber ¹ , Leonie Lampe ¹ , Claudine J. Gauthier ¹ , Harald E. Möller ¹ ¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
14:30 (0359.	Dual-Polarity GRAPPA for the Robust Reconstruction of Multi-Channel EPI Data <i>W. Scott Hoge¹, ², Jonathan R. Polimeni, ²³</i> ¹ Dept. of Radiology, Brigham and Women's Hosp, Boston, MA, United States; ² Harvard Medical School, Boston, MA, United States; ³ Dept. of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown,, MA, United States
14:42 (0360.	fMRI Using a 3D Radial-Cartesian Trajectory: Spatio-Temporal Tunability and Artifact Correction

Nadine N. Graedel¹, Mark Chiew¹, Jennifer A. McNab², Karla L. Miller¹ ¹FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Department of Radiology, Stanford University, CA, United States

ismem merit award Summa cum Laude

14:54 03 ISMRM MERIT AWARD Summa cum laude

0361. Single Venule Multi-Echo Line-Scanning fMRI (MELS-fMRI)

Yi He¹,², Hellmut Merkle³, Xin Yu¹,²

¹Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Graduate School of Neural Information Processing, University of Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany; ³Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD,, United States

15:06 0362. Extended Parallel Imaging in Alternating-SSFP fMRI

Tiffany Jou¹, Joseph Y. Cheng², Chris Bowen³, Michael Lustig⁴, John M. Pauly¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Radiology, Dalhousie University, Halifax, NS, Canada; ⁴Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, United States

15:18 0363. Three-Dimensional Mapping of Brain Venous Oxygenation Using T2-Oximetry

¹ Deng Mao¹, Hanzhang Lu¹ ¹ Advanced Imaging Research Center, Univ of Texas Southwestern Medical Center, Dallas, TX, United States

Imaging Drug Delivery & Drug Function

Room 701 B	13:30-15:30	Moderators: Zaver M. Bhujwalla, Ph.D. & Willem M. Mulder, Ph.D.
13:30 0364.	Classification of In Vivo Drug Function	n Through a Coupling Model and PET/fMRI
ismem merit award magna cum laude	<i>Christin Y. Sander</i> ¹ , <i>Jacob M. Hooker</i> ¹ , ¹ A. A. Martinos Center for Biomedical Imagin States; ² Health Sciences and Technology, Har	<i>Ciprian Catana¹, Bruce R. Rosen¹, ², Joseph B. Mandeville¹</i> Ig, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United vard-MIT, Cambridge, MA, United States

13:42	0365.	Comparison of the Central Effects of Ketamine and the NR2B-Selective NMDA Receptor Antagonist		
		Traxoprodil Using Pharmacological MRI in Conscious Rats		
		Haiying Tang ¹ , Yu-Wen Li ¹ , Matthew Fronheiser ¹ , Daniel Kukral ¹ , Harold Malone ¹ , Adrienne Pena ¹ , Gabriel Tobon ² ,		
		Kurex Sidik ¹ , Patrick Chow ¹ , Linda Bristow ¹ , Wendy Hayes ¹ , Feng Luo ¹		
		¹ Bristol-Myers Squibb, Princeton, NJ, United States; ² InviCRO, Boston, MA, United States		
13:54	0366.	Comparison of MRI Contrast Enhancement with Molecular Distribution Following FUS-Mediated BBB		
ISMRM MER	ANT AWARD	Opening		

Michael Valdez¹, Shelby Yuan¹, Zhonglin Liu¹, Paul Helquist², Terry Matsunaga¹, Russell Witte¹, Lars Furenlid¹, Marek Romanowski¹, Ted Trouard¹ ¹University of Arizona, Tucson, AZ, United States; ²University of Notre Dame, IN, United States

14:06 0367. In Vivo Monitoring of Ultrasound-Mediated Nanoparticle Delivery in Human Colon Cancer Xenografts Using Magnetization-Prepared Rapid Gradient Echo (MPRAGE) Imaging Steven B. Machtaler¹, Bragi Svensson¹, Tzu-Yin Wang¹, Jung Woo Choe, Kanyi Pu¹, James Rioux¹, Brian Rutt¹, Pierre Khuri-Yakub, Brian A. Hargreaves¹, Juergen K. Willmann¹ ¹Radiology, Stanford, Stanford, CA, United States

14:18	0368.	Combined 19F MRI and CT Imaging for the Visualization of Delayed Release of Compounds Using PH-
ismem merit award Summa cum Laude		Sensitive Polymers Coated Capsules <i>In Vitro</i> and in a Hamster Animal Model
		Sayuan Liang ¹ , Dominiek Staelens ² , Bernard Appeltans ³ , Marlies Van de Wouwer ³ , ⁴ , Guy Van den Mooter ³ , Gert Van
		Assche ² , Greetje Vande Velde ¹ , Uwe Himmelreich ¹
		¹ Department of Imaging & Pathology, KU Leuven, Leuven, Flemish Brabant, Belgium; ² Department of Clinical and Experimental
		Medicine, KU Leuven, Leuven, Flemish Brabant, Belgium; ³ Department of pharmaceutical and pharmacological sciences, KU
		Leuven, Leuven, Flemish Brabant, Belgium; ⁴ PharmAbs, KU Leuven, Leuven, Flemish Brabant , Belgium

14:30 0369. T1 Based Surrogate MRI Marker for Hyperthermia-Induced Release of Doxorubicin from Thermosensitive Liposomes in Solid Tumors Michael Peller¹, Linus Willerding¹, ², Simone Limmer², Martin Hossann², ³, Olaf Dietrich¹, Michael Ingrisch¹, Lars Lindner², ³, Maximilian F. Reiser¹

¹Department of Clinical Radiology, University Hospital of Munich, Munich, Germany; ²Department of Internal Medicine III, University Hospital of Munich, Munich, Germany; ³CCG Tumor Therapy through Hyperthermia, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany

14:42

0370. Direct Imaging of Gemcitabine Delivery in Pancreatic Ductal Adenocarcinoma (PDAC) Using CEST MRI Yuguo Li¹, ², Kannie W.Y. Chan¹, ², Theodore Ewachiw³, Michael T. McMahon⁴, ⁵, Peter C.M. Van Zijl⁴, ⁵, Zeshaan Rasheed³, Guanshu Liu¹, ²

¹F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ²Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; ³Department of Oncology, Johns Hopkins University, Baltimore, MD, United States; ⁴F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD , United States; ⁵Department of Radiology, Johns Hopkins University, Baltimore, MD, United States

14:54 0371. Multimodal In Vivo Evaluation of a Surface-Switching Nanoparticle Platform

Francois Fay¹, Line Hansen², Stephanie J. Hectors³, Jun Tang¹, Anita Gianella¹, Brenda L. Sanchez-Gaytan¹, Yiming Zhao¹, Aneta J. Mieszawska¹, Robert Langer⁴, Claudia Calcagno¹, Gustav J. Strijkers³, ⁵, Zahi A. Fayad¹, Willem J.M. Mulder¹.

¹Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, United States; ²Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark; ³Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ⁴Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁵Department of Vascular Medicine, Academic Medical Center,, Amsterdam, Netherlands

15:06 0372		On-Off Switchable Nanoparticles for Improved Detection with MRI
		Bradley D. Hann ¹ , Kevin M. Bennett ¹
		¹ Biology, University of Hawaii at Manoa, Honolulu, HI, United States

15:18 0373. PSMA-Specific Theranostic Nanoplexes for Combination Gene and Prodrug Therapy of Prostate Cancer Zhihang Chen¹, Marie-France Penet¹, Balaji Krishnamachary¹, Sangeeta Ray Banerjeee¹, Martin G. Pomper¹, Zaver M. Bhujwalla¹ ¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States

RF Field & Exogenous Agent

Room 714	A/B	13:30-15:30	Moderators: Thoralf Niendorf, Ph.D. & T.B.A.
13:30	0374.	A Rotating Transmit Coil and 32ch Receive Arra Laleh Golestnirad ¹ , Boris Keil ¹ , Giorgio Bonmassar ¹ Radiology, Massachusetts General Hospital, Charlestown,	y for High-Resolution Brain Imaging of DBS Patients , <i>Azma Mareyam¹</i> , <i>Lawrence Leory Wald¹</i> MA, United States
13:42	0375.	Reduction of Worst-Case Local SAR with Constru- Component Analysis <i>Kosuke Ito¹, Yoshihisa Soutome, ¹², Yukio Kaneko², 1</i> ¹ Hitachi Medical Corporation, Kashiwa, Chiba, Japan; ² Cer	aints on RF Shimming Parameters Based on Principal Masahiro Takizawa ¹ htral Research Laboratory, Hitachi Ltd, Kokubunji, Tokyo, Japan
13:54 ISMRM MERIT A SUMMA CUM	0376.	Reconstruction of the Local SAR Deposition Base <i>Edmond Balidemaj¹, Cornelis A.T. van den Berg², H</i> ¹ Radiotherapy, Academic Medical Center, Amsterdam, Net Academic Medical Center, Amsterdam, Netherlands; ⁴ Circ	d on B1+ Field Data Using CSI-EPT ans Crezee ¹ , Aart Nederveen ³ , Rob Remis ⁴ herlands; ² Radiotherapy, UMC Utrecht, Utrecht, Netherlands; ³ Radiology, hits and Systems Group, TU Delft, Delft, Netherlands
14:06	0377.	Thermo-Acoustic Ultrasound Detection of RF Co <i>Greig Scott¹, Maryam Etezadi-Amoli¹, Pascal Stang</i> ¹ Electrical Engineering, Stanford University, Stanford, CA	and Tip SAR <i>Hao Nan¹, Miaad Aliroteh¹, Amin Arbabian¹, John Pauly¹</i> United States; ² Procyon Engineering, CA, United States
14:18	0378.	NSsaFe Study: Observational Study on the Incide Patients Following Gadoterate Meglumine Admin Adelard I. De Backer ¹	nce of Nephrogenic Systemic Fibrosis in Renal Impaired istration.
¹Radology, General Hospital Sint-Lucas, Ghent, Oost-Vlaanderen, Belgium

14:30	0379.	A Vectorized Formalism for Efficient SAR Computation in Parallel Transmission
ISMRM MERIT magna cum	laude	<i>Mihir Pendse¹, Brian Rutt¹</i> ¹ Radiology, Stanford University, Stanford, CA, United States

14:42 0380. Correlation of PsSAR and Tissue Specific Temperature for 7T PTx Head Coils - A Large Scale Simulation Study Frank Seifert¹, Gerd Weidemann¹, Bernd Ittermann¹

¹Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Germany

14:54 0381. Prospective Assessment of Transient Dyspnea and Arterial Oxygen Saturation After Injection of Gadoxetic Acid in a Large Patient Cohort

Utaroh Motosugi¹, ², *Peter Bannas¹*, ³, *Candice A. Bookwalter¹*, *Scott B. Reeder¹*, ⁴ ¹Radiology, University of Wisconsin, Madison, WI, United States; ²Radiology, University of Yamanashi, Yamanashi, Japan; ³Radiology, University Hospital Hamburg-Eppendorf, Humburg, Germany; ⁴Medical Physics, University of Wisconsin, Madison, WI, United States

15:06 0382. Variations in Peak Local SAR Due to Coupling – Comparison Between Various PTx Array Simulation Methods Shubham Gupta¹, R Allen Waggoner¹, Keiji Tanaka¹, Kang Cheng¹, ² ¹Lab. for Cognitive Brain Mapping, RIKEN Brain Science Institute, Wako, Saitama, Japan; ²RRC, RIKEN Brain Science Institute, Wako, Saitama, Japan

15:18 0383. B1-Based SAR Determination for Local RF Transmit Coils Ulrich Katscher¹, Marina Braun², Christian Findeklee¹, Christoph Leussler¹, Ingmar Graesslin¹, Peter Vernickel¹, Michael Morlock² ¹Philips Research Europe, Hamburg, Germany; ²University of Technology, Hamburg, Germany

Hepatobiliary 2

 Room 716 A/B
 13:30-15:30
 Moderators: Hero K. Hussain, M.D. & Takeshi Yokoo, M.D., Ph.D.

 13:30
 0384.
 Assessment of the Hepatocyte Fraction for Estimation of Liver Function TOMOYUKI OKUAKI¹, Kosuke Morita², Tomohiro Namimoto³, Morikatsu Yoshida³, Shinya Shiraishi³, Yasuyuki Yamashita³, Marc Van Cauteren¹

 ¹Philips Healthcare, Minato-ku, Tokyo, Japan; ²Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan; ³Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan

13:42 0385. Simultaneous Quantification of Liver Perfusion and Hepatocyte Uptake Function with Dynamic Gadoxetate-Enhanced MR Imaging in Patients with Chronic Liver Diseases Benjamin Leporq¹, Sabine Schmidt², Catherine Pastor¹, ³, Jean Luc Daire¹, Bernard Edgar Van Beers¹, ⁴ ¹Center of research on inflammation, Paris 7 University; INSERM U1044, Paris, France; ²Department of Radiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; ³Laboratoire de Physiopathologie Hépatique et Imagerie Moléculaire,, Hôpitaux Universitaires de Genève, Geneva, Switzerland; ⁴Department of Radiology, Beaujon University hospital Paris Nord, Clichy, France

13:54 0386. High Spatiotemporal Resolution Liver Perfusion Imaging in Focal Liver Lesions *Yong Chen¹*, *Chaitra Badve¹*, *Shivani Pahwa¹*, *Mark Griswold¹*, ², *Nicole Seiberlich¹*, ², *Vikas Gulani¹*, ² ¹Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; ²Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States

14:06 0387. Sparse Radial *k-T* SPIRiT for Dynamic Liver Imaging Dan Zhu^l, Feng Huang², Jia Ning^l, Feiyu Chen^l, Huijun Chen^l ¹Tsinghua University, Beijing, China; ²Philips Healthcare, Suzhou, Jiangsu, China

14:18 0388. Assessment of Liver Fibrosis in Rats by MRI with Apparent Diffusion Coefficient and T1 Relaxation Time in the Rotating Frame Summa cum Laude Genwen Hu^T,², Xianyue Quan¹, Xiaoying Lin², Queenie Chan³, Yingjie Mei⁴, Xuhui Zhang¹, Yufa Li⁵ ¹Medical Image Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ²Medical Image Center, Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen, Guangdong, China; ³Philips Healthcare, Hong Kong, China; ⁴Philips Healthcare, Guangzhou, Guandong, China; ⁵Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China 14:30 0389. Advanced Assessment of Liver Diseases with Magnetic Resonance Elastography in Animal Models Meng Yin¹, Ruisi Wang², Usman Yaqoob², Shennen A. Mao³, Jaime M. Glorioso³, Kevin J. Glaser¹, Liu Yang². Viiav Shah², Scott L. Nyberg³, Richard L. Ehman¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States; ³Transplatation Surgery, Mayo Clinic, Rochester, MN, United States 14:42 0390. Non-Invasive Characterization and Staging of Portal Hypertension Using 4D Flow MRI Alejandro Roldán-Alzate¹, Adnan Said², Čamilo Campo¹, Kevin M. Johnson³, Christopher J. Francois¹, Oliver Wieben¹, ³, Scott B. Reeder¹, ³ ¹Radiology, University of Wisconsin - Madison, Madison, WI, United States; ²Hepatology, University of Wisconsin - Madison, Madison, WI, United States; ³Medical Physics, University of Wisconsin - Madison, Madison, WI, United States 14:54 0391. Arterial Spin Labeling MRI as a Sensitive Imaging Marker of Congenital Hepatic Fibrosis in Autosomal **Recessive Polycystic Kidney Disease (ARPKD)** magna cum laude Ying Gao¹, Bernadette O. Erokwu², David A. DeSantis³, Colleen M. Croniger³, Rebecca M. Schur¹, Lan Lu², ⁴, Katherine M. Dell⁵, Chris A. Flask, ¹² ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States; ³Nutrition, Case Western Reserve University, Cleveland, OH, United States; ⁴Urology, Case Western Reserve University, Cleveland, OH, United States; ⁵Pediatrics, Case Western Reserve University, Cleveland, OH, United States

15:06 0392. Magnetic Resonance Elastography of Liver: Utility in Autoimmune Hepatitis Jin Wang¹, ², Meng Yin¹, Sudhakar Kundapur Venkatesh¹, Richard L. Ehman¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China

15:18 0393. Quantitative MR Imaging of Hepatic Steatosis: Validation in *Ex Vivo* Human Livers

Peter Bannas¹, ², Harald Kramer³, Diego Hernando¹, Ashley M. Cunningham⁴, Rakesh Mandal⁴, Rashmi Agnt⁴, Utaroh Motosugi¹, Samir D. Sharma¹, Alejandro Munoz del Rio¹, Luis Fernandez⁵, Scott B. Reeder¹, ⁶ ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ³Radiology, Ludwig-Maximilians-University Hospital, Munich, Bavaria, Germany; ⁴Pathology, University of Wisconsin-Madison, Madison, WI, United States; ⁵Surgery, University of Wisconsin-Madison, Madison, WI, United States; ⁶Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Alzheimer's Disease

Constitution Hall	107	13:30-15:30	Moderators: Masaaki Hori, M	.D., Ph.D. & T.B.A.
13:30 0394.	Com	paring In Vivo and	l <i>Ex Vivo</i> Imaging in an Alzheimer's Mouse Model Using Tensor-Bas	ed Morphometry
ismrm merit award Summa cum Laude	Holly Ma ¹ ,	v Elizabeth Holmes ¹ , ² , Michael J. O'Neil	, Nicholas Powell ¹ , ² , Jack Wells ¹ , Niall Colgan ¹ , Ozama Ismail ¹ , James Il ³ , Emily Catherine Collins ⁴ , Manuel Jorge Cardoso ² , Marc Modat ² , Eliz uk E. Lythgoo	O'Callaghan ¹ , Da zabeth Fisher ⁵ ,
	¹ Cent Medi Wind Disea	re for Advanced Biom cal Image Computing, llesham, Surrey, United uses, University Colleg	¹ F. Lyingde ledical Imaging, University College London, London, Greater London, United Kir University College London, London, Greater London, United Kingdom; ³ Eli Lilly d Kingdom; ⁴ Eli Lilly & Company, Indianapolis, United States; ⁵ Department of Ne e London, London, Greater London, United Kingdom	agdom; ² Centre for / & Co. Ltd, eurodegenerative

13:42 0395. Probing *In Vivo* T2 Relaxation Time Alterations in the Corpus Callosum of a Mouse Model of Alzheimer's Disease

Firat Kara¹,², Steffen Roßner³, Annemie Van der Linden¹, Huub J.M. de Groot², A. Alia²,⁴

¹Bioimaging Lab, University of Antwerp, Antwerp, Belgium; ²Leiden Institute of Chemistry, Gorlaeus Laboratoria, Leiden University, Leiden, Netherlands; ³Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany; ⁴Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany

13:54 0396. Corpus Callosum Atrophy Rate in Mild Cognitive Impairment and Prodromal Alzheimer's Disease

Babak Ardekani^l, ², Sahar Elahi^l, Alvin Bachman^l, Sang Han Lee^l, John Sidtis^l, ² ¹The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States; ²Department of Psychiatry, New York University School of Medicine, New York, NY, United States

14:06 0397. Increased Cortical Volume Revealed by Atlas-Based Volumetry in a Bigenic Mouse Model of Alzheimer's Disease

Kristof Govaerts¹, Janaki Raman Rangarajan², Tom Struys³, Fred Van Leuven⁴, Uwe Himmelreich¹, Tom Dresselaers¹ ¹Imaging & Pathology, KU Leuven, Leuven, Vlaams-Brabant, Belgium; ²Electrical Engineering, KU Leuven, Leuven, Vlaams-Brabant, Belgium; ³Morphology, Universiteit Hasselt, Hasselt, Limburg, Belgium; ⁴Human Genetics, KU Leuven, Leuven, Vlaams-Brabant, Belgium

14:18 0398. Cortical Volume and Perfusion Are Influenced by Vascular Risk Factors in Addition to Cognitive Status: New Insight Made Available from the ADNI Study

*Ekaterina Tchistiakova*¹, ², *Bradley J. MacIntosh*¹, ² ¹Medical Biophysics, University of Toronto, Toronto, ON, Canada; ²Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada

14:30 0399. Brain Magnetic Susceptibility Is Increased with Cognitive Impairment in a Community Population

Armin Eilaghi¹,², D Adam McLean³, Cheryl R. McCreary¹,⁴, David Gobbi³, M Louis Lauzon¹,⁴, Marina Salluzzi³, Eric E. Smith¹,⁴, Richard Fravne¹,⁴

¹Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ²Seaman Family MR Centre , Foothills Medical Centre, Calgary, Alberta, Canada; ³Calgary Image Processing and Analysis Centre, Foothills Medical Centre, Calgary, Alberta, Canada; ⁴Seaman Family MR Centre, Foothills Medical Centre, Calgary, Alberta, Canada;

14:42 0400. Regional Cerebral Iron Concentrations as Indicated by Magnetic Susceptibilities Measured with Quantitative Susceptibility Mapping (QSM) at 7 Tesla Correlate with Brain Aβ Plaque Density as Measured by 11-C-Pittsburgh Compound B Positron-Emission-Tomography (PiB-PET) in Elderly Subjects at Risk for Alzheimer's Disease (AD)

Jiri M.G. van Bergen¹, ², Xu Li², Michael Wyss³, Simon J. Schreiner¹, Stefanie C. Steininger¹, Anton F. Gietl¹, Valerie Treyer¹, ⁴, Sandra E. Leh¹, Fred Buck⁴, Jun Hua², Roger Nitsch¹, Klaas P. Pruessmann³, Peter C.M. van Zijl², Christoph Hock¹, Paul G. Unschuld¹

¹Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland; ²F.M. Kirby center for Functional Brain Imaging, Kennedy Krieger Institute and Johns Hopkins School of Medicine, Baltimore, MD, United States; ³Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; ⁴Division of Nuclear Medicine, University of Zurich, Zurich, Switzerland

14:54 0401. Mapping the Effect of APOE ε4 Genotype on Intrinsic Functional Network Centrality in Patients with Amnestic Mild Cognitive Impairment

Zan Wang¹, Zhengjia Dai², Yongmei Shi¹, Hao Shu¹, Duan Liu¹, Yong He², Zhijun Zhang¹ ¹Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China; ²State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China

15:06 0402. Combined Functional and Tractography Connectome to Investigate Alzheimer Brain Networks

Fulvia Palesi¹, ², *Gloria Castellazzi*, ²³, *Elena Sinforiani*⁴, *Paolo Vitali*³, ⁶, *Claudia A. M. Wheeler-Kingshott*⁷, *Egidio D'Angelo*, ²⁶

¹Department of Physics, University of Pavia, Pavia, PV, Italy; ²Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, PV, Italy; ³Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy; ⁴Neurology Unit, C. Mondino National Neurological Institute, Pavia, PV, Italy; ⁵Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, PV, Italy; ⁶Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy; ⁷NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre​, UCL Institute of Neurology, London, England, United Kingdom

15:18 0403. Free Water Elimination DTI in Preclinical Alzheimer's: Evidence for Early Axonal Degeneration Andrew R. Hoy¹, ², Sterling C. Johnson³, ⁴, Ozioma C. Okonkwo, ⁴⁵, Cynthia M. Carlsson³, ⁴, Henrik Zetterberg⁶, Kaj Blennow⁷, Sanjay Asthana³, ⁴, Mark A. Sager, ⁴⁵, Andrew L. Alexander¹, ⁸, Barbara B. Bendlin⁴, ⁵ ¹Medical Physics, University of Wisconsin, Madison, WI, United States; ²Medical Service Corp, United States Navy, Falls Church, VA, United States; ³Geriatric Research, Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, United States; ⁴Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, Madison, WI, United States; ⁵Wisconsin Alzheimer's Institute, University of Wisconsin, Madison, WI, United States; ⁶Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, University of Gothenberg, Gothenberg, Sweden; ⁷Department of Clinical Neuroscience, University of Gothenberg, Gothenberg, Sweden; ⁸Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, United States

Novel & Hybrid Systems

John Bassett Theatre 102 13:30-15:30Moderators:Fernando E. Boada, Ph.D. & Harald H. Quick, Ph.D.13:300404. MRI Compatibility of a High-Resolution Small Animal PET Insert Operating Inside a 7T MRI

 13:30 0404. MRR Compatibility of a High-Resolution Small Animal PET Insert Operating Inside a 71 MRI Jonathan D. Thiessen¹, ², Ehsan Shams³, ⁴, Greg Stortz⁵, Graham Schellenberg⁴, Daryl Bishop⁶, Muhammad Salman Khan⁷, Piotr Kozlowski⁸, Fabrice Retière⁶, Vesna Sossi⁵, Christopher J. Thompson⁹, Andrew L. Goertzen, ⁴¹⁰
 ¹Imaging Program, Lawson Health Research Institute, London, Ontario, Canada; ³Medical Biophysics, Western University, London, Ontario, Canada; ³Graduate Program in Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada; ⁴Physics & Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada; ⁵Physics & Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; ⁶Detector Development Group, TRIUMF, Vancouver, British Columbia, Canada; ⁷Mectonnell Brain Imaging Centre, Montreal Neurological Institute, Montréal, Québec, Canada; ¹⁰Radiology, University of Manitoba, Winnipeg, Manitoba, Canada

13:42	0405.	MR-Based Attenuation Correction for MR-PET Studies with Continuous-Valued Attenuation Coefficients fo			
ISMRM MERIT AWARD		Bone Through a Conversion from R2* to CT Hounsfield Units			
summa cu	m laude	Mahan Litte Londa ¹² Bruant Managara ¹² Varhang Chan ²³ Vi Su ⁴ Brian Buhin ⁴ Tammia Banzingar ⁴ David			

Meher Juttukonda¹,², Bryant Mersereau¹,², Yasheng Chen,²³, Yi Su⁴, Brian Rubin⁴, Tammie Benzinger⁴, David Lalush¹,², Hongyu An,²³

¹Joint Department of Biomedical Engineering, University of North Carolina - Chapel Hill & North Carolina State University, Chapel Hill, NC, United States; ²Biomedical Research Imaging Center, University of North Carolina - Chapel Hill, NC, United States; ³Radiology, University of North Carolina - Chapel Hill, NC, United States; ⁴Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, United States

13:54 0406. 3D Hybrid Phantom Measurement: Validation of a Fully Integrated Preclinical 12 Channel Hybrid MPI-MRI Magnet System

Jochen Franke¹, ², Ulrich Heinen¹, Heinrich Lehr¹, Alexander Weber¹, Frederic Jaspard³, Wolfgang Ruhm¹, Michael Heidenreich¹, Volkmar Schulz²

¹R&D Magnetgic Particle Imaging, Bruker BioSpin MRI GmbH, Ettlingen, Germany; ²Physics of Molecular Imaging Systems, University RWTH Aachen, Aachen, Germany; ³R&D Gradient Systems, Bruker BioSpin, Wissembourg, France

14:06 0407. Whole-Body Concept for Integration of Hybrid PET/MR Imaging Into Radiation Therapy Treatment Planning Daniel H. Paulus¹, Mark Oehmigen², Harald H. Quick¹, ² ¹Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany; ²High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany

14:18 0408. Concurrent Optical and Magnetic Resonance Microscopy Frederik Testud¹, Elmar Fischer¹, Katharina Göbel¹, Nils Spengler², Ulrike Wallrabe², Maxim Zaitsev¹, Matthias Wapler² ¹Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Department for Microsystems Engineering – IMTEK, University of Freiburg, Germany

14:30 0409.	A Fast and Practical Imaging Scheme for a Rotating RF Coil at 9.4T by Using Ultra-Short TE Sequence in
ISMRM MERIT AWARD magna cum laude	Radial Trajectory
	Mingyan Li ¹ , Thimo Hugger ² , Ewald Weber ¹ , Jin Jin ¹ , Feng Liu ¹ , Peter Ullmann ² , Simon Stark ² , Yasvir Tesiram ³ , Yang
	Yang ¹ , Sven Junge ² , Stuart Crozier ¹
	¹ The School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD, Australia; ² Bruker
	BioSpin MRI GmbH, Ettlingen, Baden-Württemberg, Germany; ³ Centre for Advanced Imaging, The University of Queensland,
	Brisbane, QLD, Australia

14:42 0410. MR-Based PET Attenuation Correction for Brain PET-MR Using Support Vector Machines

¹³Magna cam laube ¹⁴ ¹⁴Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China; ²Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; ³Department of Nuclear Medicine, The general hospital of Chinese People's Liberation, Beijing, China; ⁴Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Harvard Medical School and Massachusetts General Hospital, Boston, MA, United States

14:54 0411. Continuous Bone Density Measurement for Simultaneous MR-PET Attenuation Correction Using Water- And Fat-Suppressed Projection Imaging (WASPI)

Chuan Huang¹,², Jinsong Ouyang¹, Timothy Reese³, Yaotang Wu⁴, Georges El Fakhri¹, Jerome Ackerman³ ¹Center for Advanced Medical Imaging Sciences, Radiology, Massachusetts General Hospital, Boston, MA, United States; ²Research Radiology, Psychiatry, Stony Brook Medicine, Stony Brook, NY, United States; ³Martinos Center for Biomedical Imaging, Radiology, Massachusetts General Hospital, Boston, MA, United States; ⁴Radiology, Children's Hospital Boston, Boston, MA, United States

15:06 0412. Respiratory and Cardiac Non-Rigid Motion Correction for Cardiac PET-MR

Christoph Kolbitsch¹, Mark Ahlman², Michael Hansen³, Javier Royuela del Val, ¹⁴, Peter Kellman³, David A. Bluemke², Tobias Schaeffter¹

¹Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Clinical Center, Radiology and Imaging Sciences, National Institute of Health, Bethesda, MD, United States; ³National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ⁴Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain

15:18 0413. Hyperion-II^D: A Preclinical PET/MRI Insert Using Digital Silicon Photomultipliers

Jakob Wehner¹, Bjoern Weissler², ³, David Schug¹, Peter Dueppenbecker⁴, Pierre Gebhardt⁴, Benjamin Goldschmidt¹, Andre Salomon⁵, Rene Botnar⁴, Fabian Kiessling¹, Volkmar Schulz¹, ³ ¹Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, NRW, Germany; ²Institute of High Frequency Technology, RWTH Aachen University, NRW, Germany; ³Philips Research Europe, Aachen, NRW, Germany; ⁴King's College London, London, United Kingdom; ⁵Philips Research Europe, Eindhoven, Netherlands

Educational Course

Multifarious Manifestations of Muscle Disease

Organizers: Eric Y. Chang, M.D., Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Regatte, Ph.D. & Siegfried Trattnig, M.D.

<u>Room 718 A</u>	13:30-15:30	Moderators: Chris Boesch, M.D. & Mark Schweitzer, M.D.
13:30	Sports Injury & Other Trauma Viviane Khoury	
14:00	Inflammatory & Infectious Disease <i>Mary K. Jesse</i>	
14:30	Metabolic Conditions & Genetic Disord <i>Tetyana A. Gorbachova</i>	lers
15:00	Muscle Atrophy Patterns: Nerve Impin Dorota D. Linda	gement & More
15:30	Adjournment & Meet the Teachers	
Educational	Course	

Challenges in Quantitative Cardiovascular Imaging

Organizers: Thomas K. F. Foo, Ph.D. & Martin J. Graves, Ph.D.

Room 718 B	13:30-15:30	<i>Moderators</i> : Taylor Chung, M.D. & Ehud J. Schmidt, Ph.D.
13:30	Ventricular Function (RV and	LV from Cines, Spatiotemporal Resolution & Field Strengths)
	David A. Bluemke	

Tuesday

14:00	Flow Quantification (Ao, MPA, Branch PAs, VENC, Background Errors, Temporal/Spatial Resolution, ROIs) Peter D. Gatehouse
14:30	Perfusion (Artifacts, Spatiotemporal Resolution, Techniques, But Not Quantitative Perfusion Kep/Ktrans) <i>Richard A. R. Coulden</i>
15:00	Late Gadolinium Enhancement for Viability (LGE Scar Assessment, TI Optimisation & Methods) W. Patricia Bandettini
15:30	Adjournment & Meet the Teachers
Educational	Course
Genomics, Pr	oteomics, & Big Data
Organizers: Jonat	than H. Gillard, M.D., FRCR, MBA & Howard A Rowley, M.D.
Room 718 B	13:30-15:30 Moderators: Benjamin M. Ellingson, Ph.D. & James C. Gee, Ph.D.
13:30	Managing Big Data from MRI: The Neuroradiologist's Perspective
	Christopher T. Whitlow
14:00	Managing Big Data for Genomics & Proteomics Rivka R. Colen

- 14:30
 Managing Big Data from MRI: The Physicist's Perspective

 Hae-Jeong Park
- 15:00
 Managing Big Data: Getting Better Insight

 Christopher T. Whitlow
 Christopher T. Whitlow
- 15:30 Adjournment & Meet the Teachers

Traditional Poster Session: Engineering

Exhibition Hall 16:00-18:00

Traditional Poster Session: UHF

Exhibition Hall	16:00-18:00	(no CME credit)
Traditional Pos	ter Session: MR Safety	
Exhibition Hall	16:00-18:00	(no CME credit)

Electronic Poster Session: Cancer Exhibition Hall 16:00-18:00

Electronic Poster	Session: fMRI
Exhibition Hall	16:00-18:00

Study Group Session White Matter Reception Hall 104 BCD 16:00-18:00

Study Group Session Perfusion

Periusion	
Constitution Hall 105	16:00-18:00

(no CME credit)

Power Pitch Session: Molecular Imaging & Spectroscopy

Power Pitch Theatre, Exhibition Hall 16:00-17:00

Moderators: Peter van Zijl, Ph.D. & Carolyn E. Mountford, D.Phil.

0414. Citicoline as a Theranostic Agent Detected by CEST MRI

Hanwei Chen¹, ², Yuguo Li³, ⁴, Anna Jablonska¹, Shuixing Zhang⁵, Jeff W. Bulte¹, ³, Peter C.M. Van Zijl, ⁴⁶, Mirek Janowski¹, ⁷, Piotr Walczak¹, Guanshu Liu, ¹³ ¹Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; ²Radiology, Guangzhou Panyu Central

Hospital, Guangzhou, Guangdong, China; ³F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ⁴Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; ⁵Department of Radiology, Guangdong General Hospital, Guangzhou, Guangdong, China; ⁶F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ⁷NeuroRepair Department, MMRC PAS, Warsaw, Poland

0415. MEMRI of Organotypic Rat Hippocampal Slice Cultures

Alexia Daoust¹, Stephen Dodd¹, Alan Koretsky¹ ¹NINDS, LFMI, NIH, Bethesda, MD, United States

ismen merit award magna cum laude

0416. Radical-Free Mixture of Co-Polarized 13C-Metabolites for Probing Separate Biochemical Pathways Simultaneously *In Vivo* by Hyperpolarized 13C MR

Jessica AM Bastiaansen¹, ², Hikari AI Yoshihara³, ⁴, Andrea Capozzi³, Juerg Schwitter⁴, Matthew E. Merritt⁵, Arnaud Comment³

¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Institute of Physics of Biological Systems, EPFL, Lausanne, Switzerland; ⁴Division of Cardiology and Cardiac MR Center, University Hospital Lausanne (CHUV), Lausanne, Switzerland; ⁵Advanced Imaging Research Center, Department of Radiology, Molecular Biophysics, Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, United States

0417. In Vivo PH Imaging of Mouse Kidneys Using a Frequency-Dependent ParaCEST Agent

Yunkou Wu¹, Shanrong Zhang¹, Todd C. Soesbe¹, A. Dean Sherry¹, ² ¹Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ²Department of Chemistry, The University of Texas at Dallas, Richardson, TX, United States

0418. Image-Guided Delivery of Liposomal Nano-Constructs Targeting Tumor Vasculature

Sudath Hapuarachchige¹, Yoshinori Kato¹, ², Wenlian Zhu¹, Joseph M. Backer³, Marina V. Backer³, Susanta K. Sarkar⁴, Dmitri Artemov¹, ⁵

¹Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Life Science Tokyo Advanced Research Center, Hoshi University, Japan; ³SibTec, Inc., Brookfield, CT, United States; ⁴Sanofi Oncology, Cambridge, MA, United States; ⁵Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States

0419. Micro-MRI and Fluorescence Imaging of Myeloperoxidase Activity in Human Brain Vascular Pathology Dung Minh Hoang¹, Matthew J. Gounis², Youssef Zaim Wadghiri¹, Peter Caravan³, Alexei A. Bogdanov Jr.²

¹Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University, New York, NY, United States;
 ²Radiology, University of Massachusetts Medical School, Worcester, MA, United States;
 ³Radiology, Massachusetts General Hospital, Charlestown, MA, United States

0420. Molecular Imaging Studies of a Robust Gd-Sucrose Scaffold Applied to MR-Colonography

Gary V. Martinez¹, Parastou Foroutan², Valerie E. Moberg¹, Suryakiran Navath³, Roha Afzal¹, Robert J. Gillies¹, Eugene A. Mash³, David L. Morse¹

¹Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; ²Bruker Biospin, Billerica, MA, United States; ³Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States

0421. Two-Dimensional Shaped Voxel MRS in the Human Brain at 3 T

¹ Summ Mentravano Summa cum laube Summa cum laube

¹Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Berlin, Germany; ²Medical University of Vienna, Vienna, Austria; ³Otto-von-Guericke-University, Magdeburg, Germany

ISMRM	MERIT AWARD
summ	a cum Laud
Suutun	a cum tauo

0422. In Vivo Quantification of ATP Synthesis Rates in Rat Skeletal Muscle by ³¹P Spectroscopic Magnetic Resonance Fingerprinting

*Charlie Yi Wang¹, Yuchi Liu¹, Mark Alan Griswold,*¹², *Xin Yu,*¹² ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States

0423. ¹³C MRS of the Brain Without Decoupling

summa cum laude

magna cum laude

Keshav Datta¹, Arif Wibowo², Stephen R. Lynch², Daniel Spielman³ ¹Dept. of Electrical Engineering, Stanford University, Stanford, CA, United States; ²Dept. of Chemistry, Stanford University, CA, United States; ³Dept. of Radiology, Stanford University, Stanford, CA, United States

0424. In Vivo Assessment of Intracellular NAD⁺/NADH Redox State in Human Brain at 4 Tesla Ming Lu^l, Wei Chen^l, Xiao-Hong Zhu^l ¹Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States

0425. Diffusion-Weighted MR Spectroscopy Feasibility in Clinical Studies at 3 T : The Effect of Reducing the Acquisition Time Investigated by Bootstrapping Francesca Branzoli¹, ², Daniel Garcia-Lorenzo¹, ², Romain Valabrègue¹, ², Stephane Lehéricy¹, ²

Francesca Branzoli¹, ², *Daniel Garcia-Lorenzo¹*, ², *Romain Valabrègue¹*, ², *Stephane Lehéricy¹*, ² ¹Institut du Cerveau et de la Moelle épinière – ICM, Centre de Neuroimagerie de Recherche – CENIR, Paris, France; ²Sorbonnes Université, Université Pierre et Marie Curie and Inserm UMR-S1127; CNRS, UMR 7225, Paris, France

0426. Metabolome Profiling by HRMAS NMR Spectroscopy of Hyperfunctioning Parathyroid Glands

Stéphanie Battini¹, Alessio Imperiale¹,², David Taieb³, Karim Elbayed¹, Frédéric Sebag⁴, Laurent Brunaud⁵, Izzie-Jacaues Namer¹,⁶

¹ICube laboratory UMR 7357, University of Strasbourg/CNRS and FMTS, Strasbourg, France; ²University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Hautepierre, Strasbourg, France; ³La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France; ⁴Department of Endocrine Surgery, La Timone University Hospital, Aix-Marseille University, Marseille, France; ⁵Department of Digestive, Hepato-Biliary and Endocrine Surgery, Brabois University Hospital, Nancy, France; ⁶University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, Strasbourg, France

0427. Metabolomic Assessment of Succinate Dehydrogenase Dysfunction in Pheochromocytomas and Paragangliomas by 1H-HRMAS NMR Spectroscopy: Clinical and Pathophysiological Implications

Alessio Imperiale¹,², Stéphanie Battini¹, Philippe Roche³, François-Marie Moussallieh¹, Ercument A Cicek⁴, Frédéric Sebag⁵, Laurent Brunaud⁶, Anne Barlier⁷, Karim Elbayed¹, Anderson Loundou⁸, Philippe Bachellier⁹, Bernard Goichot¹⁰, Constantine A Stratakis^{11–12}, Karel Pacak¹³, David Taieb¹⁴, Izzie-Jacaues, Namer^{1–2}

Goichot¹⁰, Constantine A Stratakis^{11, 12}, Karel Pacak¹³, David Taieb¹⁴, Izzie-Jacques Namer¹, ² ¹Cube laboratory UMR 7357, University of Strasbourg/CNRS and FMTS, Strasbourg, France; ²University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, Strasbourg, France; ³Integrative Structural & Chemical Biology (iSCB) & INT-3D Molecular Modeling Platform, Cancer Resear, CNRS UMR7258; INSERM U1068; Institut Paoli Calmettes; Aix-Marseille University UM105, Marseille, France; ⁴Lane Center for Computational Biology, School of Computer Science, , Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15222, United States; ⁵Department of Endocrine Surgery, La Timone University Hospital, Aix-Marseille University, Marseille, France; ⁶Department of Digestive, Hepato-Biliary and Endocrine Surgery, Brabois University Hospital, Nancy, France; ⁷Laboratory of Biochemistry and Molecular Biology, Conception Hospital, Aix-Marseille, University, Marseille, France; ⁸Department of Public Health, Aix-Marseille University, Marseille, France; ⁹Department of Visceral Surgery and Transplantation, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France; ¹⁰Department of Internal Medicine, Diabetes and Metabolic Disorders, Hautepierre Hospital, University Hospitals of Strasbourg, France; ¹¹Section on Genetics and Endocrinology (SEGEN), Program on Developmental Endocrinology and Genetics (PDEGEN), Bethesda, United States; ¹³Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Child Health and Human Development, Bethesda, United States; ¹⁴La Timone University Hospital, European Center for Research in Medical Imaging, Marseille, France

0428. Adapting Volumetric 1H Echo-Planar Spectroscopic Imaging of the Human Brain from 3 to 7 Tesla

Karim Snoussi¹, ², Joseph S. Gillen¹, ², Michael Schär¹, ², Richard A.E. Edden¹, ², Andrew A. Maudsley³, Peter B. Barker¹, ²

¹Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medidine, Baltimore, MD, United States; ²Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States; ³Miller School of Medicine, University of Miami, Miami, FL, United States

Biomarkers & Subtyping of Psychiatric Disorders

Biomarkers c	x Subtyping of Psychiatric Disorders 16:00 18:00 Moderators: Hilleka E. Hulshoff Pol. Ph. D. & T. P. A.
16:00 0429.	Demyelination Versus Increased Free Water in Schizophrenia: A Pilot Study Using Q-Space Trajectory Imaging <i>Markus Nilsson¹, Filip Szczepankiewicz², Danielle van Westen³, Cecilia Mattisson⁴, Mats Bogren⁴, Ofer Pasternak⁵,</i> <i>Marek Kubicki⁵, Carl-Fredrik Westin⁶,⁷</i> ¹ Lund University Bioimaging Center, Lund University, Lund, Sweden; ² Dept. of Medical Radiation Physics, Lund University, Lund, Sweden; ³ Diagnostic Radiology, Lund University, Lund, Sweden; ⁴ Clinical Sciences, Psychiatry, Lund University, Lund, Sweden; ⁵ Brigham and Women's Hospital, Harvard Medical School, MA, United States; ⁶ Brigham and Women's Hospital, Harvard Medical School,, MA, United States; ⁷ Dept. of Biomedical Engineering, Linköping University, Linköping, Sweden
16:12 0430.	Dissecting Myelin and Axon Abnormalities in Schizophrenia and Bipolar Disorder Patients Using Novel MRI Approaches <i>Fei Du^l, Eve Lewandowski^l, Jackie Goldbatch^l, Dost Ongur^l</i> ¹ McLean Hospital, Harvard Medical School, Belmont, MA, United States
16:24 0431. Isaana cum laude	Diffusion Spectrum Imaging Connectomics: A Biomarker for Staging in Psychotic Disorders <i>Alessandra Griffa¹, ², Philipp S. Baumann³, ⁴, Carina Ferrari³, ⁴, Tanja Eric³, ⁴, Philippe Conus³, ⁴, Kim Q. Do³, ⁴, Jean-Philippe Thiran¹, ², Patric Hagmann, ¹² ¹Signal Processing Laboratory 5 (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ²Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland; ³Service of General Psychiatry and Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne, Switzerland; ⁴Naional Center of Competence in Research (NCCR) "SYNAPSY - The Synaptic Bases of Mental Diseases", Switzerland</i>
16:36 0432.	Topology of Structural Connectomes in Healthy Carriers of Common Gene Variants Associated with Schizophrenia <i>Mark Drakesmith¹, ², Thomas Lancaster², Sonya Foley¹, ², Lisa Brindley¹, ², Derek K. Jones¹, ², David Linden, ¹² ¹CUBRIC, Cardiff University, Cardiff, Wales, United Kingdom; ²Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, United Kingdom</i>
16:48 0433.	Identification of a Schizophrenia-Related Disease Pattern Using Resting State fMRI An Vo ¹ , Ivana De Lucia ¹ , Delbert G. Robinson ² , ³ , Juan A. Gallego ² , ³ , Peter B. Kingsley ⁴ , Miklos M. Argyelan ² , ³ , Anil K. Malhotra ² , ³ , Aziz M. Ulug ¹ , ⁵ , Philip R. Szeszko ² , ³ ¹ Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, United States; ² Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, NY, United States; ³ Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, , Glen Oaks, NY, United States; ⁴ Radiology, North Shore University Hospital, Manhasset, NY, United States; ⁵ Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
17:00 0434. summa cum lande	GluCEST in the Olfactory Cortex as a Marker of Heightened Clinical Risk for Schizophrenia <i>Ravi Prakash Reddy Nanga¹, David R. Roalf², Hari Hariharan¹, Mark A. Elliott¹, Karthik Prabhakaran², Megan</i> <i>Quarmley², Paul J. Moberg², Ravinder Reddy¹, Bruce I. Turetsky²</i> ¹ Radiology, University of Pennsylvania Health Systems, Philadelphia, PA, United States; ² Psychiatry, University of Pennsylvania, Philadelphia, PA, United States
17:12 0435. magna cum laube	Characterization of Hemodynamic Alterations in Autism Using Resting State fMRI <i>Wenjing Yan¹, Gopikrishna Deshpande¹, ²</i> ¹ AU MRI Research Center,Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ² Department of Psychology, , Auburn University, AL, United States
17:24 0436.	Relationship Between Structure and Function of the Auditory System Is Altered in 16p11.2 Deletion and Duplication Jeffrey I. Berman ¹ , ² , Julian Jenkins ¹ , Darina Chudnovskaya ¹ , Srikantan Nagarajan ³ , Pratik Mukherjee ³ , Randy Buckner ⁴ , John E. Spiro ⁵ , Wendy K. Chung ⁶ , Elliott H. Sherr ⁷ , Timothy PL Roberts ¹ , ² ¹ Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; ² Radiology, University of Pennsylvania, Philadelphia, PA, United States; ³ Radiology, University of California San Francisco, CA, United States; ⁴ Psychology, Harvard University, Boston, MA, United States; ⁵ Simons Foundation, NY, United States; ⁶ Pediatrics and Medicine, Columbia University Medical Center, NY, United States; ⁷ Neurology, University of California San Francisco, CA, United States

Tuesday

17:36 0437. Symptom-Based Subtypes of Major Depressive Disorder Manifest Distinct Nucleus Accumbens Hemodynamic Responses to Reward and Punishment

Masaya Misaki¹, Teresa Victor¹, Hideo Suzuki¹, Kent Teague², Brett McKinney³, Jonathan Savitz¹, ⁴, Wayne Drevets¹, ⁵, Jerzy Bodurka¹, ⁶

¹Laureate Institute for Brain Research, Tulsa, OK, United States; ²Dept. of Surgery, University of Oklahoma College of Medicine, OK, United States; ³Tandy School of Computer Science, Dept. of Mathematics, University of Tulsa, OK, United States; ⁴Dept. of Medicine, Tulsa School of Community Medicine, University of Tulsa, OK, United States; ⁵Janssen Pharmaceuticals, LLC, of Johnson & Johnson, Inc., Titusville, NJ, United States; ⁶College of Engineering, University of Oklahoma, OK, United States

Mind Research

17:48	0438.	. The Long-Term Effects of Marijuana Use on the Brain	
		Sina Aslan ¹ , ² , Vince Calhoun ³ , Jeffrey Spence ² , Francesca Filbey ²	
		¹ Advance MRI, LLC, Frisco, TX, United States; ² University of Texas at Dallas, Dallas, TX, United States; ³ The	
		Network, Albuquerque, NM, United States	

Relaxometry - Methods & Corrections Room 701 B 16:00-18:00

Room 701 B		16:00-18:00 Moderators:Sean C. L. Deoni, Ph.D. & Marcel Warntjes, Ph.D.
16:00	0439.	Simultaneous Quantitative Mapping of T ₁ , T ₂ *, and Magnetic Susceptibility with Multi-Echo MP2RAGE at 7 T
ISMRM MERIT AWARD magna cum Laude		Riccardo Metere ¹ , Harald E. Möller ¹ , Gunnar Krüger ² , ³ , Tobias Kober ² , ³ , Andreas Schäfer ¹
		⁴ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ² Siemens ACIT – CHUV Radiology, Siemens
		Healthcare IM BM PI & Department of Radiology CHUV, Lausanne, Switzerland; L155, Ecole Polytechnique Federale de Lausanne Lausanne Switzerland
16:12	0440.	Fast T ₁ Mapping Using Slice-Shuffled Simultaneous Multi-Slice Inversion Recovery EPI
		Hua Wu ¹ , Robert F. Dougherty ¹ , Adam B. Kerr ² , Kangrong Zhu ² , Matthew J. Middione ³ , Aviv Mezer ⁴
		¹ Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States; ² Electrical Engineering,
		Stanford University, Stanford, CA, United States; "Applied Sciences Laboratory West, GE Healthcare, Menlo Park, CA, United States: ⁴ Psychology, Stanford University, Stanford CA, United States
		States, 1 sychology, Stamord Oniversity, Stamord, CA, Onited States
16:24	0441.	T2-Snapshots Imaging with Simultaneous Multislice TESS Acquisition
		Orso Pusterla ¹ , Francesco Santini ¹ , Rahel Heule ¹ , Oliver Bieri ¹
		¹ Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland
1(.2(0443	And for a Free Tot Manuscra With and Deat Has Commentions
10:30	0442.	Pinna Storey ¹ Yvonne W Lui ¹ Dmitry S Novikov ¹
		¹ Radiology Department, New York University School of Medicine, New York, NY, United States
16:48	0443.	Fast Dynamic Measurements of T_1 Relaxation Times: Influence and Correction of T_2^* Effects
		Ulaf Dietrich', Maximilian Freiermuth', Linus Willerding', Michael Peller', Maximilian F. Reiser
		Munich, Germany: ² Department of Internal Medicine III, LMU Ludwig Maximilian University of Munich, Germany
		, , , , , , , , , , , , , , , , , , ,
17:00	0444.	ΔB_0 Correction for Myelin Water Fraction Imaging Based on Multi-Slice MGRE Acquisitions
magna cu	m laude	EVA AIONSO OFILZ, IVES K. LEVESQUE, , G. BFUCE PIKE
		Unit, Department of Oncology, McGill University, Montreal, Quebec, Canada; ³ Research Institute of the McGill University Health
		Centre, McGill University, Montreal, Quebec, Canada; ⁴ Department of Radiology and Hotchkiss Brain Institute, University of
		Calgary, Alberta, Canada
17:12	0445	Encoding with Radiofrequency Spoiling, Equilibrium States and Inverse Problem for Parametric Manning
17.12	0445.	Ludovic de Rochefort ¹
		¹ IR4M (Imagerie par Résonance Magnétique Médicale et Multi-modalités), Univ. Paris-Sud, CNRS, UMR8081, Orsay, France
17.24	0446	The Effect of Manuscourie Field Conditants on the Cimultance (Fetting the ADD and Discut ADD) and T
1/:24	0446.	The Effect of Macroscopic Field Gradients on the Simultaneous Estimation of Keversible and Irreversible
		Mukund Balasubramanian ^{1, 2} , Robert V, Mulkern ^{1, 2}
		······································

¹Department of Radiology, Boston Children's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States

17:36 0447. Simultaneous Group-Wise Rigid Registration and Maximum Likelihood T₁ Estimation for T₁ Mapping Gabriel Ramos-Llordén¹, Arnold J. den Dekker¹, ², Gwendolyn Van Steenkiste¹, Johan Van Audekerke³, Marleen Verhoye³, Jan Sijbers¹ ¹Minds-Vision Lab, University of Antwerp, Antwerp, Belgium; ²Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands; ³Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium

17:48 0448. Field Probes with In-Situ Controllable Thermal Relaxation Times

David O. Brunner¹, Simon Gross¹, Jennifer Nussbaum¹, Benjamin E. Dietrich¹, Christoph Barmet¹, ², Klaas P. Pruessmann¹
 ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Skope Magnetic Resonance Technologies LLC, Zurich, Switzerland

Let It Flow

ismem merit award magna cum laude

Room 714 A/B	16:00-18:00 <i>Moderators</i> :Susanne Schnell, Ph.D. & T.B.A.
16:00 0449. Isumma cum taube	Correction of Background Phase Offsets in Phase-Contrast MRI Using Concurrent Magnetic Field Monitoring. Daniel Giese ¹ , ² , Bertram Wilm ² , ³ , Julia Busch ² , David Maintz ¹ , Christoph Barmet ² , ³ , Klaas Pruessmann ² , Sebastian Kozerke ² ¹ Radiology, University Hospital Cologne, Cologne, Germany; ² Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ³ Skope Magnetic Resonance Technologies, Zurich, Switzerland
16:12 0450.	Reproducibility of Phase-Contrast MRI in the Coronary Artery: Towards Noninvasive Pressure Gradient Measurement and Quantification of Fractional Flow Reserve <i>Zixin Deng</i> ¹ , ² , <i>Yang Qi</i> ² , <i>Xiaoming Bi</i> ³ , <i>Zhaoyang Fan</i> ² , <i>Debiao Li</i> , ¹² ¹ Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States; ² Biomedical Imaging Research Institute (BIRI), Cedars-Sinai Medical Center, Los Angeles, CA, United States; ³ R&D, Siemens Healthcare, Los Angeles, CA, United States
16:24 0451. Isame Merti Award Sumima cum Lande	Soft-Gated Accelerated Cartesian 4D Flow Imaging with Intrinsic Navigation <i>Joseph Y. Cheng¹, ², Marcus T. Alley², Tao Zhang¹, ², Peng Lat³, Jonathan I. Tamir⁴, Martin Uecker⁴, John M. Pauly¹, <i>Michael Lustig⁴, Shreyas S. Vasanawala</i>² ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States; ⁴Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States</i>
16:36 0452.	Aortic Stiffness, Cardiac Energetic, Systolic and Diastolic Function in Healthy Ageing. Jehill D. Parikh ¹ , Kieren G. Hollingsworth ¹ , Andrew M. Blamire ¹ , Guy MacGowan ² ¹ Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom; ² Cardiology, Freeman Hospital, Newcastle Upon Tyne, Tyne and Wear, United Kingdom
16:48 0453. Isame Meerit Award Summa cum Laude	3D Quantification of Vorticity and Helicity from 4D Flow Data Using Finite Element Interpolations <i>Julio Sotelo¹</i> , ² , <i>Jesus Urbina¹</i> , ³ , <i>Israel Valverde⁴</i> , ⁵ , <i>Cristian Tejos¹</i> , <i>Pablo Irarrazaval¹</i> , <i>Daniel E. Hurtado²</i> , ⁶ , <i>Sergio Uribe¹</i> , ³ ¹ Biomedical Imaging Center, Electrical Engineering Department, Pontificia Universidad Catolica de Chile, Santiago, RM, Chile; ² Structural and Geotechnical Engineering Departement, Pontificia Universidad Catolica de Chile, Santiago, RM, Chile; ³ Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, RM, Chile; ³ Radiology Unit, Hospital Virgen del Rocio, Seville, Spain; ⁵ Cardiovascular Pathology Unit, Institute of Biomedicine of Seville (IBIS), Hospital Virgen del Rocio, Seville, Spain; ⁶ Biomedical Engineering Group, Pontificia Universidad Catolica de Chile, Santiago, Chile
17:00 0454.	Reproducibility of Advanced Velocity and Wall Shear Stress Quantification Techniques Derived from 4D Flow

Reproducibility of Advanced Velocity and Wall Shear Stress Quantification Techniques Derived from 4D Flow MRI in the Pathological Aorta

Pim van Ooij¹, Wouter V. Potters¹, Jeremy D. Collins², James C. Carr², S Chris Malaisrie³, Patrick M. McCarthy⁴, Michael Markl², Alex J. Barker²

¹Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Radiology, Northwestern University, Chicago, IL, United States; ³Medicine-Cardiology, Northwestern University, Chicago, IL, United States; ⁴Division of Cardiac Surgery, Northwestern University, Chicago, IL, United States

17:12 0455. 4D Flow Based Characterization of Aortic Morphometry and Flow Parameters: Impact of Age, Aortic Dilatation and Valve Morphology

Julio Garcia¹, Alex J Barker¹, Ian Murphy¹, Kelly B Jarvis¹, Alex L Powell¹, Susanne Schnell¹, Jeremy Collins¹, James Carr¹, S Chris Malaisrie², Michael Markl¹, ³ ¹Radiology, Northwestern University, Chicago, IL, United States; ²Division of Cardiothoracic Surgery, Northwestern University, Chicago, IL, United States; ³Biomedical Engineering, Northwestern University, Evanston, IL, United States

17:24 0456. Longitudinal Monitoring of Hepatic Blood Flow in Patients with Portal Hypertension Before and After TIPS Implantation with 4D Flow MRI

Peter Bannas¹, ², Alejandro Roldán-Alzate¹, Kevin M. Johnson³, Michael A. Woods¹, Utaroh Motosugi¹, Oliver Wieben³, Scott B. Reeder¹, ³, Harald Kramer¹, ⁴

¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ³Medical Physics, University of Wisconsin-Madison, WI, United States; ⁴Radiology, Ludwig-Maximilians-University Hospital, Munich, Bavaria, Germany

17:36 0457. Quantitative Assessment of Splenic Hemodynamics at 4D Flow MRI in the Evaluation of Thrombocytopenia: A Pilot Study in Cirrhotic Patients with Portal Hypertension

Jeremy Douglas Collins¹, Jad Bou Ayache², Edouard Semaan³, Riad Salem⁴, James Christian Carr³, Michael Markl³, Zoran Stankovic⁵

¹Radiology, Northwestern University, Chicago, IL, United States; ²Radiology, Icahn School of Medicine at Mount Sinai, NY, United States; ³Northwestern University, IL, United States; ⁴Radiology, Northwestern University, IL, United States; ⁵Radiology, University Hospital, Freiberg, Germany

17:48 0458. Highly Accelerated Intracranial 4D Flow MRI with CIRcular Cartesian UnderSampling (CIRCUS)

Jing Liu¹, Farshid Faraji¹, Sarah Kefayati¹, Henrik Haraldsson¹, David Saloner¹, ² ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Radiology Service, VA Medical Center, San Francisco, CA, United States

Renal/Adrenal/Male Pelvis MRI

 Room 716 A/B
 16:00-18:00
 Moderators:Rotem S. Lanzman, Ph.D. & Pottumarthi V. Prasad, Ph.D.

 16:00
 0459.
 Ferumoxytol Enhanced T₂* Mapping for Combined Renal Oxygenation and Blood Volume Assessment at 9.4T

 Andreas Pohlmann¹, Karen Arakelyan¹, Till Huelnhagen¹, Kathleen Cantow², Stefanie Kox¹, Yvonne Balke¹, Bert

 Flemming², Erdmann Seeliger², Thoralf Niendorf¹, ³

 ¹Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany; ²Institute of Physiology and Center for Cardiovascular Research, Charite-Universitaetsmedizin Berlin, Berlin, Germany; ³Experimental and Clinical Research Center, Charite-Universitaetsmedizin Berlin, Germany

16:12 0460. Detection of Macrophage-Based Inflammation Following Renal Ischemia Reperfusion Injuries Using Super-Bismen entrance of Macrophage-Based Inflammation Following Renal Ischemia Reperfusion Injuries Using Super-Paramagnetic Iron Oxide (SPIO) Nanoparticles in T2-Weighted MRI.

B G. Hammond¹, J C. Montejano², J M. Poth², K M. Huber², M Stukova², D Golovko³, N J. Serkova² ¹University of Arizona College of Medicine - Phoenix, Phoenix, AZ, United States; ²University of Colorado Anschutz Medical Campus, Aurora, CO, United States; ³Good Samaritan Medical Center, MA, United States

16:24 0461. Relating Iodixanol-Induced Renal T₂* Changes to Tissue PO₂ by Comparison with Near-Infrared Spectroscopy and Invasive Physiological Measurements

Andreas Pohlmann¹, Karen Arakelyan¹, ², Dirk Grosenick³, Kathleen Cantow², Heidrun Wabnitz³, Bert Flemming², Rainer Macdonald³, Erdmann Seeliger², Thoralf Niendorf⁴, ⁴

¹Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany; ²Institute of Physiology and Center for Cardiovascular Research, Charite-Universitaetsmedizin Berlin, Berlin, Germany; ³Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany; ⁴Experimental and Clinical Research Center, Charite-Universitaetsmedizin Berlin, Berlin, Germany

16:36 0462.	Measuring Single Nephron Filtration with Molecular MRI Edwin J. Baldelomar ^J , Jennifer Charlton ² , Kevin M. Bennett ³ ¹ Physics, University of Hawaii at Manoa, Honolulu, HI, United States; ² University of Virginia, VA, United States; ³ Biology, University of Hawaii at Manoa, HI, United States
16:48 0463. Issues Meerr & WARD Magna cum laude	Susceptibility Tensor Imaging Reveals Reduced Anisotropy in Renal Nephropathy <i>Luke Xie¹, Russell Dibb¹, ², Susan B. Gurley³, Chunlei Liu, ¹⁴, G. Allan Johnson¹, ²</i> ¹ Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States; ² Biomedical Engineering, Duke University, Durham, NC, United States; ³ Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, Durham, NC, United States; ⁴ Brain Imaging Analysis Center, Duke University Medical Center, Durham, NC, United States
17:00 0464.	Full 3D Renal BOLD MRI in Clinically Realistic Scan Times with 2D Volume Selective Excitation <i>Glen Morrell¹, Josh Kaggie¹, Vivian S. Lee¹</i> ¹ Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States
17:12 0465.	Image Registration with the Generalized Hough Transform as Part of a Free Toolkit Is an Efficient and Robust Technique for Improving the Reliability of Parameter Estimates Obtained from Free-Breathing MR Renography Christopher C. Conlin ¹ , Jeff L. Zhang ¹ , ² , Florian Rousset ³ , ⁴ , Clement Vachet ³ , Yangyang Zhao ⁵ , Daniel Kim ¹ , Glen Morrell ¹ , ² , Kathryn A. Morton ² , Guido Gerig ³ , Vivian S. Lee ¹ , ² ¹ Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States; ² Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Scientific Computing and Imaging Institute, Salt Lake City, UT, United States; ⁴ CPE Lyon, Lyon, France; ⁵ Department of Bioengineering, University of Utah, Salt Lake City, UT, United States
17:24 0466.	Radial R2* Distribution : A New Method to Analyze BOLD MRI of Kidneys <i>Bastien Milani¹, ², Maciej Piskunowicz¹, ³, Isabelle Bassi¹, Christiane Anex¹, Bruno Vogt¹, ⁴, Matthias Stuber, ²⁵, Michel Burnier¹, Menno Pruijm¹ ¹Department of Nephrology and Hypertension, CHUV, Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Department of Radiology, Medical University of Gdansk, Gdansk, Poland; ⁴Department of Nephrology and Hypertension, Bern University Hospital, Bern, Switzerland; ⁵Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland</i>
17:36 0467.	Assessment of Renal Allograft Fibrosis with Magnetic Resonance Elastography in Kidney Transplantation Patients Nan Jiang ¹ , General Leung ² , ³ , Serge Jothy ⁴ , Darren A. Yuen, ³⁵ , Anish Kirpalani ² , ³ ¹ Faculty of Medicine, University of Toronto, Toronto, ON, Canada; ² Department of Medical Imaging, St. Michael's Hospital, University of Toronto, Toronto, ON, Canada; ³ Keenan Research Centre, St. Michael's Hospital, Toronto, ON, Canada; ⁴ Department of Pathology, St. Michael's Hospital, Toronto, ON, Canada; ⁵ Division of Nephrology, St. Michael's Hospital, Toronto, ON, Canada

17:48 0468. Evaluation of Multi-Modality Renal Functional MRI in Healthy Volunteers and Lupus Nephritis Patients Stanislas Rapacchi¹, ², Robert X. Smith³, Yi Wang³, Lirong Yan³, Victor Sigalov⁴, Elizabeth Hernandez⁵, Ajay Verma⁶, Nicolas Wisniacki⁷, Jaime Torrington⁶, Xiang He⁸, Peng Hu⁴, George Karpouzas⁵, Ping-Chun Chiao⁶, Danny JJ Wang³ ¹CRMBM, Aix-Marseille University, Marseille, France; ²Radiology, UCLA, Los Angeles, CA, United States; ³Neurology, UCLA, CA, United States; ⁴Radiology, UCLA, CA, United States; ⁵Rheumatology, Harbor-UCLA Medical Center, CA, United States; ⁶Biogen Idec, Cambridge, MA, United States; ⁷Biogen Idec, MA, United States; ⁸University of Pittsburg, PA, United States

Diffusion Biophysics & Microstructure

Constitution Hall 105/106/107 16:00-18:00 Moderators: Silvia Capuani, Ph.D. & Dmitry Novikov, Ph.D.

- 16:00 0469. From Diffusion Signal Moments to Neurite Diffusivities, Volume Fraction and Orientation Distribution: An Exact Solution
 - Dmitry S. Novikov¹, Ileana O. Jelescu², Els Fieremans¹

¹Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; ²Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States

16:12 0470. TractCaliber: Axon Diameter Estimation Across White Matter Tracts in the *In Vivo* Human Brain Using 300 MT/m Gradients

Susie Y. Huang¹, Thomas Witzel¹, Qiuyun Fan¹, Jennifer A. McNab², Lawrence L. Wald¹, ³, Aapo Nummenmaa¹ ¹Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ²Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, United States; ³Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

16:24 0471. Microstructural Information from Single-Pulsed-Field-Gradient and Angular Double-Pulsed-Field-Gradient NMR: From Model Systems to Nerves

Darya Morozov¹, Leah Bar¹, Nir Sochen¹, Yoram Cohen¹ ¹The Raymond and Beverly Sackler Faculty of Exact Science, Tel-Aviv University, Tel-Aviv Yaffo, Israel

16:36 0472. Improving the Interpretation of Diffusional Kurtosis by Resolving Effects of Isotropic and Anisotropic Microstructures

Filip Szczepankiewicz¹, Danielle van Westen², ³, Jimmy Lätt², Elisabet Englund³, Carl-Fredrik Westin⁴, Freddy Ståhlberg¹, ³, Pia C. Sundgren, ²³, Markus Nilsson⁵

¹Dept. of Medical Radiation Physics, Lund University, Lund, Sweden; ²Imaging and Function, Skåne University Healthcare, Lund, Sweden; ³Dept. of Clinical Sciences, Lund University, Skåne University Healthcare, Lund, Sweden; ⁴Dept. of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ⁵Lund University Bioimaging Center, Lund University, Lund, Sweden

16:48 0473. Localizing and Characterizing Single Fiber Populations Throughout the Brain

Chantal M.W. Tax¹, Dmitry S. Novikov², Eleftherios Garyfallidis³, Max A. Viergever¹, Maxime Descoteaux³, Alexander Leemans¹

¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ²Center for Biomedical Imaging, New York University School of Medicine, New York, United States; ³Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Quebec, Canada

17:00 0474. Modelling Free Water in Diffusion MRI

Emmanuel Vallée¹, Gwenaëlle Douaud¹, Andreas U. Monsch², Achim Gass³, Wenchuan Wu¹, Stephen M. Smith¹, Saad Jbabdi¹

¹FMRIB, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Memory Clinic, University Center for Medicine of Aging Basel, Basel, Switzerland; ³Department of Neurology, University Hospital Mannheim, Heidelberg, Germany

17:12 0475. The Effect of White Matter Perfusion on Diffusion MRI Based Microstructural Tissue Models

^{13 Marka attat avato magna cam laube} Sjoerd B. Vos¹, Andrew Melbourne¹, Hui Zhang², John S. Duncan³, Sebastien Ourselin¹ ¹Translational Imaging Group, University College London, London, United Kingdom; ²Centre for Medical Image Computing, University College London, London, United Kingdom; ³Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom

17:24 0476. Microscopic Diffusion Anisotropy Imaging: An *Ex-Vivo* Hypomyelination Mouse Study *Enrico Kaden¹*, *Nathaniel D. Kelm²*, *Robert P. Carson³*, *Mark D. Does²*, *Daniel C. Alexander¹* ¹Centre for Medical Image Computing, University College London, London, United Kingdom; ²Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Departments of Neurology and Pediatrics, Vanderbilt University, Nashville, TN, United States

17:36 0477. Validation of NODDI Estimation of Dispersion Anisotropy in V1 of the Human Neocortex

Maira Tariq¹, Michiel Kleinnijenhuis², Anne-Marie van Cappellen van Walsum³, ⁴, Hui Zhang¹ ¹Department of Computer Science & Centre for Medical Image Computing, University College London, London, England, United Kingdom; ²FMRIB Centre, University of Oxford, Oxford, United Kingdom; ³Department of Anatomy, Radbound University, Nijmegen Medical Centre, Nijmegen, Netherlands; ⁴MIRA Institute for Biomedical Technology and Technical Medicine, Enschede, Netherlands

17:48 0478. Human *In Vivo* Myeloarchitecture Using Whole-Brain Diffusion MRI

Fernando Calamante¹, Ben Jeurissen², Robert Elton Smith¹, Jacques-Donald Tournier³, ⁴, Alan Connelly¹

¹The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; ²iMinds-Vision Lab, Dept. of Physics, University of Antwerp, Belgium; ³Centre for the Developing Brain, King's College London, London, United Kingdom; ⁴Department of Biomedical Engineering, King's College London, London, United Kingdom

Brain Tumor Imaging - Focus on PET-MRI

17:00

 John Bassett Theatre 102 16:00-18:00
 Moderators:N. Jon Shah, Ph.D. & Greg Zaharchuk, M.D., Ph.D.

 16:00
 0479. Combined Functional and Metabolic Assessment of Brain Tumors Using Hybrid MR-PET Imaging

 16:00 0479. Combined Functional and Metabolic Assessment of Brain Tumors Using Hybrid MR-PET Imaging Beatrice Sacconi¹, Roy Raad², Joon Lee³, Howard Fine⁴, John Golfinos⁵, Girish Manokar Fatterpekar⁶, Fernando Boada⁷, Kent Friedman³, James Babb³, Rajan Jain³
 ¹Radiological, Oncological and Anatomopathological Sciences, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy;
 ²Radiology, NYU School of medicine, New York, United States; ³Radiology, NYU School of Medicine, New York, United States;
 ⁴Neuro-oncology, NYU Langone Medical Center, New York, United States; ⁵Neurosurgery, NYU Langone Medical Center, New York, United States; ⁶Radiology, NYU Langone Medical Center, New York, United States; ⁷Neurosurgery, Psichiatry and Radiology, NYU Langone Medical Center, New York, United States

16:12 0480. Multimodal MR/PET Imaging for Characterization of Hypoxia in Human Glioblastoma

*Christine Preibisch*¹, ², *Mathias Lukas*³, *Anne Kluge*¹, *Severin Keinath*³, *Vivien Tóth*¹, ⁴, *Kuangyu Shi*³, *Thomas Pyka*³, *Stefan Förster*³

¹Department of Neuroradiology, Klinikum rechts der Isar der TU München, Munich, Germany; ²Clinic for Neurology, Klinikum rechts der Isar der TU München, Munich, Germany; ³Department of Nuclear Medicine, Klinikum rechts der Isar der TU München, Munich, Germany; ⁴Department of Radiology, Klinikum rechts der Isar der TU München, Munich, Germany

16:24 0481. Neuroimaging Based (PET and MR) Measurements of Cerebral Oxygen Extraction Fraction (OEF) in Patients with Brain Tumors

Parinaz Massoumzadeh¹, Safa Najmi², Jonathan McConathy¹, Andrei Vlassenko¹, An Hongyu³, Yi Su¹, Daniel Marcus¹, Keith Rich⁴, Tammie Benzinger¹

¹Mallinckroit Institute of Radiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States; ²Department of of Neurology, Tabriz Medical University, Tabriz, East Azarbaijan, Iran; ³Department of Radiology, University of North Carolina, Chapel Hill, NC, United States; ⁴Neurological Surgery, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States

16:36 0482. Automatic Internal Carotid Arteries Segmentation for Estimation of an Image Derived Input Function with MR-PET

Nuno André da Silva¹, Liliana Lourenco Caldeira¹, Jörg Mauler¹, Hans Herzog¹, N Jon Shah¹, ² ¹Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany; ²JARA - Faculty of Medicine, RWTH Aachen University, Aachen, Germany

16:48 0483. Comparison of DTI and 11C-Methionine PET for Reliable Prediction of Tumor Cell Density in Gliomas

Manabu Kinoshita¹, Hideyuki Arita², Naoki Kagawa², Yoshiyuki Watanabe³, Jun Hatazawa⁴, Naoya Hashimoto², Toshiki Yoshimine²

¹Neurosurgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan; ²Neurosurgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; ³Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; ⁴Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

0484. pH-Weighted Molecular MRI in Brain Tumors Benjamin M. Ellingson¹, ², Robert J. Harris³, William H. Yong⁴, Whitney Pope³, Debiao Li⁵, Linda M. Liau⁶, Timothy F. Cloughesy⁷

¹Radiology, ÚCLA, Los Angeles, CA, United States; ²Psychiatry & Biobehavioral Sciences, UCLA, CA, United States; ³Radiology, UCLA, CA, United States; ⁴Pathology, UCLA, CA, United States; ⁵Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States; ⁶Neurosurgery, UCLA, CA, United States; ⁷Neurology, UCLA, CA, United States;

17:12 0485. Applying a Length and Offset Varied Saturation (LOVARS) CEST Method for Imaging Cerebral Glioma

¹ Xiaolei Šong¹, Yan Bai², Erning Zhang², Xiaowei He¹, ³, Panli Žuo⁴, Dapeng Shi², Michael T. McMahon¹, Benjamin Schmitt⁵, Meiyun Wang²

¹The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, United States; ²Department of Radiology, Henan Provincial People₁⁻'s Hospital, Zhengzhou, Henan, China; ³School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, China; ⁴MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ⁵Healthcare Sector, Siemens Ltd Australia, Macquarie Park, Australia

17:24	0486.	The Role of Preoperative Functional MRI in Brain Tumour Resection by Awake Craniotomy: Initial Experience in 20 Glioma Patients Melanie Morrison ¹ , ² , Laleh Golestanirad ³ , ⁴ , Fred Tam ¹ , Gregory Hare ⁵ , ⁶ , Marco Garavaglia ⁶ , Simon Graham ¹ , ² , Sunit Das ⁵ , ⁷ ¹ Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; ² Medical Biophysics , University of Toronto, Toronto, Ontario, Canada; ³ Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States; ⁴ Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ⁵ Keenan Research Centre, St. Michael's Hospital, Toronto, Ontario, Canada; ⁶ Department of Anesthesia, St. Michael's Hospital, Toronto, Ontario, Canada; ⁷ Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
17:36	0487.	Simultaneous Measurement of DSC- And DCE-MRI Parameters Using Dual-Echo Spiral with a Standard Dose of Gadolinium in Comparison to Single-Echo GRE-EPI Methods in Brain Tumors Kathleen M. Schmainda ¹ , Melissa Prah ² , Leslie C. Baxter ³ , Eric S. Paulson, Sharmeen Maze ³ , James Pipe ³ , Dingui Wang ³ , Josef Debbins ³ , Leland Hu ⁴ ¹ Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ² Radiology, Medical College of Wisconsin, WI, United States; ³ Barrow Neurological Institute, Phoenix, AZ, United States; ⁴ Mayo Clinic, Scottsdale, AZ, United States
17:48	0488.	Time-Shift Resting-State Functional Connectivity MRI in Supratentorial Glioma, a Preliminary Study <i>Jianrui Li¹, Qiang Xu², Zhiqiang Zhang¹, Guangming Lu¹</i> ¹ Medical Imaging, Jingling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; ² Medical Imaging, Jingling Hospital, School of Medicine, Nanjing, Jiangsu, China
System	Moni	toring & Correction
<u>16:00</u>	0489.	Moterators, Secure Ryun Lee, Fil.D. & Maxim Zaitsey, Fil.D. Motion-Insensitive Sequence for Single-Voxel Determination of B ₁ ⁺ by Bloch-Siegert Shift in Moving Organs Including the Human Heart <i>Ayse Sila Dokumaci¹, Bertrand Pouymayou¹, Roland Kreis¹, Chris Boesch¹</i> ¹ Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland
16:12	0490.	Large Dynamic Range Relative B1+ Mapping Francesco Padormo ¹ , Aaron T. Hess ² , Paul Aljabar ¹ , Peter Jezzard ³ , Matthew D. Robson ² , Joseph V. Hajnal ¹ , ⁴ , Peter J. Koopmans ³ ¹ Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ² Department of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; ³ FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; ⁴ Centre for the Developing Brain, King's College London, London, United Kingdom
16:24 ISMRM MERIT magna cum	0491. aude	Rapid MRI System Calibration Using 3DREAM Daniel Brenner ¹ , Rüdiger Stirnberg ¹ , Eberhard Daniel Pracht ¹ , Tony Stöcker ¹ , ² ¹ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ² Department of Physics and Astronomy, University of Bonn, Bonn, Germany
16:36	0492.	Validation of Variable Flip Angle Imaging-Based Simultaneous B1+ and T1 Mapping in the Prostate at 3T <i>Novena A. Rangwala¹, Isabel M. Dregely¹, Holden H. Wu¹, Kyunghyun Sung¹</i> ¹ Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States
16:48	0493.	Direct Calculation of B1 ⁺ and B1 ⁻ from Two Point Variable Flip Angle Data for Quantitative T1 and PD Mapping Simon Baudrexel ¹ , ² , Ulrike Noeth ² , Sarah Reitz ¹ , ² , Johannes Christian Klein ¹ , ² , Ralf Deichmann ² ¹ Department of Neurology, Goethe University Frankfurt, Frankfurt am Main, Germany; ² Brain Imaging Center (BIC), Goethe University Frankfurt, Frankfurt am Main, Germany
17:00	0494.	B0 Changes Around the Head Induced by the Cardiac Cycle at 7T Lennart J. Geurts ¹ , Vincent O. Boer ¹ , Tijl A. van der Velden ¹ , Peter R. Luijten ¹ , Dennis W.J. Klomp ¹ , Jaco J.M. Zwanenburg ¹

¹Radiology, UMC Utrecht, Utrecht, Netherlands

17:12 ISMRM MERIT A magina cum	0495.	Investigating the Potential of Highly Accelerated FatNavs for Dynamic Shimming <i>Frédéric Gretsch¹</i> , <i>José P. Marques²</i> , <i>Rolf Gruetter¹</i> , ³ , <i>Daniel Gallichan¹</i> ¹ CIBM, EPFL, Lausanne, Vaud, Switzerland; ² Dept. of Radiology, University of Lausanne, Vaud, Switzerland; ³ Depts. of Radiology, Universities of Lausanne and Geneva, Vaud, Switzerland
17:24	0496.	Automatic Virtual Shimming for Robust Fat Suppression in Subtractionless First-Pass Peripheral Angiography Holger Eggers ¹ , Tim Leiner ² ¹ Philips Research, Hamburg, Germany; ² Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
17:36	0497.	Fast B1 Inhomogeneity Correction in BSSFP Imaging Using Transient-State Signal <i>Min-Oh Kim¹</i> , <i>Dong-Hyun Kim¹</i> ¹ Electrical and electronic engineering, Yonsei University, Seoul, Korea
17:48	0498.	Respiration Induced B0 Variation in Double Echo Steady State Imaging (DESS) in the Breast <i>Catherine J. Moran¹, Kristin L. Granlund¹, Bragi Sveinsson, ¹², Marcus T. Alley¹, Bruce L. Daniel¹, Brian A.</i> <i>Hargreaves¹</i> ¹ Radiology, Stanford University, Stanford, CA, United States; ² Electrical Engineering, Stanford University, Stanford, CA, United States

Combined Educational & Scientific Session

UTE & Zero TE Imaging Techniques & Applications

Organizers:Eric Y. Chang, M.D., Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Regatte, Ph.D. & Siegfried Trattnig, M.D.

<u>Room 718 B</u>	16:00-18:00 Moderators: Jutta Ellermann, M.D., Ph.D. & Felix W. Wehrli, Ph.D.
16:00	Quantitative UTE Techniques Neal K. Bangerter
16:30	Clinical Applications Graeme M. Bydder
17:00 0499.	Performance of Bi-Component T2* Fitting of Bound and Pore Bone Water Fractions Is Dependent on Field Strength Alan C. Seifert ¹ , Suzanne L. Wehrli ² , Felix W. Wehrli ¹ ¹ University of Pennsylvania, Philadelphia, PA, United States; ² Children's Hospital of Philadelphia, Philadelphia, PA, United States
17:12 0500.	Assessment of Cortical Porosity at 11.7 T and Its Correlation with µCT Porosity and Biomechanics Robert Nikolov ¹ , Jun Chen ¹ , Won Bae ¹ , Reni Biswas ¹ , Robert Healey ¹ , Eric Chang ¹ , ² , Christine Chung ¹ , ² , Graeme Bydder ¹ , Jiang Du ¹ ¹ Radiology, University of California, San Diego, San Diego, CA, United States; ² Radiology, VA San Diego Healthcare System, La Jolla, CA, United States
17:24 0501.	Actual Flip Angle Imaging to Improve T1 Measurement for Short T2 Tissues Misung Han ¹ , Peder EZ Larson ¹ , Roland Krug ¹ , Viola Rieke ¹ ¹ Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
17:36 0502.	18F-FDG and 18F-NaF PET/MR Imaging of Osteoarthritis in the Knee: Considerations and Initial Results <i>Feliks Kogan¹, Audrey Fan¹, Sloane Brazina¹, Dawn Holley¹, Andrew Quon¹, Garry Gold¹</i> ¹ Department of Radiology, Stanford University, Stanford, CA, United States

17:48 0503. Imaging of Grafted Mesenchymal Stem Cells in Bone Tissue Sergey Magnitsky¹, Geetha Mohan¹, Curtis Corum², Djaudat Idiyatullin², Nancy Lane³, Sharmila Majumdar¹

Tuesday

¹Radiology, UCSF, San Francisco, CA, United States; ²Radiology, University of Minnesota, MN, United States; ³UC Davis, CA, United States

18:00 Adjournment & Meet the Teachers

Educational Course MR Physics & Techniques for Clinici

MR Physics & Techniques for Clinicians Organizers: Marcus T. Alley, Ph.D., Michael Markl, Ph.D., Brian Hargraves, Ph.D., & Nicole Seiberlich, Ph.D. <u>Room</u> 801 A/B 16:00-18:00 Moderators: Brian A. Hargreaves, Ph.D. & Michael Markl, Ph.D. Spin Echo Imaging 16:00 Pauline W. Worters 17:00 **Gradient Echo Imaging** Oliver Bieri 18:00 Adjournment & Meet the Teachers **Bronze Corporate Symposium Bracco Bronze Corporate Evening Symposium** Room 701 A 18:30-20:30 **Sunrise Educational Course** Addressing Clinical Challenges in the Body with MRI Organizers: Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, M.D., Ph.D., M.Ed., FRCR Room 701 A 07:00-07:50 Moderators: Alex Kagen, M.D. & Takeshi Yokoo, M.D., Ph.D. Update on Contrast Agents for Body Imaging **Hepatobiliary Contrast Agents** 07:00 Utaroh Motosugi 07:25 Intravascular Tim Leiner 07:50 **Adjournment & Meet the Teachers Sunrise Educational Course** How Can MRI of Mouse Models Provide Value for Cancer Studies? Organizers: Chris A. Flask, Ph.D., Kristine Glunde, Ph.D. & Mark D. Pagel, Ph.D.

0	, , , , ,	
Constitution Hall	107 07:00-07:50	Moderators: Wen Li, Ph.D. & Matthew Merritt, Ph.D.
07:00	How Can MRI of Mouse Models Provide Value	ue for Cardiovascular Studies?
	Xin Yu	
07:25	How Can MRI of Mouse Models Provide Valu	ue for Cardiovascular Studies?
	Frederick H. Epstein	
07:50	Adjournment & Meet the Teachers	
Sunrise Educ	ational Course	
4D-flow: Rea	dy for Primetime?	
Organizers: Dani	el B. Ennis, Ph.D. & Harald Kramer, M.D.	
Room 714 A/B	07:00-07:50	Moderators: Kevin M. Johnson, Ph.D. & Harald Kramer, M.D.

<u>Room 714 A/B</u>	07:00-07:50
07:00	4D-Flow: How We Acquire It?
	Marcus T. Alley

07:16	4D-Flow: How We Process It? Michael Markl
07:32	4D-Flow: How It Benefits Patients? Scott B. Reeder
07:50	Adjournment & Meet the Teachers
Sunrise Edu	icational Course
UTE: Annli	cations & Advances
Organizers Ne	al K Bangerter Ph D
Room 716 A/B	07:00-07:50 <i>Moderators</i> :Neal K Bangerter Ph D & Matthew D Robson Ph D
07:00	Neurological Applicatons of UTE Peder E. Z. Larson
07:25	Pulmonary UTE Scott K. Nagle ¹ ¹ University of Wisconsin
07:50	Adjournment & Meet the Teachers
Sunrise Edi	icational Course
Contrast by	Body Part: How & Why?
Organizers Bri	an A Hargreaves Ph D & Manoikumar Saranathan Ph D
Room 718 A	07:00-07:50 <i>Moderators</i> : Holden H. Wu, Ph.D. & Katherine L. Wright, Ph.D.
07:00	Cardiac Imaging Sequences: How & Why? Reza Nezafat
07:25	Body Sequences: How & Why? Philip M. Young
07:50	Adjournment & Meet the Teachers
Sunrise Edu	icational Course
Brain Netwo	orks
Organizers: Jan Room 718 B	nes J. Pekar, Ph.D., & Jonathan R. Polimeni, Ph.D. 07:00-07:50 <i>Moderators</i> :Catherine E. Chang. Ph.D. & James J. Pekar. Ph.D.
07:00	Structure-Function Relationships in Brain Networks Patric Hagmann
07:25	Group & Population-Level Analysis: Big Data Bertrand Thirion
07:50	Adjournment & Meet the Teachers
Sunrise Edu	icational Course
Quantitativ	e Musculoskeletal Imaging: Structure & Function- Muscle Structure & Functional
Imaging	e mascalosheretari imaging, oti actare es i anenon masche oti actare es i anenonal
Organizors Fri	c Y Chang M D Garry F Gold M D Richard Kijowski M D William B Morrison M D Ravinder P
Regatte, Ph.D.	& Siegfried Trattnig, M.D.

Room 801 A/B 07:00-07:50

Muscle Structure & Functional Imaging

Moderators: Eric Y. Chang, M.D. & Siegfried Trattnig, M.D.

Wednesday

07:00	Muscle Structure Including Elastography Neil Roberts
07:25	Functional Imaging Incluing MRS, BOLD, Dynamic Imaging Michael D. Noseworthy
07:50	Adjournment & Meet the Teachers

Sunrise Educational Course

Neuroimaging: Dementia

Organizers: Jonathan H. Gillard, M.D., FRCR, MBA & Howard A Rowley, M.D.

 Room 701 B
 07:00-07:50
 Moderators: Jonathan H. Gillard, M.D., FRCR, MBA & John D. Port, M.D., Ph.D.

 07:00
 Dementia Imaging: What the Clinician Needs to Know

 Sandra E. Black

- 07:25 Multiparametric MR in Aging & Dementia Konstantinos Arfanakis
- 07:50 Adjournment & Meet the Teachers

Sunrise Educational Course Nuts & Bolts of Advanced Imaging

Organizers: Alexey Samsonov, Ph.D., N. Jon Shah, Ph.D. & Jeffrey Tsao, Ph.D., M.B.A. John Bassett Theatre 102 07:00-07:50 *Moderators:* Christopher M. Collins, Ph.D. & William A. Grissom, Ph.D.

Review/Demo of Available Excitation Software 07:00 Coils, RF Shimming & SAR Tamer S. Ibrahim

- 07:25 Parallel Transmit Pulse Design William A. Grissom
- 07:50 Adjournment & Meet the Teachers

Plenary Session Doing More With Less

Organizers: Christopher M. Collins, Ph.D. & Xiaohong Joe Zhou, Ph.D., D.A.B.R.

- Plenary Hall FG
 08:10-09:30
 Moderators: Christopher M. Collins, Ph.D. & Xiaohong Joe Zhou, Ph.D., D.A.B.R.

 08:10
 0504.
 Emerging Challenges Faced by the MR Community Michael T. Modic
- **08:30 0505. MRI Services in Resource Limited, Underserved Population** *Pek-Lan Khong*
- **08:50 0506.** Using Technology to Do More with Less *John M. Pauly*
- **09:10** NIBIB Lecture: "Disordered Mind": Are We in an Era of "Psycho-Radiology"? *Qiyong Gong*
- 09:30 Adjournment

Wednesday

Traditional Poster Session: Molecular Imaging

10:00-12:00 Exhibition Hall (no CME credit) **Traditional Poster Session: Spectroscopy** 10:00-12:00 Exhibition Hall (no CME credit) **Traditional Poster Session: fMRI Exhibition Hall** 10:00-12:00 (no CME credit) **Electronic Poster Session: Body** 10:00-12:00 **Exhibition Hall** (no CME credit) **Electronic Poster Session: Interventional Exhibition Hall** 10:00-12:00 (no CME credit) **Study Group Session MR Elastography (MRE)** Reception Hall 104 BCD 10:00-12:00 (no CME credit) **Study Group Session** Hyperpolarized Media, Hyperpolarization Methods & Equipment 10:00-12:00 Constitution Hall 105 (no CME credit) **Power Pitch Session: Neuro Power Pitches** Power Pitch Theatre, Exhibition Hall 10:00-11:00 (no CME credit) Moderators: Bruce R. Rosen, M.D., Ph.D. & Samantha J. Holdsworth, Ph.D. 0507. MR Imaging of Crocodilians Can Help for Brain Volume Estimation of Some Extinct Vertebrates Daniel Jirak¹, Jiri Janacek², Martin Kundrat, ²³ ¹IKEM, Prague, Czech Republic; ²Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; ³Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden 0508. Improved FDG Kinetic Analysis in Brain Tumors Through Simultaneous MR/PET Acquisition Anne-Kristin Vahle¹,², Harikrishna Rallapalli¹,², Artem Mikheev¹,², Thomas Koesters¹,², Kai Tobias Block¹,², Jean Logan¹,², Timothy Shepherd¹,², Girish Fatterpekar¹,², David Faul³, Fernando Emilio Boada¹,²</sub> NY, United States; ²Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, New York, NY, United States; ³Siemens Healthcare, New York, NY, United States

0509. White Matter Tract Integrity, Amyloid Burden and Structural Atrophy in Normal Aging and Mild Cognitive Impairment: A PET-MRI Study.

Ileana O. Jelescu¹, Timothy M. Shepherd¹, Dmitry S. Novikov¹, Yu-Shin Ding¹, Thomas Koesters¹, Kent P. Friedman¹, Jacqueline Smith¹, James E. Galvin², Els Fieremans¹ ¹Center for Biomedical Imaging, Dept. of Radiology, NYU Langone Medical Center, New York, United States; ²Alzheimer Disease Center, Depts. of Neurology, Psychiatry and Population Health, NYU Langone Medical Center, New York, United States

0510. Magnetization Prepared ZTE to Address Multiple Diagnostic Contrasts Peter Börnert¹, ², Jan Groen³, Jouke Smink³, Kay Nehrke¹

Philips Research, Hamburg, Germany; ²Radiology, LUMC, Leiden, Netherlands; ³Philips Healthcare, Best, Netherlands

0511. Ultrashort Echo Time (UTE) Imaging of Myelin: T2* Analysis

ismem merit award Summa cum Laude Vipul R. Sheth¹, Hongda Shao¹, Jun Chen¹, Jody Corey-Bloom², Graeme M. Bydder¹, Jiang Du¹ ¹Radiology, University of California, San Diego, CA, United States; ²Neurosciences, University of California, San Diego, CA, United States

0512. Effects of Real-Time fMRI Neurofeedback of the Amygdala Specific to Major Depressive Disorder Vadim Zotev¹, Kymberly D. Young¹, Raquel Phillips¹, Masaya Misaki¹, Jerzy Bodurka¹, ²

¹Laureate Institute for Brain Research, Tulsa, OK, United States; ²College of Engineering, University of Oklahoma, Tulsa, OK, United States

0513. Reduced Connectivity in 7-Year-Old Preterm Brain Networks Relates to Adverse Perinatal Events, Cognitive and Motor Impairment

Deanne Thompson¹, ², Jian Chen¹, Richard Beare¹, Christopher Adamson¹, Zohra Ahmadzai¹, Claire Kelly¹, Terrie Inder³, Lex Doyle¹, ⁴, Marc Seal¹, Peter Anderson¹, ⁵

¹Murdoch Childrens Research Institute, Parkville, Victoria, Australia; ²Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; ³Brigham and Women's Hospital, Massachusettes, United States; ⁴Royal Women's Hospital, Parkville, Victoria, Australia; ⁵Paediatrics, University of Melbourne, Parkville, Victoria, Australia

0514. Effect of Repetitive Transcranial Magnetic Stimulation on fMRI Resting-State Connectivity in Multiple System Atrophy

Ying-hui Chou¹, Hui You², Han Wang², Yan-Ping Zhao², Bo Hou², Nan-kuei Chen¹, Feng Feng² ¹Duke Brain Imaging and Analysis Center, Durham, NC, United States; ²Peking Union Medical College Hospital, Beijing, China

0515. *In-Vivo* Evidence of Transcranial Direct Current Stimulation (TDCS) Induced Magnetic-Field Changes in Human Brain Revealed by MRI

Summa cum laude

Mayank V. Jog¹, Robert Smith², Kay Jann², Walter Dunn³, Allan Wu², Danny JJ Wang² ¹Biomedical Engineering, University of California Los Angeles, Los Angeles, CA, United States; ²Neurology, University of California Los Angeles, Los Angeles, CA, United States; ³Psychiatry, University of California Los Angeles, Los Angeles, CA, United States

0516. Functional Consequences of Neurite Orientation Dispersion and Density in Humans Across the Adult Lifespan Arash Nazeri¹, ², M. Mallar Chakravarty³, ⁴, David J. Rotenberg¹, Tarek K. Rajji¹, Yogesh Rathi⁵, Oleg V. Michailovich⁶, Aristotle N. Voineskos¹

¹Centre for Addiction and Mental Health, Toronto, ON, Canada; ²Department of Psychiatry, University of Toronto, Toronto, ON, Canada; ³Department of Psychiatry, McGill University, Montreal, QC, Canada; ⁴Cerebral Imaging Centre, Douglas Institute, Verdun, QC, Canada; ⁵Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, United States; ⁶Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada

0517. Aneurysm Wall Permeability as a Measure of Rupture Risk and Bleb Formation

ISMRM MERIT AWARD SUMMA CUM LAUDE

Summa cum Laude

Charles G. Cantrell¹, Parmede Vakil¹, Sameer A. Ansari², Timothy J. Carroll¹ ¹Biomedical Engineering, Northwestern University, Chicago, IL, United States; ²Radiology, Northwestern University, Chicago, IL, United States

0518. Intracranial Atherosclerotic Lesion Characteristics Correlate with Cerebrovascular Lesion Load After TIA or Ischemic Stroke: A 7.0 Tesla MRI Study

Nikki Dieleman¹, Anja G. van der Kolk¹, Jaco J.M. Zwanenburg¹, ², Manon Brundel³, Anita A. Harteveld¹, Geert Jan Biessels³, Fredy Visser¹, ⁴, Peter R. Luijten¹, Jeroen Hendrikse¹ ¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Image Science Institute, University Medical Center Utrecht,

¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Image Science Institute, University Medical Center Utrecht, Utrecht, Netherlands; ³Neurology, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Philips, Best, Netherlands

Mohamed Tachrount¹, Andrew Davies², Roshni Desai², Kenneth Smith², David Thomas¹, Xavier Golay¹ ¹UCL Institute of Neurology, London, United Kingdom; ²Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom

	'Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD - Maryland, United States; ² Radiology and Imaging Sciences, National Institutes of Health, MD, United States
052 Ismam Merrit Awaro magna cum laudo	In Vivo Evaluation of Ocular Physiology and Structural Integrity of the Optic Nerve Upon Whole Eye Transplantation Using Gadolinium-Enhanced MRI and Diffusion Tensor Imaging Yolandi van der Merwe ¹ , ² , Leon C. Ho ¹ , ³ , Yang Li ⁴ , Maxine R. Miller ⁴ , ⁵ , Chiaki Komatsu ⁴ , Hongkun Wang ⁴ , Michael B. Steketee ⁵ , Seong-Gi Kim ¹ , ⁶ , Joel S. Schuman, ²⁵ , Kia M. Washington ⁴ , ⁵ , Kevin C. Chan ¹ , ⁵ , the WET Consortium ⁵ ¹ Neuroimaging Laboratory, University of Pittsburgh, PA, United States; ² Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; ³ Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; ⁴ Department of Plastic and Reconstructive Surgery, University of Pittsburgh, PA, United States; ⁵ Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; ⁶ Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea
Cancer Pre	clinical: Cells & Animals
<u>Room 701 A</u>	10:00-12:00 <i>Moderators</i> : Kristine Glunde, Ph.D. & Sabrina M. Ronen, Ph.D.
10:00 052	P. Metabolic Signatures of Colorectal Cancer in Biofluids: NMR-Based Metabolomics of Fecal Extracts Yan Lin ¹ , Changchun Ma ² , Zhiwei Shen ¹ , zhening wang ¹ , Renhua Wu ¹ ¹ Radiology Department, Second Affiliated Hospital, Shantou University Medical College, Shantou City, Guangdong Province, China; ² Radiation Oncology, Cancer Hospital, Shantou University Medical College, Guangdong Province, China
10:12 052	B. Ethanolamine Kinase-1 Is the Major Contributor to Phosphoethanolamine Levels in Breast Cancer Cells <i>Tariq Shah¹, Balaji Krishnamachary¹, Flonne Wildes¹, Jannie Wijnen², Kristine Glunde¹, Zaver M. Bhujwalla¹</i> ¹ Division of Cancer Imaging Research, Johns Hopkins University, Baltimore, MD, United States; ² University Medical Centre Utrecht, Cancer center, Utrecht, Netherlands
10:24 052	4. A Theranostic Probe to Image Choline Kinase Expression and Inhibition in a Breast Cancer Model Sean P. Arlauckas ¹ , Manoj Kumar ¹ , Anatoliy V. Popov ¹ , Harish Poptani ¹ , Edward J. Delikatny ¹ ¹ Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
10:36 052	5. TMPRSS2:ERG Gene Fusion and ERG Overexpression in Human Prostate Cancer Are Associated with Changed Metabolism Ailin Falkmo Hansen ¹ , Elise Sandsmark ¹ , Morten Beck Rye ² , ³ , Alan Wright ⁴ , Helena Bertilsson, ²⁵ , Anna M. Bofin ⁶ , Anders Angelsen ¹ , Tone Frost Bathen ¹ , May-Britt Tessem ¹ , ³ ¹ Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; ² Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; ³ St. Olavs Hospital, Trondheim, Norway; ⁴ Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; ⁵ Department of Urology, St. Olavs Hospital, Trondheim, Norway; ⁶ Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
10:48 0520 Summa cum laube	5. Reduced Production of Hyperpolarized 5-13C-Glutamate Is Associated with the IDH1 Mutation Jose Luis Izquierdo Garcia ¹ , Pavithra Luis Viswanath ¹ , Pia Eriksson ¹ , Marina Radoul ¹ , Larry Cai ¹ , Myriam M. Chaumeil ¹ , Russell O. Pieper ² , Joanna J. Phillips ² , Sabrina M. Ronen ¹ ¹ University California San Francisco, San Francisco, CA, United States; ² Department of Neurological Surgery, Helen Diller Research Center, University California San Francisco, San Francisco, CA, United States
11:00 052'	7. Tumor Invasion Visualized by Neurochemical Profile Modification in Human GBM Induced by Cancer Stem Cells in Mice: ¹ H-MRS Longitudinal Study Mor Mishkovsky ¹ , Cristina Cudalbu ² , Irene Vassallo ³ , Marie-France Hamou ³ , Arnaud Comment ⁴ , Monika Hegi ³ , Rolf Gruetter, ²⁵

0520. Diffusion Tensor Imaging and Magnitization Transfer Parameters Correlate with the White Matter Pathology

Tsang-Wei Tu¹, Rashida A. Williams², Jacob D. Lescher², L. Christine Turtzo², Joseph A. Frank²

in Mild Traumatic Brain Injury

Summa cum Laude

¹Laboratory of Functional and Metabolic Imaging , Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ²Center of biomedical imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ³Laboratory of Brain Tumor Biology and Genetics, Department of Neurosurgery, Lausanne University Hospital, Lausanne, Switzerland; ⁴Institute of the Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁵Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁵Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁵Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁵Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁵Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁵Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

11:12 0528.	Breast Cancer Cells Can Be Rescued by Matrigel from the Growth Inhibitory Effects of HIF-1α and HIF-2α Silencing Santosh Kumar Bharti ¹ , Balaji Krishnamachary ¹ , Wenlian Zhu ¹ , Flonne Wildes ¹ , Samata M. Kakkad ¹ , Yelena Mironchik ¹ , Dmitri Artemov ¹ , Zaver M. Bhujwalla ¹ ¹ Div. of Cancer Imaging Research, The Russell H. Morgan Dept. of Radiology and Radiological science, Johns Hopkins University, School of Medicine, Baltimore, MD, United States
11:24 0529.	Selective Acidification and De-Energization of WM983B Melanoma Xenografts and Sensitization to Doxorubicin Following Lonidamine Administration Kavindra Nath ¹ , David S. Nelson ¹ , Daniel F. Heitjan ¹ , Rong Zhou ¹ , Dennis B. Leeper ² , Jerry D. Glickson ¹ ¹ University of Pennsylvania, Philadelphia, PA, United States; ² Thomas Jefferson University, PA, United States
11:36 0530.	Hyperpolarizied 13C MRSI Is a Better Predictor of Survival Than Tumor Size in Treated Glioblastoma Marina Radoul ¹ , Myriam M. Chaumeil ¹ , Pia Eriksson ¹ , Sabrina M. Ronen ¹ ¹ Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States
11:48 0531. Iswe Meerr Awaro magna cum laude	<i>In Vivo</i> 19F MRI to Study ERK1 as a Target for Dendritic Cell Migration in High Grade Glioma Min-Chi Ku ¹ , Helmar Waiczies ² , Andreas Pohlmann ¹ , Susanne Wolf ² , Helmut Kettenmann ³ , Sonia Waiczies ¹ , Thoralf Niendorf ⁴ ¹ Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine, Berlin, Germany; ² MRI.TOOLS GmbH, Berlin, Germany, Berlin, Germany; ³ Cellular Neurosciences, Max Delbrück Center for Molecular Medicine, Berlin, Germany

ASL Methods: From the Neck Down

Room 701 B	10:00-12:00	Moderators: T.B.A. & T.B.A.
10:00 0532.	Separation of Arterial and Portal Blood Supply to Mouse Liver a	nd Tumour Tissue Using Pseudo-Continuous
ISMMA MERIT WAARD magna cum laude	Arterial Spin Labelling (PCASL) Rajiv Ramasawmy ¹ , Jack Anthony Wells ¹ , Magdalena Sokolska ² , Jam Campbell-Washburn ⁴ , Rosamund Barbara Pedley ⁵ , Mark Francis Lyt ¹ Centre for Advanced Biomedical Imaging, University College London, London Neurology, University College London, London, Greater London, United King Kingdom; ⁴ National Heart Lung and Blood Institute, National Institutes of Hea College London, London, Greater London, United Kingdom	es A. Meakin ³ , Sean Peter Johnson ¹ , Adrienne E. thgoe ^{†1} , Simon Walker-Samuel ^{†1} on, Greater London, United Kingdom; ² Institute of gdom; ³ Oxford University, Oxfordshire, United alth, MD, United States; ⁵ Cancer Institute, University
10:12 0533.	Quantification of Liver Perfusion Using Multi-Delay Pseudo-Con <i>Xinlei Pan¹, Robert Smith², Mayank Jog², Tianyi Qian³, Holden H Wu</i> <i>Danny JJ Wang²</i> ¹ Department of Biomedical Engineering, Tsinghua University, Beijing, China; States; ³ Siemens Healthcare, MR Collaboration NE Asia, Beijing, China; ⁴ Dep Medical University, Beijing, China; ⁵ Department of Engineering Physics, Tsin	tinuous Arterial Spin Labeling <i>t², Kyunghyun Sung², Kuncheng Li⁴, Kui Ying⁵,</i> ; ² Department of Bioengineering, UCLA, CA, United partment of Radiology, Xuanwu Hospital of Capital ghua University, Beijing, China
10:24 0534.	Non-Contrast Pulmonary Perfusion Using Pseudo-Continuous Ar <i>Joshua S. Greer¹</i> , ² , <i>Yue Zhang</i> ² , <i>Ivan Pedrosa</i> ² , ³ , <i>Ananth J. Madhura</i> ¹ Bioengineering, UT Dallas, Dallas, TX, United States; ² Radiology, UT South ³ Advanced Imaging Research Center, UT Southwestern Medical Center, Dalla	rterial Spin Labeling of the Inferior Vena Cava unthakam ² , ³ western Medical Center, Dallas, TX, United States; Is, TX, United States
10:36 0535.	Free-Breathing Perfusion Measurement Using Respiratory Motio <i>Hao Song¹, Wenyang Liu², Dan Ruan², ³, Sungkyu Jung⁴, H Michael C</i> ¹ Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ² Bioengin Angeles, CA, United States; ³ Radiation Oncology, University of California, Le University of Pittsburgh, Pittsburgh, PA, United States; ⁵ Bioengineering, Univ	In Prediction Gach ¹ , ⁵ neering, University of California, Los Angeles, Los os Angeles, Los Angeles, CA, United States; ⁴ Statistics, versity of Pittsburgh, Pittsburgh, PA, United States
10:48 0536.	The Feasibility of ASL Spinal Bone Marrow Perfusion Imaging w <i>Dong Xing¹, Yunfei Zha¹, Lei Hu¹, Jiao Wang¹, Yuan Lin¹, Hui Lin²</i> ¹ Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, Hu Shanghai, China	r ith Optimized TI ubei, China; ² MR Research , GE Healthcare China,

11:00 0537. Quantitative Rat Lumbar Spinal Cord Blood Flow Measurements Using Multi-Slice Arterial Spin Labelling at 9.4T

Mohamed Tachrount¹, Andrew Davies², Roshni Desai², Kenneth Smith², David Thomas, Xavier Golay¹, Roshni Desai² ¹Department of brain repair and rehabilitation, UCL Institute of Neurology, London, United Kingdom; ²Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom

11:12 0538. Measuring Myocardial Blood Flow Using Modified Look Locker Inversion (MOLLI) Recovery Arterial Spin Labelling (ASL)

Charlotte E. Buchanan¹, Eleanor F. Cox¹, Claire Grant², Nick M. Selby², Chris W. McIntyre³, Maarten W. Taal², Susan T. Francis¹

¹SPMIC, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, Nottingham, United Kingdom; 3Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada

11:24 0539. Feasibility and Repeatability of Human Brown Adipose Tissue Volume and Perfusion Activity Using MRI Weiving Dai¹, Lauren S, Weiner², David C, Alsop¹, Aaron M, Cypess² ¹Radiology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States; ²2Section of Integrative Physiology and Metabolism, Joslin Diabetes Center, Boston, MA, United States

11:36 0540. Large Intramuscular Vessel Artifact in ASL: Effect on Calf Muscle Perfusion Measurements and a Velocity-**Selective Solution**

Jeff L. Zhang¹, Christopher J. Hanrahan¹, Jason Mendes¹, Gwenael Layec², Corey Hart², Kristi Carlston¹, Michelle Mueller³, Russell S. Richardson², Vivian S. Lee¹ ¹Radiology, University of Utah, Salt Lake City, UT, United States; ²Division of Geriatrics, University of Utah, UT, United States;

³Vascular Surgery, University of Utah, UT, United States

11:48 0541. Arterial Spin Labeling in Exercising Calf Muscle with Prospective Motion Correction Céline Giraudeau¹,², Benjamin R. Knowles³, Thomas Lange³, Michael Herbst³,⁴, Maxim Zaitsev³, Pierre Carlier¹,² ¹NMR Laboratory, Institute of Myology, Paris, France: ²NMR Laboratory, CEA, I2BM, MIRCen, Fontenay-aux-Roses, France: ³Department of Radiology, University Medical Center Freiburg, Freiburg, Germany; ⁴John A. Burns School of Medicine, Uni Hawaii, Honolulu, HI, United States

Parallel Transmission Strategies 10.00 10.0

Room 714 A/B	10:00-12:00	Moderators: Ulrich Katscher, Ph.D. & Mark E. Ladd, Ph.D.
10:00 0542.	Slab-Selective PTX Multiband TOF Angiograph Sebastian Schmitter ¹ , Xiaoping Wu ¹ , Steen Moeller ¹ de Moortele ¹ , Kamil Ugurbil ¹ ¹ Center for Magnetic Resonance Research, University of M	y at 7 Tesla , <i>Edward John Auerbach¹</i> , <i>Gregor Adriany¹</i> , <i>Pierre-Francois Van</i> Ainnesota, Minneapolis, MN, United States
10:12 0543. Isunima cum laude	IMPULSE: A Generalized and Scalable Algorith Pulses <i>Mihir Pendse¹, Brian Rutt¹</i> ¹ Radiology, Stanford University, Stanford, CA, United Sta	m for Joint Design of Minimum SAR Parallel Transmit RF tes
10:24 0544. Isonan Meerit Awaro magita cum laude	Fully Optimized Time-Shifted Radio-Frequency Dephasing, Flip-Angle Non-Uniformity and the S Transmission Bastien Guerin ¹ , Jason Stockmann ¹ , ² , Mehran Babo ¹ Department of Radiology, Massachusetts General Hospita University, Cambridge, MA, United States; ³ John A. Burn ⁴ Division of Health Sciences Technology, Harvard-MIT, C	Spoke Pulses for Simultaneous Reduction of Intra-Voxel pecific Absorption Rate at Ultra-High Field Using Parallel <i>bli³, Andrew V. Stenger³, Lawrence L. Wald¹, ⁴</i> I, Charlestown, MA, United States; ² Physics department, Harvard s School of Medicine, University of Honolulu, Honolulu, United States; <i>Cambridge, MA, United States</i>
10:36 0545.	RF Shimming Via Efficient Modes for Massively <i>Christian Findeklee¹, Christoph Leussler¹, Peter Ve</i>	Parallel Transmit Coils rnickel ¹ , Ulrich Katscher ¹

¹Research Laboratories Hamburg, Philips GmbH Innovative Technologies, Hamburg, Germany

97

10:48 0546. High Resolution GRE at 9.4T Using Spokes Pulses

Desmond Ho Yan Tse¹, ², *Daniel Brenner³*, *Bastien Guerin⁴*, *Benedikt A Poser¹* ¹Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ²Department of Radiology, Maastricht University Medical Centre, Maastricht, Netherlands; ³German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany; ⁴Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, United States

11:00 0547. Array-Compressed Parallel Transmit Pulse Design

ISMRM MERIT AWARD Inagina cum laube Zhipeng Cao¹, ², William A. Grissom¹, ²

¹Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Nashville, TN, United States

11:12 0548. Direct Control of the Temperature Rise in Parallel Transmission Via Temperature Virtual Observation Points: Simulations at 10.5 T

Nicolas Boulant¹, Xiaoping Wu², Gregor Adriany², Sebastian Schmitter², Kamil Ugurbil², Pierre-Francois Van de Moortele²

¹NeuroSpin, CEA, Saclay, Ile de France, France; ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

11:24 0549. Non-Iterative Parallel Transmission RF Pulse Design with Strict Temperature Constraints

*Cem M. Deniz*¹, ², *Giuseppe Carluccio*¹, ², *Daniel K. Sodickson*¹, ², *Christopher M. Collins*¹, ²</sub> ¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ²The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States;

11:36 0550. Comparison of Local and Remote Transmit Arrays for Body Imaging at 7T Under Power and Local SAR Constraints

Martina Flöser¹, ², *Andreas K. Bitz¹*, *Stephan Orzada²*, *Klaus Solbach³*, *Mark E. Ladd¹*, ² ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany; ³High Frequency Engineering, University Duisburg-Essen, Duisburg, Germany

11:48 0551. Ultra-Fast Inner Volume Excitations with Parallel Transmission at 7 Tesla Using Fully Optimized B0-Robust K-Space Trajectories Space Trajectories

*Mathias Davids*¹, ², *Bastien Guérin*², *Lawrence L. Wald*², ³, *Lothar R. Schad*¹ ¹Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany; ²Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ³Harvard-MIT Division of Health Sciences Technology, Cambridge, MA, United States

Vessel Wall Imaging

Room	716 A/B	10:00-12:00	Moderators: René M. Botnar, Ph.D. & T.B.A.
10:00	0552.	High Resolution Three Dimensional Imaging o <i>Lei Zhang¹, Yongjun Tao², Xiaoqing Hu¹, Jun Wu</i> ¹ Paul C. Lauterbur Center for Biomedical Imaging, She Shenzhen, Guangdong, China; ² Neurology, Peking Uni	f Extracranial and Intracranial Arteries <i>c², Xin Liu¹, Yiu-Cho Chung¹</i> nzhen Institutes of Advanced Technology, Chinese Academic of Sciences, versity Shenzhen Hospital, Shenzhen, Guangdong, China
10:12	0553.	Ultrahigh-Resolution MRI Imaging of Intracr Histological Comparison Shuqian Zhang ¹ , Kazuyuki Yahagi ² , li liu ¹ , Jiadi 2 Wasserman ¹ , Ye Qiao ¹ ¹ Radiolgoy, Johns Hopkins, Baltimore, MD, United Sta Krieger Institute, MD, United States; ⁴ Pathology, Johns	anial Atherosclerosis at 17.6 Tesla: An <i>Ex Vivo</i> Study with Xu ³ , <i>Frank D. Kolodgie²</i> , <i>Renu Virmani²</i> , <i>Babara Crain⁴</i> , <i>Bruce A</i> . tes; ² CVPath Institute, Inc., Gaithersburg, MD, United States; ³ Kennedy Hopkins, Baltimore, MD, United States
10:24	0554.	Intraplaque Hemorrhage Detection and Thres	hold Selection for Simultaneous Noncontrast Angiography and

10:24 0554. Intraplaque Hemorrhage Detection and Threshold Selection for Simultaneous Noncontrast Angiography and intraPlaque Hemorrhage (SNAP) Images

Jin Liu¹, Marina S. Ferguson¹, Jinnan Wang², Daniel S. Hippe¹, Niranjan Balu¹, William S. Kerwin¹, Thomas S. Hatsukami¹, Chun Yuan¹

¹University of Washington, Seattle, WA, United States; ²Philips Research North America, NY, United States

10:36 0555. Motion-Robust 3D Black-Blood Carotid Wall Imaging Using Flow-Sensitive Dephasing Preparation and Stack-Of-Stars Trajectory

Xiaoming Bi^l, *Yutaka Natsuaki^l*, *Zhaoyang Fan²*, *Peter Speier³*, *Debiao Li²*, *Gerhard Laub^l* ¹Siemens Healthcare, Los Angeles, CA, United States; ²Cedars-Sinai Medical Center, Los Angeles, CA, United States; ³Siemens Healthcare, Erlangen, Germany

10:48 0556. Velocity Selective RF Pulse Prepared Inversion Recovery (VSIR) for Carotid Artery Vessel Wall Imaging *Yunduo* Li^l, Shuo Chen^l, Zechen Zhou^l, Rui Li^l, Chun Yuan^l, ² ¹Center for Biomedical Imaging Research, Beijing, China; ²Department of Radiology, University of Washington, Seattle, WA, United States

11:00 0557. Time-Efficient Whole-Heart Coronary Plaque Characterization with Simultaneously Acquired MRA *Yibin Xie¹, ², Young Jin Kim³, Jianing Pang¹, Jung-Sun Kim⁴, Qi Yang¹, Zhaoyang Fan¹, Hyuk-Jae Chang⁴, Debiao Li¹ ¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²University of California, Los Angeles, Los Angeles, CA, United States; ³Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea; ⁴Division of Cardiology, Yonsei Cardiovascular Center, Yonsei University College of Medicine, Seoul, Korea*

11:12 0558. 3D-Black-Blood 3T-MRI for the Diagnosis of Thoracic Large Vessel Vasculitis: A Feasibility Study Karla Maria Treitl¹, Stefan Maurus¹, Hendrik Kooijmann-Kurfuerst², Eva Coppenrath¹, Nora N. Kammer¹, Marcus Treitl¹, Maximilian Reiser¹, Tobias Saam¹
¹Institute for clinical radiology, LMU Munich, Bavaria, Germany; ²Philips Healthcare, Philips GmbH, Hamburg, Germany

11:24 0559. Simultaneous Acquisition of Spatially-Registered Gray- And Black-Blood Images of Peripheral Arteries with 3D Double-Echo Steady-State (DESS) at 3T

Michael C. Langham¹, Benoit Desjardins¹, Erin K. Englund¹, Emile R. Mohler², Thomas F. Floyd³, Felix W. Wehrli¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Medicine, University of Pennsylvania, Philadelphia, PA, United States; ³Anesthesiology, Stony Brook University Medical Center, Stony Brook, NY, United States

11:36 0560. Self-Gated Dynamic Contrast Enhanced (DCE) MRI with Compressed Sensing Acceleration to Quantify magna cum lanke magna cum lanke *Claudia Calcagno¹, Chiara Giannarelli², Abdallah G. Motaal³, Matthias Nahrendorf⁴, Willem JM Mulder, ⁵, Zahi A.*

Fayad¹, Gustav J. Strijkers³ ¹Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; ²Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; ³Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands, Netherlands; ⁴Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States; ⁵Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands

11:48 0561. Large Coverage HOmologous Black-Bright Blood Interleaved Imaging Sequence (LaHOBBI) for 3D Dynamic Contrast Enhanced MRI of Vessel Wall Haikun Oi¹, Shuo Chen¹, Zechen Zhou¹, Jinnan Wang², Peter Koken³, Niranjan Balu⁴, Huijun Chen¹

¹Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Philips Research North America, Briarcliff Manor, NY, United States; ³Innovative Technologies, Research Laboratories, Philips Technologies GmbH, Hamburg, Germany; ⁴Radiology, University of Washington, Seattle, WA, United States

Focused Discussion Session - Fusion with Diffusion

Constitution Hall 10710:00-12:00Moderators: Maxime Descoteaux, Ph.D. & Karla L. Miller, Ph.D.10:000562. Fusing 3 and 7 Tesla HCP Datasets for Improved Brain Connectivity Analysis

Stamatios N. Sotiropoulos¹, Saad Jbabdi¹, An T. Vu², Jesper L. Andersson¹, Steen Moeller², Christophe Lenglet², Essa Yacoub², Kamil Ugurbil², Timothy Behrens¹

¹FMRIB Centre, University of Oxford, Oxford, United Kingdom; ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Wednesday

10:20 0563.	Image Quality Transfer: Exploiting Bespoke High-Quality Data to Enhance Everyday Acquisitions Daniel C. Alexander ¹ , Darko Zikic ² , Viktor Wottschel ³ , Jiaying Zhang ¹ , Hui Zhang ¹ , Antonio Criminisi ² ¹ Dept. Computer Science, University College London, London, United Kingdom; ² Microsoft Research, Cambridge, United Kingdom; ³ Institute of Neurology, University College London, London, United Kingdom
10:40 0564. Ismen Meert AWARD Summa cum Lande	Improved Diffusion Tractography at the Cortical Boundary Using HARDI Acquisitions with High-b/low-K in White Matter and Low-b/high-K Within and Near the Cortex Qiuyun Fan ¹ , Aapo Nummenmaa ¹ , Thomas Witzel ¹ , Susie Y. Huang ¹ , Jonathan R. Polimeni ¹ , Van J. Wedeen ¹ , Bruce R. Rosen ¹ , Lawrence L. Wald ¹ ¹ Massachusetts General Hospital, Charlestown, MA, United States
11:00 0565.	Accurate Multi-Resolution Discrete Search Method to Estimate the Number and Directions of Axon Packs from DWMRI Ricardo Coronado-Leija ¹ , Alonso Ramirez-Manzanares ¹ , Jose Luis Marroquin ¹ , Rolando Jose Biscay ¹ ¹ Computer Science Department, Centro de Investigacion en Matematicas, Guanajuato, Mexico
11:20 0566.	Panchromatic Sharpening of FOD-Based DEC Maps by Structural T1 Information <i>Thijs Dhollander¹, David Raffelt¹, Robert Elton Smith¹, Alan Connelly¹,</i> ² ¹ The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; ² The Florey Department of Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
11:40 0567.	Inversion Recovery DTI In Vivo at 7T in the Human Brain Silvia De Santis ¹ , ² , Ben Jeurissen ³ , Derek K. Jones ¹ , Yaniv Assaf ⁴ , Alard Roebroeck ² ¹ CUBRIC Cardiff University, Cardiff, United Kingdom; ² Maastricht University, Maastricht, Netherlands; ³ iMinds-Vision Lab, Dept. of Physics, University of Antwerp, Antwerp, Belgium; ⁴ Tel Aviv University, Tel Aviv, Israel

Sparse & Low Rank Reconstruction for Dynamic MRI John Bassett Theatre 102 10:00-12:00 Moderators: Muhammad Usman. Ph.D. & Martin Uecker. Dr Rer Nat

John Bassett The	atre 102 10:00-12:00 Moderators: Muhammad Usman, Ph.D. & Martin Uecker, Dr.Rer.Nat.
10:00 0568.	Rapid Free-Breathing Dynamic Contrast-Enhanced MRI Using Motion-Resolved Compressed Sensing <i>Li Feng¹, Hersh Chandarana¹, Davide Piccini², ³, Justin Ream¹, Daniel K. Sodickson¹, Ricardo Otazo¹</i> ¹ Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ² Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ³ Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
10:12 0569.	High-Resolution Full-Vocal-Tract 3D Dynamic Speech Imaging <i>Maojing Fu¹</i> , ² , <i>Joseph Holtrop</i> , ²³ , <i>Jamie Perry</i> ⁴ , <i>David Kuehn</i> ⁵ , <i>Zhi-Pei Liang</i> ¹ , ² , <i>Bradley Sutton</i> , ²³ ¹ Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ² Beckman Institute for Advanced Science and Technology, Urbana, IL, United States; ³ Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ⁴ Communication Sciences and Disorders, East Carolina University, NC, United States; ⁵ Speech and Hearing Science, University of Illinois at Urbana-Champaign, IL, United States
10:24 0570.	ICTGV Regularization for Highly Accelerated Dynamic MRI Matthias Schloegl ¹ , Martin Holler ² , Kristian Bredies ² , Karl Kunisch ² , Rudolf Stollberger ¹ ¹ Institute of Medical Engineering, Graz University of Technology, Graz, Styria, Austria; ² Department of Mathematics and Scientific Computing, University of Graz, Graz, Styria, Austria
10:36 0571.	Accelerated Cardiac Cine Using Locally Low Rank and Total Variation Constraints Xin Miao ¹ , Sajan Goud Lingala ² , Yi Guo ² , Terrence Jao ¹ , Krishna S. Nayak, ¹² ¹ Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; ² Electrical Engineering, University of Southern California, Los Angeles, CA, United States

10:48 0572.	Single Breath Hold Whole Heart Cine MRI with Iterative Groupwise Cardiac Motion Compensation and Sparse Regularization (Kt-WiSE) Javier Royuela-del-Val ¹ , Muhammad Usman ² , Lucilio Cordero-Grande ² , Federico Simmross-Wattenberg ¹ , Marcos Martín-Fernández ¹ , Claudia Prieto ² , Carlos Alberola-López ¹ ¹ Laboratorio de Procesado de Imagen, Universidad de Valladolid, Valladolid, Spain; ² Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
11:00 0573. Isknew Merit Avkard Summa cum tande	Highly Accelerated Brain DCE MRI with Direct Estimation of Pharmacokinetic Parameter Maps <i>Yi Guo¹, Yinghua Zhu¹, Sajan Goud Lingala¹, R. Marc Lebel², Krishna S. Nayak¹</i> ¹ Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ² GE Healthcare, Calgary, Alberta, Canada
11:12 0574.	Clinically Practical Sparse Reconstruction for 4D Prostate DCE-MRI: Algorithm and Initial Experience Joshua Trzasko ¹ , Eric Borisch ¹ , Akira Kawashima ¹ , Adam Froemming ¹ , Roger Grimm ¹ , Armando Manduca ¹ , Phillip Young ¹ , Stephen Riederer ¹ ¹ Mayo Clinic, Rochester, MN, United States
11:24 0575.	Beyond Low Rank + Sparse: Multi-Scale Low Rank Reconstruction for Dynamic Contrast Enhanced Imaging <i>Frank Ong¹, Tao Zhang², Joseph Cheng², Martin Uecker³, Michael Lustig³</i> ¹ Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; ² Stanford University, CA, United States; ³ University of California, Berkeley, CA, United States
11:36 0576.	k-T SPARKS: Dynamic Parallel MRI Exploiting Sparse Kalman Smoother Suhyung Park ¹ , Jaeseok Park ² ¹ Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Gyeong Gi-Do, Korea; ² Biomedical Imaging and Engineering Lab., Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Gyeong Gi-Do, Korea
11:48 0577.	Compressed-Sensing Dynamic Imaging with Self-Learned Nonlinear Dictionary <i>Ukash Nakarmi^l, Yanhua Wang^l, Jingyuan Lyu^l, Jie Zheng², Leslie Ying^l, ³</i> ¹ Dept. of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ² Dept. of Radiology, Washington University, School of Medicine, MO, United States; ³ Dept. of Biomedical Engineering, State University of New York at Buffalo, NY, United States
Educational (Course

MRI & Radiation Therapy Organizers: Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, M.D., Ph.D., M.Ed., FRCR

Room 718 A	10:00-12:00	Moderators: Michael Bock, Ph.D. & Jessica Robbins, M.D.
10:00	Patient Preparation, Safety & MR Jessica Robbins	I Protocol Considerations
10:30	Imaging Needs for Radiation Ther <i>Uulke A. van der Heide</i>	ару
11:00	MRI for Motion Management in R <i>Amit Sawant</i>	adiation Therapy
11:30	MRI Guided Radiation Therapy Jan J.W. Lagendijk	
12:00	Adjournment & Meet the Teacher	S

Combined Educational & Scientific Session Cartilage-Imaging Techniques

Organizers: Eric Y. Chang, M.D., Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Regatte, Ph.D. & Siegfried Trattnig, M.D. Room 718 B 10:00-12:00 Moderators: Richard Kijowski, M.D. & Ravinder Reddy, Ph.D. 10:00 **Advanced Quantitative Imaging Techniques** Feliks Kogan 10:30 **Clinical Applications** Siegfried Trattnig 0578. T2 Texture Change to Articular Cartilage Over 6 Months Is Associated with Change to Knee Health and 11:00 Cartilage Thickness Over 2 Years Following ACL Injury and Reconstruction Ashley A. Williams¹, Carl S. Winalski², Constance R. Chu¹ ¹Orthopaedic Surgery, Stanford University, Stanford, CA, United States; ²Imaging Institute and Department Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States 0579. Quantitative ADC Mapping Using DESS with Decreased T1 and Noise Sensitivity 11:12 Bragi Sveinsson¹, Catherine Moran¹, Daehyun Yoon¹, Garry Gold¹, Brian Hargreaves¹ magna cum laude ¹Radiology, Stanford University, Stanford, CA, United States 11:24 0580. Gray Level Co-Occurrence Matrix Approach for T2 Analysis of Cartilage in Knee Osteoarthritis Arttu Peuna¹, Joonas Hekkala², Marianne Haapea³, Jana Podlipska, ¹², Miika T. Nieminen¹, ³, Simo Saarakkala, ²³, Eveliina Lammentausta¹, ¹Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; ²Department of Medical Technology, University of Oulu, Oulu, Finland; ³Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland 11:36 0581. Analysis of the Relationship Between 3D Knee Bone Shape and the Progression of T10 and T2 6 Month and 1 Year After ACL Reconstruction magna cum laude Valentina Pedoia¹, Favian Su¹, Drew Lansdown¹, Richard Souza¹, Benjamin Ma¹, Xiaojuan Li¹ ¹UCSF, San Francisco, CA, United States 11:48 0582. Evaluation of Meniscal Pathology Using Quantitative Magnetic Resonance Imaging Eric Y. Chang¹,², Reni Biswas², Betty Tran², Sheronda Statum², Jiang Du², Won C. Bae², Christine B. Chung¹,² ¹Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States; ²Department of Radiology, University of California, San Diego Medical Center, San Diego, CA, United States 12:00 **Adjournment & Meet the Teachers Combined Educational & Scientific Session** "Please Hold Still Next Time," Challenges & Solutions in Patient Adherence Organizers: Ben A. Kennedy, B.App.Sc., Mst. & James G. Pipe, Ph.D. 10:00-12:00 Room 801 A/B Moderators: Jalal B. Andre, M.D. & Ryan K. Robison, Ph.D. 10:00 Vendor & Research Solutions Julian Maclaren

10:24 Imaging in the Trenches: The Technologist's Perspective Vera K. Kimbrell

10:48 0583. Prospective Motion Correction with FID-Triggered Image Navigators

Maryna Babayeva¹,², Pavel Falkovskiy¹,², Tom Hilbert¹,², Guillaume Bonnier¹,², Bénédicte Maréchal¹,², Reto Meuli, Jean-Philippe Thiran², Rolf Gruetter³, Gunnar Krueger¹,², Tobias Kober¹,² ¹Siemens ACIT - CHUV Radiology, Siemens Healthcare IM BM PI, & Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; ²LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ³CIBM, École Polytechnique Fédérale de Lausanne and University of Geneva, Switzerland

11:00	0584.	Projection-Based 2D/3D Registration of Collapsed FatNav Data for Prospective Motion Correct <i>Enrico Avventi¹, Mathias Engström¹, ², Ola Norbeck¹, Magnus Mårtensson, ²³, Stefan Skare¹, ²</i> ¹ Dept. of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; ² Dept. of Clinical Neuroscience, F Stockholm, Sweden; ³ EMEA Research & Collaboration, GE Science Laboratory, GE Healthcare, Stockholm, Swe	ion Carolinska Institutet, den
11:12	0585.	A Correlation Based Approach to Respiratory Self Navigation for Multi Channel Non-Cartesian Gregory R. Lee ¹ , ² , Yong Chen ³ , Vikas Gulani, ³⁴ ¹ Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ² University of Cincinnat United States; ³ Radiology, University Hospitals Case Medical Center, Cleveland, OH, United States; ⁴ Radiology, Cincinnation, Cinci	n MRI ati, Cincinnati, OH, Case Western
11:24 ISMRM MERI SUMMA CUI	0586.	Autofocusing Motion Correction with 3D Image-Based Navigators for Abdominal Imaging <i>Jieying Luo¹, Nii Okai Addy¹, R. Reeve Ingle¹, Joseph Y. Cheng¹, Bob S. Hu², Dwight G. Nishimura¹</i> ¹ Electrical Engineering, Stanford University, Stanford, CA, United States; ² Palo Alto Medical Foundation, Palo Al States	to, CA, United
11:36	0587.	Markerless Motion Correction in MRI <i>Rasmus Ramsbøl Jensen</i> ¹ , ² , <i>Claus Benjaminsen</i> ¹ , ² , <i>Adam Espe Hansen</i> ² , <i>Rasmus Larsen</i> ¹ , <i>Oline Vinte</i> ¹ DTU Compute, Technical University of Denmark, Lyngby, Copenhagen, Denmark; ² Department of Clinical Phys Medicine & PET, Rigshospitalet, Copenhagen, Denmark	er Olesen ¹ , ² iology, Nuclear
11:48 ISMRM MERIT Magna cun	0588. ^{AWARD} 1 laude	Technical Feasibility and Potential Applications of an Optical Time-Of-Flight Camera Mounted Scanner <i>Guido P. Kudielka¹, ², Anne Menini¹, Pierre-André Vuissoz², ³, Jacques Felblinger³, ⁴, Florian Wiesing</i> ¹ GE Global Research, Munich, BY, Germany; ² Imagerie Adaptative Diagnostique et Interventionnelle, Université Lorraine, France; ³ U947, INSERM, Nancy, Lorraine, France; ⁴ CIC-IT 1433, INSERM, Nancy , Lorraine, France	l Inside the MR ger ¹ de Lorraine, Nancy,
12:00		Adjournment & Meet the Teachers	
Hands- Room 71	On W 1	Torkshop 1 – Siemens Healthcare GmbH 10:00-12:00	(no CME credit)
Hands- Room 70	On W	Torkshop 1 - GE Healthcare 10:00-12:00	(no CME credit)
Hands- Room 70	On W 7	orkshop 1 - Philips Healthcare 10:00-12:00	(no CME credit)
Gold Co GE Hea Plenary H	orpora althca Iall FG	ate Symposium re Gold Corporate Symposia 12:15-13:15	(no CME credit)
Tradition	onal P n Hall	Poster Session: Neuro B 13:30-15:30	(no CME credit)
Traditi Exhibition	onal P n Hall	Poster Session: Perfusion 13:30-15:30	(no CME credit)

Electronic Poster Session: Musculoskeletal

Exhibition Hall 13:30-15:30

Study Group Session Musculoskeletal MR

Reception Hall 104 BCD 13:30-15:30

Study Group Session MR Engineering Constitution Hall 105 13:30-15:30

Power Pitch Session: Advances in fMRI

Power Pitch Theatre, Exhibition Hall 13:30-14:30

Moderators: Karla L. Miller, Ph.D. & T.B.A.

0589. Individual-Subject Mapping of Functional Networks from Sparse Spontaneous BOLD Events Cesar Caballero Gaudes¹, Ziad S Saad², Mathijs Raemaekers³, Nick F. Ramsey³, Natalia Petridou⁴ ¹BCBL. Basque Center on Cognition, Brain and Language, Donostia, Guipuzcoa, Spain; ²Statistical and Scientific Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; ³Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery,, UMC Utrecht, Utrecht, Netherlands; ⁴Radiology, Imaging Division, UMC Utrecht, Utrecht, Netherlands

(no CME credit)

(no CME credit)

(no CME credit)

(no CME credit)

0590. A Machine Learning Case for a Higher Order Control Plexus in the Frontal Pole Cortex

Nishant Zachariah¹, Zhihao Li², ³, Jason Langley², Shiyang Chen², Mark Davenport¹, Justin Romberg¹, Xiaoping Hu² ¹Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; ²Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States; ³Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong, China

0591. Calibrating BOLD Latency with High Temporal Resolution Precision Using Magnetic Resonance Inverse Imaging

Ruo-Ning Sun¹, Ying-Hua Chu¹, Yi-Cheng Hsu¹, Wen-Jui Kuo², Fa-Hsuan Lin¹ ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan

0592. Cortical Depth Dependence of Physiological Fluctuations and Whole-Brain Resting-State Functional Connectivity at 7T

Jonathan R. Polimeni¹, Marta Bianciardi¹, Boris Keil¹, Lawrence L. Wald¹, ² ¹Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; ²Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

- **0593.** 2D EPI at 9.4T with Slice-Specific Spokes Pulse RF Excitation for B1+ Homogenisation Benedikt A Poser¹, Desmond HY Tse¹, ² ¹Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ²Department of Radiology, Maastricht University, Maastricht, Netherlands
- 0594. Relationships Between Excitation-Inhibition Balance and Whole-Brain Oxygen Extraction Fraction in Human Brain

Swati Rane¹, Brandon Ally², Emily Mason², Subechhya Pradhan³, Erin Hussey², Kevin Waddell³, Hanzhang Lu⁴, ⁵, Manus Donahue, ²³

¹Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Neurology, Vanderbilt University, Nashville, TN, United States; ³Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Radiology, UT Southwestern, Dallas, TX, United States; ⁵Psychiatry, UT Southwestern, Dallas, TX, United Sta

0595. Dynamic Brain States Sequential Modelling Based on Spontaneous Brain Activity of Resting-State fMRI Shiyang Chen¹, Jason Langley¹, Xiaoping Hu¹ The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States

0596. Failure of the "standard" fMRI Analysis in the Visual Cortex Using a Smooth Visual Stimulus

¹⁵ David Provencher¹, Andreas Bartels², Yves Bérubé-Lauzière³, ⁴, Kevin Whittingstall, ⁴⁵ ¹Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada; ²Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany; ³Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada; ⁴Centre d'imagerie moléculaire de Sherbrooke, (CIMS), Université de Sherbrooke, Sherbrooke, QC, Canada; ⁵Department of Diagnostic Radiology, Université de Sherbrooke, Sherbrooke, QC, Canada

0597. BOLD Calibration with Interleaved Susceptometry-Based Oximetry

Zachary B. Rodgers¹, Erin K. Englund², Maria A. Fernandez-Seara³, Felix W. Wehrli¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; ³Neuroimaging Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain

0598. Multimodal Validation of Physiological MRI: Triple Oxygen PET and NIRS Daniel Bulte¹, Hannah Hare¹, Nazneen Sudhan², Joanna Simpson², Joseph Donnelly², Xiuyun Liu², Jonathan Coles² ¹FMRIB, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²WBIC, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

0599. Measurement of μ-Opioid Receptor Driven Neurovascular Coupling Signals Using Simultaneous PET/MRI Hsiao-Ying Wey^l, Jacob M. Hooker^l, Michael S. Placzek^l, ², Bruce R. Rosen^l, Joseph B. Mandeville^l ¹A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ²McLean Hospital, Harvard Medical School, Belmont, MA, United States

0600. Simultaneous Multi-Slice Functional CBV Measurements at 7 T

Laurentius Huber¹, Dimo Ivanov², Maria Guidi¹, Robert Turner¹, Kâmil Uludağ², Harald E. Möller¹, Benedikt A. Poser²

¹Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; ²Maastricht Brain Imaging Centre, Netherlands

0601. Distinct Neurophysiological Correlates of Global Vs. Local Resting State fMRI Networks

- Haiguang Wen⁷, Zhongming Liu, ¹² ¹Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States; ²Biomedical Engineering, Purdue University, West Lafayette, IN, United States
 - **0602.** Functional Pathways in Monkey Brain Mapped Using Resting State Correlation Tensors *Tung-Lin Wu¹*, *Feng Wang¹*, ², *Li Min Chen*, ²³, *Adam W. Anderson*, ²³, *Zhaohua Ding¹*, ², *John C. Gore*, ²³ ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
 - **0603.** Subcortical Grey Matter Susceptibility Mapping from Standard fMRI Studies Hongfu Sun¹, Peter Seres¹, Alan H. Wilman¹ ¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada

Cancer: Therapy Response & Perfusion

magna cum laude

Room 701 A	13:30-15:30	Moderators: Nandita M. DeSouza, M.D., F.R.C.R. & Natalie J. Serkova, Ph.D.
13:30	Introduction	

13:42 00	604.	Quantitative DCE-MRI Evaluation of Breast Cancer Response to Neoadjuvant Chemotherapy Alina Tudorica ¹ , Karen Y. Oh ¹ , Stephen Y-C Chui ¹ , Nicole Roy ¹ , Megan L. Troxell ¹ , Arpana Naik ¹ , Kathleen A. Kemmer ¹ , Yiyi Chen ¹ , Megan L. Holtorf ¹ , Aneela Afzal ¹ , Charles S. Springer ¹ , Xin Li ¹ , Wei Huang ¹ ¹ Oregon Health & Science University, Portland, OR, United States
13:54 00	605.	Dynamic-Contrast-Enhanced MRI and Dynamic Tensor Imaging (DTI) for the Early Detection of Anti- Angiogenic Effect and Vessel "Normalization" in Human Breast Cancer Treated with Neoadjuvant Chemotherapy Thian Ng ¹ , ² , Bo Zhang ³ , Dennis Cheong, Limiao Jiang ⁴ , Bingwen Zheng ⁵ , Soo Chin Lee ⁶ ¹ National University of Singapore, S'pore, Singapore, Singapore, ² CIRC/A*STAR, S'pore, Singapore, Singapore; ³ CIRC/A*STAR, Singapore, Singapore; ⁴ NUS/CIRC, S'pore, Singapore; ⁵ NUS/NERI, S'pore, Singapore; ⁶ NUS, S'pore, Singapore
14:06 00	606.	Optimization of DCE-MRI Measurement Parameters for Predicting Response to Neoadjuvant Chemotherapy by Breast Cancer Subtype <i>Wen Li¹, Wei-Ching Lo¹, Ella F. Jones¹, David C. Newitt¹, John Kornak², Lisa J. Wilmes¹, Nola M. Hylton¹</i> ¹ Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ² Epidemiology and Biostatistics, UCSF, San Francisco, CA, United States
14:18 00	607.	3D Texture Analysis of DCE-MRI Pharmacokinetic Parametric Maps for Early Prediction of Breast Cancer Therapy Response <i>Guillaume Thibault¹, Alina Tudorica¹, Aneela Afzal¹, Stephen Y-C Chui¹, Arpana Naik¹, Megan L. Troxell¹, Kathleen</i> <i>A. Kemmer¹, Karen Y. Oh¹, Nicole Roy¹, Megan L. Holtorf⁴, Wei Huang¹, Xubo Song¹</i> ¹ Oregon Health & Science University, Portland, OR, United States
14:30 00	608.	Neoadjuvant Chemotherapy Treatment Prediction: A Classification Model Based Approach Utilising Pre- Treatment DCE-MRI Martin D. Pickles ¹ , Peter Gibbs ¹ , Martin Lowry ¹ , Lindsay W. Turnbull ¹ ¹ Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull, East Yorkshire, United Kingdom
14:42 00	609.	Improved Fitting of Breast Pharmacokinetic Parameters Using Dispersion Models Subashini Srinivasan ¹ , Brian A. Hargreaves ¹ , Bruce L. Daniel ¹ ¹ Department of Radiology, Stanford University, Palo Alto, CA, United States
14:54 00 Isama ment avar magna cum laub	610.	High Plasma Flow as Measured Using DCE-MRI and the 2CXM Is Associated with Increased Disease-Free Survival in Patients with Carcinoma of the Cervix Ben R. Dickie ¹ , Lucy E. Kershaw ¹ , Stephanie Withey ² , Bernadette M. Carrington ³ , Catharine M. West ⁴ , Chris J. Rose ⁵ ¹ Medical Physics and Engineering, Christie NHS Foundation Trust, Manchester, United Kingdom; ² RRPPS, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom; ³ Department of Radiology, Christie NHS Foundation Trust, Manchester, United Kingdom; ⁴ Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom; ⁵ Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom
15:06 00	611.	Outcome Results of In-Bore MRI-Guided Laser Ablation for Malignant Renal Neoplasms: 1-Year Median Follow Up Analysis of 23 Treated Tumors <i>Sherif G. Nour¹, ², Andrew David Nicholson, Tracy E. Powell, ², Viraj Master</i> ¹ Emory University, Atlanta, GA, United States; ² Interventional MRI Program, Emory University, GA, United States
15:18 00	612.	Noninvasive Assessment of Functional Tumor Microvasculature and Drug Delivery Associated with Angiotensin Receptor Blockade in Pancreatic Cancer <i>Vidhya Kumar¹</i> , ² , <i>Yves Boucher³</i> , <i>Diego Ferreira¹</i> , <i>Hao Liu³</i> , <i>Rakesh Jain³</i> , <i>Alexander R. Guimaraes¹</i> , ⁴ ¹ Radiology, Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ² The Ohio State University, Columbus, OH, United States; ³ Radiation Oncology/Steele Lab for Tumor Biology, Massachusetts General Hospital, Charlestown, MA, United States; ⁴ Radiology, Oregon Health Sciences University, Portland, OR, United States

Diffusion Weighted MRS & Compartmental Modeling

<u>Room 70</u>	1 B	13:30-15:30 <i>Moderators</i> :Itamar Ronen, Ph.D. & M. Albert Thomas, Ph.D.
13:30		Introduction
13:42	0613.	Resolving Cellular Specific Microarchitectures Using Double Pulsed Field Gradient Weighted, Relaxation- Enhanced Magnetic Resonance Spectroscopy Noam Shemesh ¹ , Jens T. Rosenberg ² , ³ , Jean-Nicolas Dumez ⁴ , Lucio Frydman, ²⁵ , Samuel C. Grant ² , ³ ¹ Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal; ² National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, United States; ³ Chemical & Biomedical Engineering, Florida State University, Tallahassee, FL, United States; ⁴ Institut de Chimie des Substances Naturelles, CNRS, UPR2301, Gif-sur-Yvette, France; ⁵ Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
13:54	0614.	Single-Shot Diffusion Tensor Spectroscopic Imaging in Human Brain <i>Stefan Posse¹</i> , ² , <i>Kevin F. Tagne³</i> , <i>Stephen R. Dager⁴</i> ¹ Neurology, U New Mexico, Albquerque, NM, United States; ² Physics and Astronomy, U New Mexico, Albuquerque, NM, United States; ³ Neurology, U New Mexico, Albuquerque, NM, United States; ⁴ Radiology, U Washington, Seattle, WA, United States
14:06	0615.	Quantification of Mean Cell Size and Intracellular Volume Fraction Using Temporal Diffusion Spectroscopy <i>Xiaoyu Jiang¹, Hua Li¹, Ping Zhao¹, Jingping Xie¹, John C. Gore¹, Junzhong Xu¹</i> ¹ Institute of Imaging Science, vanderbilt university, nashville, TN, United States
14:18 ISMRM MERI Magna cun	0616.	Probing Metabolite Diffusion at Ultra-Short Diffusion Times in the Mouse Brain Using Optimized Oscillating Gradients and a "short" Echo Time Strategy Clemence Ligneul ¹ , ² , Chloé Najac ¹ , ² , Julien Flament ¹ , ³ , Julien Valette ¹ , ² ¹ CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France; ² CNRS URA 2210, Fontenay-aux-Roses, France; ³ Inserm US27, CRC- MIRCen, Fontenay-aux-Roses, France
14:30 Isaan Meen Magna cun	0617.	Diffusion-Weighted Spectroscopy of N-Acetylaspartate: A Novel Technique to Specifically Explore Neuroaxonal Damage in Multiple Sclerosis Francesca Branzoli ¹ , ² , Benedetta Bodini ¹ , ² , Romain Valabrègue ¹ , ² , Itamar Ronen ³ , Daniel Garcia-Lorenzo ¹ , ² , Bruno Stankoff ¹ , ² , Stephane Lehéricy ¹ , ² ¹ Institut du Cerveau et de la Moelle épinière – ICM, Centre de Neuroimagerie de Recherche – CENIR, Paris, France; ² Sorbonnes Université, Université Pierre et Marie Curie and Inserm UMR-S1127; CNRS, UMR 7225, Paris, France; ³ C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands, Netherlands
14:42	0618.	 Separating Water and Olefinic Fat Peaks Using Diffusion-Weighted MRS and Diffusion Constraint Fitting to Measure Vertebral Bone Marrow Fat Unsaturation Stefan Ruschke¹, Michael Dieckmeyer¹, Hendrik Kooijman², Axel Haase³, Ernst J. Rummeny¹, Jan S. Bauer⁴, Thomas Baum¹, Dimitrios C. Karampinos¹ ¹Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Bayern, Germany; ²Philips Healthcare, Hamburg, Germany; ³Zentralinstitut für Medizintechnik, Technische Universität München, Garching, Bayern, Germany; ⁴Neuroradiology, Technische Universität München, Munich, Bayern, Germany
14:54	0619.	<i>In Vivo</i> MR Imaging and Spectroscopy Provides Insight Into Malignant Transformation and <i>IDH</i> -Mutation Status in Diffuse, Low-Grade Glioma <i>Llewellyn Jalbert¹, Evan Neill², Joanna Phillips³, Annette Molinaro³, Susan Chang³, Sarah Nelson¹, ²</i> ¹ Joint Graduate Program in Bioengineering, UCSF, San Francisco, CA, United States; ² Radiology & Biomedical Imaging, UCSF, CA, United States; ³ Neurological Surgery, UCSF, CA, United States
15:06	0620. 1 award 1 laude	Towards a Refined Bi-Compartmental Model of Brain Metabolism Using Bonded Cumomers Analysis of ¹³C MRS Spectra <i>Brice Tiret¹</i> , ² , <i>Vincent Lebon¹</i> , ² , <i>Julien Valette¹</i> , ² , <i>Pierre-Gilles Henry³</i> ¹ CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France; ² CNRS, URA 2210, Fontenay-aux-Roses, France; ³ CMRR, Minneapolis, MN, United States

15:18 0621.	Improved Cardiac 1H-MR Spectroscopy at 3 T Using High Permittivity Materials
ismem merit award magna cum laude	Paul de Heer ¹ , Maurice B. Bizino, Maarten J. Versluis ¹ , Andrew G. Webb ¹ , Hildo J. Lamb
	¹ CJ Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands

RF Coil Arrays Room 714 A/B 13:30-15:30 Moderators: Ryan J. Brown, Ph.D. & Ravi S. Menon, Ph.D. 13:30 0622. A Modular 16 Ch. Transmit/32 Ch. Receive Array for Parallel Transmission and High Resolution fMRI at 7 Tesla Gregor Adriany¹, Scott Schillak², Matt Waks², Brandon Tramm², Andrea Grant¹, Essa Yacoub¹, Tommy Vaughan¹, Cheryl Olman¹, Sebatian Schmitter¹, Kamil Ugurbil¹ ¹Medical School, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Virtumed LLC, MN, United States 13:42 0623. An Parallel-Transmit, Parallel-Receive Coil for Routine Scanning on a 7T Head-Only Scanner Kyle M. Gilbert¹, Joseph S. Gati¹, Esther Kho¹, ², L Martyn Klassen¹, Peter Zeman¹, Ravi S. Menon¹ ¹The University of Western Ontario, London, Ontario, Canada; ²University of Groningen, Groningen, Netherlands **0624.** 8-Channel Double Tuned ¹³C-¹H Transceiver Phased Array for ¹³C MRS in Human Brain at 7T Guillaume Donati¹, Ozlem Ipek², Eulalia Serés Roig³, Rolf Gruetter, ³⁴ 13:54 ¹Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ²Centre d'Imagerie Biomédicale, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ³Laboratory of Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ⁴Department of Radiology, Universities of Lausanne and Geneva, Lausanne, Geneva, Switzerland 14:06 0625. A 10-Channel TMS-Compatible Planar RF Coil Array for Human Brain MRI at 3T Pu-Yeh Wu¹, Ying-Hua Chu¹, Aapo Nummenmaa², Thomas Witzel², Shang-Yueh Tsai³, Wen-Jui Kuo⁴, Fa-Hsuan Lin¹, ² magna cum laude ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; ³Institute of Applied Physics, National Chengchi University, Taipei, Taiwan; ⁴Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan 14:18 0626. 7T 22ch Wrap-Around Coil Array for Cervical Spinal Cord Imaging Bei Zhang¹, Priti Balchandani¹, Zahi A. Fayad¹, Joo-won Kim¹, Christopher Cannistraci¹, Bernd Stoeckel², Junqian Xu^1 ¹Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States; ²Siemens Medical Solution, New York, United States 0627. A 7 T Spine Array Combining Dipole Transmitters and Loop Receivers 14:30 Qi Duan¹, Govind Nair², Natalia Gudino¹, Jacco A. de Zwart¹, Peter van Gelderen¹, Joseph Murphy-Boesch¹, Daniel S. Reich², Jeff H. Duyn¹, Hellmut Merkle¹ ¹Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, MD, United States; ²Division of Neuroimmunology and Neurovirology, NINDS, National Institutes of Health, Bethesda, MD, United States 14:42 0628. A Four Channel Transmit Receive "Loopole" Array for Spine Imaging at 7.0 Tesla Karthik Lakshmanan¹,², Martijn Cloos¹,², Ryan Brown¹,², Timothy Shepherd³,⁴, Graham C. Wiggins¹,² ¹The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, Newyork, NY, United States; ²The Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, Newyork, NY, United States; ³Radiology, NYU Langone Medical Center, NY, United States; ⁴The Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, NY, United States

0629. Z-Direction B₁⁺ Homogenization Using B₁-Control Receive Array Coil and B₁ Rectifying Fin for L-Spine 14:54 Imaging at 3T Yukio Kaneko¹, Yoshihisa Soutome¹,², Hideta Habara¹,², Yoshitaka Bito², Hisaaki Ochi¹

¹Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan; ²Hitachi Medical Corporation, Kashiwa, Chiba, Japan
15:06 0630. An Integrated 8-Channel Tx/Rx Body Coil for 7 Tesla Whole-Body MRI Stephan Orzada¹, Andreas K. Bitz², Marcel Gratz¹, ³, Sören Johst¹, Maximilian N. Völker¹, Oliver Kraff¹, Dominik Beyer¹, Tristan Mathiebe¹, Ashraf Abuelhaija⁴, Klaus Solbach⁴, Mark E. Ladd² ¹Erwin L. Hahn Institute for MRI, Essen, NRW, Germany; ²Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ³High-field and Hybrid MR Imaging, University Clinic Essen, Essen, Germany; ⁴RF Technology, University Duisburg-Essen, Duisburg, Germany 15:18 0631. Combined 8-Channel Transceiver Fractionated Dipole Antenna Array with a 16-Channel Loop Coil Receive Array for Body Imaging at 7 Tesla Ingmar J. Voogt¹, Dennis W.J. Klomp¹, Hans Hoogduin¹, Mariska P. Luttje¹, Peter R. Luijten¹, Cornelis A.T. van den Berg¹, Alexander J.E. Raaijmakers¹

¹Imaging Division, UMC Utrecht, Utrecht, Netherlands

Body/Fetal/Female Pelvis

 Room 716 A/B
 13:30-15:30
 Moderators: Andrea Righini, M.D., & T.B.A.

 13:30
 0632.
 Fetal Cardiac MRI and Left Ventricular Function Assessment Using a New Gating Strategy Based on Doppler

 Ultrasound: Preliminary Results
 Ventricular Strategy Based on Doppler

Jin Yamamura¹, Björn Schönnagel¹, Manuela Tavares de Sousa¹, Chressen Much¹, Friedrich Ueberle², Gerhard Adam¹, Fabian Kording¹, Fabian Kording¹

¹Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Biomedical Technology Fakultät Life Sciences / Medizintechnik, University of Applied Sciences Hamburg, Hamburg, Germany

13:42 0633. Human Placental and Fetal Response to Maternal Hyperoxygenation in IUGR Pregnancy as Measured by BOLD MRI

BOLD MKI Jie Luo¹, Esra Abaci Turk¹, Tobias Hahn¹, María Teulón González, ¹², Borjan Gagoski³, Carolina Bibbo⁴, Arvind Palanisamy⁵, Clare M. Tempany-Afdhal⁶, Ángel Torrado-Carvajal, ¹⁷, Norberto Malpica, ¹⁷, Judith Martínez González⁸, Julian N. Robinson⁴, Juan A. Hernández-Tamames, ¹⁷, Elfar Adelsteinsson, ¹⁹, Patricia Ellen Grant³ ¹Madrid-MIT M+Vision Consortium in RLE, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Department of Obstetrics and Gynecology, Hospital Universitario de Fuenlabrada, Madrid, Spain; ³Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; ⁴Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Boston, MA, United States; ⁵Department of Anaesthesia, Brigham and Women's Hospital, Boston, MA, United States; ⁶Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; ⁷Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain; ⁸Department of Radiology, Hospital Universitario de Fuenlabrada, Madrid, Spain; ⁹Department of Electrical Engineering and Computer Science, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

13:54 0634. Diffusion Weighted Imaging in Accurate Classification of Complex Ovarian Masses: A Whole-Tumor Heterogeneity Quantification Approach

Anahita Fathi Kazerooni¹, ², Mojtaba Safari¹, Hamidreza Haghighatkhah³, Mahnaz Nabil⁴, Hamidreza Saligheh Rad¹, ² ¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Medical Physics and Biomedical Engineering, School of Medicine, , Tehran University of Medical Sciences, Tehran, Iran; ³Department of Radiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ⁴Department of Statistics, Tarbiat Modares University, Tehran, Iran

14:06 0635. Choline Detection in Human Cervical Cancer Using an Internal Antenna and External Antennas at 7T. Irene Maria Louise van Kalleveen¹, Jaap P. Hoogendam¹, Alexander J.E. Raaijmakers¹, Fredy Visser¹, Hugo Kroeze¹, Peter R. Luijten¹, Wouter B. Veldhuis¹, Dennis W.J. Klomp¹ ¹UMC Utrecht, Utrecht, Netherlands

14:18 0636. Separation of Type and Grade in Cervical Tumours Using Non-Mono-Exponential Models of Diffusion-Weighted MRI

Jessica M. Winfield¹, Katherine Downey², Matthew R. Orton², John H. Shepherd³, Veronica A. Morgan¹, Sharon L. Giles¹, Thomas E J Ind³, Nandita M. deSouza¹, ²

¹MRI Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; ²CRUK Cancer Imaging Centre, Institute of Cancer Research, Sutton, Surrey, United Kingdom; ³Department of Gynecology, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom

14:30 0637. Fetal Hemodynamics of Intrauterine Growth Restriction by Phase Contrast MRI and MR Oximetry

mengyuan zhu¹, ², Sujana Madathil¹, Sarah Keating³, Natasha Milligan¹, Steven Miller⁴, Rory Windrim⁵, Sharon Portnoy⁶, John G. Sled⁷, Christopher Macgowan⁷, John Kingdom⁸, Mike Seed¹

¹Heart Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; ²Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; ³Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; ⁴Neurology, The Hospital for Sick Children, Toronto, Ontario, Canada; ⁵Maternal-Fetal Medicine, Mount Sinai Hospital, Ontario, Canada; ⁶Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; ⁷Physiology & Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; ⁸Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada

14:42 0638. Non-Contrast Magnetic Resonance Angiography of the Fetal Head and Neck Vessels

ISMRM MERIT AWARD

Uday Krishnamurthy¹, ², Jaladhar Neelavalli¹, ², Pavan Kumar Jella¹, Ehsan Hamtaei¹, Swati Mody¹, Brijesh Kumar Yadav¹, ², Edgar Hernandez-Andrade³, ⁴, Lami Yeo³, ⁴, Maria D. Cabrera¹, Ewart Mark Haacke¹, ², Sonia S. Hassan³, ⁴, Roberto Romero⁴

¹Department of Radiology, Wayne State University, Detroit, MI, United States; ²Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States; ³Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States; ⁴Perinatology Research Branch, NICHD, NIH, DHHS, Wayne State University, Detroit, MI, United States

14:54 0639. Automated ROI Extraction of Placental and Fetal Regions for 30 Minutes of EPI BOLD Acquisition with Different Maternal Oxygenation Episodes

Esra Abaci Turk¹, Jie Luo¹, Angel Torrado-Carvajal, ¹², Tobias Hahn¹, Maria Teulon Gonzalez, ¹³, Borjan Gagoski⁴, Carolina Bibbo⁵, Julian N. Robinson⁵, Juan A. Hernandez-Tamames, ¹², Patricia Ellen Grant⁴, Elfar Adalsteinsson, ¹⁶, Javier Pascau, ¹⁷, Norberto Malpica, ¹²

¹Madrid-MIT M+Vision Consortium in RLE, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain; ³Department of Obstetrics and Gynecology, Hospital Universitario de Fuenlabrada, Madrid, Spain; ⁴Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; ⁵Department of Obstetrics and Gynecology, Division of Maternal and Fetal Medicine, Brigham and Women's Hospital, Boston, MA, United States; ⁶Dept. of Electrical Engineering and Computer Science, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁷Department of Biomedica Eng., Universidad Carlos III de Madrid – Instituto de Investigacion Sanitaria Gregorio Maranon, Madrid, Spain

15:06 0640. Comparison of Optimized Endovaginal Vs. External Array Coil T2-W and Diffusion-Weighted Imaging Techniques for Detecting Suspected Early Stage (Ia/Ib1) Uterine Cervical Cancer

Kate Downey¹, Veronica Morgan¹, Alison MacDonald¹, Sharon Giles¹, John Shepherd², Thomas Ind², Ayoma Attygalle³, Steve Hazell³, Nandita deSouza¹

¹CRUK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ²Gynaecological Surgery, The Royal Marsden Hospital, London, United Kingdom; ³Histopathology, The Royal Marsden Hospital, London, United Kingdom

15:18 0641. Assessment of Fetal Fat Distribution with Water-Fat MRI

Craig Olmstead¹, Lanette Friesen-Waldner², Abraam Soliman³,⁴, Kevin Sinclair², Barbra de Vrijer⁵, Charles McKenzie², ³

¹Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; ²Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ³Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; ⁴Department of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada; ⁵Department of Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada

Developing Q	ang mg man	
Constitution Hall	107 13:30-15:30	Moderators: Christopher D. Kroenke, Ph.D. & Pratik Mukherjee, M.D., Ph.D.
13:30 0642.	In-Utero Localized Diffu	sion MRI of the Embryonic Mouse Brain Microstructure and Injury
ismen merit award Summa cum laude	Dan Wu ¹ , Jun Lei ² , Jason ¹ Biomedical Engineering, Joh Johns Hopkins University Sch United States	<i>Rosenzweig², Irina Burd², Jiangyang Zhang³</i> ins Hopkins University School of Medicine, Baltimore, MD, United States; ² Gynecology and Obstetrics, hool of Medicine, MD, United States; ³ Radiology, Johns Hopkins University School of Medicine, MD,

13:42 0643. Longitudinal in Utero Characterization of Cerebral Cortical Surface Area, Curvature and Fractional Anisotropy in the Rhesus Monkey Xiaojie Wang¹, Colin Studholme², Christopher D. Kroenke¹

¹Oregon Health & Science University, Portland, OR, United States; ²University of Washington, Seattle, WA, United States

Developing & Aging Brain

13:54 0644.	Full 3D Mapping of T2* Relaxation Times from Mid to Late Gestation of the Normal Fetal Brain Anna I. Blazejewska ¹ , Sharmishtaa Seshamani ² , Susan K. McKown, Jason S. Caucutt, Manjiri Dighe, Christopher Gatenby, Colin Studholme ² ¹ BICG, University of Washington, Seattle, WA, United States; ² BICG, University of Washington, WA, United States
14:06 0645.	Relating the Structural and Functional Maturation of Visual and Auditory White Matter Pathways with Diffusion Imaging and Event-Related Potentials in Infants Parvaneh Adibpour ¹ , ² , Ghislaine Dehaene-Lambertz ¹ , ² , Jessica Dubois ¹ , ² ¹ Cognitive Neuroimaging Unit, INSERM, Gif-sur-Yvette, France; ² NeuroSpin, CEA, Gif-sur-Yvette, France
14:18 0646.	Developmental Characterization of Sub-Cortical White Matter Tracts <i>Adeoye Oyefiade¹, Stephanie Ameis², ³, Nadia Scantlebury¹, ², Alexandra Decker², Kamila U. Szulc², Donald J.</i> <i>Mabbott¹, ²</i> ¹ Psychology, The Hospital for Sick Children, Toronto, ON, Canada; ² Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; ³ Child and Youth Mental Health, Center for Addiction and Mental Health, Toronto, Toronto, ON, Canada
14:30 0647.	Age-Related Changes in Total Cerebral and Cardiac Blood Flow in Children and Adult Volunteers from 7 Months to 60 Years <i>Can Wu¹</i> , ² , <i>Samantha Schoeneman</i> ³ , <i>Amir Honarmand</i> ² , <i>Susanne Schnell</i> ² , <i>Michael Markl</i> ¹ , ² , <i>Ali Shaibani</i> ² , ³ ¹ Biomedical Engineering, Northwestern University, Chicago, IL, United States; ² Radiology, Northwestern University, Chicago, IL, United States; ³ Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
14:42 0648.	Cell Volume Fraction ("cell Density") Is Stable Despite Cerebral Volume Loss in Normal Human Ageing as Measured by Quantitative Sodium MR Imaging at 9.4Tesla <i>Elaine H. Lui¹, ², Jonathan Guntin³, Saad Jamil³, Ziqi Sun³, Ian C. Atkinson³, Keith R. Thulborn³</i> ¹ Radiology, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; ² Centre of Magnetic Resonance Research, University of Illinois Chicago, Chicago, IL, United States; ³ Centre of Magnetic Resonance Research, University of Illinois Chicago, IL, United States
14:54 0649.	Densely Packed White Matter Regions Are Less Prone to Develop White Matter Hyperintensities <i>Robert S. Vorburger¹, Atul Narkhede¹, Yunglin Gazes¹, Vanessa A. Guzman¹, Yaakov Stern¹, ², Adam M. Brickman¹, ² ¹Taub Institute, Columbia University, New York, United States; ²Department of Neurology, Columbia University, New York, United States</i>
15:06 0650.	Correlation of Brain Atrophy to Decreased CBF and CVR in Coronary Artery Disease Patients. <i>Udunna Anazodo¹</i> , ² , <i>Kevin Shoemaker³</i> , <i>Neville Suskin⁴</i> , <i>Danny JJ Wang⁵</i> , <i>Keith S. St Lawrence¹</i> , ² ¹ Lawson Health Research Institute, London, Ontario, Canada; ² Medical Biophysics, Western University, London, Ontario, Canada; ³ School of Kinesiology, Western University, London, Ontario, Canada; ⁴ London Health Sciences Cardiology Rehabilitation Program, London, Ontario, Canada; ⁵ University of California, Los Angeles, CA, United States
15:18 0651.	Longitudinal Relationship Between Amyloid Burden and Cerebrovascular Health in Healthy Individuals: a Combined MRI and PET Study Peiying Liu ¹ , Karen Rodrigue ² , Kristen Kennedy ² , Shin-Lei Peng ¹ , Yang Li ¹ , Michael Devous ³ , Denise Park ² , Hanzhang Lu ¹ ¹ Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ² Center for Vital Longevity, University of Texas at Dallas, TX, United States; ³ Avid Radiopharmaceuticals Inc, TX, United States
N 101 0	

Novel Pulse Sequences & Trajectories John Bassett Theatre 102 13:30-15:30

Moderators: Fernando E. Boada, Ph.D. & Zhiqiang Li, Ph.D.

13:30	0652.	3D Cones Reordering Design Methods for Whole-Heart Coronary MR Angiography <i>Mario O. Malavé¹, Nii Okai Addy¹, R. Reeve Ingle¹, Joseph Y. Cheng¹, Dwight G. Nishimura¹</i> ¹ Electrical Engineering, Stanford University, Stanford, CA, United States
13:41	0653.	McMPRAGE (Multi-Contrast MPRAGE): A Novel Sequence for Generating Multiple Contrast Images in a Single Scan Manojkumar Saranathan ¹ , Brian K. Rutt ¹ ¹ Dept. of Radiology, Stanford University, Stanford, CA, United States
13:52 ISMRM MERIT MAGINA CUM	0654. r award n laude	Rapid Whole-Body Quantitative Fat Water Imaging with Golden Angle Continuously Moving Table MRI at 3 Tesla Saikat Sengupta ¹ , ² , David S. Smith ¹ , ³ , E. Brian Welch ¹ , ² ¹ Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ² Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ³ Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
14:03	0655.	Real-Time Speech MRI: A Comparison of Cartesian and Non-Cartesian Sequences <i>Andreia C. Freitas</i> ^{1, 2} , <i>Marzena Wylezinska</i> , ¹² , <i>Malcolm J. Birch</i> ² , <i>Steffen E. Petersen</i> ¹ , <i>Marc E. Miquel</i> , ¹² ¹ William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; ² Clinical Physics, Barts Health NHS Trust, London, United Kingdom
14:14	0656.	Improve O-Space Imaging Using High-Resolution Oversampled Data Acquisitions Haifeng Wang ¹ , Leo Tam ¹ , Emre Kopanoglu ¹ , Dana Peters ¹ , Gigi Galiana ¹ , R. Todd Constable ¹ ¹ Department of Diagnostic Radiology, Yale University, New Haven, CT, United States
14:25	0657.	Off-Resonance Blurring Tolerant Image Reconstruction of 3D Radial MRI with Linogram Sampling <i>Naoharu Kobayashi¹, Djaudat Idiyatullin¹, Curtis A. Corum¹, Michael Garwood¹</i> ¹ Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
14:36	0658.	Artifact Free 3D Fast Spin Echo Imaging Using a Single Excitation Yuval Zur ¹ , Weitian Chen ² ¹ GE Healthcare, Tirat Carmel, Israel; ² Applied Science Lab, GE Healthcare, Menlo Park, CA, United States
14:47	0659.	ZTE Imaging with Enhanced Flip Angle Using Modulated Excitation <i>Konrad Schieban¹, Markus Weiger¹, Franciszek Hennel², Andreas Boss³, Klaas Paul Pruessmann¹</i> ¹ Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; ² Bruker BioSpin MRI GmbH, Ettlingen, Germany; ³ Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland
14:58 ISMRM MERI SUMMA CU	0660. It award It laude	Ramped Hybrid Encoding for Improved Ultrashort TE Imaging <i>Hyungseok Jang¹, ², Curtis N. Wiens¹, Alan B. McMillan¹</i> ¹ Radiology, University of Wisconsin, Madison, WI, United States; ² Electrical and Computer Engineering, University of Wisconsin, Madison, WI, United States

Combined Educational & Scientific Session

Cardiovascular Tissue Characterization

Organizers: Daniel B. Ennis, Ph.D. & Martin J. Graves, Ph.D.

Room 718 A	13:30-15:30	Moderators: Neville D. Gai, Ph.D. & Richard B. Thompson, Ph.D.		
13:30	What Is the Clinical Value of Quantitative Myocardial Tissue Characterization?			
	Jeanette Schulz-Menger			

14:00 0661. Application of Native Myocardial T1 Mapping in Subjects with Coronary Microvascular Dysfunction and No Obstructive Coronary Artery Disease

¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States; ³Cedars-Sinai Heart Institute, Los Angeles, CA, United States;

14:12 0662. Black-Blood Contrast-Enhanced MRI: Validation of a Novel Technique for the Diagnosis of Myocardial Infarction Han W. Kim¹, Wolfgang G. Rehwald², David C. Wendell¹, Elizabeth R. Jenista¹, Lowie Van Assche¹, Christoph Jensen¹, Peter Filev¹, Enn-Ling Chen¹, Michele A. Parker¹, Raymond J. Kim¹ ¹Cardiology/Medicine, Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, NC, United States; ²Siemens Healthcare, NC, United States 14:24 0663. Cardiovascular Susceptibility Weighted Imaging Computed Using Water-Fat Separation Improves **Intramyocardial Hemorraghe Detection Specificity** James Goldfarb¹, Department of Research and Education, Saint Francis Hospital, Roslyn, NY, United States; ²Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States What Is the Clinical Value of Vessel Wall Characterization? 14:54 Tobias Saam 0664. Intracranial Vessel Wall MR Registry 15:06 Qi Yang¹,², Haiqing Song², Hongqi Zhang², Feng Ling², Yiu-Cho Chung³, Lei Zhang³, Zhaoyang Fan¹, Xin Liu³, Kuncheng Li², Debiao Li⁴ ¹Biomedical Imaging Research Institute, Cedars Sinai Medical Center, LA, CA, United States; ²Xuanwu Hospital, Beijing, China; ³Shenzhen Institutes of Advanced Technology, Chinese Academic of Sciences, Shenzhen, Guangdong, China 0665. Evaluation of Distribution of Femoral Artery Atherosclerotic Disease in Asymptomatic Old Adults Using 3D 15:18 MR Vessel Wall Imaging Maobin Guan¹, Huijun Chen², Zhu Zhu¹, Le He², Qiang Zhang², Niranjan Balu³, Chun Yuan², ³, Xihai Zhao² ¹Department of Radiology, Yangzhou First People's Hospital, Yangzhou, China; ²Center for Biomedical Imaging research, Department of Biomedical Engineering, Tsinghua University School of Medicine, Beijing, China; ³Department of Radiology, University of Washington, Seattle, WA, United States

15:30 Adjournment & Meet the Teachers

Educational Course

MR Economics

Organizers: Kevin M. Bennett, Ph.D. & Xiaohong Joe Zhou, Ph.D., D.A.B.R.

Room 718 B	13:30-15:30	Moderators: Kevin M. Bennett, Ph.D. & Xiaohong Joe Zhou, Ph.D., D.A.B.R.
13:30	MRI in Clinical Care & Research <i>Hedvig Hricak</i>	
14:00	MRI & Health in Developing Countri <i>Chun Yuan</i>	es
14:30	Optimizing Clinical Protocols <i>Geoffrey S. Young</i>	
15:00	New Technology & Health Care Costs James G. Pipe	
15:30	Adjournment & Meet the Teachers	

Wednesday

Educational Course

spine			
Organizers: Jona	than H. Gillard, M.D., FRCR, MI	3A & Howard A Rowley, M.D.	
Room 801 A/B	13:30-15:30	Moderators: David B. Hackney, M.D. & Roland R. Lee, M.D.	
13:30	MR in Low Back Pain: What the <i>Michael T. Modic</i>	Neuroradiologist Can Contribute	
14:00	MR in Low Back Pain: What Should We Do & Why? Johan W.M. Van Goethem		
14:30	:30 Spinal MR: What Multiparametric MR Can Add: A Physicist's Perspective Julien Cohen-Adad		
15:00	Spinal MR: What Multiparametr <i>Lawrence N. Tanenbaum</i>	ic MR Can Add: A Clinician's Perspective	
15:30	Adjournment & Meet the Teachers		
Hands-On W	orkshop 2 - Siemens		
<u>Room 711</u>	13:30-15:30	(no CME credit)	
Hands-On W	/orkshop 2 - GE Healthcar	'e	
Doom 702	13:30-15:30	(no CME credit)	

Room 707 13:30-15:30

Traditional Poster Session: Pulse Sequences

I I waithomai I obte	a Sessioni i aise Sequ	chices	
Exhibition Hall	16:00-18:00		(no CME credit)

(no CME credit)

(no CME credit)

(no CME credit)

(no CME credit)

Electronic Poster Session: Neuro B

Exhibition Hall 16:00-18:00

Study Group Session

Interventional MR Reception Hall 104 BCD 16:00-18:00

Study Group Session Current Issues in Brain Function Constitution Hall 105 16:00-18:00

Power Pitch Session: Cancer Power Pitch Theatre, Exhibition Hall 16:00-17:00 (no CME credit) Moderators: Bachir Taouli, M.D. & T.B.A. 0666. Comparing Functional Tumor Volume and Pharmacokinetic Parameter in DCE-MRI Prediction of Breast Cancer Therapy Response: A Preliminary Study

Alina Tudorica¹, David C. Newitt², Karen Y. Oh¹, Nicole Roy¹, Stephen Y-C Chui¹, Arpana Naik¹, Megan L. Troxell¹, Yiyi Chen¹, Aneela Afzal¹, Megan L. Holtorf¹, Nola M. Hylton², Wei Huang¹ ¹Oregon Health & Science University, Portland, OR, United States; ²University of California, San Francisco, CA, United States

0667. Can Model Weighting Improve the Accuracy of DCE-MRI Parameter Estimation? Xia Li^l, Lori R. Arlinghaus¹, Erin Rericha^l, Thomas Yankeelov¹

¹Vanderbilt University, Nashville, TN, United States

0668. Impact of Non-Rigid Motion Correction on Pharmaco-Kinetic Analysis for Breast Dynamic Contrast-Enhanced MRI

Venkata Veerendra Nadh Chebrolu¹, Dattesh Shanbhag¹, Reem Bedair², Sandeep Gupta³, Patrice Hervo⁴, Scott Reid⁵, Fiona Gilbert², Andrew Patterson⁶, Martin Graves⁷, Rakesh Mullick⁸ ¹Medical Image Analysis Lab, GE Global Research, Bangalore, Karnataka, India; ²Radiology, University of Cambridge, Cambridge, United Kingdom; ³Biomedical Image Analysis Lab, GE Global Research, NY, United States; ⁴GE Healthcare, Buc, France; ⁵GE Healthcare, Amersham, United Kingdom; ⁶Cambridge University Hospitals Trust, Cambridge, United Kingdom; ⁷Radiology, Cambridge University Hospitals Trust, Cambridge, United Kingdom; ⁸Diagnostics & Biomedical Technologies, GE Global Research, Bangalore, Karnataka, India

0669. Dynamic Contrast Enhanced MRI Estimate of Tumor Interstitial Fluid Pressure in Solid Brain Tumors

Madhava P. Aryal¹, Tavarekere N. Nagaraja², Rasha Elmghribi, ¹³, Kelly A. Keenan², Swayamprava Panda¹, Glauber Cabral¹, Stephen L. Brown⁴, James R. Ewing, ¹³

¹Dept. of Neurology, Henry Ford Hospital, Detroit, MI, United States; ²Dept. of Anesthesiology, Henry Ford Hospital, Detroit, MI, United States; ³Dept. of Physics, Oakland University, Rochester, MI, United States; ⁴Dept. of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States

0670. Quantitative Perfusion Measurements in Renal Masses with Arterial Spin Labeling and Dynamic Contrast Enhanced MRI at 3T Correlate with Microvessel Density at Histopathology

Yue Zhang¹, Payal Kapur², ³, Qing Yuan¹, Ananth Madhuranthakam¹, ⁴, Ingrid Carvo⁵, Sabina Signoretti⁵, Ivan Dimitrov⁶, Yin Xi¹, Katherine Wicks¹, Jeffrey Cadeddu¹, ³, Vitaly Margulis³, James Brugarolas⁷, ⁸, Ivan Pedrosa¹, ⁴ ¹Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁵Pathology, Brigham and Women's Hospital, Boston, MA, United States; ⁶Philips Medical Systems, Cleveland, OH, United States; ⁷Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, University of Texas Southwestern Medical Center, Dallas, TX,

0671. Classification of Tumor Sub-Volumes Based on Dynamic Contrast Enhanced MRI Model Hierarchy for Locally Advanced Cervical Cancer

Jesper Folsted Kallehauge¹,², Thomas Nielsen³, Markus Alber¹, Søren Haack, ²⁴, Erik Morre Pedersen⁵, Jacob Christian Lindegaard², Anne Ramlov², Kari Tanderup⁶, ⁷

¹Dept. of Medical Physics, Aarhus University Hospital, Aarhus, Denmark; ²Dept. of Oncology, Aarhus University Hospital, Aarhus, Denmark; ³CFIN/Mindlab, Aarhus University Hospital, Aarhus, Denmark; ⁴Dept. of Clinical Engineering, Aarhus University Hospital, Aarhus, Denmark; ⁶Dept. of Radiology, Aarhus University Hospital, Aarhus, Denmark; ⁶Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; ⁷Dept. of Clinical Medicine, Aarhus University , Aarhus, Denmark

0672. Evaluation of Stretched-Exponential Model for Diffusion-Weighted Imaging of Breast Lesions Using High B Values: Comparison with Monoexponential Diffusion Weighted Imaging

Chunling Liu^f, *Changhong Liang^l*, *Ýingjie Mei²*, *Zaiyi Liu^l*, *Jine Zhang^l* ¹Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; ²Philips Healthcare, Guangzhou, Guangdong, China

0673. SUV-ADC Mapping of Malignant and Benign Prostate Lesions with PET-MRI Yachao Liu¹, Jiangping Gao², Jiajin Liu¹, Hui Liu³, Yong Xu², Baixuan Xu¹, Jiahe Tian¹

¹Nuclear Medicine Department, PLA 301 General Hospital, Beijing, China; ²Urology Department, PLA 301 General Hospital, Beijing, China; ³NEA MR Collaboration, Siemens Ltd., China, Shanghai, China

0674. Simultaneous ¹⁸F-FACBC PET/MRI for Loco-Regional Staging of Prostate Cancer: Considerations on Imaging Protocol Design

*Mattijs Elschot*¹, *Kirsten M. Selnæs*¹, ², *Brage Krüger-Stokke*¹, ³, Øystein Størkersen⁴, Helena Bertilsson⁵, ⁶, Siver A. Moestue¹, ², Tone F. Bathen¹, ²

¹Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Sør-Trøndelag, Norway; ²St Olavs Hospital, Trondheim, Sør-Trøndelag, Norway; ³Department of Radiology, St Olavs Hospital, Trondheim, Sør-Trøndelag, Norway; ⁴Department of Pathology, St Olavs Hospital, Trondheim, Sør-Trøndelag, Norway; ⁵Department of Urology, St Olavs Hospital, Trondheim, Sør-Trøndelag, Norway; ⁶Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Sør-Trøndelag, Norway

0675. Multiparametric Hybrid 18FDG-PET/MRI in Patients with Multiple Myeloma: Initial Experience

Jennifer Mosebach¹, Christos Sachpekidis², Martin Freitag¹, Jens Hillengass³, Antonia Dimitrakopoulou-Strauss², Uwe Haberkorn⁴, Heinz-Peter Schlemmer¹, Stefan Delorme¹ ¹Department of Radiology, German Cancer Research Center, Heidelberg, Germany; ²Clinical Cooperation Unit Nuclear Medicine, Corners Cancer Benergh Center United and Compared ³Department of Medicine V. Multiple Medican Section United and

German Cancer Research Center, Heidelberg, Germany; ³Department of Medicine V, Multiple Myeloma Section, University of Heidelberg, Heidelberg, Germany; ⁴Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany

0676. 4D Echo Planar Correlated Spectroscopic Imaging and DWI of Breast Cancer

Rajakumar Nagarajan¹, Neil Wilson¹, Nanette DeBruhl¹, Brian Burns¹, Melissa Joines¹, Maithili Gopalakrishnan¹, Fausto Rendon¹, Lawrence W. Bassett¹, M.Albert Thomas¹ ¹Radiological Sciences, UCLA School of Medicine, Los Angeles, CA, United States

0677. Relaxation-Weighted Sodium MRI of Breast Lesions at 7T

ismem merit award magna cum laude Stefan Zbyn¹, Olgica Zaric¹, Vladimir Juras¹, Katja Pinker², Alex Farr³, Nadia Benkhedah⁴, Pascal Balzer², Vladimir Mlynarik¹, Armin Nagel⁴, Christian Singer³, Thomas Helbich², Wolfgang Bogner¹, Siegfried Trattnig¹ ¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ³Department of Gynecology and Obstetrics, Medical University of Vienna, Vienna, Austria; ⁴Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

0678. Noninvasive Assessment of Lymphatic Impairment and Interstitial Protein Accumulation Using Chemical Exchange Saturation Transfer (CEST) MRI

Manus Donahue¹, ², Paula CM Donahue³, ⁴, Swati Rane¹, Megan K. Strother¹, Allison O. Scott¹, Seth A. Smith¹ ¹Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; ²Physics and Astronomy, ¹Vanderbilt University, Nashville, TN, United States; ³Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, United States; ⁴Dayani Center for Health and Wellness, Nashville, TN, United States

0679. Combining 'omics': Metabolic Breast Cancer Subclass Correlation with Protein and Gene Expression Subtypes Tonje H. Haukaas¹, ², Leslie R. Euceda¹, Guro F. Giskeødegård¹, Marit Krohn³, ⁴, Ellen Schlichting³, Rolf Kåresen³, ⁵, Sandra Nyberg³, ⁴, Kristine Kleivi Sahlberg³, ⁴, Anne-Lise Børresen-Dale³, ⁴, Tone F. Bathen¹, ³ ¹Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Trondheim, Norway; ²K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; ³K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; ⁴Department of Genetics, Institute for Cancer Research Oslo University Hospital, , The Norwegian Radium Hospital, Oslo, Norway; ⁵Department of Surgery, Oslo University Hospital, Ullevål, Oslo, Norway

^{0680.} Using Radiogenomics to Characterize MRI-Guided Prostate Cancer Biopsy Heterogeneity Radka Stoyanova¹, Alan Pollack¹, Nicholas Erho², Charles Lynne³, Lucia Lam², Christine Buerki², Sakhi Abraham¹, Merce Jorda⁴, Olexandr Kryvenko⁴, Matthew Abramowitz¹, Elai Davicioni², Adrian Ishkanian¹ ¹Radiation Oncology, University of Miami, Miami, FL, United States; ²GenomeDx Biosciences, Vancouver, British Columbia, Canada; ³Urology, University of Miami, Miami, FL, United States; ⁴Pathology, University of Miami, Miami, FL, United States

Spinal	Cord	&	ENT	Imaging
---------------	------	---	-----	---------

Room 701 A	16:00-18:00	Moderators: Roland R. Lee, M.D. & Yukio Miki, Ph.D.
16:00 0681.	Regional and Age-Related Variations of the	Healthy Spinal Cord Structure Assessed by Multimodal MRI
ISMRM MERIT AWARD	(Diffusion, Inhomogeneous Magnetization T	ransfer, IhMT)
inigin tun tunot	Manuel Taso ¹ , ² , Olivier M. Girard ³ , ⁴ , Guillau	me Duhamel ³ , ⁴ , Arnaud Le Troter ³ , ⁴ , Guilherme Ribeiro ³ , ⁴ , Thorsten
	<i>Feiweier⁵, Maxime Guye³, ⁴, Jean-Philippe Ra</i>	ijeva ³ , ⁴ , Virginie Callot ³ , ⁴
	¹ CRMBM-CEMEREM UMR 7339, Aix-Marseille U	niversité, CNRS, Marseille, France; ² LBA UMR T 24, Aix-Marseille Université,
	IFSTTAR, Marseille, France; ³ CRMBM UMR 7339	Aix-Marseille Université, CNRS, Marseille, France; ⁴ CEMEREM, Pole
	d'imagerie médicale, Hopital la TImone, AP-HM, M	arseille, France; ⁵ Siemens AG, Healthcare, Erlangen, Germany

16:12 0682. Validation of MRI Microstructure Measurements with Coherent Anti-Stokes Raman Scattering (CARS)

summa cum laude

Tanguy Duval¹, Alicja Gasecka², ³, Philippe Pouliot¹, ⁴, Daniel Côté², ³, Nikola Stikov¹, ⁵, Julien Cohen-Adad¹, ⁶ ¹Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Qc, Canada; ²Quebec Mental Heath University Institute, Québec, Qc, Canada; ³Doptic, photonic and laser Center, Université Laval, Québec, Qc, Canada; ⁴Montreal Heart Institute, Montreal, Quebec, Canada; ⁵Montreal Neuronal Institute, McGill University, Montréal, Québec, Canada; ⁶Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Qc, Canada

16:24 0683. Diffusion MRI Reveals Tissue Specific Changes in Early and Late Stages of Degeneration Within the Spinal

Torben Schneider¹, Gemma Nejati-Gilani², ³, Mohamed Tachrount⁴, Ying Li⁵, Amber Hill⁴, Olga Ciccarelli⁴, Ken Smith, David Thomas⁶, Daniel C. Alexander³, Claudia A M Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom; ²Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom; ³Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; ⁴Brain Repair & Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ⁵Spinal Repair Unit, Brain Repair & Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ⁶Leonard Wolfson Experimental Neurology Centre, UCL Institute of Neurology, London, United Kingdom;

16:36 0684. Longitudinal Characterization of the Wallerian Degeneration Process by a Multi-Compartment Diffusion **Model: DIAMOND After a Rhizotomy in the Rat Spinal Cord and Comparison with the Histology** *Damien Jacobs¹, Benoit Scherrer², Aleksandar Jankovski³, Anne des Rieux⁴, Maxime Taquet¹, Bernard Gallez⁴, Simon*

K. Warfield². Benoit Maca¹

¹ICTEAM, Universite catholique de Louvain, Louvain-La-Neuve, Belgium; ²Computational Radiology Laboratory, Boston Childrens Hospital, MA, United States; ³Hopital universitaire Mont-Godinne, Universite catholique de Louvain, Godinne, Belgium; ⁴LDRI, Universite catholique de Louvain, Brussels, Belgium

16:48 0685. Diffusion Basis Spectrum Imaging Quantifies Pathologies in Cervical Spondylotic Myelopathy

Peng Sun¹, Rory Murphy², Yong Wang¹, Joanne Wagner³, Sammir Sullivan¹, Paul Gamble², Kim Griffin¹, ², Wilson Z. Ray², Sheng-Kwei Song¹

¹Radiology, Washington University in St. Louis, St. Louis, MO, United States; ²Neurosurgery, Washington University in St. Louis, St. Louis, MO, United States; ³Physical Therapy and Athletic Training, Saint Louis University, St. Louis, MO, United States

17:00 0686. Evaluating the Feasibility of Monitoring *In Vivo* Spinal Cord Metabolism Using Hyperpolarized Carbon-13 MR Spectroscopic Imaging

Ilwoo Park¹, Jason F. Talbott¹,², Sarah J. Nelson¹,³

¹Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Brain and Spine Injury Center (BASIC), San Francisco General Hospital, San Francisco, CA, United States; ³Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, CA, United States

17:12 0687. Computer-Aided Diagnosis of Head and Neck Lesions from Non-Gaussian Diffusion MRI Signal Patterns Mami lima¹, Akira Yamamoto¹, Denis Le Bihan², ³, Shigeru Hirano⁴, Ichiro Tateya⁴, Morimasa Kitamura⁴, Kaori Togashi¹ ¹Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ²Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ²Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ²Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ³Neurospin, CEA-Saclay Center, Gif-sur-

Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ³Neurospin, CEA-Saclay Center, Gif-sur-Yvette Cedex, France; ⁴Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan

17:24 0688. Diffusion Imaging of Head and Neck at High Angular and Spatial Resolution Using Multi-Shot Spirals Merry Mani¹, Mathews Jacob², Vincent Magnotta³ ¹Dept of Psychiatry, University of Iowa, Iowa City, IA, United States; ²Dept of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States; ³Dept of Radiology, University of Iowa, Iowa City, IA, United States

17:36 0689. High Spatio-Temporal Resolution Multi-Slice Real Time MRI of Speech Using Golden Angle Spiral Imaging with Constrained Reconstruction, Parallel Imaging, and a Novel Upper Airway Coil Sajan Goud Lingala¹, Yinghua Zhu¹, Yoon-Chul Kim², Asterios Toutios¹, Shrikanth Narayanan¹, Krishna S. Nayak¹

Sajan Goua Lingala, Tingnua Znu, Toon-Chul Kim⁺, Asterios Toutios⁺, Shrikanth Narayanan⁺, Krishna S. Nayak⁺ ¹Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ²Samsung Medical Center, Seoul, Korea

17:48 069		High Resolution Magnetic Resonance Elastography of the Human Eye In Vivo: A Feasibility Study
		Jürgen Braun ¹ , Sebastian Hirsch ² , Jing Guo ² , Katharina Erb-Eigner ² , Ingolf Sack ²
		¹ Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany; ² Department of Radiology, Charité -
		Universitätsmedizin Berlin, Berlin, Germany

Cell Memories: Cell Tracking & MEMRI

<u>Room 701</u>	В	16:00-18:00	Moderators: Ichio Aoki, Ph.D. & Paula J. Foster, Ph.D.
16:00	0691.	<i>In Vivo</i> Monitoring of Immune Cell Kinetics with Yuki Mori ¹ , ² , Ting Chen ¹ , ² , Yoshichika Yoshioka ¹ , ² ¹ Biofunctional Imaging, Immunology Frontier Research Co	Time-Lapse MRI in the Ischemic Lesion of Mouse Brain enter (IFReC), Osaka University, Suita, Osaka, Japan; ² Center for
		Information and Neural Networks, Suita, Osaka, Japan	
16:12	0692.	Dual Iron/Fluorine Cell Tracking: Monitoring th Inflammatory Response	e Fate of Human Stem Cells and the Ensuing Cellular
7.0		<i>Jeff M. Gaudet</i> ¹ , ² , <i>Matthew S. Fox</i> ¹ , <i>Amanda M. Ha.</i> ¹ Imaging Research Laboratories, Robarts Research Institut London, Ontario, Canada	<i>nilton¹, Paula J. Foster¹, ²</i> e, London, Ontario, Canada; ² Medical Biophysics, Western University,
16:24	0693.	Comparison of Different Compressed Sensing Al Transplanted Pancreatic Islets with PFCE Labele	gorithms for Low SNR 19F Application Imaging of ed
ining in this is		Sayuan Liang ¹ , Yipeng Liu ² , Tom Dresselaers ¹ , Karu ¹ Department of Imaging & Pathology, KU Leuven, Leuver Brabant, Belgium; ³ Laboratory of Experimental Hormonol	<i>m Louchami³, Sabine Van Huffel², Uwe Himmelreich¹</i> , Flemish Brabant, Belgium; ² ESAT, KU Leuven, Leuven, Flemish ogy, Université Libre de Bruxelles, Brussels, Belgium
16:36	0694.	Using SWIFT T1 Mapping to Quantify Iron Oxic Jinjin Zhang ¹ , Hattie L. Ring, ¹² , Katie Hurley ² , Qi S Garwood ¹	e Nanoparticles Uptake and Biodistribution in Organs <i>In-Vivo</i> hao ³ , Nathan D. Klein ² , Christy Haynes ² , John Bischof ⁴ , Michael
		¹ Center for Magnetic Resonance Research, Department of ² Department of Chemistry, University of Minnesota, MN, ¹ Minnesota, MN, United States; ⁴ Department of Mechanica	Radiology, University of Minnesota, Minneapolis, MN, United States; Jnited States; ³ Department of Biomedical Engineering, University of Engineering, University of Minnesota, MN, United States
16:48	0695.	Sensing the High Magnetic Field: Fusion of Otoli Patricia Pais Roldán ¹ , Ajeet Singh ¹ , Hellmut Merkle ¹ Max Planck Institute, Tuebingen, Baden-Wuerttemberg, C	ths in Zebrafish Larvae Entails a Hint ¹ , Hildegard Schulz ¹ , Xin Yu ¹ termany
17:00	0696.	Genetically Functionalized Magnetosomes as MR Marianne Boucher ¹ , Nicolas Ginet ² , Françoise Geffi	I Contrast Agent Suitable for Molecular Imaging oy ¹ , Sandra Préveral ² , Géraldine Adryanczyk-Perrier ² , Michel
		Pean ² , Christopher T. Lefèvre ² , Daniel Garcia ² , Dav ¹ UNIRS, CEA/DSV/I2BM/NeuroSpin, Saclay, France; ² LF	rid Pignol ² , Sébastien Mériaux ¹ 3C, CEA/DSV/IBEB/SBVME, Saint-Paul-lez-Durance, France
17:12	0697.	Structural-Physiological Relationships in the Visu Diffusion Tensor Imaging and Manganese-Enhan	al System Upon Glutamate Excitotoxicity in the Eye Using ced MRI
summa cum	lauoe	Leon C. Ho ¹ , ² , Bo Wang ³ , ⁴ , Ian P. Conner ³ , ⁴ , Yolan Kim ¹ , ⁵ , Gadi Wollstein ³ , Joel S. Schuman ³ , ⁴ , Kevin	<i>di van der Merwe¹, ⁴, Richard A. Bilonick³, Ed X. Wu², Seong-Gi</i> <i>C. Chan¹, ³</i>
		Engineering, The University of Hong Kong, Pokfulam, Ho University of Pittsburgh, Pittsburgh, PA, United States; ⁴ D of Pittsburgh, Pittsburgh, PA, United States; ⁵ Center for No University, Suwon, Korea	ng Kong, China; ³ Department of Ophthalmology, School of Medicine, epartment of Bioengineering, Swanson School of Engineering, University suroscience Imaging Research, Institute for Basic Science, Sungkyunkwan
17:24	0698.	MEMRI Detects Neuronal Activity and Connecti	vițy in Hypothalamic Neural Circuit.

¹Anna Ulyanova¹, Judy Chia Ghee Sng², Weiping Han³, Kai-Hsiang Chuang¹ ¹Magnetic Resonance Imaging Group, Singapore Bioimaging Consortium, A*STAR, Singapore, Singap 17:36 0699. Manganese PET Enables the Same Contrast as Manganese Enhanced MRI

Galit Saar¹, Corina M. Millo², Lawrence P. Szajek², Jeff Bacon², Peter Herscovitch², Alan P. Koretsky¹ ¹LFMI/NINDS, NIH, Bethesda, MD, United States; ²PET Department, Clinical Center, NIH, Bethesda, MD, United States

17:48 0700. Manganese-Enhanced MRI for Preclinical Evaluation of Therapeutic Efficacy of Retinal Degeneration Treatment

Rebecca M. Schur¹, Li Sheng¹, Bhubanananda Sahu², Guanping Yu¹, Song-Qi Gao³, Xin Yu¹, Akiko Maeda², Krzysztof Palczewski³, Zheng-Rong Lu¹

¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Ophthamology and Visual Sciences, Case Western Reserve University, Cleveland, OH, United States; ³Pharmacology, Case Western Reserve University, Cleveland, OH, United States

Thinking Outside the Box - Novel Technical Development

Room	714 A/B	16:00-18:00	<u>Moderators</u> : David O. Brunner, Ph.D. & Steven M. Wright, Ph.D
16:00	0701.	Plasma Based MRI	
		Sebastian A. Aussenhofer ¹ ¹ C.J. Gorter Center for High I	['] , <i>Andrew G. Webb¹</i> Field MRI, Leiden University Medical Center, Leiden, South-Holland, Netherlands

16:12 0702. Low Cost High Performance MRI

Mathieu Sarracanie¹,², Cristen LaPierre¹,², Najat Salameh¹,², David E J Waddington¹,³, Thomas Witzel¹, Matthew S. Rosen¹,²

¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Department of Physics, Harvard University, Cambridge, MA, United States; ³ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, Australia

16:24 0703. 3D Imaging in a Portable MRI Scanner Using Rotating Spatial Encoding Magnetic Fields and Transmit Array Spatial Encoding (TRASE) Summa cum laute

Clarissa Zimmerman Cooley¹, ², Jason P. Stockmann³, ⁴, Mathieu Sarracanie³, ⁴, Matthew S. Rosen³, ⁴, Lawrence L. Wald, ²³

¹A. A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³A. A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ⁴Dept. of Physics, Harvard University, Cambridge, MA, United States

16:36 0704. Custom MEMS Switch for MR Surface Coil Decoupling Dan Spence¹, Marco Aimi² ¹GE Healthcare, Waukesha, WI, United States; ²GE Global Research, Niskayuna, NY, United States

16:48 0705. Utilization of the Receive Coil for Cardiovascular and Respiratory Motion Representation

Guido P. Kudielka¹, ², *Christopher J. Hardy³*, *Pierre-André Vuissoz¹*, ⁴, *Jacques Felblinger⁵*, ⁶, *Anja C.S. Brau⁷* ¹Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, Lorraine, France; ²GE Global Research, Munich, BY, Germany; ³GE Global Research, Niskayuna, NY, United States; ⁴U947, INSERM, Nancy, Lorraine, France; ⁵CIC-IT 1433, INSERM, Nancy, Lorraine, France; ⁶University Hospital Nancy, Nancy, Lorraine, France; ⁷GE Healthcare, Munich, BY, Germany

17:00 0706. An Integrated Mm-Wave Transceiver for Wireless MRI Kamal Aggarwal¹, Mazhareddin Taghivand¹, Yashar Rajavi¹, John Pauly¹, Ada Poon¹, Greig Scott¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States

17:12 0707. RF Gated Wireless Power Transfer System

Kelly Byron¹, Pascal Stang², Shreyas Vasanawala³, John Pauly¹, Greig Scott¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Procyon Engineering, CA, United States; ³Radiology, Stanford University, Stanford, CA, United States

17:24 0708.	Development of a High T _c Superconducting Bulk Magnet with a Homogeneous Magnetic Field Using a Finite
	Element Method and a Single-Layer Shim Coil
	Daiki Tamada ¹ , ² , Yosuke Yanagi ³ , Yoshitaka Itoh ³ , Takashi Nakamura ¹ , ² , Katsumi Kose ¹
	¹ Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan; ² RIKEN, Wako, Saitama, Japan; ³ IMRA Material
	R&D., Ltd., Aichi, Japan
17:36 0709.	MARIE – a MATLAB-Based Open Source Software for the Fast Electromagnetic Analysis of MRI Systems
magna cum laude	Jorge Fernandez Villena', Athanasios G. Polimeridis', Lawrence L. Wald', ', Elfar Adalsteinsson', ', Jacob K. White',
	Luca Daniel'
	Research Laboratory of Electronics, EECS, Massachusetts Institute of Technology, Cambridge, MA, United States; "A.A. Martinos
	Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, MA, United States; "Harvard-MIT Division of Usolth Sciences, Cambridge, MA, United States,
	nearth sciences rechnology, Cambridge, MA, United States

17:48 0710. MR Experiments Using a Commercially-Available Software-Defined Radio *Christopher J. Hasselwander¹*, ², *William A. Grissom¹*, ², *Zhipeng Cao¹*, ² ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

Myocardial Tissue Characterization - Relaxometry & Diffusion

Room 716	A/B	16:00-18:00	<i>Moderators</i> : Martin J. Graves, Ph.D. & T.B.A.
16:00	0711.	In Vivo Diffusion-Weighted MRI:	Contrast-Free Detection of Myocardial Fibrosis in Hypertrophic
ISMAM MERIT Summa cum	award Laude	Cardiomyopathy Patients <i>Christopher Nguyen¹, Minjie Liu², ³</i> ¹ Biomedical Imaging Research Institute, Cardiovascular Disease, Fuwai Hospital Sciences and Peking Union Medical Col Lung, and Blood Institute, National Insti	Zhaoyang Fan ¹ , Xiaoming Bi ⁴ , Peter Kellman ⁵ , Debiao Li ¹ , Shihua Zhao ² , ³ Cedars Sinai Medical Center, Los Angeles, CA, United States; ² State Key Laboratory of Beijing, China; ³ National Center for Cardiovascular Diseases, Chinese Academy of Medical lege, Beijing, China; ⁴ Siemens Healthcare, Los Angeles, CA, United States; ⁵ National Heart, tutes of Health, Bethesda, MD, United States
16:12	0712.	Second Order Motion Compensat <i>Christian Torben Stoeck</i> ¹ , ² , <i>Constan</i> <i>Maximilian Y. Emmert</i> , ³⁴ , <i>Sebastian</i> ¹ Institute for Biomedical Engineering, U Engineering, King's College London, Lo Zurich, Switzerland; ⁴ Clinic for Cardiov	ed Cardiac DTI: Direct Comparison <i>In-Vivo</i> and Post-Mortem <i>ntin von Deuster¹</i> , ² , <i>Thea Fleischmann³</i> , <i>Nikola Cesarovic³</i> , <i>Martin Genet¹</i> , <i>Kozerke¹</i> , ² niversity and ETH Zurich, Zurich, Switzerland; ² Imaging Sciences and Biomedical ndon, United Kingdom; ³ Department of Surgical Research, University Hospital Zurich, ascular Surgery, University Hospital Zurich, Zurich, Switzerland
16:24 ISMRM MERIT SUMMA CUM	0713.	Effect of the Number of Echoes an Measurments in Myocardial T ₂ M <i>Tamer Basha^l</i> , Mehmet Akçakaya ^l , ¹ Department of Medicine, Beth Israel De	ad Reconstruction Model on the Precision and Reproducibility of T ₂ apping Sébastien Roujol ¹ , Reza Nezafat ¹ eaconess Medical Center & Harvard Medical School, Boston, MA, United States
16:36	0714.	Detection of Diffuse Myocardial F <i>Choukri Mekkaoui¹, Howard H. Cho</i> <i>Reese², David E. Sosnovik²</i> ¹ Harvard Medical School - Massachusse General Hospital, Boston, MA, United S	ibrosis <i>In Vivo</i> Using Diffusion Tensor Imaging with the Supertoroidal Model en ² , Yin-Ching Iris Chen ² , William J. Kostis ² , Marcel P. Jackowski ³ , Timothy G. tts General Hospital, Boston, MA, United States; ² Harvard Medical School-Massachusetts tates; ³ University of São Paulo, São Paulo, Brazil
16:48	0715.	An Iterative Approach to Respira Whole-Heart Phase Sensitive Inve	tory Self-Navigation Enables 100% Scan Efficiency in 3D Free-Breathing rsion Recovery MRI

Giulia Ginami¹, Simone Coppo¹, Gabriele Bonanno¹, Tobias Rutz², Juerg Schwitter², Matthias Stuber¹, Davide Piccini,

¹Center for Biomedical Imaging (CIBM), Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland; ³Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland

17:00 0716.	Joint Myocardial T1 and T2 Mapping Using a Saturation-Recovery Sequence Mehmet Akçakaya ¹ , Sebastian Weingärtner, ¹² , Tamer A. Basha ¹ , Sebastien Roujol ¹ , Reza Nezafat ¹ ¹ Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; ² Heidelberg University, Mannheim, Germany
17:12 0717.	Characterization of the Accuracy and Precision of Radial Cardiac T₂ Mapping at 3T <i>Helene Feliciano¹, ², Wajiha Bano¹, ², Matthias Stuber¹, ², Ruud B. van Heeswijk¹, ²</i> ¹ Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ² Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
17:24 0718.	Whole-Heart T2-Mapping at 7T Quantifies Dystrophic Myocardial Pathology in Mdx/utrn+/- Mice <i>Ronald John Beyers</i> ¹ , <i>Christopher Ballmann</i> ² , <i>Joshua Selsby</i> ³ , <i>Nouha Salibi</i> , ¹⁴ , <i>John Quindry</i> ² , <i>Thomas S. Denney</i> ¹ ¹ MRI Research Center, Auburn University, Auburn University, AL, United States; ² Kinesiology, Auburn University, Auburn University, AL, United States; ³ Department of Animal Science, Iowa State University, Ames, IA, United States; ⁴ MR R&D, Siemens Healthcare, Malvern, PA, United States
17:36 0719.	Endogenous Assessment of Chronic Myocardial Infarction with T1ρ-Mapping in Patients Joep van Oorschot ^l , Hamza El Aidi ^l , Fredy Visser ² , Pieter Doevendans ^l , Peter Luijten ^l , Tim Leiner ^l , Jaco Zwanenburg ^l ¹ University Medical Center Utrecht, Utrecht, Netherlands; ² Philips Healthcare, Best, Noord-Brabant, Netherlands
17:48 0720.	Improved Slice Coverage in DBIR-FSE with Multi-Band Encoding Sagar Mandava ¹ , Mahesh Bharath Keerthivasan ¹ , Diego R. Martin ² , Ali Bilgin ¹ , ³ , Maria I. Altbach ² ¹ Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ² Medical Imaging, University of Arizona, Tucson, AZ, United States; ³ Biomedical Engineering, University of Arizona, Tucson, AZ, United States
Diffusion MR	AI - Novel Insights into the Brain
Constitution Hall	105/106/107 16:00-18:00 Moderators:Susie Yi Huang, M.D., Ph.D. & Xiaohong Joe Zhou,
PhD DABR	

\mathbf{I} \mathbf{I} \mathbf{I} \mathbf{D} \mathbf{I} \mathbf{D} \mathbf{I}	1.D.K.	
16:00	0721.	Heritability of Structural Connections from HCP Diffusion MRI Data
		Stamatios N. Sotiropoulos ¹ , Xu Chen ² , Stephen M. Smith ¹ , David C. Van Essen ³ , Timothy E. Behrens ¹ , Thomas E.
		Nichols ² , Saad Jbabdi ¹
		¹ FMRIB Centre, University of Oxford, Oxford, United Kingdom; ² Department of Statistics, University of Warwick, Coventry, United
		Kingdom; ³ Department of Anatomy & Neurobiology, Washington University, St Louis, MO, United States

16:12 0722. Motor and Non-Motor Territories of the Human Dentate Nucleus: Mapping the Topographical Connectivity of the Cerebellar Cortex with In-Vivo Sub-Millimeter Diffusion Imaging Christopher J. Steele¹, Alfred Anwander¹, Pierre-Louis Bazin¹, Robert Trampel¹, Andreas Schaefer¹, Robert Turner¹, Narender Ramnani², Arno Villringer¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany; ²Royal Holloway University of London, Egham, Surrey, United Kingdom

16:24 0723. Contralateral Cortico-Ponto-Cerebellar Pathways with Prominent Involvement of Associative Areas in Humans In Vivo

Andrea De Rinaldis¹, ², Fulvia Palesi, ²³, Gloria Castellazzi¹, ², Fernando Calamante⁴, ⁵, Nils Muhlert⁶, ⁷, J Donald Tournier⁴, ⁵, Giovanni Magenes¹, Egidio D'Angelo, ²⁸, Claudia AM Wheeler-Kingshott⁶ ¹Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy; ²Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, PV, Italy; ³Department of Physics, University of Pavia, Pavia, PV, Italy; ⁴The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Victoria, Australia; ⁵Department of Medicine, Austin Health and Northern Health, University of Melbourne, Heidelberg, Victoria, Australia; ⁶NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ⁷Department of Psychology, Cardiff University, Cardiff, Wales, United Kingdom; ⁸Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy

16:36 0724. Age-Related Changes of the Human Brain: Insights from Double-Wave Vector Imaging Marco Lawrenz¹, ², Stefanie Brassen¹, ², Jürgen Finsterbusch¹, ²

¹Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Neuroimage Nord, University Medical Centers Hamburg-Kiel-Lübeck, Hamburg-Kiel-Lübeck, Germany

16:48 0725. The Dynamics of Short-Term Plasticity Through Water Maze Training Shir Hofstetter¹, Yaniv Assaf⁴, ¹Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel, Israel; ²Neurobiology, Tel Aviv University, Israel, Israel

17:00 0726. Differentiating Low- And High-Grade Pediatric Brain Tumors Using a Continuous Random Walk Diffusion Model at High *b*-Values

Muge Karaman¹, Yi Sui¹,², He Wang³, Richard L. Magin², Yuhua H. Li⁴, Xiaohong Joe Zhou¹,⁵ ¹Center for MR Research, University of Illinois at Chicago, Chicago, IL, United States; ²Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ³Philips Research China, Shanghai, China; ⁴Radiology, Xinhua Hospital, Shanghai, China; ⁵Departments of Radiology, Neurosurgery, and Bioengineering, University of Illinois at Chicago, Chicago, IL, United States

17:12 0727. Diffusion Tensor Imaging in Patients with Glioblastoma Multiforme Using the Supertoroidal Model Choukri Mekkaoui¹, Fabricio Pereira², William J. Kostis³, Marcel P. Jackowski⁴ ¹Harvard Medical School - Massachussetts General Hospital, Boston, MA, United States; ²CHU Nîmes, France; ³Harvard Medical School-Massachusetts General Hospital, Boston, MA, United States; ⁴University of São Paulo, São Paulo, Brazil

17:24 0728. Stretched-Exponential Model DWI (SEM-DWI) as a Potential Imaging Biomarker in Grading Gliomas and Assessment of Proliferative Activity

Jingjing Jiang¹, Wenzhen Zhu¹

¹Tongji hospital, tongji medical college, huazhong university of science and technology, Wuhan, Hubei, China

17:36 0729. Multi-Shell Diffusion MRI Provides Better Performance in Discriminating Parkinson's Disease

Silvia De Santis¹, Nicola Toschi², ³, Derek K. Jones¹, Claudio Lucetti⁴, Stefano Diciotti⁵, Marco Giannelli⁶, Carlo Tessa

¹CUBRIC Cardiff University, Cardiff, United Kingdom; ²Medical Physics Section, Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome "Tor Vergata", Italy; ³Department of Radiology, A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, United States; ⁴Division of Neurology Unit, Versilia Hospital, Lido di Camaiore (Lu), Italy; ⁵Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy; ⁶Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy; ⁷Division of Radiology Unit, Versilia Hospital, Lido di Camaiore (Lu), Italy

17:48 0730. In-Vivo Measurements of Axon Density and Axon Diameter in the Corpus Callosum in Multiple Sclerosis Torben Schneider¹, Wallace Brownlee¹, Jonathan Clayden², Olga Ciccarelli³, David H. Miller¹, Daniel C. Alexander⁴, Claudia A M Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United

Kingdom; ²UCL Institute of Child Health, Imaging & Biophysics Unit, London, United Kingdom; ³Brain Repair & Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ⁴Centre of Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom

Monitoring Change & Difference in Psychiatric Disorders

John Bassett Theatre 102 16:00-18:00

Moderators: Donna J. M. Lang, Ph.D. & Natalie M. Zahr, Ph.D. 16:00 0731. Utility of MR-Spectroscopy in Early Drug Discovery: Characterization of Dynamic Temporal Metabolic **Changes Following Psychoactive Challenges in the Rodent Brain** summa cum laude Sakthivel Sekar¹, Sankar Seramani¹, Joanne Garnell¹, Kishore Kumar Bhakoo¹ ¹Translational Imaging Industrial Lab, Singapore Bioimaging Consortium, Biopolis, Singapore

16:12 0732. ¹H MRS Monitoring of GABAergic and Glutamatergic Response to 4 Weeks of Antipsychotic Treatment in Medication-Naïve First-Episode Psychosis Patients

Camilo de la Fuente-Sandoval¹, Francisco Reves-Madrigal², Xiangling Mao³, Pablo León-Ortiz⁴, Oscar Rodríguez-Mayoral⁵, Helgi Jung-Cook⁶, Ariel Graff-Guerrero⁷, Rodolfo Solis-Vivanco⁸, Dikoma C. Shungu³ ¹Neuropsychiatry & Laboratory of Experiment Psychiatry, Instituto Nacional de Neurología y Neurocirugía (INNN), Mexico City, Distrito Federal, Mexico; ²Laboratory of Experimental Psychiatry, INNN, Mexico City, Mexico; ³Radiology, Weill Cornell Medical College, New York, NY, United States; ⁴Education, INNN, Mexico City, Mexico; ⁵Palliative Care Unit, Instituto Nacional de Cancerología, Mexico City, Mexico; ⁶Laboratory of Neuropsychopharmacology, INNN, Mexico City, Mexico; ⁷Multimodal

Neuroimaging Schizophrenia Group, Centre for Addiction and Mental Health, Toronto, ON, Canada; ⁸Laboratory of Neuropsychology, INNN, Mexico City, Mexico

16:24 0733. MRI and MRS Characterization of Crtc1 Knock-Out Mice Limbic Structures: Investigating Neurobiology of Mood Disorders

Antoine Cherix¹, Jean-René Cardinaux², ³, Rolf Gruetter¹, ⁴, Hongxia Lei⁵, ⁶ ¹Laboratory for functional and metabolic imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ²Center for Psychiatric Neuroscience (CNP), Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Vaud, Switzerland; ³Faculty of Medicine, University of Lausanne, Lausanne, Vaud, Switzerland; ⁴Department of Radiology, University of Lausanne, Lausanne, Vaud, Switzerland; ⁶Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ⁶Department of Radiology, University of Geneva, Geneva, Switzerland

16:36 0734. Restoration of Abnormal Interconnectivity Between Memory and Emotional Processing Circuits in Remitted Late-Life Depression

Wenjun Li¹, B. Douglas Ward², Gang Chen², Xiaolin Liu², Jennifer Jones³, Piero Antuono³, Shi-Jiang Li, ¹², Joseph Goveas¹

¹Psychiatry and Behavioral Medicine, Medical College of Wisconsin, Milwaukee, WI, United States; ²Biophysics, Medical College of Wisconsin, WI, United States; ³Neurology, Medical College of Wisconsin, WI, United States

16:48 0735. Lithium Brain Absorption in the Elderly Versus Younger Patients with Bipolar Disease.

Maria Otaduy¹, Ivan Aprahaiam², Rodolfo Ladeira², Rodrigo Machado-Vieira², ³, Claudia Leite⁴, Wagner Gattaz⁵, Orestes Forlenza²

¹Laboratory of Magnetic Resonance in Neuroradiology, LIM 44, Institute and Department of Radiology, University of São Paulo, São Paulo, Brazil; ²Laboratory of Neuroscience, LIM 27, Institute and Department of Psychiatry, University of São Paulo, São Paulo, Brazil; ³Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; ⁴Laboratory of Magnetic Resonance in Neuroradiology, LIM 44, Institute and Department of Radiology, University of São Paulo, Sã

17:00 0736. The Impact of Ebselen Administration on Brain Myo-Inositol Concentration

Uzay E. Emir¹, Nisha Singh², ³, Ann Sharpley³, Charles Masaki³, Sridhar Vasudevan², Peter Jezzard¹, Phil Cowen³, Grant Churchill² ¹University of Oxford, FMRIB Centre, Oxford, Oxfordshire, United Kingdom; ²University of Oxford, Department of Pharmacology, Oxford, Oxfordshire, United Kingdom; ³University of Oxford, Department of Psychiatry, Oxford, Oxfordshire, United Kingdom

17:12 0737. Ketamine Improves Astroglial Metabolic Activity and Neurotransmission in Social Defeat Model of Depression: ^{ISMEM MENT AWARD} magna cum laube A ¹H-[¹³C]-NMR Study

Pravin Kumar Mishra¹, Anant Bahadur Patel¹ ¹Centre for Cellular and Molecular Biology, Hyderabad, India

17:24 0738. Electroconvulsive Therapy (ECT) Induced Neurochemical Modulation as Measured by ¹HMRS in Major Depression

Shantanu H. Joshi¹, Stephanie Njau¹, Amber Leaver¹, Antonio Marquina², Roger P. Woods¹, Randall Espinoza³, Katherine L. Narr¹

¹Neurology, UCLA, Los Angeles, CA, United States; ²Mathematics, University of Valencia, Valencia, Spain; ³Psychiatry and Behavioral Sciences, UCLA, Los Angeles, CA, United States

17:36 0739. ¹H MRS Demonstrates Elevations of Prefrontal Cortex GABA in Major Depressive Disorder After Treatment with Repetitive Transcranial Magnetic Stimulation

Marc J. Dubin¹, Xiangling Mao², Samprit Banerjee³, Rebecca Gordon⁴, Zachary Goodman⁵, Kyle AB Lapidus⁶, Guoxin Kang², Conor Liston¹, Dikoma C. Shungu²

¹Psychiatry & Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; ²Radiology, Weill Cornell Medical College, New York, NY, United States; ³Healthcare Policy and Research, Weill Cornell Medical College, New York, NY, United States; ⁴Psychiatry, Weill Cornell Medical College, New York, NY, United States; ⁵Johns Hopkins University, Baltimore, MD, United States; ⁶Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States

Summa cum laude

17:48 0740. Methylphenidate Modulates the Connectivity of Default Mode Network in ADHD: A Resting-State Dynamic Causal Model Analysis

Hongjian He¹, Fangfang Xu¹, Jianhui Zhong¹ ¹Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China

Functional Muscle MRI/MRS

 Room 718 A
 16:00-18:00
 Moderators: Michael D. Noseworthy, Ph.D. & Eric E. Sigmund, Ph.D.

 16:00
 0741.
 Co-Localized Post-Contractile BOLD and 31P-MRI in Muscles of the Lower Leg Prodromos Parasoglou¹, ², Ding Xia¹, ², Jill M. Slade³, ⁴, Ravinder R. Regatte¹, ²

 ¹Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University, East Lansing, MI, United States; ⁴Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, United States;

16:12 0742. Simultaneous Muscle Water T2 and Fat Fraction Mapping Using Transverse Relaxometry with Stimulated Echo Compensation

Benjamin Marty¹,², Pierre-Yves Baudin³, Noura Azzabou¹,², Ericky C.A. Araujo¹,², Pierre G. Carlier¹,², Paulo Loureiro de Sousa⁴

¹NMR laboratory, Institute of Myology, Paris, France; ²NMR laboratory, CEA/I2BM/MIRCen, Paris, France; ³Consultants for Research in Imaging and Spectroscopy, Tournai, Belgium; ⁴Université de Strasbourg, CNRS, ICube, FMTS, Strasbourg, France

16:24 0743. In Vivo OXPHOS Measurement by Magnetic Resonance Imaging in Metabolic Myopathy

Catherine DeBrosse¹, Ravi Prakash Reddy Nanga¹, Neil Wilson¹, Kevin D'Aquilla¹, Mark Elliott¹, Hari Hariharan¹, Felicia Yan², Leat Perez², Sara Nguyen², Elizabeth McCormick³, Marni Falk³, ⁴, Shana McCormack², ⁴, Ravinder Reddy¹

¹Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, United States; ³Division of Human Genetics, The Children's Hospital of Philadelphia, PA, United States; ⁴Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States

16:36 0744. Skeletal Muscle Tissue Characterization by ²³Na NMRS Under Different Vascular Filling Conditions Benjamin Marty¹, ², Teresa Gerhalter¹, ², Ericky C.A. Araujo¹, ², Eric Giacomini³, Pierre G. Carlier¹, ² 'NMR laboratory, Institute of Myology, Paris, France; ²NMR laboratory, CEA/I2BM/MIRCen, Paris, France; ³UNIRS, CEA/I2BM/NeuroSpin, Gif-Sur-Yvette, France

16:48 0745. Activation of Skeletal Muscle PDH with DCA Increases Steady State ΔGATP Below the Aerobic Threshold Jonathan David Kasper¹, Anne Tonson¹, Mike Klingler¹, Joshua Hubert¹, Ronald Meyer², Robert Wiseman² ¹Physiology, Michigan State University, East Lansing, MI, United States; ²Physiology and Radiology, Michigan State University, East Lansing, MI, United States

17:00 0746. Assessment of Thigh Muscle in Healthy Controls and Dermatomyositis Patients with Diffusion Tensor Imaging, Intravoxel Incoherent Motion, and Dynamical DTI Eric Edward Sigmund¹,², Steven H. Baete¹,², Thomas Luo², Karan Patel², Mary Bruno¹,², David Mossa¹,², David Stoffel¹,², Alisa Femia³, Sarika Ramachandran³, Andrew Franks³, Jenny Bencardino ¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, NYU School of Medicine, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, NY, United States; ³Department of Dermatology, NYU School of Medicine, NY, United States

17:12 0747. T₂ and T_{1p} Detect Early Regenerative Changes in Ischemic Skeletal Muscle

Hanne Hakkarainen¹, Galina Wirth¹, Petra Korpisalo-Pirinen¹, Seppo Ylä-Herttuala¹, Timo Liimatainen¹, ² ¹University of Eastern Finland, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland; ²Imaging Center, Kuopio University Hospital, Kuopio, Finland

17:24 0748. Reproducibility and Sensitivity of Muscle-Water T2 Determined Independently of Fat Fraction with IDEAL-CPMG

Christopher D J Sinclair¹, Jasper M. Morrow¹, Robert L. Janiczek², Matthew R M Evans¹, Elham Rawah¹, Sachit Shah¹, Michael G. Hanna¹, Marv M. Reilly¹, Tarek A. Yousry¹, John S. Thornton¹ ¹Institute of Neurology, University College London, London, United Kingdom; ²Experimental Medicine Imaging, GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom

17:36

0749. Skeletal Muscle Oxygen Extraction Fraction Measurement - At Rest and During Ischemia Chengyan Wang¹, Rui Zhang², Xiaodong Zhang³, He Wang⁴, Kai Zhao³, Jue Zhang¹, ², Xiaoying Wang, ¹³, Jing Fang¹, ² Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; ²College of Enigneering, Peking University, Beijing, China; ³Department of Radiology, Peking University First Hospital, Beijing, China; ⁴Philips Research China, Shanghai, China

17:48 0750. In Vivo Sodium T1 and T2 Measurements in Human Calf at 3T Ping Wang¹, Charles Nockowski², John C. Gore¹ ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Philips Healthcare Technical Support at Vanderbilt, Nashville, TN, United States

Educational Course

Update on MRI Pulse Sequences for Body MRI

Organizers: Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek, M.D., Ph.D., M.Ed., FRCR

Room 718 B 16:00-18:00 Moderators: Ananth J. Madhuranthakam, Ph.D. & Shreyas S.

Vasanawala, M.D., Ph.D.

- 16:00 Ultrashort TE (Lung, Liver, Iron) Scott K. Nagle
- 16:30 **Dynamic Contrast Enhanced MRI/MRA** Vikas Gulani
- 17:00 New Developments & Applications for Body DWI Andrew B. Rosenkrantz
- Update on Parallel Imaging & Body MRI 17:30 Ananth J. Madhuranthakam
- 18:00 **Adjournment & Meet the Teachers**

Educational Course

MR Physics & Techniques for Clinicians

Organizers: Marcus T. Alley, Ph.D., Michael Markl, Ph.D., Brian Hargraves, Ph.D., & Nicole Seiberlich, Ph.D. 00 10 00 3.4 T A 11

K00m 801 A/B	16:00-18:00	Moderators: Marcus T. Alley, Ph.D. & Michael Marki, Ph.D.
16:00	Ultrafast Imaging	·
	Martya Doneva	
16:30	Parallel Imaging	
	Katherine L. Wright	
17:00	Diffusion & Perfusion Weighted Imaging	
	Maxime Descoteaux	
17.30	Adjournment & Most the Topphers	
17.50	Aujournment & wreet the reachers	

ISMRM Business Meeting 18:15-19:15 Room 701 A

(no CME credit)

Sunrise Educational Course
Addressing Clinical Challenges in the Body with MRI
Organizers: Lorenzo Mannelli, M.D., Ph.D., Ivan Pedrosa, M.D., Scott B. Reeder, M.D., Ph.D. & Edwin J.R. van Beek,

M.D., Ph.D., M.Ed., FRCR

Room 701 A 07:00-07:50

Moderators: Kathryn Fowler, M.D. & Gillian Macnaught, Ph.D.

Imaging in Pregnancy

- **07:00 MRI in Pregnancy: Practical Considerations & Indications** Daniela Prayer, Peter C. Brugger, Gregor Kasprian
- 07:25 Fetal Anomalies in the Body Diane M. Twickler

07:50 Adjournment & Meet the Teachers

Sunrise Educational Course

How Can MRI of Mouse Models Provide Value for Cancer Studies?

Organizers: Chris A. Flask, Ph.D., Kristine Glunde, Ph.D. & Mark D. Pagel, Ph.D.

Constitution Hall	107	07:00-07:50	Moderators: Barjor S. Gimi, Ph.D. & Arvind P. Pathak, Ph.D.
07:25	How C	an MRI of Mouse	Models Provide Value for Studies of Neurological Conditions?
	Jeff F.	Dunn	

07:50 Adjournment & Meet the Teachers

Sunrise Educational Course

Clinical Challenges in Cardiovascular MRI

Organizers: Daniel B. Ennis, Ph.D. & Harald Kramer, M.D.

Room 714 A/B	07:00-07:50	Moderators: Thomas K. F. Foo, Ph.D. & Jeanette Schulz-Menger, M.D.
07:00	Pediatric Cardiovascular-MI <i>Taylor Chung</i>	RI: Make It Fast, Safe & Accurate
07:16	CMR in Very Sick Patients: <i>Matthias G. Friedrich</i>	Realtime, Fast Imaging, Tips, Tricks & Challenges
07:32	Complex Flow in Complex P <i>Christopher J. P. François</i>	atients: Congenital Heart Disease
07:50	Adjournment & Meet the Te	achers

Sunrise Educational Course

UTE: Applications & Advances

Organizers: Neal	I K. Bangerter, Ph.D.	
Room 716 A/B	07:00-07:50	Moderators: Neal K. Bangerter, Ph.D. & Matthew D. Robson, Ph.D.
07:00	Swift Djaudat S. Idiyatullin	
07:25	ZTE Imaging Markus Weiger	
07:50	Adjournment & Meet the Teac	hers

Sunrise Educ	cational Course
Contrast by l	Body Part: How & Why?
Organizers: Bria	n A. Hargreaves, Ph.D. & Manojkumar Saranathan, Ph.D.
Room 718 A	07:00-07:50 <i>Moderators</i> : Brian A. Hargreaves, Ph.D. & Manojkumar Saranathan, Ph.D.
07:00	Neurologic Sequences: How & Why? Karl Egger
07:25	Angiography Sequences: How & Why? Kevin M. Johnson
07:50	Adjournment & Meet the Teachers
Sunrise Educ	cational Course
Brain Netwo	rks
Organizers: Jame Room 718 B	es J. Pekar, Ph.D., & Jonathan R. Polimeni, Ph.D. 07:00-07:50 <i>Moderators:</i> Catherine E. Chang, Ph.D. & James J. Pekar, Ph.D.
07:00	Brain Network Applications in Basic Neuroscience Jean Daunizeau
07:25	Brain Network Applications in Clinical Neuroscience Paul M. Matthews
07:50	Adjournment & Meet the Teachers
Sunrise Educ	cational Course
Bone Structu	re & Bone Interface
Organizers:Eric Regatte, Ph.D. &	Y. Chang, M.D., Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Siegfried Trattnig, M.D.
<u>Room 801 A/B</u>	07:00-07:50 <i>Moderators</i> : Jenny T. Bencardino, M.D. & Avneesh Chhabra, M.D.
Bone Structure & 07:00	z Bone Interface Cortical & Trabecular Bone Felix W. Wehrli
07:25	Bone-Tissue Interface Jiang Du
07:50	Adjournment & Meet the Teachers
Sunrise Educ	cational Course
Neuroimagin	g: Vascular
Organizers: Jona	than H. Gillard, M.D., FRCR, MBA & Howard A Rowley, M.D.
<u>Room 701 B</u> 07:00	07:00-07:50 Moderators: Dennis L. Parker, Ph.D. & David Saloner, Ph.D. CNS Aneurysms & Vascular Malformations: What the Neurosurgeon Needs to Know from Imaging.
	Timotny J. Carroli
07:25	MR in the Evaluation of Aneurysms & Vascular Malformations <i>Myriam Edjlali-Goujon</i>

07:50 Adjournment & Meet the Teachers

Sunrise Educational Course Nuts & Bolts of Advanced Imaging

Organizers: Alexey Samsonov, Ph.D., N. Jon Shah, Ph.D. & Jeffrey Tsao, Ph.D., M.B.A. John Bassett Theatre 102 07:00-07:50 Moderators: Philip J. Beatty, Ph.D. & Christopher M. Collins, Ph.D.

Review/Demo of Available Excitation Software

07:00 The Image Reconstruction Pipeline Michael S. Hansen

- 07:25 Parallel Imaging & Beyond Philip J. Beatty
- 07:50 **Adjournment & Meet the Teachers**

Plenary Session Mansfield Lecture

Plenary Hall FG

08:00-09:00 08:00 Young Investigator Awards Presentation James G. Pipe, 2015-16 ISMRM President 08:15 Mansfield Lecture: MRI in the Era of Personalized Medicine

Elizabeth A. Morris, M.D., FACR

Plenary Session

Fetal & Placental Imaging: Technical & Clinical Aspects

Organizers: Patricia Ellen Grant, M.D. & Jeffrey J. Neil, M.D., Ph.D.

08:15-10:00 Moderators: Patricia Ellen Grant, M.D. & Jeffrey J. Neil, M.D., Ph.D. Plenary Hall FG 0751. Technical Aspects/Challenges 09:00

- Joseph V. Hajnal
- 0752. Clinical Aspects of Fetal Brain Imaging 09:20 Orit A. Glenn
- 09:40 0753. Clinical Aspects of Imaging the Placenta Daniela Prayer

10:00 Adjournment

Traditional Poster Session: Cardiovascular Exhibition Hall 10:30-12:30

Electronic Poster Session: Cardiovascular

Exhibition Hall 10:30-12:30

Study Group Session Molecular & Cellular Imaging Reception Hall 104 BCD 10:30-12:30

(no CME credit)

(no CME credit)

(no CME credit)

Power Pitch Session: High Field Applications

Power Pitch Theatre, Exhibition Hall	10:30-11:30	(no CME credit)
Moderators: Gragory I Motzgar Ph.D. & T.B.A		

Moderators: Gregory J. Metzger, Ph.D. & T.B.A.

0754. Whole Brain Pulsed Arterial Spin Labelling at Ultra High Field with a B1⁺-Optimised Adiabatic Labelling Pulse Kieran O'Brien^{†1}, ², Fabian Zimmer^{†2}, Steffen Bollmann², Josef Pfeuffer³, Keith Heberlein⁴, Markus Barth² ¹Healthcare Sector, Siemens Ltd, Brisbane, Australia; ²The Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; ³Siemens Healthcare, Erlangen, Germany; ⁴Siemens Healthcare, Boston, MA, United States

0755. 7T Imaging of Patients with Focal Epilepsy Who Appear Non-Lesional in Diagnostic 1.5T and 3T MRI Scans: First Results

Rebecca Emily Feldman¹, Hadrien Dyvorne¹, Bradley Neil Delman¹, Madeline Cara Fields², Lara Vanessa Marcuse², Priti Balchandani¹

¹Radiology, Icahn School of Medicine at Mount Sinai, New York, United States; ²Department of Neurology, Mount Sinai Hospital, New York, United States

0756. In Vivo ³⁷Cl MRI of Human Calf Muscle at 7T

Judith Schork¹, Anna Kollefrath¹, Manuela B. Rösler¹, Reiner Umathum¹, Armin M. Nagel¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

0757. T1rho and T2 Relaxation Times in Patients with Knee Osteoarthritis at 3 Tesla and 7 Tesla Cory Wyatt¹, Aditi Guha¹, Anand Venkatachari¹, Xiaojuan Li¹, Roland Krug¹, Douglas A.C. Kelley², Thomas M. Link¹, Sharmila Majumdar¹ ¹Radiology, University of California San Francisco, San Francisco, CA, United States; ²GE Healthcare Technologies, San Francisco, CA, United States

- **0758.** Saturation Recovery Single-Shot Acquisition (SASHA) for T₁ Mapping in the Human Heart at 7T *Christopher T. Rodgers¹, Yuehui Tao¹, Stefan Piechnik¹, Alexander Liu¹, Jane Francis¹, Stefan Neubauer¹, Matthew D. Robson¹* ¹University of Oxford, Oxon, United Kingdom
- **0759.** Theoretical and Experimental Comparisons of Single Breath-Hold Renal Perfusion Imaging Between 3T and 7T *Xiufeng Li^l, Edward J. Auerbach^l, Pierre-Francois Van de Moortele^l, Kamil Ugurbil^l, Gregory J. Metzger^l* ¹Radiology-CMRR, University of Minnesota, Minneapolis, MN, United States

0760. Ultra-Short T_E STEAM Improves Hepatic Lipid Quantification and Profiling at 7T

Martin Gajdošík¹, Grzegorz Chadzynski², ³, Vladimír Mlynárik¹, Marek Chmelík¹, Wolfgang Bogner¹, Ladislav Valkovic¹, ⁴, Ivica Just Kukurová¹, Siegfried Trattnig¹, Martin Krššák¹, ⁵ ¹MRCE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany; ³Department of High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ⁴Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia; ⁵Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

0761. Ultra-High Field *In Vivo* Localized Two Dimensional Correlated MR Spectroscopy to Probe Membrane Degradation During Progression of Alzheimer's Disease

A Alia¹,², Niels Braakman¹

¹Leiden Institute of Chemistry, Leiden University, Leiden, South Holland, Netherlands; ²Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany

0762. In Vivo MR Microscopy of the Nervus Opticus at 3.0 T and 7.0 T: Anatomical and Diffusion Weighted Imaging in Healthy Subjects and Patients with Optic Nerve Glioma

Katharina Paul¹, Andreas Graessl¹, Jan Rieger¹, Darius Lysiak¹, Till Huelnhagen¹, Lukas Winter¹, Antje Els¹, Beate Endemann¹, Tobias Lindner², Stefan Hadlich³, Paul-Christian Krueger³, Oliver Stachs², ⁴, Soenke Langner³, Thoralf Niendorf⁴, ⁵

¹Max-Delbrueck Centre for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany; ²University Medicine Rostock, Pre-clinical Imaging Research Group, Rostock, Germany; ³University of Greifswald, Institute for Diagnotic Radiology and Neuroradiology, Greifswald, Germany; ⁴University Medicine Rostock, Department of Ophthalmology, Rostock, Germany;

Thursday

⁵Experimental and Clinical Research Center, a joint cooperation between the Charite Medical Faculty and the Max-Delbrueck Center, Berlin, Germany

0763. In-Vivo Proton MR Spectroscopic Imaging of the Human Brain Gliomas at 9.4 Tesla: Evaluation of Metabolite Coordinates

Grzegorz L. Chadzynski¹,², Gisela Hagberg¹,², Jonas Bause², G. Shajan², Sotirios Bisdas³, Rolf Pohmann², Klaus Scheffler¹,²

¹Dept. Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany; ²Dept. High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; ³Dept. Diagnostic and Interventional Neuroradiology, University of Tuebingen, Tuebingen, Germany

0764. An Investigation of Lateral Geniculate Nucleus (LGN) Volume in Patients with Glaucoma Using 7T MRI.

Hye Jin Jeong¹, Jong Yeon Lee², Jong Hwan Lee², Yu Jeong Kim², Eung Yeop Kim³, Yong Yeon Kim⁴, Zang-Hee Cho¹, Young-Bo Kim¹

¹Neuroscience Research Institute, Gachon University, Incheon, Korea; ²Department of Ophthalmology, Gachon University, Gil Hospital, Incheon, Korea; ³Department of Radiology, Gachon University, Incheon, Korea; ⁴Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea

0765. Giant Intracranial Aneurysms at 7 Tesla MRI: A New Diagnostic Approach to Understand This Rare Intracranial Vascular Pathology

Bixia Chen¹, ², Toshinori Matsushige², ³, Stefan Maderwald¹, Sören Johst¹, Harald H. Quick¹, ⁴, Mark Edward Ladd¹, ⁵, Ulrich Sure², Karsten Henning Wrede¹, ²

¹Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, NRW, Germany; ²Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, NRW, Germany; ³Department of Neurosurgery, Hiroshima University Hospital, Hiroshima University, Hiroshima, Hiroshima Prefecture, Japan; ⁴High Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Resen, NRW, Germany; ⁵Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany

0766. High Resolution Spectroscopic Imaging with Ultra Short TE in Patients with Multiple Sclerosis and Brain Tumors at 7T

Gilbert Hangel¹, Bernhard Strasser², Michal Považan², Stephan Gruber², Marek Chmelik², Georg Widhalm³, Engelbert Knosp³, Assunta Dal-Bianco⁴, Fritz Leutmezer⁴, Siegfried Trattnig², Wolfgang Bogner² ¹MCRE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Vienna, Austria; ²MCRE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Vienna, Austria; ³Department of Neurosurgery, Medical University of Vienna, Austria; ⁴Department of Neurology, Medical University of Vienna, Wien, Vienna, Austria

0767. Examples of Clinical Imaging at 7T: Successes and Challenges Stephen E. Jones¹, Se-Hong Oh¹, Erik Beall¹, Michael Phillips¹, Ken Sakaie¹, Irene Wang², Mark Lowe¹

¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States; ²Neurologic Institute, Cleveland Clinic, Cleveland, OH, United States

0768. Towards Clinical Cardiac MR at 7.0 T: Early Experience with Black Blood RARE Imaging in Patients with Hypertrophic Cardiomyopathy

Till Huelnhagen¹, Katharina Paul¹, Andreas Pohlmann¹, Andreas Graessl¹, Jan Rieger², Darius Lysiak², Christof Thalhammer¹, Marcel Prothmann³, Jeanette Schulz-Menger³, ⁴, Thoralf Niendorf⁴, ⁴

¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany; ²MRI.TOOLS GmbH, Berlin, Germany; ³Dept. of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin, Germany; ⁴Experimental and Clinical Research Center, a joint cooperation between the Charite Medical Faculty and the Max-Delbrueck Center, Berlin, Germany

Fetal & Neonatal Imaging - Clinical

 Room 701 A
 10:30-12:30
 Moderators: Jessica Dubois, Ph.D. & T.B.A.

 10:30
 0769.
 The Evaluation of the White Matter Development and Small-World Networks in the Fetal Brain MRI Using SBTFE Sequence

 Bing Zhang #^l, Chenchen Yan #^l, Ming Li^l, Huiting Wang^l, Zuzana Nedelska², Tong Ru³, Zhiqun Wang³, Jie Li³, Jian Yang⁴, Yali Hu*³, Bin Zhu*^l

¹Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ²Memory Disorders Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Czech Republic; ³Department of Gynaecology and Obstetrics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ⁴Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China

10:42 0770. Disrupted Developmental Organization of Brain Connectivity in Fetuses with Corpus Callosum Agenesis: An in Utero Study

András Jakab¹, Gregor Kasprian, Ernst Schwartz, Veronika Schöpf², Daniela Prayer, Georg Langs¹, ³ ¹CIR Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Institute for Psychology, University of Graz, Graz, Austria; ³Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, United States

ISMRM MERIT AWARD Summa cum Laude

10:54

0771. Analysis of *In Vivo* Microstructural Features During the First Weeks of Life Using Structural Brain Networks *Dafnis Batalle¹, Emer J. Hughes¹, Hui Zhang², Jaques-Donald Tournier¹, Nora Tusor¹, Paul Aljabar¹, Daniel C. Alexander², Joseph V. Hajnal¹, A David Edwards¹, Serena J. Counsell¹* ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom

11:06 0772. Assessing Brain Damage After Perinatal Hypoxic-Ischaemia Using an Automated Protocol for Combined Regional Analysis of the Cerebral Blood Flow and MR Spectroscopy Magdalena Sokolska¹, Cristina Uria-Avellanal², M. Jorge Cardoso³, Maïa Proisy², Alan Bainbridge⁴, Sebastien

Ourselin³, David Thomas¹, Nicola Robertson², Xavier Golay¹ ¹UCL Institute of Neurology, London, United Kingdom; ²UCL Institute for Women's Health, United Kingdom; ³Centre for Medical Image Computing, UCL, United Kingdom; ⁴UCH Medical Physics and Bioengineering, United Kingdom

11:18 0773. Basal Ganglia and Thalamic Volumes with Motor and Cognitive Outcomes in Very Preterm 7 Year Old Children.

*Wai Yen Loh*¹, ², *Deanne K. Thompson*¹, ², *Jeanie LY Cheong*¹, ³, *Alicia J. Spittle*¹, ³, *Jian Chen*¹, ⁴, *Katherine J. Lee*¹, ³, *Terrie E. Inder*⁵, *Alan Connelly*², ³, *Lex W. Doyle*¹, ³, *Peter J. Anderson*¹, ³</sub> ¹Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; ²Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; ³University of Melbourne, Melbourne, Victoria, Australia; ⁴Monash University, Melbourne, Victoria, Australia; ⁵Brigham and Women's Hospital, Boston, MA, United States

11:30 0774. MM-Suppressed GABA Concentration Correlates with Symptom Severity and Abnormal Tactile Processing in Children with ASD

Nicolaas AJ Puts¹, ², Ashley D. Harris¹, ², Mark Tommerdahl³, Peter B. Barker¹, ², Stewart H. Mostofsky⁴, ⁵, Richard A. Edden¹, ²

¹Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ²F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³Dept. of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ⁴Dept. of Neurology, Johns Hopkins University, Baltimore, MD, United States; ⁵Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, United States

11:42 0775. Evidence for a Categorical-Dimensional Hybrid Model of Autism Spectrum Disorder Revealed in Functional Network Connectivity

Amanda Elton¹, Wei Gao^{1} , ²

¹Biomedical Research Imaging Center, UNC Chapel Hill, Chapel Hill, NC, United States; ²Radiology, UNC Chapel Hill, Chapel Hill, NC, United States

11:54 0776. Psychostimulant Medication Duration Correlates with Increased Brain Iron Levels in Attention-Deficit/Hyperactivity Disorder

Vitria Adisetiyo¹, Jens H. Jensen¹, Ali Tabesh¹, Rachael L. Deardorf¹, Kevin M. Gray², Joseph A. Helpern¹, ³ ¹Radiology and Radiological Science, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ²Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States; ³Neuroscience, Medical University of South Carolina, Charleston, SC, United States;

Thursday

12:06 0777. Brain Connectomics and Social Cognition from Infancy to Early Adolescence: Effects of IUGR

Emma Muñoz-Moreno¹, Elda Fischi-Gomez², ³, Dafnis Batalle¹, Lana Vasung³, Morgane Reveillon³, Cristina Borradori-Tolsa³, Elisenda Eixarch¹, ⁴, Jean-Philippe Thiran², ⁵, Eduard Gratacos¹, ⁴, Petra Susan Hüppi³ ¹Fetal and Perinatal Medicine Research Group, IDIBAPS, Barcelona, Spain; ²Ecole Polytecnique Fédérale de Laussane, Signal Processing Laboratory 5 (LTS5), Laussane, Switzerland; ³Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; ⁴Maternal-Fetal Medicine Department, ICGON, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain; ⁵Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Laussane, Switzerland

12:18 0778. Comparison of CBF Measured with Velocity Selective ASL and Pulsed ASL in Pediatric Patients with Prolonged Arterial Transit Times Due to Moymoya Disease

Divya S. Bolar¹, ², Borjan Gagoski³, Richard L. Robertson⁴, Elfar Adalsteinsson⁵, Bruce R. Rosen¹, ², P Ellen Grant³ ¹Department of Radiology, Massachusetts General Hospital, Boston, MA, United States; ²MGH/HST Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³Fetal Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, MA, United States; ⁴Department of Radiology, Boston Children's Hospital, MA, United States; ⁵Department of Electrical Engineering & Computer Science, Massachusetts Institute of Technology, MA, United States

CESToronto

Summa cum laude

Room 701 B	10:30-12:30	Moderators: Seth A. Smith, Ph.D. & T.B.A.
10:30 077	79. Highly-Accelerated Chemical Exchan	ge Saturation Transfer (CEST) Measurements with Linear Algebraic
ismen merit awaed summa cum laude	Modeling (SLAM) Yi Zhang ¹ , Hye-Young Heo ¹ , Dong-Hoo ¹ Division of MR Research, Department of Ra Research Center for Functional Brain Imagin	n Lee ¹ , Shanshan Jiang ¹ , Paul Bottomley ¹ , Jinyuan Zhou ¹ , ² adiolgoy, Johns Hopkins University, Baltimore, MD, United States; ² F. M. Kirby g, Kennedy Krieger Institute, Baltimore, MD, United States
10:42 078	80. CEST Analysis Via MR Fingerprintin Nicolas Geades ¹ , Penny Gowland ¹ , Oliv ¹ Sir Peter Mansfield Imaging Centre, Univer	ng <i>vier Mougin¹</i> sity of Nottingham, Nottingham, United Kingdom
10.54 078	81 Monitoring Theraneutic Resnance on	Non-Small Cell Lung Cancer in Chemotherany by Amide Proton Transfer

0781. Monitoring Therapeutic Response on Non-Small Cell Lung Cancer in Chemotherapy by Amide Proton Transfer (APT) Imaging in Mice

Keisuke Ishimatsu¹, Shanrong Zhang¹, Koji Sagiyama¹, Osamu Togao¹, Brenda Timmons², John Minna², Masaya Takahashi¹

¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Hamon Center for Therapeutic Oncology, Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States

11:06 0782. Dynamic Imaging of D-Glucose at 7T: First Experiments in Human Brain

Xiang Xu¹, ², Craig K. Jones¹, ², Nirbhay N. Yadav¹, ², Linda Knutsson³, Jun Hua¹, ², Rita Kalyani⁴, Erica Hall⁴, John Laterra⁵, Jaishri Blakeley⁵, Roy Strowd⁵, Prakash Ambady⁵, Martin Pomper¹, Peter Barker¹, ², Guanshu Liu¹, ², Kannie W.Y. Chan¹, ², Michael T. McMahon¹, ², Robert D. Stevens⁵, ⁶, Peter van Zijl¹, ² ¹Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; ²F. M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States; ³Department of Medical Radiation Physics, Lund University, Lund, Sweden; ⁴Division of Endocrinology, Diabetes, & Metabolism, Johns Hopkins University, Baltimore, MD, United States; ⁶Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States

11:18	0783.	Chemical Exchange Sensitive Spin-Lock MRI of Deoxyglucose Transport and Metabolism in Brain
		Tao Jin ¹ , Hunter Mehrens ¹ , Seong-Gi Kim ¹ , ²
		¹ Department of Radiology, University of Pittsburgh, Pittsburgh, PA - Pennsylvania, United States; ² Center for Neuroscience Imaging
		Research, Institute for Basic Science, SKKU, Suwon, Korea

11:30 0784. Chemical Exchange Saturation Transfer (CEST) Imaging with Double Angles and Varying Duty Cycles Ke Li¹, ², Hua Li¹, ³, Zhongliang Zu¹, ², Junzhong Xu¹, ², Jingping Xie¹, ², Bruce M. Damon¹, ², Mark D. Does¹, ², John C. Gore¹, ², Daniel F. Gochberg¹, ² ¹Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, United States; ²Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Physics and Physics and Physics and Physics Physi

11:42 ISMAM MERIT Magna cum	0785.	Balanced Steady State Free Precession (BSSFP) from an Effective Field Perspective: Application to the Detection of Exchange (BSSFPX) Shu Zhang ¹ , Zheng Liu ² , Robert E. Lenkinski ¹ , ³ , Elena Vinogradov ¹ , ³ ¹ Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ² Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ³ Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States
11:54	0786.	Optimizing Multislice AcidoCEST MRI for Assessments of Extracellular PH in Tumor and Kidney Tissues. <i>Edward A. Randtke^l, Kyle Jones^l, Christy Howison^l, Julio Cárdenas-Rodríguez^l, Mark D. Pagel^l</i> ¹ Biological and Medical Imaging, University of Arizona, Tucson, AZ, United States
12:06	0787.	Cardiac CEST MRI of ParaCEST Labeled Cells in Cell Therapy <i>Ashley Pumphrey¹, Scott Thalman², Zhengshi Yang¹, Shaojing Ye¹, Moriel Vandsburger¹, ³</i> ¹ Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States; ² Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; ³ Department of Physiology, University of Kentucky, Lexington, KY, United States
12:18	0788.	Salicilyc-Acid CEST PAMAM Polymers for CEST Imaging of Delivery to Brain Tumors Nikita Oskolkov ¹ , ² , Kannie W.Y. Chan, ¹² , Xiaolei Song, ¹² , Tao Yu ³ , Peter C.M. van Zijl, ¹² , Justin Hanes ³ , Rangaramanujam M. Kannan ³ , Michael T. McMahon ¹ , ² ¹ The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States; ² F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³ Center for Nanomedicine, Johns Hopkins School of Medicine, Baltimore, MD, United States

Perfusion & Permeability: Validation Studies

Room 714 A/	Έ	10:30-12:30 Mod	erators: Weiving Dai, Ph.D. & Ronnie Wirestam, Ph.D.
10:30 078	89.	Dynamic Contrast-Enhanced MR Imaging in Rectal Ca	ancer: Study of Inter-Software Accuracy and
		Reproducibility Using Simulated and Clinical Data Iuc Reputit1 Pierre, Antoine Fligt2 Flige Rannier1 3 Jean-	Christophe Ferré ^{1 3} Yves Gandon ¹ Vanessa Brun ¹ Hervé
		Saint-Jalmes ⁴ , ⁵	Christophe I erre , , I ves Gundon , i unessu Brun , Herve
		¹ Radiology, CHU Rennes, Rennes, France; ² PRISM-Biosit CNRS France; ³ Neurinfo MR imaging platform, University of Rennes I, Rennes, France; ⁵ LTSI, UMR 1099, INSERM, University of Renn	UMS 3480, INSERM UMS 018, University of Rennes I, Rennes, Rennes, France; ⁴ Radiology, Eugène Marquis Cancer Institute, nes I, Rennes, France
10:42 079	90.	Validation of Quantitative Blood Flow with 3D Gradien Resonance Imaging (DCE-MRI) Using Blood Pool Con Stefan Hindel ¹ , Anika Sauerbrey ¹ , Marc Maaβ ² , Lutz Lüde	nt Echo (GRE) Dynamic Contrast-Enhanced Magnetic trast Medium in Skeletal Muscle of Swine mann ¹
		¹ Strahlenklinik und Poliklinik, Universitätsklinikum Essen, Essen Wesel GmbH, North Rhine-Westphalia, Germany	, North Rhine-Westphalia, Germany; ² Evangelisches Krankenhaus
10:54 079	91.	Effects of Temporal Resolution on DCE-MRI Parameter	er Estimation: In-Vivo Repeatability Analysis of Lung
		Tumors Using Retroactively Adjustable KWIC Recons <i>Xia Zhao¹</i> , ² , <i>Yiqun Xue¹</i> , ² , <i>Mark Rosen²</i> , <i>Hyunseon Kang³</i>	truction , Ramesh Rengan ⁴ , Heekwon Song ¹ , ²
		¹ Laboratory for Structural NMR Imaging, University of Pennsylva Hospital of University of Pennsylvania, Philadelphia, PA, United TX, United States; ⁴ Department of Radiation Oncology, Universit	ania, Philadelphia, PA, United States; ² Department of Radiology, States; ³ MD Anderson Cancer Center, University of Texas, Houston, y of Washington School of Medicine, Seattle, WA, United States
11.07 07	00	M	
11:00 079	92.	Corroboration with Ktrans and Evan's Blue Measure	nusion-weighted Arterial Spin Labeling (DW-ASL):

Corroboration with Ktrans and Evan's Blue Measurements *Yash Vardhan Tiwari¹, ², Qiang Shen³, Zhao Jiang³, Wei Li³, Justin Long, ²³, Chenling Fang, ²³, Timothy Duong³* ¹Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ²Biomedical Engineering, UT, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ³Research Imaging I

11:18	0793.	Intra and Inter-Subject Reproducibility of Arterial Transit Time <i>Tracy Ssali¹</i> , ² , <i>Udunna C. Anazodo¹</i> , ² , <i>Mahsa Shokouhi¹</i> , <i>Bradley J. MacIntosh³</i> , <i>Keith St Lawrence¹</i> , ² ¹ Laswon Health Research Institute, London, Ontario, Canada; ² University of Western Ontario, London, Ontario, Canada; ³ Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
11:30	0794.	Comparison of ASL Inversion Efficiency and CBF Quantification for 3 Perfusion Techniques at 3 Magnetic Fields <i>Clement Stephan Debacker¹, ², Jan M. Warnking¹, ³, Sacha Koehler², Jerome Voiron², Emmanuel L. Barbier¹, ³</i> ¹ GIN, Univ. Grenoble Alpes, Grenoble, France; ² Bruker BioSpin MRI, Ettlingen, Germany; ³ U836, INSERM, Grenoble, France
11:42 ISMRH MERIT Magna cun	0795.	Assessing Relationship Between Intracranial Vascular Compliance and Aortic Pulse Wave Velocity Using MRI Lirong Yan ¹ , Collin Liu ² , Robert Smith ¹ , Mayank Jog ¹ , Kate Krasileva ¹ , Cheng Li ³ , Michael Langham ³ , Danny JJ Wang ¹ ¹ Neurology, University of California Los Angeles, Los Angeles, CA, United States; ² University of Southern California, CA, United States; ³ University of Pennsylvania, Philadelphia, PA, United States
11:54 Isman Ment Magna cum	0796.	Validation of Dual-Injection Dynamic Susceptibility Contrast Perfusion Weighted Imaging Against Pseudo- Continuous Arterial Spin Labeling: A Pilot Study Natalie M. Wiseman ¹ , Meng Li ² , Mahmoud Zeydabadinezhad ³ , Jessy Mouannes-Srour ³ , Yongquan Ye ² , E. Mark Haacke, ²³ , Zhifeng Kou, ²³ ¹ Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States; ² Department of Radiology, Wayne State University School of Medicine, Detroit, MI, United States; ² Department of Radiology, Wayne State University School of Medicine, Detroit, MI, United States;
12:06	0797.	An Extensible Methodology for Creating Realistic Anthropomorphic Digital Phantoms for Quantitative Imaging Algorithm Comparisons and Validation Ryan J. Bosca ¹ , Edward F. Jackson ¹ ¹ Medical Physics, University of Wisconsin - Madison, Madison, WI, United States
12:18	0798.	A Simple and Cheap Perfusion Phantom Ina Nora Kompan ¹ , ² , Klaus Eickel ¹ , ³ , Federico von Samson-Himmelstjerna ¹ , ⁴ , Benjamin Richard Knowles ⁵ , Matthias Guenther ¹ , ² ¹ Fraunhofer MEVIS, Bremen, Germany; ² mediri GmbH, Heidelberg, Baden-Württemberg, Germany; ³ Universitätsklinikum Essen, Essen, Nordrhein-Westfalen, Germany; ⁴ Charité, Berlin, Germany; ⁵ Universitätsklinikum Freiburg, Freiburg, Baden-Württemberg, Germany
Diabete	es, Me	tabolism & GI
Room 71	6 A/B	10:30-12:30 Moderators: Yulia Lakhman, M.D. & T.B.A.
10:30	0799.	Localized Detection of Fasting-Induced Changes in Lactate Metabolism by Hyperpolarized ¹³ C MRSI Cornelius von Morze ¹ , Gene-Yuan Chang ² , Peder E. Larson ¹ , Hong Shang ¹ , Robert A. Bok ¹ , Jason C. Crane ¹ , Marram P. Olson ¹ , C.T. Tan ³ , Sarah J. Nelson ¹ , John Kurhanewicz ¹ , David Pearce ² , Daniel B. Vigneron ¹ ¹ Department of Radiology & Biomedical Imaging, UCSF, San Francisco, CA, United States; ² Department of Medicine, UCSF, San Francisco, CA, United States; ³ ISOTEC, Sigma-Aldrich, Miamisburg, OH, United States
10:42 ISMRM MERIT Magna cum	0800. award 1 laude	Carbohydrate Requirements During Intermittent High Intensity Exercise Compared to Continuous Moderate Intensity Exercise in Individuals with Type 1 Diabetes Tania Buehler ¹ , Lia Bally ² , Ayse Sila Dokumaci ¹ , Christoph Stettler ² , Chris Boesch ¹ ¹ Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ² Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital Bern, Bern, Switzerland

10:54 0801. The Acute Effects of Metformin on Cardiac and Hepatic Metabolism: A Hyperpolarized [1-13C]pyruvate Magnetic Resonance Spectroscopy Study Andrew Lewis¹, Chloe McCallum¹, Jack Miller¹, ², Lisa Heather¹, Damian J. Tyler¹ ¹Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; ²Department of Physics, University of Oxford, Oxford, United Kingdom

11:06 0802. Fructose Increases de Novo Lipogenesis in the Liver of Rats: An In Vivo ¹H-[¹³C] MRS Study Sharon Janssens¹, Klaas Nicolay¹, Jeanine J. Prompers¹
¹Biomedical NMR, Eindhoven University of Technology, Eindhoven, Noord-Brabant, Netherlands

11:18 0803. Adipokine Secretions Correlate with MRI Measurements of Adiposity

Kathryn Murray¹, Caroline Hoad², Jill Garratt³, Carolyn Costigan², Arvind Batra⁴, Britta Siegmund⁴, Yirga Falcone³, Jan Smith³, Eleanor Cox², Jan Paul², David Humes³, Susan Francis², Luca Marciani³, Robin Spiller³, Penny Gowland² ¹Sir Peter Mansfield Imaging Centre, Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; ²Sir Peter Mansfield Imaging Centre, Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; ³Nottingham Digestive Diseases Biomedical Research Centre, Nottingham University Hospitals, Nottingham, United Kingdom; ⁴Gastroenterology, Rheumatology, Infectious Diseases, Charité – Universitätsmedizin, Berlin, Germany

11:30 0804. Profiling Muscle Substrate Utilization in Insulin-Resistant Subjects Using ¹³C-MRS at 7 Tesla Douglas E. Befroy¹, ², Kitt Falk Petersen², Douglas L. Rothman¹, ³, Gerald I. Shulman², ⁴ ¹Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States; ²Internal Medicine, Yale University

School of Medicine, New Haven, CT, United States; ³Biomedical Engineering, Yale University School of Medicine, New Haven, CT, United States; ⁴Howard Hughes Medical Institute, New Haven, CT, United States

11:42 0805. Contrast-Enhanced T1-Weighted MRI of the Small Bowel at 7 Tesla in Comparison to 1.5 Tesla

Maria Hahnemann¹,², Oliver Kraff², Stefan Maderwald², Soeren Johst², Mark E. Ladd²,³, Harald H. Quick²,⁴, Thomas Lauenstein¹

¹Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany; ³Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ⁴High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany

11:54 0806. Comparison of T2-Weighted MRI of the Small Bowel at 7 Tesla and 1.5 Tesla

Maria L. Hahnemann¹, ², Oliver Kraff¹, Stefan Maderwald¹, Soeren Johst¹, Mark E. Ladd¹, ³, Harald H. Quick¹, ⁴, Thomas C. Lauenstein²

¹Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany; ²Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany; ³Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ⁴High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany

12:06 0807. Prospective Comparison of a Contrast-Enhanced MRI Protocol with Contrast-Enhanced MDCT for the Primary Diagnosis of Acute Appendicitis in the General Population

Michael D. Repplinger¹, ², Perry J. Pickhardt², Douglas R. Kitchin², Jessica B. Robbins², Timothy J. Ziemlewicz², Scott B. Reeder², ³

¹Emergency Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; ²Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; ³Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States

12:18 0808. Diffusion and Post Contrast MFAST Imaging for Evaluation of Acute Appendicitis: The Stanford Experience Alex Lewis¹, Mathew Bernbeck¹, Richard Barth¹, Shreyas Vasanawala Radiology, Stanford University, Stanford, CA, United States

Motion Correction

Constitution Hall	107 10:30-12:30	Moderators: Kevin M. Johnson, Ph.D. & Maxim Zaitsev, Ph.D.
10:30 0809.	Combined Free Breath	ing, Whole Heart Self-Navigation and "pencil-Beam" 2D-T ₂ -Prep for Coronary MRA
ISMRM MERIT AWARD	Andrew J. Coristine ¹ , ² ,	<i>lérôme Chaptinel</i> , ²³ , Giulia Ginami, ²³ , Gabriele Bonanno, ²³ , Ruud B. van Heeswijk ² , Davide
2	Piccini ⁴ , ⁵ , Matthias Stul	per ²
	¹ Department of Radiology,,	University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, VD, Switzerland;
	² CardioVascular Magnetic	Resonance (CVMR) research centre, Centre for Biomedical Imaging (CIBM), Lausanne, VD, Switzerland;
	³ Department of Radiology,	University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, VD, Switzerland;
	⁴ Department of Radiology,	University Hospital (CHUV) and Centre for Biomedical Imaging (CIBM), Lausanne, VD, Switzerland;
	⁵ Advanced Clinical Imagin	g Technology, Siemens Healthcare IM BM PI, Lausanne, VD, Switzerland

Thursday

10:42	0810.	Motion Compensate	d Reconstruction in	Accelerated Sing	le-Shot Cardiac	MRI

Aurélien Bustin¹, ², Anne Menini², Shufang Liu¹, ², Teresa Rincón Domínguez¹, ², Darius Burschka¹, Martin A. Janich², Steven Wolff³, Oleg Shubayev³, David W. Stanley⁴, Freddy Odille⁵, ⁶, Anja C. Brau⁷ ¹Computer Science, Technische Universitat Munchen, Munich, Germany; ²GE Global Research, Garching, Germany; ³Advanced Cardiovascular Imaging, New York City, NY, United States; ⁴GE Healthcare, Rochester, MN, United States; ⁵Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France; ⁶U947, INSERM, Nancy, France; ⁷Cardiac Center of Excellence, GE Healthcare, Garching, Germany

10:54 0811. Virtual Coil Navigator: A Robust Localized Motion Estimation Approach for Free-Breathing Cardiac MRI Xinwei Shi¹, Joseph Cheng², Michael Lustig³, John Pauly¹, Shreyas Vasanawala² ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Electrical Engineering and Computer Science, UC Berkeley, Berkeley, CA, United States

11:06 0812. Imaging in the Presence of Motion with Sliding Slice Distortions *Kevin Michael Johnson¹, James H. Holmes², Scott B. Reeder, ¹³* ¹Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ³Radiology, University of Wisconsin-Madison, Madison, WI, United States

11:18 0813. Improved Tracking of Object Motion During MRI Examinations Using Coil Fingerprint Enhanced Signal Navigators.

Kaveh Vahedipour¹, ², Thomas Köster, ²³, Fernando Boada, ²³ ¹Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York School of Medicine, New York, NY, United States; ³Center for Advanced Imaging Innovation and Research (CAI2R), NYU Langone Medical Center, New York, NY, United States

11:30 0814. Predictive Sensor for Real-Time Respiratory Motion Monitoring

Robin Navest¹, Cornelis van den Berg¹, Jan Lagendijk¹, Anna Andreychenko¹ ¹Imaging Division, UMC Utrecht, Utrecht, Netherlands

11:42 **0815.** Optical Prospective Motion Correction for High Resolution Quantitative MRI (QMRI) of the Brain Martina F. Callaghan¹, Oliver Josephs¹, Michael Herbst², Maxim Zaitsev², Nicholas Todd¹, Nikolaus Weiskopf¹ ¹Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, UCL, London, United Kingdom; ²Department of Radiology, University Medical Centre Freiburg, Freiburg, Germany

11:54 **0816. 3D** FatNav: Prospective Motion Correction for Clinical Brain Imaging *Magnus Mårtensson¹, ², Mathias Engström, ²³, Enrico Avventi³, Ola Norbeck³, Stefan Skare, ²³* ¹EMEA Research & Collaboration, GE Applied Science Laboratory, GE Healthcare, Stockholm, Sweden; ²Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; ³Dept. of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden

12:06 0817. Simultaneous Multi-Slice (SMS) Accelerated EPI Navigators for Prospective Motion Correction in the Brain Himanshu Bhat¹, M. Dylan Tisdall², Stephen F. Cauley², Thomas Witzel², Kawin Setsompop², Andre J.W. van der Kouwe², Keith Heberlein¹ ¹Siemens Healthcare, Charlestown, MA, United States; ²Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States

12:18 0818. On the Resilience of GS-BSSFP to Motion and Other Noise-Like Artifacts *Michael N. Hoff¹, Jalal B. Andre¹, Qing-San Xiang², ³* ¹Radiology, University of Washington, Seattle, WA, United States; ²Physics, University of British Columbia, Vancouver, British Columbia, Canada; ³Radiology, University of British Columbia, Vancouver, British Columbia, Canada

10:30	0819.	Reduced Specific Absorption Rate (SAR) Magnetization Transfer Imaging with Low Density MT Pulse
		Tochnique for 7 Tesle
		Se-Hong Oh ¹ , Wanyong Shin ¹ , Mark J Lowe ¹
		¹ Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
10:42	0820.	High Resolution MR Elastography Reveals Disseminated White Matter Degradation of Brain Tissue Integrity in
ISMRM MER	IT AWARD	Clinically Isolated Syndrome
Junna (a	in auor	Andreas Fehlner ¹ , Kaspar-Josche Streitberger ¹ , ² , Friedemann Paul ³ , ⁴ , Jens Würfel, ⁵³ , Jürgen Braun ⁶ , Ingolf Sack ¹ ¹ Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ² Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ³ NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Germany; ⁴ Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ⁵ Institute of Neuroradiology, Universitätsmedizin Göttingen, Göttingen, Germany; ⁶ Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany
10:54	0821.	Ultra-High Field MRI Longitudinal MS Lesion Study
		Bryson Dietz ¹ , David A. Rudko ² , Marcelo Kremenchutzky ³ , Ravi S. Menon ¹ , ⁴
		Neurological Institute, McGill University, Montreal, QC, Canada; ³ London Health Sciences Centre, London, ON, Canada; ⁴ Department of Medical Biophysics, Western University, London, ON, Canada
11:06	0822.	Beyond Focal Cortical Lesions in Multiple Sclerosis: An In Vivo Quantitative and Spatial Imaging Study at 7 T
		Céline Louapre', ", Sindhuja T. Govindarajan', Costanza Gianni', ", Jacob A. Sloane', RP Kinkel', Caterina Mainero',
		¹ AA. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ² Harvard Medical School, Boston, MA, United States; ³ Beth Israel Deaconess Medical Center, Boston, MA, United States; ⁴ University of California San Diego, San Diego, CA, United States
11:18	0823.	Multivariate Combination of Magnetization Transfer Ratio and Quantitative T_2^* to Detect Subpial
ismem meri magna cur	r award n laude	Demyelination in Multiple Sclerosis Gabriel Mangeat ¹ , ² , Sindhuja Tirumalai Govindarajan ² , Revere Philip Kinkel ³ , Caterina Mainero ² , ⁴ , Julien Cohen-
		¹ Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Qc, Canada; ² Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States; ³ Clinical Neurosciences, University of California San Diego, La Jolla, CA, United States; ⁴ Harvard Medical School, Boston, MA, United States; ⁵ Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Qc, Canada
11:30	0824.	Advanced Myelin Water Imaging Techniques for Rapid Data Acquisition and Long T ₂ Component
		Measurements
		Jing Zhang', Irene Vavasour', Shannon Kolind ⁺ , Baumeister Baumeister ² , Alexander Rauscher', Alex L. MacKay ⁴ , ⁴ ¹ Department of Radiology, University of British Columbia, Vancouver, BC, Canada; ² Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada; ³ Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada; ⁴ Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
11:42	0825.	Voxel-Based Analysis of Subcortical Grey Matter Using Transverse Relaxation and Quantitative Susceptibility
		Mapping: Application to Multiple Sclerosis Dana Cobzas ¹ , Hongfu Sun ¹ , Andrew J. Walsh ¹ , R. Marc Lebel ¹ , Gregg Blevins ² , Alan H. Wilman ¹ ¹ Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; ² Neurology, University of Alberta, Edmonton, Alberta, Canada
11:54	0826.	Regional White Matter Abnormalities and Cognitive Impairment in MS: A Multicenter TBSS Study <i>Flishetta Pagani¹ Maria A Pacen^{1,2} Abino Bisacco¹ Olga Ciccarelli³ Christian Engineer⁴ Antonio Callo⁵ Hugo</i>

De Stefano⁷, Massimo Filippi¹, ², the MAGNIMS Network⁸ ¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy; ²Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San

Raffaele University, Milan, MI, Italy; ³UCLH NHS Foundation Trust, National Hospital for Neurology and Neurosurgery, London, UK, United Kingdom; ⁴Department of Neurology, Medical University of Graz, Graz, A, Austria; ⁵MRI Center "SUN-FISM", Second University of Naples, Naples, NA, Italy; ⁶Department of Radiology, VU University Medical Centre, Amsterdam, Netherlands, Netherlands; ⁷Department of Neurological and Behavioral Sciences, University of Siena, Siena, SI, Italy; ⁸EU, EU, Italy

12:06 0827. Cognitive Status of Multiple Sclerosis Patients Is Associated with Neocortical Neuronal Injury: A Voxel-Based Sodium MRI Study

Adil Maarouf¹, ², Bertrand Audoin¹, Anthony Faivre¹, Francoise Reuter¹, Fanelly Pariollaud¹, Audrey Rico¹, Elisabeth Soulier¹, Sylviane Confort-Gouny¹, Maxime Guye¹, Lothar Schad³, Jean Pelletier¹, Jean-Philippe Ranjeva¹, Wafaa Zaaraoui¹

¹CRMBM UMR CNRS 7339 Aix-Marseille Université, Marseille, France; ²Faculté de Médecine, Université de Reims Champagne-Ardenne, Reims, France; ³Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany

12:18 0828.	High Contrast Magnitude and Phase Imaging of the Short T2 Components in White Matter of the Brain
ISMRM MERIT AWARD	Qun He ¹ , Lanqing Ma ¹ , Wen Hong, ¹² , Vipul Sheth ¹ , Graeme M. Bydder ¹ , Jiang Du ¹
	¹ Radiology, UC, San Diego, San Diego, CA, United States; ² Radiology, China-Japan friendship hospital, Beijing, China

Educational Course

Orthopedic Surgery: What Do I need to Know Before & After? Part 1: Arthritis

Organizers: Eric Y. Chang, M.D., Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., Ravinder R. Regatte, Ph.D. & Siegfried Trattnig, M.D.

Room 718	3 A	10:30-12:30	<i>Moderators</i> : Eric Y. Chang, M.D. & Emily McWalter, Ph.D.
10:30		Subchondroplasty William B. Morrison	
11:00		Cartilage Repair <i>Carl S. Winalski</i>	
11:30		Biomaterials Jennifer H. Elisseeff	
12:00		Hip Metal-On-Metal Implants & Compli <i>Hollis G. Potter</i>	cations
12:30		Adjournment & Meet the Teachers	
Combin	ed Ec	lucational & Scientific Session	
Pediatri	ic Neu	iroimaging	
Organizer	s:Jeffr	ey J. Neil, M.D., Ph.D.	
Room 801	A/B	10:30-12:30 M	doderators: Petra S. Hüppi, M.D. & Terrie E. Inder, M.B.Ch.B., M.D.
10:30		How to Scan an Infant or Child Without <i>Kelly N. Botteron</i>	Using Sedation
10:54	0832.	Propeller Techniques for Pediatric Exam Stefan Skare ¹ , Enrico Avventi ¹ , Magnus Må ¹ Neuroradiology, Karolinska University Hospital	is in the Presence of Large Motion <i>rtensson², Ola Norbeck¹, Mathias Engström¹, Maria Sandell¹, Chen Wang¹</i> , Stockholm, Sweden; ² EMEA Research & Collaboration, GE, Stockholm, Sweden
11:06	0833.	Retrospective Motion Correction of MPn Andrew L. Alexander ¹ , ² , Janet E. Lainhart ¹ Kecskemeti ¹ 'Waisman Center, University of Wisconsin, Mad Madison, WI, United States	RAGE Studies in Children , <i>Audra Sterling¹</i> , <i>Brittany G. Travers¹</i> , <i>Abigail Freeman¹</i> , <i>Steven R</i> . ison, WI, United States; ² Medical Physics and Psychiatry, University of Wisconsin,

11:18	What MR Scientists Should Know About Neurodevelopmental Testing
	Prof. Peter Anderson

11:30 0834. Multifunctional Liposome for Non-Small Cell Lung Cancer Targeting and Theranostic MRI Ren Lili¹, Shizhen Chen¹, Haidong Li¹, Zhiying Zhang¹, Jianping Zhong¹, Xin Zhou¹ ¹National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Wuhan, Hubei, China

```
11:54 0835. Neural Correlates of Phonological Processing in 4-6 Year Olds

Andrea S. Miele<sup>1</sup>, Holly Dirks<sup>2</sup>, Dannielle John Whiley<sup>2</sup>, Terry Harrison-Goldman<sup>1</sup>, Viren D'Sa<sup>3</sup>, Sean Deoni<sup>2</sup>, <sup>4</sup>

<sup>1</sup>Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States; <sup>2</sup>Advanced Baby

Imaging Laboratory, Brown University, Providence, RI, United States; <sup>3</sup>Pediatrics, Neurodevelopmental Center, MHRI, Pawtucket,

RI, United States; <sup>4</sup>Pediatric Radiology, Children's Hospital Colorado, CO, United States
```

```
12:06 0836. Differing Contributions of Whole Brain Fractional Anisotropy, Axon Density and Axon Dispersion to
Neurodevelopmental Outcomes of Children Born Very Preterm
Claire E. Kelly<sup>1</sup>, Deanne K. Thompson<sup>1</sup>, <sup>2</sup>, Jian Chen<sup>1</sup>, <sup>3</sup>, Alexander Leemans<sup>4</sup>, Christopher L. Adamson<sup>1</sup>, Terrie E.
Inder<sup>5</sup>, Jeanie LY Cheong<sup>1</sup>, <sup>6</sup>, Lex W. Doyle<sup>1</sup>, <sup>6</sup>, Peter J. Anderson<sup>1</sup>, <sup>7</sup>
<sup>1</sup>Murdoch Childrens Research Institute, Melbourne, VIC, Australia; <sup>2</sup>Florey Institute of Neuroscience and Mental Health, Melbourne,
VIC, Australia; <sup>3</sup>Monash University, Melbourne, VIC, Australia; <sup>4</sup>Image Sciences Institute, University Medical Center Utrecht,
Utrecht, Netherlands; <sup>5</sup>Brigham and Women's Hospital, Boston, MA, United States; <sup>6</sup>Royal Women's Hospital, Melbourne, VIC,
Australia; <sup>7</sup>University of Melbourne, Melbourne, VIC, Australia
```

- 12:18 0837. White Matter Maturation Profiles Through Early Childhood Predict General Cognitive Ability Sean Deoni¹, Jonathan O'Muircheartaigh², Holly Dirks¹, Douglas C. Dean¹ ¹Brown University, Providence, RI, United States; ²NeuroImaging, King's College London, London, United Kingdom
- 12:30 Adjournment & Meet the Teachers

Combined Educational & Scientific Session

Traumatic Brain Injury

<i>Organizers</i> : Jonathan H. Gillard, M.D., FRCR, MBA & Howard A Rowley, M.D.	Organizers: Jonathan	H. Gillard, M.I	D., FRCR, MBA & Howard	d A Rowley, M.D.
--	----------------------	-----------------	------------------------	------------------

or guinzer s. o ona	
Room 718 B	10:30-12:30 <i>Moderators</i> : Roland R. Lee, M.D. & Joshua S. Shimony, M.D., Ph.D.
13:30	MR Spectroscopy in Acute Brain Injury - What We Can Offer the Clinician Now Stefan Blüml
14:00 0829.	Diffusion Kurtosis Imaging Quantifies the Effects of Mild Traumatic Brain Injury in Football Players Daniel Olson ¹ , Melissa Lancaster ² , Ashley LaRoche ³ , Volkan Arpinar ³ , Michael McCrea ³ , L Tugan Muftuler ³ ¹ Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ² Neurology, Medical College of Wisconsin, WI, United States; ³ Neurosurgery, Medical College of Wisconsin, WI, United States
14:20 0830. Isuum a cum laude	Altered Cortical and Subcortical Functional Connectivity in a Single Football Season Bryson B. Reynolds ¹ , Todd M. Chatlos ¹ , Donna K. Broshek ² , Max Wintermark ³ , Susan F. Saliba ⁴ , Howard P. Goodkin ⁵ , T. Jason Druzgal ¹ ¹ Radiology and Medical Imaging, University of Virginia School of Medicine, Charlottesville, VA, United States; ² Psychiatry and Neurobehavioral Sciences, University of Virginia School of Medicine, Charlottesville, VA, United States; ³ Radiology, Stanford School of Medicine, San Francisco, CA, United States; ⁴ Kinesiology, University of Virginia Curry School, Charlottesville, VA, United States; ⁵ Neurology, University of Virginia Health System, Charlottesville, VA, United States
14:40 0831.	Longitudinal Blood-Brain Barrier Permeability, Cerebral Flood Flow, T2 and Diffusion Changes Following Mild Traumatic Brain Injury Wei Li ¹ , ² , Justin Long ¹ , Lora Watts ¹ , Qiang Shen ¹ , Robert Boggs ¹ , Zhao Jiang ¹ , Yunxia Li ¹ , Timothy Q. Duong ¹ , ² ¹ Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States:

Thursday

Room 703

15:00	MR in Acute Brain Injury - What's on the Horizon
	Karen A. Tong

15:30 Adjournment & Meet the Teachers

Hands-On Workshop 3 – Siemens Healthcare GmbH

10:30-12:30

Room 711	10:30-12:30	(no CME credit)
Hands-On Wo	orkshop 3 - GE Healthcare	

(no CME credit)

Hands-On Workshop 3 - Philips Healthcare Room 707 10:30-12:30 (no CME credit) Traditional Poster Session: Diffusion Exhibition Hall 13:30-15:30 (no CME credit)

Electronic Poster Session: Molecular Imaging

Exhibition Hall 13:30-15:30)	(no CME credit)
Electronic Poster Session: Spo	ectroscopy	
Exhibition Hall 13:30-15:30)	(no CME credit)
Study Group Session		
Detection & Correction of Mo	otion in MRI & MRS	
Reception Hall 104 BCD 13:30-15:30		(no CME credit)
Study Group Session		
MR of Cancer		
Room 801 A/B 13:30-15:30)	(no CME credit)

Power Pitch Session: Body

Power Pitch Thea	atre, Exhibition Hall	13:30-14:30	(no CME credit)
Moderators: Eliza	abeth M. Hecht, M.D. &	Valentina Taviani, Ph.D.	
0838.	Does Using a 16-Elemen <i>Lucian A. B. Purvis¹, Will</i> <i>Rodgers¹</i> ¹ Department of Cardiovascul	t Receive-Array Improve Whole-Liver ³¹ <i>iam T. Clarke¹, Michael Pavlides¹, Stefan N</i> ar Medicine, University of Oxford, Oxford, Oxfo	P Metabolite Ratio Quantification at 7T? <i>Jeubauer¹, Matthew D. Robson¹, Christopher T.</i> rdshire, United Kingdom
0839.	Combined Gadoxetic Ac	id and Gadofosveset Enhanced Liver MF	II: Detection and Characterization of Focal

Liver Lesions Peter Bannas¹, ², Candice A. Bookwalter¹, Tim Ziemlewicz¹, Utaroh Motosugi¹, Richard Bruce¹, Theodora A. Potretzke¹, Scott B. Reeder¹, ³ ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ³Medical Physics, University of Wisconsin-Madison, WI, United States

0840. Adipose Tissue Hydration as a Potential Non-Invasive Marker for Adipose Tissue Hypertrophy

ismen merit award magna cum laude Navin Michael¹, Suresh Anand Sadananthan¹, Jadegoud Yaligar², Swee Shean Lee², Melvin Khee-Shing Leow¹, ³, Chin Meng Khoo⁴, Eric Yin Hao Khoo⁴, Kavita Venkataraman⁵, Yung Seng Lee¹, ⁶, Yap Seng Chong¹, ⁷, Peter D. Gluckman¹, E. Shyong Tai⁴, S. Sendhil Velan², ⁸

¹Singapore Institute for Clinical Sciences, A*STAR, Singapore; ²Singapore BioImaging Consortium, A*STAR, Singapore; ³Department of Endocrinology, Tan Tock Seng Hospital, Singapore; ⁴Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ⁵Saw Swee Hock School of Public Health, National University of Singapore, Singapore; ⁶Department of Paediatrics, Yong Loo Lin School of Medicine, Singapore; ⁷Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, Singapore; ⁸Clinical Imaging Research Centre, A*STAR, Singapore

0841. Modelling Skull Dynamics During Brain Magnetic Resonance Elastography to Evaluate Wave Delivery Strategies

Deirdre M. McGrath¹, ², *Alejandro F. Frangi¹*, *Iain D. Wilkinson²*, *Zeike A. Taylor¹* ¹CISTIB, Center for Computational Imaging & Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

0842. Isocaloric Fructose Restriction for 10 Days Reduces MR-Measured Liver, Pancreatic and Visceral Fat in High Sugar-Consuming, Obese Children

Susan M. Noworolski¹, Kathleen Mulligan², Natalie Korn¹, Molly Gibson¹, Viva W. Tai², ³, Michael Wen², Ayca Erkin-Cakmak⁴, Alejandro Gugliucci⁵, Robert H. Lustig⁴, Jean-Marc Schwarz⁶

¹Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States; ²Medicine, University of California, San Francisco, CA, United States; ³CTSI-CRS, University of California, San Francisco, CA, United States; ⁴Pediatrics, University of California, San Francisco, CA, United States; ⁵Research, Touro University College of Osteopathic Medicine, Vallejo, CA, United States; ⁶Basic Science, Touro University College of Osteopathic Medicine, Vallejo, CA, United States

0843. The Effect of Parallel Radiofrequency Transmission on Arterial Input Function Selection in 3T DCE-MRI of Prostate Cancer

Hatim Chafi¹, Saba N. Elias², Huyen T. Nguyen², Harry T. Friel³, Michael V. Knopp², BeiBei Guo⁴, Steven B. Heymsfield⁵, Guang Jia¹

¹Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; ²Department of Radiology, The Ohio State University, Columbus, OH, United States; ³Clinical Science Operations, Philips Healthcare, Highland Heights, OH, United States; ⁴Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, United States; ⁵Metabolism - Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, United States

0844. Automatic Combined Whole-Body Muscle and Fat Volume Quantification Using Water-Fat Separated MRI in Postmenopausal Women

Janne West¹, ², Thobias Romu, ²³, Anna-Clara Spetz Holm⁴, Hanna Lindblom¹, Lotta Lindh-Åstrand⁴, Magnus Borga, ²³, Mats Hammar⁴, Olof Dahlqvist Leinhard¹, ²

¹Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; ²Center for Medical Imaging Science and Visualization, Linköping, Sweden; ³Department of Biomedical Engineering, Linköping University, Linköping, Sweden; ⁴Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

0845. Stimulated Echo Diffusion Weighted Imaging of the Liver at 3T

Hui Zhang¹, Aiqi Sun¹, Xiaodong Ma¹, Zhe Zhang¹, Ed X. Wu², ³, Hua Guo¹ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China

0846. Characterizing Water Diffusion and Perfusion Features of the Healthy and Malignant Pancreas Using Diffusion-Tensor and Diffusion Weighted MRI

Noam Nissan¹, Talia Golan², Edna Furman-Haran¹, Sara Apter², Yael Inbar², Arie Ariche², Barak Bar Zakay², Yuri Goldes², Michael Schvimer², Dov Grobgeld¹, Hadassa Degani¹ ¹Weizmann Institute of Science, Rehovot, Israel; ²Sheba Medical Center, Israel

0847. Utility of Combined Ga-68 DOTA-TOC PET and Eovist MRI Utilizing PET/MRI

Thomas A. Hope¹, Carina Mari Aparici¹, Eric Nakakura², Henry VanBrocklin¹, Miguel Hernandez Pampaloni¹, James Slater¹, Salma Jivan¹, Judy Yee¹, Emily Bergsland³

¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²Department of Surgery, UCSF, San Francisco, CA, United States; ³Department of Medicine, UCSF, San Francisco, CA, United States

0848. Imaging of Dissolved-Phase Hyperpolarized Xenon-129 in Human Kidneys

John P. Mugler, III¹, G. Wilson Miller¹, Craig H. Meyer², Kun Qing¹, Jaime F. Mata¹, Steven Guan², Kai Ruppert¹, ³, Iulian C. Ruset⁴, ⁵, F. William Hersman⁴, ⁵, Talissa A. Altes¹

¹Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, United States; ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³Cincinnati Children's Hospital, Cincinnati, OH, United States; ⁴Xemed, LLC, Durham, NH, United States; ⁵Physics, University of New Hampshire, Durham, NH, United States

ISMRM MERIT AWARD

0849. Renal Blood Oxygenation Level-Dependent Imaging in Longitudinal Follow-Up of the Donated and the Remaining Kidney in Renal Transplantation

Maryam Seif⁴, Ute Eisenberger², Tobias Binser¹, Harriet C. Thoeny³, Fabienne Krauer¹, Chris Boesch¹, Bruno Vogt⁴, Peter Vermathen¹

¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Dept. Nephrology, University Hospital Essen-Duisburg , Essen, Germany; ³Dept. Radiology, Neuroradiology and Nuclear Medicine, University Hospital of Bern, Bern, Switzerland; ⁴Dept. Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Bern, Switzerland

0850. Redistribution of Fractional Ventilation After Circumscribed Primary Lung Injury and Atelectasis Yi Xin¹, Maurizio Cereda², Hooman Hamedani¹, Harrilla Profka¹, Justin Clapp¹, Stephen Kadlecek¹, Brian P. Kavanagh³, Rahim R. Rizi¹

¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States; ³Hospital for Sick Children, Toronto, Ontario, Canada

0851. Three-Dimensional Pulmonary ¹H MRI Multi-Region Segmentation Using Convex Optimization

ismem merit award magna cum laude *Fumin Guol*, ², *Sarah Svenningsen*¹, ³, *Aaron Fenster*⁷, ², *Grace Parraga*¹, ² ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada; ³Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada

0852. Ventilation Heterogeneity in Obstructive Airways Disease – Comparing Multi-Breath Washout-Imaging with Global Lung Measurements

Felix C. Horn¹, Helen Marshall¹, Salman Siddiqui², Alexander Horsley³, Laurie Smith¹, Ina Aldag⁴, Richard Kay⁵, Christopher J. Taylor⁴, Juan Parra-Robles¹, Jim M. Wild¹

¹Sheffield University, Sheffield, United Kingdom; ²University of Leicester, United Kingdom; ³University of Manchester, United Kingdom; ⁴Sheffield Children's NHS Foundation Trust, NHS, United Kingdom; ⁵Novartis, Switzerland

Novel RF Coil Concepts

Room 701 A	13:30-15:30	Moderators: Gregor Adriany, Ph.D. & George R. Duensing, Ph.D.
13:30 0853.	 3D-Printed RF Coils for Solution-State NMR: Towards Low-Cost, High-Throughput Arrays <i>R. Adam Horch¹, ², John C. Gore¹, ²</i> ¹Department of Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt Institute of Imaging Science, Nashville, TN, United States 	
13:42 0854.	Multi-Turn Multi-Gap Trans <i>Roberta Kriegl^{1, 2}, Jean-Christ</i> <i>Elmar Laistler^{1, 3}</i> ¹ Center for Medical Physics and B Magnétique Médicale et Multi-Mo Excellence, Medical University, V	smission Line Resonators - First Tests at 7 T ophe Ginefri ² , Marie Poirier-Quinot ² , Zhoujian Li ² , Luc Darrasse ² , Ewald Moser ¹ , ³ , iomedical Engineering, Medical University, Vienna, Austria; ² IR4M (Imagerie par Résonance dalités), UMR8081 CNRS, Université Paris Sud, Orsay, Essonne, France; ³ MR Centre of ienna, Austria
13:54 0855.	O-Spoiling Method Using De	pletion Mode Gallium Nitride (GaN) HEMT Devices at 1.5T

ismem merit award Summa cum Laude

0855. Q-Spoiling Method Using Depletion Mode Gallium Nitride (GaN) HEMT Devices at 1.5T Jonathan Y. Lu¹, Kamal Aggarwal¹, Thomas Grafendorfer², Fraser Robb³, John M. Pauly¹, Greig C. Scott¹

¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Advanced Coils, GEHC Coils, Stanford, CA, United States; ³GE Healthcare, Aurora, OH, United States

14:06 0856.	On the Contribution of Electric-Type Current Patterns to UISNR for a Spherical Geometry at 9.4 T <i>Andreas Pfrommer¹, Anke Henning¹,</i> ² ¹ Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; ² Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland
14:18 0857.	3D Curved Electric Dipole Antenna for Propagation Delay Compensation Gang Chen ¹ , ² , Daniel Sodickson ¹ , Graham Wiggins ¹ ¹ Center for Advanced Imaging Innovation and Research (CA12R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ² The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, NY, United States
14:30 0858.	New Low-Order Pre-Fractal Geometries of High Permittivity Pads Further Increase Sensitivity at High Magnetic Fields Rita Schmidt ¹ , Andrew Webb ¹ ¹ Radiology, Leiden University Medical Center, Leiden, Netherlands
14:42 0859.	Discovering and Working Around Effects of Unwanted Resonant Modes in High Permittivity Materials Placed Near RF Coils <i>Gillian G. Haemer¹, ², Christopher M. Collins¹, ², Daniel K. Sodickson¹, ², Graham C. Wiggins¹</i> ¹ The Center for Advanced Imaging Innovation and Research, and the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ² The Sackler Institute of Graduate Biomedical Sciences, Department of Radiology, New York University School of Medicine, New York, NY, United States
14:54 0860.	Comparison of New Element Designs for Combined RF-Shim Arrays at 7T Simone Angela Winkler ¹ , Jason P. Stockmann ² , Paul A. Warr ³ , Boris Keil ² , Lawrence L. Wald ² , ⁴ , Brian K. Rutt ¹ ¹ Dept. of Radiology, Stanford University, Stanford, CA, United States; ² A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ³ Department of Electrical & Electronic Engineering, University of Bristol, Clifton, United Kingdom; ⁴ Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States
15:06 0861. Ismen MEERIT AWARD magna cum laude	Integrated Parallel Reception, Excitation, and Shimming (IPRES) with Split DC Loops for Improved B0 Shimming Dean Darnell ¹ , Trong-Kha Truong ¹ , Allen Song ¹ ¹ Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
15:18 0862.	Endoluminal MR Receiver Coil Based on Electro-Optical Conversion and Active Optical Decoupling <i>Isabelle Saniour¹, Anne-Laure Perrier², Reina Aydé¹, Gwenaël Gaborit², ³, Lionel Duvillaret⁴, Olivier Beuf¹ ¹Université de Lyon, CREATIS, CNRS UMR 5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France; ²Université de Savoie, IMEP-LAHC, UMR 5130, Le Bourget-du-Lac, France; ³KAPTEOS, Sainte-Hélène-du-Lac, France; ⁴KAPTEOS, Sainte- Hélène-du-Lac, France</i>
MR-Guided I	Interventions
Room 701 B	13:30-15:30 <i>Moderators</i> : Charles L. Dumoulin, Ph.D. & Bruno Ouesson, Ph.D.
13:30 0863.	Speeding-Up MR Acquisitions Using Ultrasound Signals, and Scanner-Less Real-Time MR Imaging Frank Preiswerk ¹ , W. Scott Hoge ¹ , Matthew Toews ¹ , Jr-yuan George Chiou ¹ , Laurent Chauvin ¹ , Lawrence P. Panych ¹ , Bruno Madore ¹ ¹ Department of Radiology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, United States

13:42 ismem merit award magna cum laude

0864. Pushing X-Ray CT Out of the Equation: In Vivo RASOR MRI-Based Seed Detection for Post-Implant Dosimetry in LDR Prostate Peter Roland Seevinck¹, Cornelis A. van den Berg², Frank Zijlstra¹, Marielle E. Philippens², Stan Jelle Hoogcarspel², Jan J. Lagendijk², Maximus A. Viergever¹, Marinus Adriaan Moerland² ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Radiotherapy, University Medical Center Utrecht, Netherlands

13:54 0865. Improved Cortical Bone Segmentation Using a Spectral-Spatial Selective Pulse to Reduce Water/fat In-Phase Echo Time Matteo Maspero¹, Peter R. Seevinck², Anna Andreychenko¹, Sjoerd Crijns¹, Alessandro Sbrizzi³, Max Viergever², Jan J.

W. Lagendijk¹, Cornelis A. T. van Den Berg¹ ¹Radiotherapy, UMC Utrecht, Utrecht, Netherlands; ²Image Sciences Institute, UMC Utrecht, Utrecht, Netherlands; ³Radiology, UMC Utrecht, Utrecht, Netherlands

14:06 0866. Synthetic CT Generation from T2 Weighted MRI Using a Hybrid Regression and Multi-Atlas Approach S. Ghose¹, D. Rivest Henault¹, J. Mitra¹, J. Sun², P. Pichler³, P. Greer³, J. Dowling⁴ ¹Australian e-Health Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia; ²University of Newcastle, NSW, Australia; ³Department of Radiation Oncology, University of Newcastle, NSW, Australia; ⁴Australian e-Health Research Centre, CSIRO Digital Productivity Flagship, QLD, Australia

14:18 0867. Integration of Active MR Tracking Into Adaptive Radiation Therapy Treatment Planning

Wei Wang¹, ², Akila N. Viswanathan², Antonio L. Damato², Zion T. Tse³, Yue Chen³, Ravi T. Seethamraju⁴, Clare M. Tempany¹, Robert A. Cormack², Ehud J. Schmidt¹ ¹Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ²Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ³The University of Georgia, GA, United States; ⁴MR R&D, Siemens Healthcare, MA, United States

14:30 0868. Two-Channel Visualization of a Passive Nitinol Guidewire with Iron Oxide Maker Created from a Single Image Acquisition

Adrienne E. Campbell-Washburn¹, Burcu Basar¹, ², Toby Rogers¹, Merdim Sonmez¹, Ozgur Kocaturk¹, ², Robert J. Lederman¹, Michael S. Hansen¹, Anthony Z. Faranesh¹ ¹Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ²Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey

14:42 0869. Real-Time MRI Guided Cardiac Cryo-Ablation

*Eugene G. Kholmovski*¹, ², *Ravi Ranjan*², *Nicolas Coulombe*³, *Joshua Silvernagel*², *Nassir F. Marrouche*² ¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²CARMA Center, University of Utah, Salt Lake City, UT, United States; ³Medtronic CryoCath, Montreal, Quebec, Canada

14:54 0870. Visualization of Porcine Gastric Ulcer *In Vivo* Using Intracavitary RF Probe and Its Navigation System

Yuichiro Matsuoka¹,², Yoshinori Morita³, Yoshiki Hashioka⁴, Etsuko Kumamoto⁵, Hiromu Kutsumi², Takeshi Azuma², Kagayaki Kuroda⁶

¹Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan; ²Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; ³Department of Gastroenterology, Kobe University School of Medicine, Kobe, Japan; ⁴Faculty of Engineering, Kobe University, Kobe, Japan; ⁵Information Science and Technology Center, Kobe University, Kobe, Japan; ⁶School of Information Science and Technology, Tokai University, Hiratsuka, Japan

15:06 0871. Minimally Invasive Magnetic Resonance Imaging-Guided Delivery of Neural Stem Cells Into the Porcine Spinal Cord

Jason J. Lamanna¹, ², Lindsey N. Urquia¹, Carl V. Hurtig¹, Juanmarco Gutierrez¹, Cody Anderson³, Pete Piferi⁴, Thais Federici¹, Nicholas M. Boulis¹, ², John N. Oshinski, ²⁵

¹Neurosurgery, Emory University, Atlanta, GA, United States; ²Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA, United States; ³Physics, Emory University, Atlanta, GA, United States; ⁴MRI Interventions, Inc., Memphis, TN, United States; ⁵Radiology, Emory University, Atlanta, GA, United States

15:18 0872. Wide-Bore MRI Guided DBS Surgery: Initial Experience

Karl K. Vigen¹, Deborah Rusy², Laura Buyan-Dent³, Nancy L. Ninman³, Karl A. Sillay⁴, ⁵ ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Anesthesiology, University of Wisconsin-Madison, Madison, WI, United States; ³Neurology, University of Wisconsin-Madison, Madison, WI, United States; ⁴Semmes-Murphy Neurologic and Spine Institute, Memphis, TN, United States; ⁵Neurosurgery and Electrical Engineering & Computer Science, University of Tennessee, Memphis, TN, United States
CE & Non CE - Innovations Around the Body

Room 714	4 A/B	13:30-15:30 <i>Moderators</i> : T.B.A. & T.B.A.
13:30	0873.	Evaluation of Perfusion in Rheumatoid Arthritis Patients with Highly Accelerated Dynamic Contrast Enhanced Wrist MRI
		Jing Liu ¹ , Valentina Pedoia ¹ , Ursula Heilmeier ¹ , Favian Su ¹ , Sameer Khanna ² , John Imboden ³ , Jonathan Graf ³ , David
		¹ Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ² University of California Berkeley, Berkeley, CA, United States; ³ Medicine, University of California San Francisco, San Francisco, CA, United States States
13:42	0874.	3D Radial UTE MRI for Comprehensive Imaging of Pulmonary Embolism in Canines Peter Bannas ¹ , ² , Laura C. Bell ³ , Kevin M. Johnson ³ , Mark L. Schiebler ¹ , Christopher J. François ¹ , Utaroh Motosugi ¹ , Dan Consigny ¹ , Scott B. Reeder ¹ , ³ , Scott K. Nagle ¹ , ³ ¹ Badiology, University of Wisconsin-Madison, Madison, WI, United States: ² Badiology, University Medical Center Hamburg-
		Eppendorf, Hamburg, Germany; ³ Medical Physics, University of Wisconsin-Madison, WI, United States
13:54	0875.	Image-Based Respiratory Motion Compensation for CMRA in Patients with Coronary Artery Disease Markus Henningsson ¹ , Kostas Bratis ¹ , Eike Nagel ¹ , Rene Botnar ¹
		Division of imaging Sciences and Diometical Engineering, King's Conege London, London, Onited Kingdom
14:06	0876.	PETRA QMRA: Towards Zero-Flow Dephasing Intracranial Non-Contrast MR Angiography <i>Yutaka Natsuaki¹, Xiaoming Bi¹, David M. Grodzki², Aurelien F. Stalder², Gerhard Laub¹</i> ¹ Siemens Healthcare, Los Angeles, CA, United States; ² Siemens Healthcare, Erlangen, Germany
14:18	0877.	Quiet, Dual-Contrast Ultra-Short Echo Time MRA of the Extracranial Carotid Arteries
		<i>Ioannis Koktzoglou</i> ¹ , ² , <i>Ian G. Murphy</i> ¹ , ³ , <i>David Grodzki</i> [*] , <i>Shivraman Giri</i> ³ , <i>Robert R. Edelman</i> ¹ , ³ ¹ Radiology, NorthShore University HealthSystem, Evanston, IL, United States; ² Radiology, The University of Chicago Pritzker School of Medicine, Chicago, IL, United States; ³ Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; ⁴ Healthcare Sector, Siemens AG, Erlangen, Germany; ⁵ Siemens Healthcare, Chicago, IL, United States
14:30	0878.	Carotid Atherosclerotic Plaque Surface Condition Evaluation Utilizing Simultaneous Non-Contrast
		Shuo Chen ¹ , Xihai Zhao ¹ , Niranjan Balu ² , Haining Liu ² , Zechen Zhou ¹ , Jinnan Wang ² , ³ , Rui Li ¹ , Chun Yuan ¹ , ² , Huijun Chen ¹
		¹ Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ² Department of radiology, University of Washington, Seattle, United States; ³ Philips Research North America, Briarcliff Manor, NY, United States
14:42	0879.	Improved Visualization of the Accelerated ASL-Based Time-Resolved MRA with Single Acquisition of Labeled
		and Control Images Yuriko Suzuki ¹ , Tetsuo Ogino ¹ , James Alastair Meakin ² , Akira Suwa ¹ , Daigo Ushijima ¹ , Marc Van Cauteren ³ ¹ Healthcare, Philips Electronics Japan, Minato-ku, Tokyo, Japan; ² Philips Healthcare Netherlands, Best, Netherlands; ³ Philips Healthcare Asia Pasific, Tokyo, Japan
14:54	0880.	Depiction of Transplant Renal Vascular Anatomy and Complications: Unenhanced MR Angiography by Using Spatial Labeling with Multiple Inversion Pulses
		¹ Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
15:06	0881.	Age-Related Changes of Aortic Hemodynamics Derived from 4D Flow MRI in 60 Healthy Volunteers
		Pim van Ooy', ² , Julio Garcia ⁴ , Susanne Schnell ⁴ , Jeremy D. Collins ² , James C. Carr ² , Michael Markl ² , ³ , Alex J. Barker ² ¹ Radiology, Academic Medical Center, Amsterdam, Netherlands, ² Radiology, Northwestern University, Chicago, IL, United States; ³ Dismodical Environment University, Chicago, IL, United States;
		Biometar Engineering, Northwestern University, Chicago, IL, United States

Thursday

0882. Evidence of Early Left Ventricular Dysfunction in Bicuspid Aortic Valve Patients Identified by MRI-Based 15:18 ismen merit award magna cum laude Wave Intensity Analysis

Nicholas Scott Burris¹, Petter Dyverfeldt², Michael D. Hope¹ ¹Radiology, University of California San Francisco, San Francisco, CA, United States; ²Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden

Breast Cancer: Clinical & Technical

Room 716 A/B	Moderators: Linda Moy, M.D. & Roberta M. Strigel, M	.D., M.Sc.
13:30	Introduction	
13:42 0883. ISBNM MERIT AWARD SUMMMA CIUM LANDE	3. Stimulated Echo Diffusion Tensor Imaging with Varying Diffusion Times as a Probe of Breast Tissue Jose R. Teruel ¹ , ² , Gene Y. Cho ³ , ⁴ , Jason Ostenson ⁴ , Melanie Moccaldi ⁵ , Joon Lee ⁵ , Pål E. Goa, ²⁶ , Tone F. I. Sungheon G. Kim ³ , ⁴ , Linda Moy ⁴ , ⁵ , Eric E. Sigmund ³ , ⁴ ¹ Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; ² St.Olavs Hos Trondheim, Norway; ³ Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of New York, NY, United States; ⁴ Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, N University School of Medicine, New York, NY, United States; ⁵ Cancer Institute, New York University Langone Medical York, NY, United States; ⁶ Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway	Bathen ¹ , spital, Medicine, ew York Center, New y
13:54 0884.	4. Breast Diffusion Weighted Imaging with Reduced Artifacts Using Multi-Band Spin Echo EPI Patrick J. Bolan ¹ , Steen Moeller ¹ , Gregory J. Metzger ¹ , Edward J. Auerbach ¹ , Christophe Lenglet ¹ , Dingxin Peter Kollasch ² , Vibhas Deshpande ² , Sudhir Ramanna ¹ , Michael T. Nelson ¹ , Kamil Ugurbil ¹ , Essa Yacoub ¹ ¹ Radiology, University of Minnesota, Minneapolis, MN, United States; ² Siemens Healthcare, Minneapolis, MN, United States; ² Siemens; ² Siemens Healthcare, Minneapolis, MN, Unit	Wang, ¹² , tates
14:06 0885.	5. High-Resolution Diffusion-Weighted Imaging of the Breast with Multiband 2D RF Pulses and a Gene Parallel Imaging Reconstruction Valentina Taviani ¹ , Marcus T. Alley ¹ , Suchandrima Banerjee ² , Bruce L. Daniel ¹ , Brian A. Hargreaves ¹ ¹ Radiology, Stanford University, Stanford, CA, United States; ² Global Applied Science Laboratory, GE Healthcare, Menl United States	ralized o Park, CA,
14:18 0886.	6. Relative Enhanced Diffusivity (RED) as a Marker of Breast Tumor Microvasculature Jose R. Teruel ¹ , ² , Pål E. Goa ³ , ⁴ , Torill E. Sjøbakk ¹ , Agnes Østlie ⁴ , Hans E. Fjøsne ⁵ , ⁶ , Tone F. Bathen ¹ ¹ Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; ² St.Olavs Hos Trondheim, Norway; ³ Physics, Norwegian University of Science and Technology, Trondheim, Norway; ⁴ Radiology, St.Ol Hospital, Trondheim, Norway; ⁵ Cancer Research and Molecular Medicine, Norwegian University of Science and Technol Trondheim, Norway; ⁶ Surgery, St.Olavs Hospital, Trondheim, Norway	spital, lavs ogy,
14:30 0887.	7. Texture Analysis of Parameter Maps in Breast MRI Peter Gibbs ¹ , Martin Pickles ¹ , Lindsay Turnbull ¹ ¹ Centre for MR Investigations, University of Hull, Hull, East Yorkshire, United Kingdom	
14:42 0888.	8. Robust Quantification of Background Parenchymal Enhancement (BPE) in Dynamic Contrast-Enhan MRI Breast Examinations Araminta EW Ledger ¹ , Maria A. Schmidt ¹ , Marco Borri ¹ , Steven Allen ² , Elizabeth AM O'Flynn ² , Romney J. Erica D. Scurr ² , Nandita deSouza ¹ , Robin Wilson ² , Martin O. Leach ¹ ¹ CR-UK Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Su Kingdom; ² Radiology, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom	ced (DCE) <i>Pope²,</i> rrey, United
14:54 0889.	9. Prognostic Value of MR Parameters Obtained Prior to the Initiation of Neoadjuvant Chemotherapy: Comparison with Traditinal Prognostic Indicators Martin D. Pickles ¹ , Peter Gibbs ¹ , Martin Lowry ¹ , Lindsay W. Turnbull ¹ ¹ Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull, East Yorkshire, Un Kingdom	A

15:06 0890	7T Breast MRI to Visualize Proliferative Characteristics of Breast Cancer Using DCE, DWI, and ³¹P-MRS <i>Alexander M. Th. Schmitz¹, Wouter B. Veldhuis¹, Marian B.E. Menke-Pluijmers², Wybe J.M. van der Kemp¹, Tijl A.</i> <i>der Velden¹, Marc C.J.M. Kock³, Pieter J. Westenend⁴, Dennis W.J. Klomp¹, Kenneth G.A. Gilhuijs¹</i> ¹ Department of Radiology/Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ² Department of Surgery, Albert Schweitzer Hospital, Dordrecht, Netherlands; ³ Department of Radiology, Albert Schweitzer Hospital, Dordrecht, Netherlands; ⁴ Department of Pathology, Albert Schweitzer Hospital, Dordrecht, Netherlands	
15:18 0891	Quantitative Sodium Imaging of Breast Tumors at 7 Tesla: Preliminary Results Olgica Zaric ¹ , Katja Pinker - Domenig, Stefan Zbyn ¹ , Thomas Helbich, Alex Farr ² , Christian Singer ² , Siegfried Trattnig ¹ , Wolfgang Bogner ¹ ¹ High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ² Gynecology Department, Medical University of Vienna, Vienna, Austria, Austria	

Brain Oxygenation, Perfusion & Metabolic Rate

Constitution Hall	107 13:30-15:30 <i>Moderators</i> : Jeff F. Dunn, Ph.D. & T.B.A.
13:30 0892.	Imaging Oxygen Extraction Fraction in the Visual Cortex During Functional Activation Using Turbo
ISMRM MERIT AWARD magna cum Laude	QUIXOTIC
	Jeffrey N. Stout ¹ , Elfar Adalsteinsson ¹ , ² , Bruce R. Rosen ³ , Divya S. Bolar ³ , ⁴
	¹ Harvard-MIT Health Sciences and Technology, Institute of Medical Engineering and Science, Cambridge, MA, United States;
	"Department of Electrical Engineering and Computer Science, MIT, MA, United States; "Martinos Center for Biomedical Imaging,
	MGH/Harvard Medical School, MA, United States; Department of Radiology, Massachusetts General Hospital, Boston, MA, United
	States
12.12 0802	Exploring Human Prain Avidative Metabolism and Neurotransmitter Cycling Via Coupled 12C MDS at 7T
15:42 0095.	<i>Exploring runnan Brain Oxidative Wetabolisin and Neuron ansimiler Cycinig via Coupled 15C WKS at 71</i> Vikram Jakkamsetti ¹ Levi Good ¹ Dorothy Kelly ¹ Sergey Cheshkoy ² Karthik Rajasekaran ¹ Dean Sherry ² Juan
	Pascual ¹ Crais Mallov ² Juan Dimitrov ² J
	¹ Neurology and Neurotherapeutics. UIT Southwestern Medical Center, Dallas, TX, United States ^{, 2} Advanced Imaging Research
	Center, UT Southwestern Medical Center, Dallas, TX, United States; ³ Philips Medical Systems, Cleveland, OH, United States
13:54 0894.	Optimization of Oxygen Extraction Fraction Mapping Using Joint Parametric Estimation
	Youngkyoo Jung ¹ , ² , Naeim Bahrami ² , Megan E. Johnston ²
	¹ Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States; ² Biomedical Engineering, Wake Forest School of
	Medicine, Winston-Salem, NC, United States
14.00 0905	Over the time and Simultaneous Investor of CMDO CDE and OFE in Destine Homen Desig
14:00 0895.	Viao Hong Zhu ¹ Hannog M. Wiggnor ¹ Proong Veul Log ¹ Ming Lu ¹ Kamil Ugurbil ¹ Wei Chen ¹
	Aluo-filong Zhu, filannes M. Wiesher, Dyeong-fell Lee, Ming Lu, Kamil Oguroli, Wei Chen
	Chirce, Department of Radiology, Oniversity of Minnesota Medical School, Minneapons, Mrv, Onice States
14:18 0896.	Neurochemical and BOLD Responses in Activated Blob and Interblob Neuronal Populations Measured in the
ISMRM MERIT AWARD	Human Visual Cortex at 7T
magna tum taube	Petr Bednarik ¹ , ² , Ivan Tkac ¹ , Federico Giove ³ , ⁴ , Dinesh Deelchand ¹ , Lynn Eberly ¹ , Felipe Barreto ¹ , ⁵ , Silvia Mangia ¹
	¹ University of Minnesota, Minneapolis, MN, United States; ² Central European Institute of Technology, Masaryk University, Brno,
	Czech Republic; ³ MARBILab c/o Fondazione Santa Lucia, "Enrico Fermi" Centre, Rome, Italy; ⁴ ", Department of Physics - G1
	Group, University of Rome "La Sapienza", Rome, Italy, "Physics Department, University of Sao Paulo, Sao Paulo, Brazil
14.30 0007	Slower DMN Faster Deaction: Counting of Desting State CDF and DOLD Oscillations in Specific Frequency
14:30 U097.	Slower Divin, raster Reaction: Coupling of Resting-State CDF and DOLD Oscillations in Specific Frequency Pands Predicts Vigilance Task Performance
magna cum laude	Datus Frences vignance rask referentiance Vignance $Super Super Super Vignance Super Supe$
	Alaopeng Song, Shaowen Qian, Kai Ela, Zhenya Zhoa, Gung San, Tijan Ela
	Hospital, Shandong, China; ³ GE Health Care, Beijing, China
14:42 0898.	Three-Dimensional Acquisition of Cerebral Blood Volume, Blood Flow and Blood Oxygenation-Weighted
ISMRM MERIT AWARD	Responses During Functional Stimulation in a Single Scan
summa cum taude	Ying Cheng ¹ , ² , Qin Qin ¹ , ³ , Peter C. M. van Zijl ¹ , ³ , James J. Pekar ¹ , ³ , Jun Hua ¹ , ³

¹F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ²Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; ³Neurosection, Div. of MRI Research, Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States

14:54 0899. Blood Oxygenation, CBF, OEF, and CMRO2 Changes During Hypercapnia and Hyperoxia Using PCASL and TRUST MRI

Jeroen C.W. Siero¹, Carlos C. Faraco², Alex Bhogal¹, Megan K. Strother², Peiying Liu³, Hanzhang Lu³, Jeroen Hendrikse¹, Manus J. Donahue²

¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Radiology and Radiological Sciences, Nashville, Vanderbilt University School of Medicine, TN, United States; ³Radiology Advanced Imaging Research Center, UTSouthwestern Medical Center, TX, United States

15:06 0900. Temporal and Spatial Changes of BOLD Signal, CBF and CBV in the Activated Human Visual Cortex During Mild Hypoxia

Felipe Rodrigues Barreto¹, Silvia Mangia², Carlos Ernesto Garrido Salmon³ ¹Department of Physics, University of Sao Paulo, RIbeirao Preto, SP, Brazil; ²Department of Radiology, CMRR, University of Minnesota, MN, United States; ³Department of Physics, University of Sao Paulo, Ribeirao Preto, SP, Brazil

15:18 0901. Cerebral Blood Flow Is Mediated by Brain Cells Expressing Glucose Transporter 2

⁴Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland;
 ⁵Department of Radiology, University of Lausanne, Lausanne, Vaud, Switzerland;

Multiple Sclerosis 2

John Bassett Theatre 102 13:30-15:30

Moderators: T.B.A. & T.B.A.

 13:30 0902. Prediction of Disease Course in Multiple Sclerosis Using Cortical Thinning Measurements at Baseline Sushmita Datta¹, Koushik A. Govindarajan¹, Stacey S. Cofield², Gary R. Cutter², Fred D. Lublin³, Jerry S. Wolinsky⁴, Ponnada A. Narayana¹
 ¹Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX, United States; ²Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, United States; ³The Corinne

Goldsmith Dickinson Center for Multiple Sclerosis, Mount Sinai School of Medicine, New York, New York, United States; ⁴Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, United States

13:42 0903. Iron and Non-Iron Related Pathological Features of Multiple Sclerosis Lesions Using Multiparametric 7T MRI Sanjeev Chawla^l, Ilya Kister², Jens Wuerfel³, E Mark Haacke⁴, Tim Sinnecker³, Jean Christophe Brisset^l, Friedemann Paul³, Yulin Ge¹

¹Radiology, New York University Langone Medical Center, New York, NY, United States; ²Neurology, New York University Langone Medical Center, New York, NY, United States; ³Radiology, Universitätsmedizin Göttingen, Berlin, Germany; ⁴Radiology, Wayne State University, Detroit, MI, United States

13:54 0904. Impact of Intra- And Juxta-Cortical Pathology on Cognitive Impairment in Multiple Sclerosis by Quantitative T₂* Mapping at 7 T MRI

Céline Louapre¹, Sindhuja T. Govindarajan¹, Costanza Giannì¹, Nancy Madigan², AS Nielsen³, RP Kinkel⁴, Caterina Mainero¹

¹AA. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Beth Israel Deaconess Medical Center, Boston, MA, United States; ³Virginia Mason Medical Center, Seattle, WA, United States; ⁴University of California San Diego, San Diego, CA, United States

- 14:06 0905. Can Myelin Water Imaging Differentiate Vasogenic Edema and Demyelinating Lesions in the Human Brain? Eung Yeop Kim¹, Joon Yul Choi², Yoonho Nam², Se-Hong Oh³, Jongho Lee²
 ¹Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea; ²Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; ³Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
- 14:18 0906. USPIO Contrast Enhanced MRI Study Monitoring Inflammatory Lesions in Brain of the Relapsing-Remitting Model of EAE in SJL/J Mice

Matthew Fronheiser¹, Jenny Xie¹, Elizabeth Heimrich¹, Adrienne Pena¹, Thomas Petrone¹, Daniel Kukral¹, Vojkan Susulic¹, Harold Malone¹, Patrick Chow¹, Shuyan Du¹, Feng Lu¹, Wendy Hayes¹, Haiying Tang¹ ¹Bristol Myers Squibb, Princeton, NJ, United States

0907. Connectivity-Based Parcellation of the Thalamus in Multiple Sclerosis and Its Implications for Cognitive 14:30 **Impairment: A Multicenter Study**

Elisabetta Pagani¹, Maria A. Rocca¹, ², Alvino Bisecco¹, Laura Mancini³, Christian Enzinger⁴, Antonio Gallo⁵, Hugo Vrenken⁶, Maria Laura Stromillo⁷, Massimiliano Copetti¹, David Thomas³, Franz Fazekas⁴, Gioacchino Tedeschi⁵, Frederik Barkhof⁶, Nicola De Stefano⁷, Massimo Filippi¹, ², for the MAGNIMS Network⁸ ¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy; ²Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy; ³UCLH NHS Foundation Trust, National Hospital for Neurology and Neurosurgery,, London,

UK, United Kingdom; ⁴Department of Neurology, Medical University of Graz, Graz, A, Austria; ⁵MRI Center "SUN-FISM", Second University of Naples, Naples, NA, Italy; ⁶Department of Radiology, VU University Medical Centre, Amsterdam, Netherlands, Netherlands; 7Department of Neurological and Behavioral Sciences, University of Siena, Siena, SI, Italy; ⁸EU, EU, Italy

14:42 0908. Hippocampal-Related Memory Network in Multiple Sclerosis: A Structural Connectivity Analysis

Elisabetta Pagani¹, Maria A. Rocca¹, ², Sara Llufriu¹, ³, Gianna Carla Riccitelli¹, Bruno Colombo², Mariaemma Rodegher², Andrea Falini⁴, Giancarlo Comi², Massimo Filippi¹, ² ¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-

Salute San Raffaele University, Milan, MI, Italy; ²Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy; ³Hospital Clinic Barcelona, Barcelona, E, Spain; ⁴Department of Neuroradiology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy

0909. Histological Metrics Confirm Microstructural Characteristics of NODDI Indices in Multiple Sclerosis Spinal 14:54 Cord

ismem merit award magna cum laude

Francesco Grussu¹, Torben Schneider¹, Richard L. Yates², Mohamed Tachrount³, Jia Newcombe⁴, Hui Zhang⁵, Daniel C. Alexander⁵, Gabriele C. DeLuca², Claudia A. M. Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, England, United Kingdom; ³Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, England, United Kingdom; ⁴NeuroResource, UCL Institute of Neurology, London, England, United Kingdom; 5Department of Computer Science and Centre for Medical Image Computing, University College London, London, England, United Kingdom

15:06 0910. Quantitatively Characterize Pathological Compositions for Different Types of Multiple Sclerosis Lesion Yong Wang¹,², Peng Sun¹, Qing Wang¹, Kathryn Trinkaus³, Robert T. Naismith⁴, Robert E. Schmidt⁴, Anne H. Cross,²⁴, Sheng-Kwei Song¹, ¹Radiology, Washington University in St. Louis, Saint Louis, MO, United States; ²Hope Center for neurological Disorders, Washington University in St. Louis, Saint Louis, MO, United States; ³Biostatistics, Washington University in St. Louis, Saint Louis, MO, United States; ⁴Neurology, Washington University in St. Louis, Saint Louis, MO, United States

15:18 0911. BOLD, Blood Flow and Hypercapnic Challenge Reveals Cerebrovascular Decoupling in Multiple Sclerosis Mark J. Lowe¹, Wanyong Shin¹, Lael Stone², Robert Bermel², Micheal D. Phillips¹ ¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States; ²Neurologic Institute, Cleveland Clinic, Cleveland, OH, United States

Educational Course

Orthopedic Surgery: What Do I need to Know Before & After? Part 2: Soft Tissue Organizers: Garry E. Gold, M.D., Richard Kijowski, M.D., William B. Morrison, M.D., & Ravinder R. Regatte, Ph.D. Room 718 A 13:30-15:30 Moderators: Eric Y. Chang, M.D. & Lynne S. Steinbach, M.D. 13:30 **ACL Reconstruction: Techniques & Failure** Lynne S. Steinbach

14:00 **Meniscal Repair & Replacement** Hollis G. Potter

Thursday

14:30	Rotator Cuff Repair: Old & New Techniques Miriam A. Bredella	
15:00	Labral Repair of the Shoulder: Anatomic & Non-Anatomic <i>Luis S. Beltran</i>	
15:30	Adjournment & Meet the Teachers	
Educationa	l Course	
Game Show	v: Artifacts. Eh?	
Organizers: Ch	ristopher M. Collins, Ph.D. & Alexey Samsonov, Ph.D.	
Room 718 B	13:30-15:30 <i>Moderators</i> Walter F. Block, F	Ph.D. & Nicole E. Seiberlich, Ph.D.
13:30	Artifact Identification & Elimination Game Show Thoralf Niendorf Nicole Seiberlich Walter F. Block	
15:30	Adjournment & Meet the Teachers	
Hands-On Room 711	Workshop 4 – Siemens Healthcare GmbH 13:30-15:30	(no CME credit)
Hands-On V Room 703	Workshop 4 - GE Healthcare	(no CME credit)
100111700		(no entre crown)
Hands-On V Room 707	Workshop 4 - Philips Healthcare 13:30-15:30	(no CME credit)
Study Grou	ıp Session	
X-Nuclei In	naging	
Reception Hall	1 104 BCD 16:00-18:00	(no CME credit)
RF Pulse Do Room 701 A Moderators: Cl 16:00 0912	esign <u>16:00-18:00</u> <u>harles H. Cunningham, Ph.D. & T.B.A.</u> 2. Hyperbolic Secant RF Pulses for Simultaneous Multi-Slice Excitation with R Mehran Baboli ¹ , Bastien Guerin ² , Lawrence Wald ² , V. Andrew Stenger ¹ ¹ Medicine, University of Hawaii, Honolulu, HJ. United States: ² Badiology, Massachusette (Reduced Susceptibility Artifacts
	included, chirelony of rightan, rionolata, ri, chired blates, realinest, massachusetts v	Ceneral Hospital, Int., Onited Battes

16:12 0913 .	Root-Flipped Multiband Radiofrequency Pulses
ISMEN MERIT AWARD	Anuj Sharma ¹ , Michael Lustig ² , William A. Grissom ¹
2	¹ Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ² EECS, University of California, Berkeley, CA, United
	States

16:24

0914. A Wavelet-Based Optimization for RF Pulse Design Applied to Multiband Imaging at 7T *Andrew M. Huettner¹, Nikolai J. Mickevicius¹, Ali Ersoz¹, Kevin M. Koch², L.Tugan Muftuler³, Andrew S. Nencka¹* ¹Biophysics, The Medical College of Wisconsin, Milwaukee, WI, United States; ²Biophysics and Radiology, The Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurosurgery, The Medical College of Wisconsin, Milwaukee, WI, United States ismen merit award magna cum laude

16:36 ISMRM MERIT A Magna cum	0915. NWARD Laube	RF Pulse Design for Simultaneous Multislice Excitation with Highly Reduced B1 Peak Amplitude <i>Christoph Stefan Aigner¹, Christian Clason², Armin Rund³, Rudolf Stollberger¹</i> ¹ Institute of Medical Engineering, Graz University of Technology, Graz, Austria; ² Faculty of Mathematics, University of Duisburg- Essen, Essen, Germany; ³ Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
16:48	0916.	HENSIR: Hadamard Encoded Simultaneous Image Refocusing Nikolai J. Mickevicius ¹ , Eric S. Paulson ² ¹ Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ² Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States
17:00	0917.	Transmit Array Spatial Encoding (TRASE) with Broadband WURST Pulses for Robust Spatial Encoding in Inhomogeneous B0 Fields <i>Jason P. Stockmann¹, ², Clarissa Cooley, ³, Mathieu Sarracanie¹, ², Matthew S. Rosen¹, ², Lawrence L. Wald¹, ³ ¹A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; ²Department of Physics, Harvard University, Cambridge, MA, United States; ³Harvard Medical School, Boston, MA, United States</i>
17:12	0918.	A Parallel Transmit Spectral-Spatial Pulse Design Method for Ultra-High Field MRS Combining LSQR and Optimal Control Based Optimization <i>Tingting Shao¹</i> , <i>Yun Zhang²</i> , <i>Nikolai Avdievich¹</i> , <i>Steffen Glaser²</i> , <i>Anke Henning¹</i> , ³ ¹ Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg, Germany; ² Department of Chemistry, Technical University of Munich, Garching, Germany; ³ Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland

17:24 0919	A Spectral-Spatial Pulse for Improved Signal Recovery in the Small-Tip Fast Recovery (STFR) Sequence		
ISMRM MERIT AWARD	Sydney N. Williams ¹ , Hao Sun ² , Jon-Fredrik Nielsen ¹ , Jeffrey A. Fessler ² , Douglas C. Noll ¹		
inugini cum cunoc	¹ Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; ² Electrical Engineering, University of Michigan,		
	Ann Arbor, MI, United States		

- 17:36 0920. Impact of RF-Shimming on the Uniformity and Specific Absorption Rate of Spin-Echo Imaging at 7 Tesla *Filiz Yetisir¹, Bastien Guerin², Benedikt A. Poser³, Lawrence L. Wald², ⁴, Elfar Adalsteinsson¹, ⁴* ¹Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Dept. of Radiology, Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ⁴Harvard-MIT Division of Health Sciences Technology, Institute of Medical Engineering and Science, Cambridge, MA, United States
- 17:48 0921. Delay-Insensitive Variable-Rate Selective Excitation (DIVERSE) *Adam B. Kerr¹, Kangrong Zhu¹, Matthew J. Middione², Hua Wu³, Robert F. Dougherty³, John M. Pauly¹* ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Applied Sciences Laboratory West, GE Healthcare, Menlo Park, CA, United States; ³Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States

Methods of Magnetic Susceptibility & Electromagnetic Tissue Property Mapping

Room 701 B		16:00-18:00	Moderators: Dong-Hyun Kim, Ph.D. & Ferdinand Schweser, Ph.D.
16:00 09	922. R	apid Multi-Orientation Susceptibility M	apping with Wave-CAIPI
ISMRM MERIT AWARD Summa cum laude	Be Po ¹ N N	erkin Bilgic ¹ , Luke Xie ² , Russell Dibb ² , Ch olimeni ¹ , Chunlei Liu ² , Lawrence L. Wald ¹ Aartinos Center for Biomedical Imaging, Charle C, United States	ristian Langkammer ¹ , Aysegul Mutluay ¹ , Huihui Ye ¹ , Jonathan R. , Kawin Setsompop ¹ stown, MA, United States; ² Radiology, Duke University Medical Center, Durham,
16:12 09	923. Q F P ¹ D Zi	Quantitative Susceptibility Mapping (QSI eedback Field Control <i>INAR SENAY ÖZBAY¹, ², Yolanda Dürst²,</i> Department of Radiology, University Hospital Z ürich, Switzerland	M) at 7 Tesla:Correction of Induced Field Fluctuations with Real-Time <i>Klaas Paul Prüssmann², Daniel Nanz¹</i> ürich, Zürich, Switzerland; ² Institute of Biomedical Engineering, ETH Zürich,

16:24 0924. Temporal-Variance Weighted P-Space Multipole Frequency Mapping

ISMRM MERIT AWARD magina cum laude Kyle S. Decker¹, ², Chunlei Liu³, ⁴

Thursday

		¹ Center for In Vivo Microscopy, Duke University, Durham, NC, United States; ² Biomedical Engineering, Duke University, Durham, NC, United States; ³ Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; ⁴ Radiology, Duke University, Durham, NC, United States
16:36	0925.	B ₀ -Orientation Dependent Susceptibility-Induced White Matter Contrast in the Human Brainstem Manisha Aggarwal ¹ , Xu Li ² , Susumu Mori ¹ , ² , Peter C. M. van Zijl ¹ , ² ¹ Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ² F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States
16:48	0926.	iLSQR: A Quantitative Susceptibility Mapping Method Provided by STI Suite V2.12 <i>Wei Li¹, ², Nian Wang³, Bing Wu⁴, Timothy Q. Duong¹, Chunlei Liu³, ⁵</i> ¹ Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ² Ophthalmology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ³ Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; ⁴ GE Healthcare, Beijing, China; ⁵ Radiology, Duke University, Durham, NC, United States
17:00	0927.	Improving Estimation of Small-Vein Susceptibility by Using a Pre-Estimated Susceptibility Map <i>Ryota Sato¹, Toru Shirai¹, Yo Taniguchi¹, Takenori Murase², Yoshitaka Bito², Hisaaki Ochi¹</i> ¹ Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan; ² Hitachi Medical Corporation, Chiba, Japan
17:12	0928.	Vector Model for Quantitative Susceptibility Mapping (Vector QSM) <i>Tian Liu¹</i> , ² , <i>Cynthia Wisnieff</i> ² , ³ , <i>Dong Zhou</i> ² , <i>Pascal Spincemaille</i> ² , <i>Yi Wang</i> ² , ³ ¹ MedImageMetric LLC, New York, NY, United States; ² Radiology, Weill Cornell Medical College, New York, NY, United States; ³ Biomedical Engineering, Cornell University, Ithaca, NY, United States
17:24 ISMRM MERIT A SUMMA CUM	0929.	Human Cortical Surface Maps of Three Quantitative Imaging Parameters:R_1, R_2^* and Magnetic Susceptibility Diana Khabipova ¹ , Rolf Gruetter ¹ , ² , José P. Marques ¹ ¹ CIBM, Lausanne, Vaud, Switzerland; ² Radiology, University of Lausanne and Geneva, Vaud, Switzerland
17:36	0930.	Feasibility of Conductivity Imaging Based on Slice Selection and Readout Gradient Induced Eddy-Currents <i>Omer Faruk Oran¹, Necip Gurler¹, Yusuf Ziya Ider¹</i> ¹ Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
17:48 Isaama com i	0931. WARD laube	MR Guidance of TMS for a Patient Specific Treatment Plan:MR Based TMS Field Measurements and Electromagnetic Simulations S. Mandija ¹ , P. Petrov ² , S.W.F. Neggers ² , A.D. de Weijer ³ , P.R. Luijten ¹ , C.A.T. van den Berg ¹ ¹ Imaging Division, UMC Utrecht, Utrecht, Netherlands; ² Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, Netherlands; ³ FMRIB Center, University of Oxford, Oxford, United Kingdom
Bone &	UTE	
Room 714	<u>A/B</u>	16:00-18:00 Moderators: Jiang Du, Ph.D. & T.B.A. Bound Bone Water Density Is a Surrogate Measurement of Organic Matrix Density
ISMRM MERITA magna cum l	ward laude	<i>Alan C. Seifert¹, Cheng Li¹, Suzanne L. Wehrli², Felix W. Wehrli¹</i> ¹ University of Pennsylvania, Philadelphia, PA, United States; ² Children's Hospital of Philadelphia, Philadelphia, PA, United States
16:12 ISMRM MERIT A magina cum 1	0933.	<i>In Vivo</i> Imaging of Bound and Pore Water in Tibia and Femur Using 3D Cones Sequences Jun Chen ¹ , Michael Carl ² , Hongda Shao ¹ , Soorena Azam Zanganeh ¹ , Eric Chang ¹ , ³ , Christine B. Chung ¹ , ³ , Graeme M. Bydder ¹ , Jiang Du ¹ ¹ Radiology, University of California, San Diego, CA, United States; ² GE Healthcare, San Diego, CA, United States; ³ Department of Radiology, VA San Diego Healthcare System, San Diego, CA, United States

16:24 0934. Bone Marrow Fat Quantification in Calcaneus. Why Not? Silvia Capuani¹,², Giulia Di Pietro²,³, Guglielmo Manenti⁴, Vincenzo Vinicola⁵, Marco Bozzali⁶, Umberto Tarantino⁷ ¹Physics Department, CNR-IPCF Roma Sapienza University of Rome, Rome, Italy, Italy; ²Center for Life NanoScience@LaSapienza, Istituto Italiano di Tecnologia, Rome, Italy, Italy; ³Enrico Fermi Center, Rome, Italy, Italy; ⁴Department of Diagnostic Imaging and Interventional Radiology, "Tor Vergata" University of Rome, Rome, Italy, Italy; ⁵4Rehabilitation Hospital IRCCS Santa Lucia Foundation, Rome, Italy, Rome, Italy, Italy; ⁶Neuroimaging Laboratory Santa Lucia Foundation, Rome, Italy, Italy; ⁷5Department of Orthopaedics and Traumatology, PTV Foundation, "Tor Vergata" University of Rome, Rome, Rome, Italy, Italy

16:36 0935. UTE Imaging with Simultaneous Water and Fat Signal Suppression Using an Efficient Multi-Shot Inversion Recovery Preparation

Michael Carl¹, Jiang Du², Graeme M. Bydder² ¹GE Healthcare, San Diego, CA, United States; ²UCSD, CA, United States

16:48 0936. Dental MRI Can Detect Micro-Cracks *Djaudat Idiyatullin¹, Michael Garwood¹, Donald Nixdorf²* ¹CMRR, Radiology Department, University of Minnesota, Minneapolis, Minneaota, United States; ²Division of TMD & Orofacial Pain and Department of Neurology, University of Minnesota, Minneapolis, Minneaota, United States

17:00 0937. Feasibility of Ultrashort Echo Time (UTE) MR Imaging at 1.5 T in the Diagnosis of Skull Fractures

Hao Wu¹, Shuguang Chu¹, Huaping Sun¹, Yumin Zhong², Quanmin Nie³, Liemei Guo³, Xi Yang³, Hong Zhang², Yi Lin², Weibo Chen⁴, He Wang⁵, Ming Zhu²
¹Department of Radiology, HuaShan Hospital North, Fudan University, Baoshan District, Shanghai, China; ²Department of Radiology, Shanghai Children₁⁻ s Medical Center, Shanghai Jiao Tong University School of Medicine, Pudong New District, Shanghai, China; ³Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Pudong New District, Shanghai, China; ⁴Philips Healthcare, Shanghai, China; ⁵Philips Research China, Shanghai, China

17:12 0938. Quantitative Susceptibility Mapping of Bone Using Ultra-Short TE Sequence

Alexey V. Dimov¹, ², Zhe Liu¹, ², Pascal Spincemaille², Jiang Du³, Yi Wang¹, ²
¹Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States; ²Radiology Department, Weill Cornell Medical College, New York, United States; ³University of California (San Diego), CA, United States

17:24 0939. MRS-Based Vertebral Bone Marrow Fat Quantification Using Prior Fat Spectrum Characterization and T2 issue Meetra Aware magna cum laube

Michael Dieckmeyer¹, Stefan Ruschke¹, Christian Cordes¹, Samuel Paran Yap¹, Hendrik Kooijman², Hans Hauner¹, Ernst J. Rummeny¹, Jan S. Bauer¹, Thomas Baum¹, Dimitrios C. Karampinos¹ ¹Technische Universität München, Munich, Germany; ²Philips Healthcare, Germany

17:36 0940. Dual Echo UTE Imaging with Rescaled Subtraction (DUTE-RS): Scaling Factor Optimization Study Yanchun Zhu^l, Jiang Du², Qun He², Shanglian Bao³, Song Gao³, Guoru Zhao^l, Yaoqin Xie^l ¹Institue of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; ²Department of Radiology, University of California, CA, United States; ³Beijing City Key Lab of Medical Physics and Engineering, Peking University, Beijing, China

17:48 0941. Selective Musculoskeletal MRI Using ZTE Imaging with Long-T2 Suppression Markus Weiger¹, Mingming Wu, ¹², Moritz Christoph Wurnig³, David Kenkel³, Andreas Boss³, Gustav Andreisek³, Klaas Paul Pruessmann¹ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany; ³Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland

Abdomen & Pelvis

716 A/B	16:00-18:00	Moderators: Alessandro Furlan, M.D. & Ferdia A. Gallagher, Ph.D., MRCP, FRCR
0942.	Prostate MRSI Predicts T	reatment Failure After Radical Prostatectomy
	Kristen Zakian ¹ , William Ha	atfield ² , Omer Aras ² , Kun Cao ³ , Derya Yakar ⁴ , Debra Goldman ² , Chaya Moskowitz ² , Amita
	Shukla-Dave ² , Yousef Maza	heri Tehrani ² , Samson Fine ² , James Eastham ² , Hedvig Hricak ²
	¹ Memorial Sloan-Kettering Car	cer Center, New York, NY, United States; ² MSKCC, NY, United States; ³ Peking University Cancer
	Hospital, Beijing, China; ⁴ Radh	ooud University of Nijmegen Medical Centre, Nijmegen, Netherlands
	0942.	716 A/B 16:00-18:00 0942. Prostate MRSI Predicts T Kristen Zakian ¹ , William Ha Shukla-Dave ² , Yousef Maza ¹ Memorial Sloan-Kettering Car Hospital, Beijing, China; ⁴ Radt

16:12 0943.	X-Ray Fluorescence Microscopy Imaging of the Normal Mouse Prostate Reveals That Intravenously Administered Gadolinium Enters the Lumen of the Prostatic Glands Devkumar Mustafi ¹ , Sophie-Charlotte Gleber ² , Urszula Dougherty ³ , Marta Zamora ¹ , Tatjana Antic ⁴ , Stefan Vogt ² , Gregory S. Karczmar ¹ , Aytekin Oto ¹ ¹ Radiology, The University of Chicago, Chicago, IL, United States; ² Advanced Proton Source, Argonne National Laboratory, Lemont, IL, United States; ³ Medicine, The University of Chicago, Chicago, IL, United States; ⁴ Pathology, The University of Chicago, Chicago, IL, United States
16:24 0944.	Two-Compartment T2 Decay for Prostate Cancer Diagnosis Shiyang Wang ¹ , Harsh Agarwal ² , Gregory S. Karczmar ¹ , Aytek Oto ¹ ¹ Radiology, University of Chicago, Chicago, IL, United States; ² Clinical Research Development, Philips Research North America, Briarcliff, Manor, NY, United States
16:36 0945. Ister Meent Avardo Summa cum Laude	Gestational Age Dependent Increase in Placental Perfusion Quantified Using MRI Brijesh Kumar Yadav ¹ , ² , Jaladhar Neelavalli ¹ , ² , Uday Krishnamurthy ¹ , ² , Yimin Shen ² , Gabor Szalai ³ , Bing Wang ³ , Tinnakorn Chaiworapongsa ³ , ⁴ , Edgar Hernandez Andrade, ³⁴ , Nandor Gabor Than, ³⁴ , Ewart Mark Haacke ¹ , ² , Roberto Romero ³ ¹ Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States; ² Department of Radiology, Wayne State University, Detroit, MI, United States; ³ Perinatology Research Branch, NICHD, NIH, DHHS, Wayne State University, Detroit, MI, United States; ⁴ Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States
16:48 0946.	Free Breathing 3D Abdominal T₁ Mapping with 3D Golden Angle Through-Time Spiral GRAPPA <i>Wei-Ching Lo¹, Yong Chen², Jesse I. Hamilton¹, Dan Ma¹, Yun Jiang¹, Katherine L. Wright¹, Mark A. Griswold¹, ², Vikas Gulani¹, ², Nicole Seiberlich¹ ¹Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Dept. of Radiology, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH, United States</i>
17:00 0947.	Free-Breathing Artifact-Free Liver Imaging at 3T Incorporating Phase-Cycled TrueFISP and Motion Correction <i>Xiaoming Bi¹, Yutaka Natsuaki¹, Kevin Johnson², Gerhard Laub³</i> ¹ Siemens Healthcare, Los Angeles, CA, United States; ² Siemens Healthcare, Tucson, AZ, United States; ³ Siemens Healthcare, San Francisco, CA, United States
17:12 0948. Summa cum lande	Single-Shot Fast Spin Echo of Targeted Regions with Variable Refocusing Flip Angles and Quadratic Phase Pulses for Outer Volume Suppression Valentina Taviani ¹ , Daniel Litwiller ² , Andreas M. Loening ¹ , Manojkumar Saranathan ¹ , Brian A. Hargreaves ¹ , Shreyas S. Vasanawala ¹ ¹ Radiology, Stanford University, Stanford, CA, United States; ² GE Healthcare, Rochester, MN, United States
17:24 0949.	Large FOV ZTE Imaging in Abdomen on a Standard Clinical Scanner Jouke Smink ¹ , Marco Nijenhuis ¹ , Jan P. Groen ¹ ¹ Philips Healthcare, Best, Netherlands
17:36 0950. Issuen Meeri Awaro magna cum laude	MRI Fat-Water Separation Models: Correlation with CT Hounsfield Units in Human Subcutaneous White Adipose Tissue Aliya Gifford ¹ , ² , Theodore F. Towse ¹ , ³ , Brian Welch ¹ , ⁴ ¹ Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ² Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, United States; ³ Department of Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville, TN, United States; ⁴ Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
17:48 0951.	<i>In Vivo</i> MRI Assessment of Hepato-Splenic Disease in a Murine Model of Schistosmiasis Brice Masi ¹ , ² , Teodora-Adriana Perles-Barbacaru ³ , Caroline Laprie ⁴ , Helia Dessein ¹ , ² , Monique Bernard ³ , Alain Dessein ¹ , ² , Angèle Viola ³

¹INSERM U906, Marseille, France; ²GIMP UMR_S 906, Aix-Marseille Université, Marseille, France; ³CRMBM UMR CNRS 7339, Marseille, France; ⁴Laboratoire VET-HISTO, Marseille, France

D		•		• • . •
D	nttn	ision	Aco	Instron
~			1 104	

Constitution Hal	1 107 16:00-18:00 <i>Moderators</i> : Rita G. Nunes, D. Phil, & David A. Porter, Ph.D.
<u>16:00</u> 0952.	Framework for Comparing Relative SNR and SNR Efficiency of Diffusion Weighted Sequences in Neuro-
	Imaging Benjamin Fürsich ¹ , ² , Tim Sprenger ¹ , ² , Axel Haase ¹ , Marion I. Menzel ² ¹ IMETUM, Technical University, Munich, Bavaria, Germany; ² GE Global Research, Munich, Germany
16:12 0953.	B1 Insensitive Zoomed FOV Imaging <i>Zhigang Wu^l, Jing Zhang^l, Wenxin Fang^l, Feng Huang^l</i> ¹ Philips Healthcare (Suzhou), Suzhou, China
16:24 0954. Isber Mert Award Magina cum lande	High Resolution DTI Using Dual-Density Spiral for Efficient Sampling and Reduced Off-Resonance Artifacts <i>Xiaodong Ma^l</i> , <i>Zhe Zhang^l</i> , <i>Hui Zhang^l</i> , <i>Bida Zhang²</i> , <i>Sheng Fang³</i> , <i>Hua Guo^l</i> ¹ Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ² Healthcare Department, Philips Research China, Shanghai, China; ³ Institute of nuclear and new energy technology, Tsinghua University, Beijing, China
16:36 0955.	High-Resolution Single-Shot Spiral Imaging Using Magnetic Field Monitoring and Its Application to Diffusion
	Weighted MRI Bertram J. Wilm ¹ , ² , Christoph Barmet ¹ , ² , Simon Gross ¹ , Lars Kasper ¹ , Johanna Vannesjo ¹ , Maximilian Haeberlin ¹ , Benjamin Dietrich ¹ , David Brunner ¹ , Thomas Schmid ¹ , Klaas P. Pruessmann ¹ ¹ Institute for Biomedical Engineering, University & ETH, Zurich, Switzerland; ² Skope Magnetic Resonance Technologies, Zurich, Switzerland
16.49 0056	
16:48 0956. Isanga menur awaro sumuna cum laude	How to Suppress the Contribution from Pseudo-Diffusion in Oscillating Gradient Diffusion MRI Dan Wu ¹ , Jiangyang Zhang ² ¹ Biomedical Engineering, Johns Hopkins University School of Medicine, BALTIMORE, MD, United States; ² Radiology, Johns Hopkins University School of Medicine, MD, United States
17:00 0957.	Double Oscillating Diffusion Encoding (DODE) Augments Microscopic Anisotropy Contrast Noam Shemesh ¹ , Andrada Ianuş ² , Daniel C. Alexander ² , Ivana Drobnjak ² ¹ Champalimaud Neuroscience Programme, Champalimaud Center for the Unknown, Lisbon, Portugal; ² Center for Medical Image Computing, Department of Computer Science,, University College London, London, United Kingdom
17:12 0958.	Single-Spin Echo Multiband Diffusion Imaging with Slice Select Gradient Reversal <i>Matthew J. Middione¹, Hua Wu², Robert F. Dougherty², Kangrong Zhu³, Adam B. Kerr³, John M. Pauly³</i> ¹ Applied Sciences Laboratory West, GE Healthcare, Meno Park, CA, United States; ² CNI, Stanford University, Stanford, CA, United States; ³ Electrical Engineering, Stanford University, Stanford, CA, United States
17:24 0959. isana kunt avard magna cum laude	Diffusion-Weighted Readout-Segmented EPI Using PINS Simultaneous Multislice Imaging Peter J. Koopmans ¹ , Robert Frost ¹ , David A. Porter ² , Wenchuan Wu ¹ , Peter Jezzard ¹ , Karla L. Miller ¹ , Markus Barth ³ ¹ FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; ² Institute for Medical Image Computing, Fraunhofer MEVIS, Bremen, Germany; ³ Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
17:36 0960. isuae Meerit Award magna cum lande	Correction of 3D Motion Induced Artifacts in Multi-Shot Diffusion Imaging Using Projection Onto Convex Sets Based Multiplexed Sensitivity-Encoding MRI (POCSMUSE) Mei-Lan Chu ¹ , ² , Shayan Guhaniyogi ¹ , Hing-Chiu Chang ¹ , Nan-kuei Chen ¹ ¹ Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States; ² Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan

17:48	0961.	Efficient Large Scale Motion Compensation for Multi-Shot Diffusion-Weighted Imaging Zhongbiao Xu ¹ , Zhigang Wu ² , Wufan Chen ¹ , Yanqiu Feng ¹ , Feng Huang ² , Wenxing Fang ² , Jing Zhang ² ¹ Guangdong Provincial Key Laborary of Medical Image Processing, School of Biomedical Engineering, Southern Medical University Guangzhou, Guangdong, China; ² Philips Healthcare (Suzhou) CO.LTD, Suzhou, Jiangsu, China		
Normal	Braiı	n Anatomy & Morphometry		
John Bass	ett The	atre 102 16:00-18:00 Moderators: Andrew L. Alexander, Ph.D. & David J. Mikulis, M.D.		
16:00	0962.	Influence of T1 Contrast and Resolution on Myelinated Cortical Thickness at 7 Tesla		
		Pierre-Louis Bazin ⁴ , Christine Lucas Tardif ⁴ , Arno Villringer ⁴ , Nicholas Bock ⁴ ¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ² McMaster University, Ontario, Canada		
16:12	0963.	Enhanced T1-Weighted Myelin Contrast Across Lamina at 7T; In-Vivo, Ex-Vivo, and Histology Alessio Fracasso ¹ , Susanne J. van Veluw ² , Fredy Visser ³ , ⁴ , Jaco JM Zwanenburg ⁴ , Serge O. Dumoulin ¹ , Natalia Petridou ⁴		
		¹ Experimental Psychology, Helmholtz institute, Utrecht University, Utrecht, Netherlands; ² Neurology, Brain Center Rudolf Magnus, University Medical Center, Utrecht, Netherlands; ³ Philips Medical Systems, Best, Netherlands; ⁴ Radiology, Imaging Division, University Medical Center, Utrecht, Netherlands		
16:24	0964.	MR Morphometry of Myeloarchitecture for <i>In-Vivo</i> Cortical Mapping		
magna cum	Laude	¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany; ² McMaster University, Hamilton, Ontario, Canada		
16:36	0965.	Effect of Hypobaric Pressure on MRI Parameters, Including B0, T2, T2*, and T1		
		¹ Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States		
16:48	0966.	Connectivity-Based Atlas of Human Brain White Matter in ICBM-152 Space.		
ISMRM MERIT Summa cun	award 1 Laude	Anna Varentsova, Shengwei Zhang, Ekaterina Shanina, Konstantinos Arjanakis, ¹ ¹ Physics Department, Illinois Institute of Technology, Chicago, IL, United States; ² Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States; ³ Rush Alzheimer's Disease Center, Rush University, Chicago, IL, United States		
17:00	0967.	Arcuate Fasciculus Delineation by Means of Diffusion Compartment Imaging Based Tractography Xavier Tomas-Fernandez ¹ , Benoit Scherrer ¹ , Catherine Wan ¹ , Simon K. Warfield ¹		
		'Boston Children's Hospital, Boston, MA, United States		
17:12	0968.	The Number of Subjects Needed to Detect a Change in White Matter Microstructure Depends on the Pathway in Question		
	,	Sonya Bells ¹ , C John Evans ¹ , Derek K. Jones ¹ ¹ School of Psychology, CUBRIC, Cardiff, Wales, United Kingdom		
17:24	0969.	Investigating Variability of Brain Anatomy Using Three Common Mouse Strains		
		Jan Scholz [*] , Matthijs van Lede [*] , Jason P. Lerch [*] , [*] , Mark Henkelman [*] , [*] ¹ Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; ² Medical Biophysics, University of Toronto, Toronto, ON, Canada; ³ Medical Biophysics, University of Toronto, ON, Canada		
17:36 ISMRM MERIT Magna cum	0970. aude	<i>In Vivo</i> High Resolution Imaging of the Mouse Neurovasculature Jérémie Pierre Fouquet ¹ , Réjean Lebel ¹ , Luc Tremblay ¹ , Martin Lepage ¹ ¹ CIMS, Université de Sherbrooke, Sherbrooke, QC, Canada		
17:48	0971.	Initial Human Imaging Experience with a Head-Only Gradient System Utilizing 80 MT/m and 500 T/m/s John Huston III ¹ , Shengzhen Tao ¹ , Joshua D. Trzasko ¹ , Paul T. Weavers ¹ , Yunhong Shu ¹ , Erin Gray ¹ , Seung-Kyun Lee ² , Jean-Baptiste Mathieu ² , Christopher J. Hardy ² , John Schenck ² , Ek Tsoon Tan ² , Thomas K.F. Foo ² , Matt A. Bernstein ¹		

¹Radiology, Mayo Clinic, Rochester, MN, United States; ²GE Global Research, Niskayuna, NY, United States

Combined Educational & Scientific Session Cardiovascular MRA With & Without Contrast

Organizers: Daniel B. Ennis, Ph.D. & Harald Kramer, M.D.

Room 718 A 16:00-18:00 Moderators: Vincent B. Ho, M.D., M.B.A. & Harald Kramer, M.D. 16:00 Contrast Enhanced MRA: Why, Where & How? J. Paul Finn

Paul T. Weavers¹, Eric A. Borisch¹, Phillip M. Young¹, Phillip J. Rossman¹, Thomas C. Hulshizer¹, Stephen J.

16:30	0972.	Three-Station Fluoroscopic Tracking 3D Bolus Chase MRA with Optimized Acceleration	15

ismem merit award magna cum laude

Riederer¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States

16:42 0973. Ferumoxytol in Pediatric Congenital Heart Disease: Initial Results with 4D Multiphase Steady State Imaging of **Contrast (MUSIC) Enhancement**

Kim-Lien Nguyen¹,², Fei Han², Daniel Z. Brunengraber², Stanislas Rapacchi², Ihab Ayad, ²³, Gary Satou, ²⁴, Peng Hu², J Paul Finn²

¹Division of Cardiology, Greater Los Angeles VA Healthcare System and David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; ²Diagnostic Cardiovascular Imaging Laboratory, Department of Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; ³Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, Los Angeles, CA, United States; ⁴Division of Pediatric Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States

16:54 Non-Contrast Enhanced MRA: Why, Where & How? Ruth P. Lim

0974. Clinical Assessment of a Non-Contrast MR Angiography Protocol for the Pre-Transplant Evaluation of the 17:24 Liver Vasculature

Jeremy Douglas Collins¹, Edouard Semaan¹, Zoran Stankovic², Riad Salem¹, Maria Carr¹, Michael Markl¹, ³, James Christian Carr

¹Radiology, Northwestern University, Chicago, IL, United States; ²Radiology, University Hospital, Freiberg, Germany; ³Biomedical Engingeering, Northwestern University, Evanston, IL, United States

17:36 0975. Non-Contrast Enhanced MR Angiography in the Calf: A Comparison Between Flow-Sensitive Dephasing Prepared Steady-State Free Precession and Quiescent-Interval Single-Shot in Patients with Diabetes Hanwei Chen¹, Na Zhang², ³, Xin Liu², ³

¹Department of Radiology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China; ²Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen, Guangdong, China; ³Shenzhen Key Laboratory for MRI, Shenzhen, Guangdong, China

0976. Bicuspid Valve Morphology Determines the Position of Elevated Velocity and WSS: 4D Flow MRI in 202 17:48 Subjects Summa cum laude

Pim van Ooij¹,², Ian G. Murphy², Alexander L. Powell², Maria Carr², Wouter V. Potters¹, Colleen Clennon³, Jeremy D. Collins², James C. Carr², S Chris Malaisrie⁴, Patrick M. McCarthy³, Michael Markl², ⁵, Alex J. Barker² ¹Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Radiology, Northwestern University, Chicago, IL, United States; ³Division of Cardiac Surgery, Northwestern University, Chicago, IL, United States; ⁴Medicine-Cardiology, Northwestern University, Chicago, IL, United States; ⁵Northwestern University, Biomedical Engineering, Chicago, IL, United States

18:00 **Adjournment & Meet the Teachers**

Combined Educational & Scientific Session

Ouantitative Biomarkers of Chest Disease: the Role of MRI in a Multimodality Practice

Room 718 B	16:00-18:00	Moderators: Mitchell S. Albert, Ph.D. & Jim M. Wild, Ph.D.
16:00	Introduction	

16:03 Imaging of Chronic Obstructive Pulmonary Disease (COPD): MRI Vs. CT Grace Parraga

16:18 0977. Tobacco Smoke Exposure Reduces Lung T_1 in COPD Patients

Daniel F. Alamidi¹, Alexandra R. Morgan⁷, ³, Penny L. Hubbard Cristinacce⁴, Lars H. Nordenmark⁵, Paul D. Hockings⁵, ⁶, Kerstin M. Lagerstrand¹, Simon S. Young⁷, Josephine H. Naish⁴, John C. Waterton⁴, ⁷, Lars E. Olsson⁸, Geoff J.M Parker², ³ ¹Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden; ²Bioxydyn Ltd, Manchester, United Kingdom; ³Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom; ⁴Centre for Imaging Sciences and Biomedical Imaging Institute, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, Manchester, United Kingdom; ⁵AstraZeneca R&D, Mölndal, Sweden; ⁶Chalmers University of Technology, MedTech West, Gothenburg, Sweden; ⁷AstraZeneca R&D, Alderley Park, United Kingdom; ⁸Department of Medical Physics, Lund University, Lund, Sweden

16:30 0978. Quantitative Evaluation of Emphysema in COPD Patients Via CT and UTE MR Image Analysis

David J. Roach¹, ², Yannick Crémillieux³, Suraj Serai⁴, Robert Thomen¹, ⁵, Sadia Benzaquen⁶, Jason C. Woods¹, ² ¹Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ³Centre de Résonance Magnétique des Systèmes Biologiques, Université de Bordeaux, Bordeaux, France; ⁴Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Physics, Washington University in St. Louis, St. Louis, MO, United States; ⁶University of Cincinnati College of Medicine, Cincinnati, OH, United States

16:42 Imaging of Lung Cancer: MRI vs. PET-CT

Edwin J. van Beek

- 16:57 0979. Diffusion-Weighted MRI (DWI) with Fast Advanced Spin-Echo Sequence: Comparison of N-Stage Assessment with DWI with Echo-Planar Imaging and FDG-PET/CT in Non-Small Cell Lung Cancer Patients Yoshiharu Ohno¹,², Shinichiro Seki³, Hisanobu Koyama³, Takeshi Yoshikawa¹,², Sumiaki Matsumoto¹,², Yoshiko Ueno³, Katsusuke Kyotani⁴, Yoshimori Kassai⁵, Masao Yui⁵, Hitoshi Yamagata⁵, Kazuro Sugimura³
 ¹Advanced Biomedical Imaging Research, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ²Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ³Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ⁴Center for Radiology and Radiation Oncology, Kobe University Hospital, KObe, Hyogo, Japan; ⁵Toshiba Medical Systems Corporation, Tochigi, Japan
- 17:09 0980. Detection of Pulmonary Nodules by Ultra-Short TE Sequences in Oncology Patients Using a PET/MR System Nicholas Scott Burris¹, Peder Larson¹, Kevin M. Johnson², Michael D. Hope³, Spencer Behr³, Thomas A. Hope³ ¹Radiology, University of California San Francisco, San Francisco, CA, United States; ²University of Wisconsin–Madison, WI, United States; ³University of California San Francisco, CA, United States
- Imaging of Pulmonary Vascular Disease: MRI Vs. CT

 Jim M. Wild
- 17:36 0981. Pulmonary Perfusion Phase Imaging Using Self-Gated Fourier Decomposition MRI Daniel Stäb¹, ², Simon Veldhoen², Andre Fischer², Stefan Weick³, ⁴, Andreas Max Weng², Clemens Wirth², Thorsten A. Bley², Herbert Köstler²
 ¹The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; ²Institute of Radiology, University of Würzburg, Würzburg, Bavaria, Germany; ³Department of Radiation Oncology, University of Würzburg, Würzburg, Bavaria, Germany; ⁴Department of Experimental Physics 5, University of Würzburg, Bavaria, Germany

17:48 0982. MR Imaging, Targeting and Characterization of Pulmonary Fibrosis Using Intra-Tracheal Administration of Gadolinium Based Nanoparticles

Nawal Tassali¹, Andrea Bianchi¹, François Lux², Gerard Raffard¹, Stephane Sanchez¹, Olivier Tillement², Yannick Cremillieux¹

¹Centre de Resonance Magnetique des Systemes Biologiques, CNRS UMR 5536, Universite de Bordeaux, Bordeaux, France; ²Institut Lumière Matière, CNRS UMR 5306, Universite Claude Bernard, Domaine Scientifique de la Doua, Villeurbane, France

18:00 Adjournment & Meet the Teachers

Educational Course

MR Physics & Techniques for Clinicians Organizers: Marcus T. Alley, Ph.D., Michael Markl, Ph.D., Brian Hargraves, Ph.D., & Nicole Seiberlich, Ph.D.

Room 801 A/B	16:00-18:00	Moderators: Brian A. Hargreaves, Ph.D. & Michael Markl, Ph.D.
16:00	Artifacts to Artefacts: Causes & Vikas Gulani	c Cures from Clinical Perspective
16:40	Contrast Agents Bernd Jung	
17:20	High Field Imaging Priti Balchandani	
17:50	Adjournment & Meet the Teacl	iers

Closing Party

North Building	g Exhibition Hall

18:15 - 22:00

(no CME credit)

Proton MRSI Methods

Room 701 A	08:00-10:00 Moderators: Vincent O. Boer, Ph.D. & Sarah J. Nelson, Ph.D.
08:00 0983.	Mechanisms of SNR Enhancement and Line Shape Improvement in B ₀ Correction for Overdiscrete MRSI
ISMRM MERIT AWARD	Reconstruction
Summa cam tause	Thomas Kirchner ¹ , Ariane Fillmer ¹ , Klaas Paul Pruessmann ¹ , Anke Henning, ¹²
	Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
	rucongen, oermany
08:12 0984.	Removal of Nuisance Signals from Limited and Sparse 3D ¹ H-MRSI Data of the Brain
ISMRM MERIT AWARD	Bryan Clifford ¹ , Chao Ma ² , Fan Lam ¹ , Zhi-Pei Liang ¹
summa cum taude	¹ Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ² Beckman Institute,
	University of Illinois at Urbana-Champaign, Urbana, IL, United States
08:24 0985	Towards Robust Reproducibility Study for MRSI Via Fully Automated Reproducible Imaging Positioning
ISMRM MERIT AWARD	Wei Bian ¹ , Yan Li ¹ , Jason C. Crane ¹ , Sarah J. Nelson ¹
magna cum cause	¹ Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
08:36 0986.	Comparison of Several Coil Combination Techniques in Multi-Channel 3D MRSI for Brain Tumor Patients
magna cum laude	Maryam Varein', ', Li Yan', ', Janine Lupo', ', Saran Nelson', '
	² Surbeck Laboratory of Advanced Imaging, Department of Radiology and Biomedical Imaging, CA, United States; ³ Radiology and
	Biomedical Imaging, University of California San Francisco, CA, United States
00 40	
08:48 0987.	Rosette Spectroscopic Imaging with Hadamard Encoding
	¹ Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; ² Siemens Medical Solutions, Pittsburgh, PA,
	United States
09:00 0988 .	3D Mapping of Glutathione in the Human Brain Via Real-Time Motion Corrected MEGA-LASER MRSI
	Wolfgang Bogner ^e , Bernhard Strasser ^e , Michal Povazan [*] , Gilbert Hangel [*] , Borjan Gagoski [*] , Stephan Gruber [*] , Bruce
	¹ MRCE, Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria: ² Fetal-Neonatal
	Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States;
	³ Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical
	School, Charlestown, MA, United States
00.12 0000	Lucas Critical Spectral Localization of Hatana and Comparison to be Compared Spectra
09:12 0989.	<i>Li</i> An ¹ Jun Shen ¹
	¹ National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
09:24 0990.	3D MR Spectroscopic Imaging Using Adiabatic Spin Echo and Hypergeometric Dual Band Pulses for Metabolic
magna cum laude	Mapping Over the Entire Brain
	Morteza Esmaelli [*] , [*] , 10ne Frost Bathen [*] , Bruce R. Rosen [*] , Ovidiu Cristian Andronesi [*]
	School, Boston, MA, United States; ² Department of Circulation and Medical Imaging, Norwegian University of Science and
	Technology (NTNU), Trondheim, Norway
U9:36 0991.	Detection of Brain Macromolecules Using Double Inversion Recovery Ultra-Short Acquisition Delay 'H MRSI
magna cum laude	al / ICSIA Michal Považan ¹ Gilbert Hangel ¹ Bernhard Strasser ¹ Marek Chmelik ¹ Stenhan Gruher ¹ Siegfried Trattnig ¹
	Wolfgang Bogner ¹
	¹ MRCE, Department of Biomedical Imaging and Image-guided therapy, Medical University Vienna, Vienna, Austria
09:48 0992.	High-Resolution ¹ H-MRSI of the Brain Using Short-TE SPICE
	Cnao Ma , Fan Lam, , Qiang Ning, , Curtis L. Johnson ⁺ , Zhi-Pei Liang,

¹Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, United States

Magnetization Transfer

Room 701 B	08:00-10:00 Moderators: David C. Alsop, Ph.D. & T.B.A.
08:00 0993.	Application of a Dipolar Model to Inhomogeneous Magnetization Transfer (IhMT)
ISMRM MERIT AWARD	Gopal Varma ¹ , Olivier M. Girard ² , Valentin Prévost ² , Aaron K. Grant ¹ , Guillaume Duhamel ² , David C. Alsop ¹
Summa cum taute	¹ Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States;
	² CRMBM UMR 7339, CNRS and Aix-Marseille Université, Marseille, France
08:12 0994.	Towards a Quantitative Theory for Inhomogeneous Magnetization Transfer
	Scott D. Swanson', Dariya I. Malyarenko', Mario L. Fabiilli'
	Department of Radiology, University of Michigan, Ann Arbor, Mi, United States, Department of Radiology, University of Michigan MI United States
	intelligan, mi, enited blaces
08:24 0995.	Further Evidence of an Orientation Dependence of Magnetization Transfer Parameters from Investigations in
ISMRM MERIT AWARD	Post-Mortem Marmoset Brain
magna tum taube	Henrik Marschner ¹ , Riccardo Metere ¹ , Stefan Geyer ¹ , André Pampel ¹ , Harald E. Möller ¹
	¹ Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany
08:36 0996.	Exploring a Flexible Pulse Design for Studying Magnetization Transfer
	Peter van Gelderen', Xu Jiang', Jeff H. Duyn'
	AMRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States
08.48 0007	Contrast Congration with a Naval Adiabatic On Pasanance Magnetization Transfer Propagation (MT Prop)
00.40 0777.	Wolfgang G Rehwald ¹ David C Wendell ² Flizabeth R Jenista ² Han W Kim ² Finn-Ling Chen ² Joor Klem ² Raymond
	J Kim ²
	¹ Siemens Healthcare, Durham, NC, United States; ² Cardiology, Duke University Medical School, Durham, NC, United States
09:00 0998.	Study of Bound Proton T2 and Magnetization Transfer Using Pulsed MT
ISMRM MERIT AWARD	Xu Jiang ¹ , ² , Peter van Gelderen ¹ , Xiaozhen Li ¹ , Emily Leibovitch ³ , Pascal Sati ⁴ , Afonso C. Silva ³ , Jeff H. Duyn ¹
Junna tun tauot	¹ AMRI, LFMI, NINDS, NIH, Bethesda, MD, United States; ² Department of Physics, University of Maryland, College Park, MD,
	United States; Viral Immunology Section, Neuroimmunology Branch, NINDS, NIH, Betnesda, MD, United States; Translational Neuroradiology Unit NINDS, NIH, Bethesda, MD, United States; ⁵ CMU, LEMI, NINDS, NIH, Bethesda, MD, United States
	Tearoradiology onit, Tarabo, Tari, Bearesaa, MD, Onitea States, Cirio, Er MI, Tarabo, Tari, Bearesaa, MD, Onitea States
09:12 0999.	A New MT Signal at -1.6 Ppm Via NOE-Mediated Saturation Transfer
	Xiao-Yong Zhang ¹ , Hua Li ¹ , Junzhong Xu ¹ , Jingping Xie ¹ , John C. Gore ¹ , Zhongliang Zu ¹
	¹ Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
09:24 1000.	Oxidative Stress Sensitive Magnetization Transfer MRI of Prostate Cancer
ismem merit award magna cum Laude	Rongwen Tain', ", Michael Abern", Karen Xie', X. Joe Zhou', ", Kejia Cai', "
	Radiology, College of Medicine, University of Illinois at Chicago, Chicago, Chicago, IL, United States; Center for MR Research, College of Medicine University of Illinois at
	Chicago, Chicago, IL, United States
09:36 1001.	Assessment of Amide Proton Transfer and Nuclear Overhauser Effects Using Long RF Saturation at 3T in
	Clinical Brain Tumor Applications
	Jochen Keupp ⁴ , Osamu Togao ²
	Philips Research, Hamburg, Germany; 'Clinical Radiology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
00.48 1002	Amplifying ATP Magnetization Exchange Effects by Rand Invession Transfers & 21D NMD Study in Human
07.40 1002.	Skeletal Muscle at 7T
	Jimin Ren ^{1, 2} , Baolian Yang ³ , A. Dean Sherry ^{1, 4} , Craig R. Mallov ^{1, 5}
	······································

¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Department of Chemistry, University of Texas at Dallas, Richardson, TX, United States; ⁵VA North Texas Health Care System, Dallas, TX, United States

Novel Techniques for Cardiac Perfusion & Function

Room 714 A/B	<u>08:00-10:00</u> <u>Moderators:</u> Vincent B. Ho, M.D., M.B.A. & T.B.A.
08:00 1003.	Multi-Center Evaluation of Accelerated 3D Magnetic Resonance Perfusion Imaging for Assessing Myocardial
	Ischemic Burden to Detect Coronary Heart Disease <i>Robert Manka</i> ¹ , ² , <i>Lukas Wissmann</i> ² , <i>Rolf Gebker</i> ³ , <i>Roy Jogiya</i> ⁴ , <i>Manish Motwani</i> ⁵ , <i>Michael Frick</i> ⁶ , <i>Sebastian Reinartz</i> ⁶ , <i>Bernhard Schnackenburg</i> ³ , <i>Markus Niemann</i> ² , <i>Alexander Gotschy</i> ¹ , <i>Christiane Kuhl</i> ⁶ , <i>Eike Nagel</i> ⁴ , <i>Eckart Fleck</i> ³ , <i>Thomas F. Luescher</i> ¹ , <i>Sven Plein</i> ⁵ , <i>Sebastian Kozerke</i> ² , ⁴ ¹ University Hospital Zurich, Zurich, Switzerland; ² University and ETH Zurich, Zurich, Switzerland; ³ German Heart Institute, Berlin, Germany; ⁴ King's College London, United Kingdom; ⁵ University of Leeds, United Kingdom; ⁶ University Hospital Aachen, Germany
08:12 1004. In Magna cum laube	Quantification of Myocardial Blood Flow Using Non-ECG-Triggered MR Imaging with 3 Slice Coverage David Chen ^{1, 2} , Behzad Sharif ⁴ , Xiaoming Bi ³ , Janet Wei ⁴ , Louise E.J. Thomson ⁴ , ⁵ , C. Noel Bairey Merz ⁵ , Daniel S. Berman, ¹⁴ , Debiao Li ¹ , ⁶ ¹ Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States; ² Biomedical Engineering, Northwestern University, Evanston, IL, United States; ³ MR R&D, Siemens Healthcare, Los Angeles, CA, United States; ⁴ S. Mark Taper Foundation Imaging Center, Cedars Sinai Medical Center, Los Angeles, CA, United States; ⁵ Barbara Streisand Women's Center, Cedars Sinai Medical Center, Los Angeles, CA, United States; ⁶ David Geffen School of Medicine, University of California, Los Angeles, CA, United States
08:24 1005.	Reduced Field-Of-View Single-Shot Spiral Perfusion Imaging <i>Yang Yang¹, Li Zhao², Xiao Chen¹, Peter Shaw³, Jorge Gonzalez³, Frederick Epstein¹, ⁴, Craig Meyer¹, ⁴, Christopher Kramer, ³⁴, Michael Salerno³, ⁴</i> ¹ Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ² Radiology, Harvard University, Boston, MA, United States; ³ Medicine, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States; ⁴ Radiology, University of Virginia, Charlottesville, VA, United States
08:36 1006.	Towards a Synergistic Application of Multimodal MR/PET Myocardial Perfusion Imaging: Measuring Capillary Transit Time Heterogeneity with MRI and Blood Flow with Simultaneous N-13 Ammonia PET Karl Philipp Kunze ¹ , Christoph Rischpler ¹ , Shelley Zhang ² , Carmel Hayes ³ , Markus Schwaiger ¹ , Stephan Nekolla ¹ ¹ Klinikum rechts der Isar der Technischen Universität München, München, Bayern, Germany; ² Brigham and Women's Hospital, Boston, MA, United States; ³ Siemens Medical Solutions, Erlangen, Bayern, Germany
08:48 1007.	Quantitative Dynamic Contrast Enhanced MRI in Acute ST-Elevated Myocardial Infarction: Blood Flow, Microvascular Permeability and Interstitial Volume in Infarct and Peri-Infarct Edema David A. Broadbent ¹ , ² , Ananth Kidambi ² , Sven Plein ² , David L. Buckley ¹ , ² ¹ Division of Medical Physics, University of Leeds, Leeds, West Yorkshire, United Kingdom; ² Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds, West Yorkshire, United Kingdom
09:00 1008. ISMBM MERIT AWARD SUMMING CHIM LANDP	Accelerated Three-Dimensional Cine DENSE Strain Imaging in Three Minutes Xiao Chen ¹ , Daniel Auger ¹ , Michael Salerno ² , ³ , Craig H. Meyer ¹ , Kenneth C. Bilchick ⁴ , Frederick H. Epstein ¹ ¹ Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ² Radiology, University of Virginia, Charlottesville, VA, United States; ³ Cardiology, University of Virginia, Charlottesville, VA, United States; ⁴ Medicine, Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States
09:12 1009.	New Possibilities for Myocardial Strain Imaging Using Acceleration and Iterative Reconstruction <i>Andreas Greiser¹, Christoph Forman¹, Jens Wetzel², Michael Zenge³, Marie-Pierre Jolly⁴, Edgar Mueller⁵</i> ¹ Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Bavaria, Germany; ² Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nuernberg, Pattern Recognition Lab, Erlangen, Bavaria, Germany; ³ Siemens Healthcare, NY, United States; ⁴ Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, United States; ⁵ Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Bavaria, Germany

09:24 1010. Feasibility Study of a Novel Acquisition Technique of Cardiac Cine Magnetic Resonance Imaging in Patients with Atrial Fibrillation

Jian Cao¹, Yining Wang¹, Lingyan Kong¹, Lu Lin¹, Yan Yi¹, Jing An², Tianjing Zhang², Michaela Schmidt³, Michael Zenge³, Edgar Mueller³

¹Radiology, Peking Union Medical College Hospital, Beijing, Beijing, China; ²MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ³Siemens AG, Allee am Röthelheimpark, Erlangen, 91052, Germany

09:36 1011. Isotropic 3-D CINE Imaging with Sub-2mm Resolution in a Single Breath-Hold

ISMRM MERIT AWARD Summa cum Laude Jens Wetzl¹, ², Michaela Schmidt³, Michael O. Zenge³, Felix Lugauer⁴, Laszlo Lazar⁴, Mariappan Nadar⁵, Andreas Maier¹, ², Joachim Hornegger¹, ², Christoph Forman³ ¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; ²Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; ³Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Germany; ⁴Siemens SRL, Corporate Technology, Brasov, Romania; ⁵Siemens Corporation, Corporate Technology, Princeton, NJ, United States

09:48 1012. Pericardial Fat Quantification Using Respiratory Triggered 3D-Dixon Pulse Sequence Rami Homsi¹, Alois M. Sprinkart¹, ², Julian Luetkens¹, Juergen Gieseke¹, ³, Hans H. Schild¹, Michael Meier-Schroers¹,

Rami Homst, Alois M. Sprimart, Suitan Eucliders, Suergen Greseke, Hans H. Schild, Michael Meter-Schloers, Daniel Kuetting¹, Darius Dabir¹, Daniel Thomas¹
 ¹Radiology, University Hospital Bonn, Bonn, NRW, Germany; ²Institute of Medical Engineering, Ruhr-University Bochum, Bochum, Germany; ³Philips Healthcare, Best, Netherlands

Gradient Field Engineering & Monitoring

Room 716 A/B	08:00-10:00	Moderators: Klass P. Pruessmann, Ph.D. & Brian K. Rutt, Ph.D
08:00 1013. Isaara menit award Sunnina cuin laude	 Field Monitoring During High-Power T David O. Brunner¹, Benjamin E. Dietrich¹ Pruessmann¹ ¹Institute for Biomedical Engineering, Universit LLC, Zurich, Switzerland 	ransmission Pulses: A Digital Noise Cancelling Approach <i>Simon Gross¹</i> , <i>Thomas Schmid¹</i> , <i>Christoph Barmet¹</i> , ² , <i>Klaas P</i> . y and ETH Zurich, Zurich, Switzerland; ² Skope Magnetic Resonance Technologies
08:12 1014	• Spiral Imaging Trajectory Mapping Usi Ying-Hua Chu ¹ , Yi-Cheng Hsu ¹ , Fa-Hsuar ¹ Institute of Biomedical Engineering, National	ng High Density 25-Channel Field Probe Array a <i>Lin¹</i> Faiwan University, Taipei, Taiwan
08:24 1015	Placement of Field Probes for Stabilizat Mads Andersen ¹ , ² , Kristoffer H. Madsen ³ , Joep Wezel ⁵ , Matthias J. van Osch ⁵ , Andre ¹ Danish Research Centre for Magnetic Resonan Group, DTU Elektro, Technical University of D Copenhagen University Hospital, Hvidovre, De Netherlands; ⁵ C.J. Gorter center, Department of Healthcare, Best, Netherlands	ion of Breathing-Induced B0-Fluctuations in the Brain Lars G. Hanson, ²³ , Vincent Boer ⁴ , Tijl van der Velden ⁴ , Dennis Klomp ⁴ , ew G. Webb ⁵ , Maarten J. Versluis ⁵ , ⁶ ce, Copenhagen University Hospital , Hvidovre, Denmark; ² Biomedical Engineering Jenmark, Kgs. Lyngby, Denmark; ³ Danish Research Centre for Magnetic Resonance, nmark; ⁴ Department of Radiology, University Medical Center Utrecht, Utrecht, Radiology, Leiden University Medical Center, Leiden, Netherlands; ⁶ Philips
08:36 1016. Isaaka Merit Award Summa cum laude	 Continuous 3rd-Order Field Monitoring Benjamin E. Dietrich¹, David O. Brunner¹ Pruessmann¹ ¹Institute for Biomedical Engineering, Universit 	g: Design and Application for Single-Shot Shim Characterization , S. Johanna Vannesjo ¹ , Yolanda Duerst ¹ , Bertram J. Wilm ¹ , Klaas P. ry and ETH Zurich, Zurich, Switzerland
08:48 1017	. Movement Monitoring for MRI Via Me E. H. Bhuiyan ¹ , M. E. H. Chowdhury ¹ , P. I ¹ SPMIC, School of Physics and Astronomy, Un	asurement of Changes in the Gradient Induced EMF in Coil Arrays M. Glover ¹ , R. Bowtell ¹ iversity of Nottingham, Nottingham, United Kingdom
09:00 1018	. Total Current Reduced Design for Brain Kohiiro Iwasawa ¹ . Yosuke Otake ¹ . Hisaak	n B ₀ Shim Coil Using Singular Value Decomposition

¹Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan

Friday

09:12	1019.	Development of a Dedicated Asymmetric Head-Only Gradient Coil for High-Performance Brain Imaging with a High PNS Threshold Jean-Baptiste Mathieu ¹ , Seung-Kyun Lee ¹ , Dominic Graziani ¹ , Jian Lin ² , Eric Budesheim ¹ , Joseph E. Piel ¹ , Naveen Thiagarajan ¹ , Christopher J. Hardy ¹ , John F. Schenck ¹ , Ek Tsoon Tan ¹ , Eric Fiveland ¹ , Keith Park ¹ , Yihe Hua ² , Matt A. Bernstein ³ , John Huston III ³ , Yunhong Shu ³ , Thomas KF. Foo ¹ ¹ GE Global Research, Niskayuna, NY, United States; ² GE Global Research, China Technology Center, Shanghai, China; ³ Mayo Clinic, Rochester, MN, United States
09:24	1020.	Lorentz Damping and the Field Dependence of Gradient Coil Vibroacoustics Simone Angela Winkler ¹ , Trevor P. Wade ² , Andrew Alejski ² , Charles McKenzie ² , Brian K. Rutt ¹ ¹ Dept. of Radiology, Stanford University, Stanford, CA, United States; ² Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
09:36	1021.	Thermal Characterization of an All Hollow Copper Insertable Head Gradient Coil <i>Trevor Paul Wade¹,², Andrew Alejski¹, Janos Bartha¹, Dina Tsarapkina², Brian K. Rutt³, Charles A. McKenzie²</i> ¹ Robarts Research Institute, Western University, London, Ontario, Canada; ² Medical Biophysics, Western University, London, Ontario, Canada; ³ Radiology, Stanford University, Stanford, CA, United States
09:48	1022.	Shielded Matrix Gradient Coil Sebastian Littin ¹ , Feng Jia ¹ , Stefan Kroboth ¹ , Kelvin Layton ¹ , Huijun Yu ¹ , Maxim Zaitsev ¹ ¹ Medical Physics, University Medical Center Freiburg, Freiburg, Germany

Diffusion Weighted Image Analyses

Room 718 A	08:00-10:00 Moderators: Andrew L. Alexander, Ph.D. & Chantal M. W. Tax, M.Sc.
08:00 1023.	Noise Map Estimation in Diffusion MRI Using Random Matrix Theory Jelle Veraart ¹ , Els Fieremans ² , Dmitry S. Novikov ¹ ¹ Center for Biomedical Imaging, NYU Langone Medical Center, New York, NY, United States; ² Center for Biomedical Imaging, NYU Langone Medical Center, New York, NY, United States
08:12 1024.	Caveats of Non-Linear Fitting to Brain Tissue Models of Diffusion <i>Ileana O. Jelescu¹, Jelle Veraart¹, Els Fieremans¹, Dmitry S. Novikov¹</i> ¹ Center for Biomedical Imaging, Dept. of Radiology, NYU Langone Medical Center, New York, United States
08:24 1025.	Joint Estimation of Microstructural and Biomechanical Features of the Brain Using a Phase Sensitive Reconstruction of DWIs <i>Tim Sprenger¹</i> , ² , <i>Jonathan I. Sperl</i> ² , <i>Axel Haase</i> ¹ , <i>Brice Fernandez</i> ³ , <i>Christopher Hardy</i> ⁴ , <i>Luca Marinelli</i> ⁴ , <i>Michael</i> <i>Czisch</i> ⁵ , <i>Philipp Saemann</i> ⁵ , <i>Marion I. Menzel</i> ² ¹ IMETUM, Technical University, Munich, Germany; ² GE Global Research, Munich, Germany; ³ GE Healthcare, Munich, Germany; ⁴ GE Global Research, Niskayuna, NY, United States; ⁵ Max Planck Institute of Psychiatry, Munich, Select, Germany
08:36 1026.	A Compressed Sensing Approach to Super-Resolution Diffusion MRI from Multiple Low-Resolution Images Lipeng Ning ¹ , ² , Kawin Setsompop, ²³ , Cornelius Eichner ³ , Oleg Michailovich ⁴ , Carl-Fredrik Westin ¹ , ² , Yogesh Rathi ¹ , ² ¹ Brigham and Women's Hospital, Boston, MA, United States; ² Harvard Medical School, Boston, MA, United States; ³ Massachusetts General Hospital, MA, United States; ⁴ University of Waterloo, Ontario, Canada
08:48 1027. Isunu Merit Anaro Summa cum lande	Time to Move On: An FOD-Based DEC Map to Replace DTI's Trademark DEC FA <i>Thijs Dhollander¹, Robert Elton Smith¹, Jacques-Donald Tournier², ³, Ben Jeurissen⁴, Alan Connelly¹, ⁵</i> ¹ The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; ² Centre for the Developing Brain, King's College London, London, United Kingdom; ³ Department of Biomedical Engineering, King's College London, London, United Kingdom; ⁴ iMinds-Vision Lab, University of Antwerp, Antwerp, Belgium; ⁵ The Florey Department of Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
09:00 1028.	Resolving Crossing Fibers and Generalizing Biomarkers Using the Diffusion Kurtosis Tensor

Rafael Neto Henriques¹, Marta Morgado Correia¹, Rita Gouveia Nunes², Hugo Alexandre Ferreira²

¹Cognition and Brain Science Unit, MRC, Cambridge, England, United Kingdom; ²Instituto de Biofisica e Engenharia Biomedica, Faculdade de Ciencias da Universidade de Lisboa, Lisbon, Portugal

09:12 1029.	Comparing Fourier to SHORE Basis Functions for Sparse DSI Reconstruction
ISMRM MERIT AWARD magna cum laude	Alexandra Tobisch ¹ , ² , Thomas Schultz ² , Rüdiger Stirnberg ¹ , Gabriel Varela ³ , Hans Knutsson ⁴ , Pablo Irarrázaval ³ , ⁵ , Tony Stöcker ¹ , ⁶
	¹ German Center for Neurodegenerative Diseases, Bonn, Germany; ² Department of Computer Science, University of Bonn, Bonn, Germany; ³ Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile; ⁴ Linköping University, Linköping, Sweden; ⁵ Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; ⁶ Department of Physics and Astronomy, University of Bonn, Bonn, Germany
09:24 1030.	How to Avoid Biased Streamlines-Based Metrics for Streamlines with Variable Step Sizes Jean-Christophe Houde ¹ , Marc-Alexandre Côté-Harnois ¹ , Maxime Descoteaux ¹ ¹ Computer Science department, Université de Sherbrooke, Sherbrooke, Quebec, Canada
09:36 1031. Inagina cum laude	Imposing Label Priors in Global Tractography Can Resolve Crossing Fibre Ambiguities <i>Daan Christiaens</i> ¹ , ² , <i>Frederik Maes</i> ¹ , ² , <i>Stefan Sunaert</i> , ²³ , <i>Paul Suetens</i> ¹ , ² ¹ Electrical Engineering, KU Leuven, Leuven, Vlaams-Brabant, Belgium; ² Medical Imaging Research Center, UZ Leuven, Leuven, Vlaams-Brabant, Belgium; ³ Translational MRI, KU Leuven, Leuven, Ku Leuv
09:48 1032.	Connectivity Based Segmentation of the Corpus Callosum Using a Novel Data Mining Approach <i>Gowtham Atluri¹, An Wu², Essa Yacoub², Kamil Ugurbil², Vipin Kumar¹, Christophe Lenglet²</i> ¹ Computer Science and Engineering, University of Minnesota, Minneapolis, MN, United States; ² Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Pulmonary MRI - Proton & Non-Proton Applications

<u>Room 718 B</u>	08:00-10:00	Moderators: Samuel Patz, Ph.D. & Mark L. Schiebler, M.D.
08:00 1033.	Fractional Ventilation Mapping U	Jsing Inert Fluorinated Gas MRI in a Rat Model of Inflammation
ismen meert award summa cum lande	<i>Marcus J. Couch¹</i> , ² , <i>Matthew S. Fo</i> ¹ Lakehead University, Thunder Bay, On ³ Robarts Research Institute, London, Or Canada	x^3 , ⁴ , <i>Chris Viel</i> ¹ , ² , <i>Gowtham Gajawada</i> ¹ , ² , <i>Tao Li</i> ² , <i>Mitchell S. Albert</i> ¹ , ² tario, Canada; ² Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada; tario, Canada; ⁴ Department of Medical Biophysics, Western University, London, Ontario,
08:12 1034.	<i>In-Vivo</i> Imaging of the Spectral L <i>Flavio</i> Carinci ¹ , ² , Cord Meyer ² , Fe ¹ Research Center Magnetic Resonance H University of Würzburg, Würzburg, Bay	ine Broadening of the Human Lung in a Single Breath-Hold <i>lix A. Breuer¹, Peter M. Jakob¹, ²</i> Bavaria (MRB), Würzburg, Bayern, Germany; ² Department of Experimental Physics 5, <i>y</i> ern, Germany
08:24 1035.	Non-Contrast Enhanced Non-Inv Andrea Bianchi ¹ , Sandrine Dufort ² , Tillement ⁵ , Jean-Luc Coll ² , Yannick ¹ Centre de Résonance Magnétique des S University Joseph Fourier, Grenoble, Fr CNRS/UMS 3428, University of Bordea	asive Detection and Follow-Up of Lung Tumors in Mice ³ , Pierre-Yves Fortin ¹ , ⁴ , François Lux ⁵ , Gerard Raffard ¹ , Nawal Tassali ¹ , Olivier ⁴ Crémillieux ¹ ystèmes Biologiques, University of Bordeaux, Bordeaux, France; ² IAB-INSERM U823, ance; ³ Nano-H, Saint Quentin – Fallavier, France; ⁴ Institut de Bio-Imagerie (IBIO) nux, Bordeaux, France; ⁵ ILM UMR 5306, University Lyon 1, Lyon, France
08:36 1036.	Pulmonary Thin-Section 3D MR Findings Assessment with Thin-S Yoshiharu Ohno ¹ , ² , Shinichiro Seki Kyotani ⁶ , Yoshiko Ueno ³ , Takeshi Y ¹ Advanced Biomedical Imaging Researc Functional and Diagnostic Imaging Ress Hyogo, Japan; ³ Division of Radiology, I Japan; ⁴ Toshiba Medical Research Instit for Radiology and Radiation Oncology,	Imaging with Ultra-Short TE: Comparison of Capability for Radiological ection CT ³ , Hisanobu Koyama ³ , Aiming Lu ⁴ , Masao Yui ⁵ , Mitsue Miyazaki ⁴ , Katsusuke oshikawa ¹ , ² , Sumiaki Matsumoto ¹ , ² , Kazuro Sugimura ³ ^{ch} , Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ² Division of earch, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, ute USA, IL, United States; ⁵ Toshiba Medical Systems Corporation, Tochigi, Japan; ⁶ Center Kobe University Hospital, KObe, Hyogo, Japan

08:48 1037. Functional 1H Lung MRI in Healthy and Emphysematous Rats Using a Self-Gated Golden Angle UTE Åsmund Kjørstad¹, Marta Tibiletti², Andrea Bianchi³, Michael Neumaier³, Andrea Vögtle³, Thomas Kaulisch³, Frank magna cum laude G. Zöllner¹, Lothar R. Schad¹, Volker Rasche², Detlef Stiller³ ¹Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; ²Core Facility Small Animal MRI, Ulm University, Ulm, Germany; ³Target Discovery Research, In-vivo imaging laboratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany 09:00 1038. Simultaneous Imaging of Lung Structure and Function Using Oxygen-Enhanced MRI in a Mouse Model of Emphysema Magdalena Zurek¹, Louise Sladen², Edvin Johansson¹, Sonya Jackson³, Gaell Mayer³, Paul D. Hockings²

¹PHB, Imaging, AstraZeneca R&D, Mölndal, Sweden; ²Drug Safety and Metabolism, AstraZeneca R&D, Mölndal, Sweden; ³RIA, Bioscience, AstraZeneca R&D, Mölndal, Sweden

09:12 1039. ³He MRI and CT Parametric Response Mapping of Small Airways Disease: The Battle-Ground for Ground Truth magna cum laude

Dante Capaldi¹,², Nanxi Zha¹, Damien Pike¹,², Khadija Sheikh¹,², David G. McCormack³, Grace Parraga¹,² ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

1040. Isotropic ¹H and Hyperpolarized ¹²⁹Xe Gas- And Dissolved-Phase MRI for Longitudinal Evaluation of Lung 09:24 Cancer

Rohan S. Virgincar¹, Scott H. Robertson², Simone Degan³, ⁴, Matthew S. Freeman², Mu He⁵, Bastiaan Driehuys⁴ ¹Biomedical Engineering, Duke University, Durham, NC, United States; ²Medical Physics Graduate Program, Duke University, Durham, NC, United States; ³Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, United States; ⁴Radiology, Duke University Medical Center, Durham, NC, United States; ⁵Electrical and Computer Engineering, Duke University, Durham, NC, United States

09:36 1041. An Adaptive K-Means Approach for Assessment of Ventilation Defects in Asthma and Cystic Fibrosis Using **Hyperpolarized Helium-3 MRI**

Wei Zha¹, Stanley J. Kruger¹, Robert V. Cadman¹, David Mummy², David J. Niles¹, Scott K. Nagle¹, ³, Sean B. Fain¹, ³ ¹Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, United States; ³Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States

1042. Feasibility of Human Lung Ventilation MR Imaging Using Naturally-Abundant Xenon with Optimized 3D SSFP 09:48 Neil James Stewart¹, Graham Norquay¹, Paul David Griffiths¹, Jim Michael Wild¹ ismen merit award magna cum laude ¹Academic Unit of Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

Canaari Drastata Canaar

Cancer: Pros	state Cancer	
Room 801 A/B	08:00-10:00	Moderators: Elizabeth M. Hecht, M.D. & T.B.A.
08:00	Introduction	
08:12 1043.	Diagnostic Potential of Sin <i>Kirsten Margrete Selnæs¹,²,</i> <i>Elise Sandsmark¹, May-Brit</i> , <i>Bertilsson⁵,⁸, Siver Andreas</i> ¹ Department of Sirculation and University Hospital, Trondheim Norway; ⁴ Clinic of Laboratory I Hospital, Trondheim, Norway; Norway; ⁸ Department of Cancer Norway	ultaneous ¹⁸ F-FACBC PET/MRI in High Risk Prostate Cancer Patients Mattijs Elschot ¹ , Brage Krüger-Stokke ¹ , ³ , Øystein Størkersen ⁴ , Dag Linthoe Halvorsen ⁵ , Tessem ¹ , ² , Sverre Langørgen ³ , Eirik Kjøbli ⁵ , Anders Angelsen ¹ , Frode Willoch ⁶ , ⁷ , Helena Moestue ¹ , ² , Tone Frost Bathen ¹ , ² Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; ² St. Olavs Norway; ³ Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Mediciene, St. Olavs University Hospital, Trondheim, Norway; ⁵ Clinic of Surgery, St. Olavs University Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; ⁷ Aleris Cancer Center, Oslo, Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim,

08:24 1044. Hypoxia Modification During Prostate Radiotherapy: An Evaluation of Changes in the Tumour Microenvironment Using Multi-Parametric MRI (MpMRI)

N Jane Taylor¹, Kent Yip², Juliette Valentine², J James Stirling¹, Ian C. Simcock¹, David J. Collins³, James A. d'Arcy³, Uma Patel², Andrew Gogbashian¹, Peter Hoskin², Anwar R. Padhani¹, Roberto Alonzi²

¹Paul Strickland Scanner Centre, Mount Vernon Hospital, London, United Kingdom; ²Marie Curie Research Wing, Mount Vernon Cancer Centre, London, United Kingdom; ³Cancer Research-UK-EPSRC Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom

08:36 1045. Gradient Echo Signal Decays in Healthy and Cancerous Prostate at 3T Require a Gaussian Augmentation of the Mono-Exponential (GAME) Model

Pelin Aksit Ciris¹, ², Robert V. Mulkern, ²³, Mukund Balasubramanian, ²³, Ravi T. Seethamraju⁴, Janice Fairhurst¹, Junichi Tokuda¹, ², Jonathan Scalera¹, ², Tobias Penzkofer¹, ², Fiona Fennessy, ²⁵, Ferenc A. Jolesz¹, ², Clare M. Tempany-Afdhal¹, ², Ehud Schmidt¹, ², Kemal Tuncali¹, ²

¹Brigham and Women's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Boston Children's Hospital, Boston, MA, United States; ⁴Siemens Healthcare, Boston, MA, United States; ⁵Dana-Farber Cancer Institute, MA, United States

08:48 1046. Utility of T2 Histogram Analysis in Active Surveillance of Prostate Cancer

Harsh K. Agarwal^{1,72}, Sandeep Sankineni², Marcelino Bernardo², ³, Bradford Wood², Peter Pinto², Peter L. Choyke², Baris Turkbey²

¹Philips Research NA, Briarcliff Manor, NY, United States; ²National Institutes of Health, Bethesda, MD, United States; ³Frederic National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD, United States

09:00 1047. Support Vector Neural Networks Versus Logistic Regression MR Based Diagnostic Model for Classification of Transition Zone Prostate Cancer

Nikolaos Dikaios¹, ², Jokha Alkalbani², Alex Kirkham³, Clare Allen³, Hashim Ahmed⁴, Mark Emberton⁴, Alex Freeman⁵, Steve Halligan², Stuart Taylor², David Atkinson², Shonit Punwani² ¹Medical Physics, UCL, London, Greater London, United Kingdom; ²Centre of Medical Imaging, UCL, Greater London, United Kingdom; ³Radiology, UCL, Greater London, United Kingdom; ⁴Urology, UCL, Greater London, United Kingdom; ⁴Urology, UCL, Greater London, United Kingdom;

09:12 1048. Unsupervised Multi-Characterstic Framework for DW-MRI Prostate Cancer Localization *Raisa Z. Freidlin¹, Harsh K. Agarwal², Sandeep Sankineni³, Anna M. Brown³, Marcelino Bernardo³, ⁴, Peter A. Pinto³, <i>Bradford J. Wood³, Deborah E. Citrin³, Peter L. Choyke³, Baris Turkbey³* ¹NIH/CIT, Bethesda, MD, United States; ²Philips Research, NY, United States; ³NIH/NCI, MD, United States; ⁴Leidos, MD, United States

09:24 1049. Correlation Between MRI-Derived Quantitative Biomarkers and Circulating Tumor Cells in Prostate Cancer *Radka Stoyanova¹, Sakhi Abraham¹, Adrian Breto¹, Zheng Ao², Anthony Williams², Jorge Torres-Munoz², Ram Datar², Richard Cote², Yosef Zeidan¹, Adrian Ishkanian¹, Matthew Abramowitz¹, Alan Pollack¹* ¹Radiation Oncology, University of Miami, Miami, FL, United States; ²Pathology, University of Miami, Miami, FL, United States

109:36 1050. Assessment of Prostate Cancer Aggressiveness with Hyperpolarized Dual-Agent 3D Dynamic Imaging of Metabolism and Perfusion

Hsin-Yu Chen¹,², Peder E.Z. Larson¹,², Robert A. Bok², Cornelius von Morze², Romelyn Delos Santos², Renuka Sriram², Justin Delos Santos², John Kurhanewicz¹,², Daniel B. Vigneron¹,² ¹Graduate Program in Bioengineering, UCSF and UC Berkeley, San Francisco, CA, United States; ²Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States

09:48 1051. Robust 3D 1H MRSI of the Prostate Without Endorectal Coil at 3T

Nassim Tayari¹, Isabell K. Steinseifer¹, Cai Xia Fu², Elisabeth Weiland³, Jack J.A. van Asten¹, Tom W.J. Scheenen⁴, Marnix C. Maas¹, Arend Heerschap¹ ¹Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands; ²Siemens Shenzhen Magnetic Resonance Ltd., China; ³Siemens Healthcare, Erlangen, Germany; ⁴Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, Netherlands

Elastography

Constitution Hall 107 08:00-10:00

Moderators: Meng Yin, Ph.D. & T.B.A.

08:00 1052.	Low Dynamic Mechanical Tissue Stimulation for High Resolution Magnetic Resonance Elastography: An In Vivo Feasibility Study in the Liver and the Brain Florian Dittmann ¹ , Sebastian Hirsch ¹ , Jing Guo ¹ , Jürgen Braun ² , Ingolf Sack ¹ ¹ Institute of Radiology, Charité, Berlin, Germany; ² Department of Medical Informatics, Charité, Berlin, Germany
08:12 1053.	Magnetic Resonance Elastography of Slow and Fast Shear Waves Illuminates Differences in Shear and Tensile Moduli in Anisotropic Tissue John L. Schmidt ¹ , Dennis J. Tweten ¹ , Maisie M. Mahoney ² , Tally Portnoi ³ , Ruth J. Okamoto ¹ , Joel R. Garbow ⁴ , Philip V. Bayly ¹ , ² ¹ Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, United States; ² Biomedical Engineering, Washington University, St. Louis, MO, United States; ³ Electrical Engineering, Massachusets Institute of Technology, Cambridge, MA, United States; ⁴ Biomedical Magnetic Resonance Laboratory, Department of Radiology, Washington University, St. Louis, MO, United States
08:24 1054.	SLIM-MRE Without Prolonged Echo Time for the Simultaneous Acquisition of the 3D Displacement Vector Applied to In Vivo Mouse Brain Steven P. Kearney ¹ , Spencer T. Brinker ¹ , David A. Burns ¹ , Thomas J. Royston ² , Dieter Klatt ² ¹ Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States; ² Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
08:36 1055.	Optimal Motion Encoding Scheme for MR Elastography <i>Temel Kaya Yasar¹, Yifei Liu², Dieter Klatt³, Richard L. Magin³, Thomas J. Royston³</i> ¹ Radiology, Icahn School of Medicine at Mount Sinai, New York, New York, NY, United States; ² Mechanical Engineering Department, University of Illinois at Chicago, Chicago, IL, United States; ³ Biomedical Engineering Department, University of Illinois at Chicago, Chicago, IL, United States
08:48 1056.	Motion Compensation and Super-Resolution in Magnetic Resonance Elastography <i>Guy Nir¹, Ramin S. Sahebjavaher¹, Septimiu E. Salcudean¹</i> ¹ Electrical and Computer Engineering, University of British Columbia, Vancouver, BC, Canada
09:00 1057.	Stationary Super-Resolution Multi-Frequency Magnetic Resonance Elastography (SSR-MMRE) of the Human Brain Eric Barnhill ¹ , Ingolf Sack ² , Jürgen Braun ³ , Jens Würfel ⁴ , Colin Brown ⁵ , Edwin van Beek ¹ , Neil Roberts ¹ ¹ Clinical Research Imaging Centre, The University of Edinburgh, Edinburgh, Scotland, United Kingdom; ² Radiological Sciences, Charité Universitätsmedizin, Berlin, Germany; ³ Informatics, Charité Universitätsmedizin, Berlin, Germany; ⁵ Research and Development, The Mentholatum Company, East Kilbride, Scotland, United Kingdom
09:12 1058. Issues MERIT AWARD magna cum Laube	 Property Differences in White Matter Structures Due to Distinct Wave Propagation Directions in MR Elastography Aaron T. Anderson¹, Curtis L. Johnson², Joseph L. Holtrop², ³, Elijah EW Van Houten⁴, ⁵, Mathew DJ McGarry⁵, Keith D. Paulsen⁵, ⁶, Bradley P. Sutton², ³, John G. Georgiadis¹, ² ¹Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Beckman Institute for Advanced Science, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ⁶Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
09:24 1059. Isaara merit award Summa cum lande	Viscoelasticity of Subcortical Gray Matter Structures <i>Curtis L. Johnson¹, Hillary Schwarb¹, Matthew DJ McGarry², Bradley P. Sutton¹, Neal J. Cohen¹</i> ¹ Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ² Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
09:36 1060.	Magnetic Resonance Elastography in the Presence of Iron Overload Najat Salameh ¹ , ² , Mathieu Sarracanie ¹ , ² , Christian Farrar ¹ , David E J Waddington ¹ , ³ , Bo Zhu ¹ , ⁴ , Arnaud Comment ⁵ , Matthew S. Rosen ¹ , ²

¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Department of Physics, Harvard University, Cambridge, MA, United States; ³ARC Centre of Excellence for Engineered Quantum Systems, University of Sydney, Sydney, NSW, Australia; ⁴Harvard-MIT, Division of Health Sciences and Technology, Cambridge, MA, United States; ³Institute of Physics of Biological Systems, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

09:48

1061. Simultaneous MR Elastography and Fat+Water Imaging Joshua Trzasko¹, Jennifer Kugel¹, Roger Grimm¹, Kevin Glaser¹, Armando Manduca¹, Philip Araoz¹, Richard Ehman¹ ¹Mayo Clinic, Rochester, MN, United States

Multimodality Approach for Traumatic Brain Injury

United States

Plenary Hall FG	08:00-10:00 Moderators: Roman Fleysher, Ph.D. & Toshiaki Taoka, M.D., Ph.D.
08:00 1062	. Magnetization Transfer Ratio Detects Myelin Loss in Thalamocortical Pathways More Consistently Than DTI
Summa cum Laude	After a Traumatic Brain Injury in Rat Lauri Juhani Lehto ¹ Aleiandra Sierra ¹ Asla Pitkänen ^{1 2} Olli Gröhn ¹
	¹ Neurobiology, University of Eastern Finland, Kuopio, Eastern Finland, Finland; ² Neurology, Kuopio University Hospital, Kuopio, Eastern Finland, Finland, Finland
08:12 1063	 Voxelwise DTI Group Analysis in Professional Fighter Population Wanyong Shin¹, Blessy Mathew¹, Banks Sarah², Mark J. Lowe¹, Michael Phillips¹, Modic T. Michael³, Charles Bernick² ¹Imaging Institute, Cleveland Clinic Foundatoin, Cleveland, OH, United States; ²Lou Ruvo Center for Brain Health, Cleveland Clinic
	Foundation, Las Vegas, Nervada, United States; ³ Neurological Institute, Cleveland Clinic Founcatoin, Cleveland, OH, United States
08:24 1064	Widespread Hemodynamic Disturbance Following Experimental TBI Justin Alexander Long ¹ , Lora Talley Watts ¹ , ² , Wei Li ¹ , Qiang Shen ¹ , Shiliang Huang ¹ , Timothy Q. Duong ¹ , ³ ¹ Research Imaging Institute, UTHSCSA, San Antonio, TX, United States; ² Department of Cellular and Structural Biology, UTHSCSA, San Antonio, TX, United States; ³ Department of Ophthamology and Radiology, UTHSCSA, San Antonio, TX, United States
08:36 1065	Neuroprotective Effects of Delayed Methylene Blue in Mild Traumatic Brain Injury Lora Talley Watts ¹ , Justin Alexander Long ¹ , Qiang Shen ¹ , Timothy Q. Duong ¹ ¹ Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
08:48 1066 Isman Ment Award Summa cum Laude	. Using Functional and Molecular MRI Techniques to Detect Neuroprotection by Pinocembrin in Rats Subjected to Traumatic Brain Injury Wenzhu Wang ¹ , Dong-Hoon Lee ² , Hong Zhang ² , Jinyuan Zhou ² , Jian Wang ¹ ¹ Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States; ² Department of Radiology, Johns Hopkins University, Baltimore, MD, United States
09:00 1067 inagina cum laude	 Mapping of Glucose Concentration in Mild Traumatic Brain Injury Via GlucoCEST Tsang-Wei Tu¹, Rashida Williams², Neekita Jikaria, L. Christine Turtzo, Joseph Frank² ¹Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD - Maryland, United States; ²Radiology and Imaging Sciences, National Institutes of Health, MD, United States
09:12 1068	 Evidence of Altered Brain Chemistry After Repetitive Subconcussive Head Impacts Alexander Peter Lin¹, ², Marc Muehlmann², ³, Sai Merugumala¹, Huijun Vicky Liao¹, Tyler Starr¹, David Kaufmann³, Michael Mayinger², ³, Denise Steffinger³, Barbara Fisch³, Susanne Karch³, Florian Heinen³, Birgit Ertl-Wagner³, Maximilian Reiser³, Robert A. Stern⁴, Ross Zafonte⁵, Martha Shenton², ⁶, Inga K. Koerte², ³ ¹Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, United States; ²Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston University School of Medicine, Boston, MA, United States; ⁵Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Boston, MA, United States; ⁶VA Boston Healthcare System, Boston, MA,

09:24 1069. 3D Echo-Planar Spectroscopic Imaging Based Metabolic Imaging and Assessment of Whole Brain Temperature in Brain Injuries

Bhanu Prakash KN¹, Sanjay Kumar Verma¹, Yevgen Marchenko¹, Suresh Anand Sadananthan², Yang Ming³, Sein Lwin³, Charmaine Childs⁴, Yeo Tseng Tsai³, Lu Jia⁵, Andrew Maudsley⁶, Sendhil Velan S¹, ² ¹Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore; ²Singapore Institute for Clinical Sciences, , A*STAR, Singapore; ³Division of Neurosurgery, National University Health Sciences, Singapore; ⁴Centre for Health and Social Care Research, Faculty of Health and Wellbeing,, Sheffield Hallam University, United Kingdom; ⁵Combat Protection and Performance Lab, Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore; ⁶Miller School of Medicine,, University of Miami, Miami, FL, United States

09:36 1070. Leveraging Abnormal Structural Integrity to Enhance Detection of Disease-Specific Alterations in Functional Connectivity.

Roman Fleysher¹, Susan Sotardi¹, Michael Stockman¹, Namhee Kim¹, David Gutman¹, Jeremy Smith¹, Craig A. Branch¹, Michael L. Lipton¹ ¹Gruss Magnetic Resonance Research Center, Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, United States

09:48 1071. Mapping of Cerebral Oxidative Metabolism in Concussion Patients

Xiang He¹, Serter Gumus², Hoi-Chung Leung³, Parsey Ramin⁴, Mark Schweitzer¹, Marion Hughes², Lea Alhilali², Saeed Fakhran²

¹Department of Radiology, Stony Brook University, Stony Brook, NY, United States; ²Department of Radiology, University of Pittsburgh Medical Center, PA, United States; ³Department of Psychology, Stony Brook University, NY, United States; ⁴Department of Psychiatry, Stony Brook University, NY, United States

Plenary Session

Traumatic Brain Injury

Organizers: Robert E. Lenkinski, Ph.D.

Plenary Hall FG 10:30-11:30 Moderators: Robert E. Lenkinski, Ph.D. & Pratik Mukherjee, M.D., Ph.D.

- **10:30 1072. Traumatic Brain Injury in War** *Geoffrey Ling*
- 10:50 1073. Biomechanics & Pathophysiology of Traumatic Brain Injury Ann C. McKee
- **11:10 1074.** Neuroimaging of Traumatic Brain Injury, Including Magnetoencephalography. *Roland R. Lee*
- 11:30 Adjournment

Power 1	Pitch	
Micros	tructu	re in CNS
Power Pit	tch Thea	atre, Exhibition Hall Monday 10:45-11:45
Moderate	ors:Shar	nnon Kolind, Ph.D. & Robert V. Mulkern, Jr., Ph.D.
Plasma 1	UUU4. T award III laude	Whole-Brain In-Vivo Measurements of the Axonal G-Ratio in a Group of 19 Healthy Volunteers Siawoosh Mohammadi ¹ , Daniel Carey ² , Fred Dick ² , Joern Diedrichsen ³ , Martina F. Callaghan ⁴ , Marty Sereno ² , Marco Reisert ⁵ , Nikolaus Weiskopf ⁴ no file deleteno fil
Plasma 2	0005. ^{T AWARD} Im laude	<i>In Vivo</i> Mapping of Myelin G-Ratio in the Human Spinal Cord <i>T. Duval¹</i> , <i>S. Lévy¹</i> , <i>N. Stikov¹</i> , ² , <i>A. Mezer³</i> , <i>T. Witzel⁴</i> , <i>B. Keil⁴</i> , <i>V. Smith⁴</i> , <i>L. L. Wald⁴</i> , <i>E. Klawiter⁴</i> , <i>J. Cohen-Adad¹</i> , ⁵ ¹ Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada; ² Montreal Neuronal Institute, McGill University, Montréal, Québec, Canada; ³ Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University, Jerusalem, Israel; ⁴ A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ⁵ Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Québec, Canada
Plasma 3	0006. T AWARD Im Laude	Physiological Noise Compensation in Gradient Echo Based Myelin Water Imaging <i>Yoonho Nam¹, Jongho Lee¹</i> ¹ Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
Plasma 4	0007.	Comparison of ViSTa Myelin Water Imaging with DTI and MT Han Jang ¹ , Yoonho Nam ¹ , Yangsoo Ryu ¹ , Jongho Lee ¹ ¹ Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
Plasma 5	0008.	The Role of Myelin Geometry on Magnetic Susceptibility-Driven Frequency Shifts: Toward Realistic Geometries <i>Tianyou Xu^l</i> , <i>Sean Foxley^l</i> , <i>Michiel Kleinnijenhuis, Karla Miller</i> ¹ Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, Oxfordshire, United Kingdom
Plasma 6	0009.	Understanding Signal Sources of MT Asymmetry and Inhomogeneous MT for Imaging Myelination Jae-Woong Kim ¹ , Seung Hong Choi ² , Sung-Hong Park ¹ ¹ Korea Advanced Institute of Science and Technology, Daejeon, Korea; ² Seoul National University, Seoul, Korea
Plasma 7	0010.	Fast Absolute Myelin Water Mapping Without an External Water Standard <i>Thanh D. Nguyen¹, Sneha Pandya¹, Pascal Spincemaille¹, Susan A. Gauthier¹, Yi Wang¹</i> ¹ Weill Cornell Medical College, New York, NY, United States
Plasma 8	0011. T AWARD IM LAUDE	Frequency Difference Mapping for Measurement of White Matter Microstructure <i>Benjamin Tendler¹, Samuel Wharton¹, Richard Bowtell¹</i> ¹ Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
Plasma 9	0012.	Modelling the Effect of White Matter Microstructure on Gradient Echo Signal Evolution Benjamin Tendler ¹ , Samuel Wharton ¹ , Richard Bowtell ¹

Plasma 10	0013.	Possible Contribution of the Extracellular Matrix to the MRI Contrast in the Brain Riccardo Metere ¹ , Markus Morawski ² , Henrik Marschner ¹ , Carsten Jäger ² , Tobias Streubel ¹ , Stefan Geyer ¹ , Katja Reimann ¹ , Andreas Schäfer ¹ , Harald E. Möller ¹ ¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ² Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
Plasma 11	0014.	Signatures of Microstructure in Conventional Gradient and Spin Echo Signals <i>Pippa Storey¹, Sohae Chung¹, Noam Ben-Eliezer¹, Gregory Lemberskiy¹, Yvonne W. Lui¹, Dmitry S. Novikov¹</i> ¹ Radiology Department, New York University School of Medicine, New York, NY, United States
Plasma 12	0015.	Dependance of the Apparent T₁ on Magetization Transfer Peter van Gelderen ¹ , Xu Jiang ¹ , Jeff H. Duyn ¹ ¹ AMRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States
Plasma 13	0016.	Towards an Optimized and Standardized Amide Proton Transfer (APT) MRI Sequence and Protocol for Clinical Applications Hye-Young Heo ¹ , Yi Zhang ¹ , Jochen Keupp ² , Yansong Zhao ³ , Michael Schar ¹ , Dong-Hoon Lee ¹ , Peter C.M van Zijl ¹ , ⁴ , Jinyuan Zhou ¹ , ⁴ ¹ Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ² Philips Research, Hamburg, Germany; ³ Philips Healthcare, Cleveland, OH, United States; ⁴ F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

Plasma 14 0017. Can Nuclear Overhauser Enhancement Mediated Chemical Exchange Saturation Transfer (NOE-CEST) Offer a New Insight in Acute Stroke Diagnosis?

Yee Kai Tee¹, George WJ Harston², Nicholas Blockley³, Robert Frost³, Thomas W. Okell³, Sivarajan Thandeswaran², Fintan Sheerin⁴, Peter Jezzard³, James Kennedy², Stephen Payne⁵, Michael Chappell⁵ ¹Department of Mechatronics and BioMedical Engineering, Universiti Tunku Abdul Rahman, KL, Malaysia; ²Acute Stroke Programme, Radcliffe Department of Medicine, Oxford University, Oxfordshire, United Kingdom; ³Oxford Centre of Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, Oxford University, Oxfordshire, United Kingdom; ⁴Department of Neuroradiology, Oxford University Hospitals NHS Trust, Oxfordshire, United Kingdom; ⁵Department of Engineering Science, Institute of Biomedical Engineering, Oxford University, Oxfordshire, United Kingdom

 Plasma 15 0018. GluCEST Imaging in a Primate Model of Alzheimer's Disease Julien Flament¹,², Charlotte Gary²,³, James Koch²,⁴, Fabien Pifferi⁵, Emmanuel Comoy⁶, Jean-Luc Picq⁷, Julien Valette²,³, Marc Dhenain²,³
 ¹INSERM US27, CRC-MIRCen, Fontenay-aux-Roses, France; ²CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France; ³CNRS URA 2210, Fontenay-aux-Roses, France; ⁴Department of Psychology, University of Wisconsin, Oshkosh, WI, United States; ⁵CNRS-MNHN UMR 7179, Brunoy, France; ⁶CEA/DSV/iMETI/SEPIA, Fontenay-aux-Roses, France; ⁷EA 2027, Université Paris 8, Saint-Denis, France

Power Pitch Powerful Acquisition

Power Pitch Thea	tre, Exhibition Hall Monday 14:15-15:15
Moderators: Michael S. Hansen, Ph.D. & Nicole E. Seiberlich, Ph.D.	
Plasma 1 0096.	Field-Map-Free First-Order Dynamic Shimming
ISMRM MERIT AWARD Summa cum Laude	Yuhang Shi', Johanna Vannesjo', Karla Miller', Stuart Clare' ¹ Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Oxford, United Kingdom
Plasma 2 0097.	Spatial Motion Model Driven by the Noise Covariance Matrix of a Receive Array. Anna Andreychenko ¹ , Baudouin Denis de Senneville ¹ , ² , Robin J.M. Navest ¹ , Jan J.W. Lagendijk ¹ , Cornelis A.T. van den Berg ¹ ¹ Imaging Division, UMC Utrecht, Utrecht, Netherlands; ² IMB, UMR 5251 CNRS/University of Bordeaux, Bordeaux, France
Plasma 3 0098.	Improved Reconstruction of Nonlinear Spatial Encoding Techniques with Explicit Intra-Voxel Dephasing <i>Kelvin Layton¹</i> , <i>Stefan Kroboth¹</i> , <i>Feng Jia¹</i> , <i>Sebastian Littin¹</i> , <i>Huijun Yu¹</i> , <i>Maxim Zaitsev¹</i> ¹ Medical Physics, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany

Plasma 4 0099. Magnification Imaging by Radiofrequency-Induced Nonlinear Phase Encoding Jun Shen¹ ¹NIMH, Bethesda, MD, United States

Center, Duke University Medical Center, Durham, NC, United States

Plasma 5 0100. Reliable Phase Gradient Mapping and Phase Unwrapping for Low-SNR Images: A Novel Procedure Based on K-Space Energy Peak Quantification Pei-Hsin Wu¹, Hsiao-Wen Chung¹, Nan-Kuei Chen² ¹Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ²Brain Imaging and Analysis

Plasma 6 0101. Orthogonally Combined Motion- And Diffusion-Sensitized Driven Equilibrium (OC-MDSDE) Preparation for Improved Vessel Signal Suppression in 3D TSE Imaging of Peripheral Nerves

Barbara Cervantes¹, Jinnan Wang², Jan S. Bauer³, Hendrik Kooijman⁴, Peter Börnert⁵, Axel Haase⁶, Ernst J. Rummeny¹, Klaus Wörtler¹, Dimitrios C. Karampinos¹
 ¹Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany; ²Philips Research North America, Seattle, WA, United States; ³Neuroradiology, Technische Universität München, Munich, Germany; ⁴Philips Healthcare, Hamburg, Germany; ⁵Philips Research Laboratory, Hamburg, Germany; ⁶Zentralinstitut für Medizintechnik, Technische Universität München, Garching, Germany

Plasma 7 0102. Off-Resonance Positive Contrast Flow Imaging Using Extraneous Paramagnetic Biomarker-Induced Spin Labeling Jessica A.M. Bastiaansen¹,², Helene Feliciano¹,², Andrew Coristine¹,², Matthias Stuber¹,²

Jessica A.M. Bastiaansen', ', Helene Feliciano', ', Andrew Coristine', ', Matthias Stuber', ' ¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland

Plasma 8 0103. Hierarchically Semiseparable Generalized Encoding Matrix Compression for Fast Distortion Corrected Inverse Imaging

Stephen F. Cauley¹, ², Kawin Setsompop¹, ², Dan Ma³, Yun Jiang³, Elfar Adalsteinsson⁴, Lawrence Wald¹, ², Mark Griswold³, ⁵

¹Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, United States; ²Dept. of Radiology, Harvard Medical School, Boston, MA, United States; ³Dept. of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ⁴Harvard-MIT Div. of Health Sci. and Tech., Dept. of Electrical Engineering and Computer Science, Cambridge, MA, United States; ⁵Dept. of Radiology, , Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, United States

Plasma 9 0104. Accelerated Multiparameter Mapping Using Low-Rank Tensors

nagna cum laude

Anthony G. Christodoulou¹, Zhi-Pei Liang¹ ¹Beckman Institute and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Plasma 10 0105. Use of Pattern Recognition for Unaliasing Simultaneously Acquired Slices in Simultaneous MultiSlice Magnetic magna cum laube Resonance Fingerprinting

Yun Jiang¹, Dan Ma¹, Himanshu Bhat², Huihui Ye³, ⁴, Stephen F. Cauley³, Lawrence L. Wald³, ⁵, Kawin Setsompop³, Mark A. Griswold¹, ⁶

¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Siemens Medical Solutions USA Inc., Charlestown, MA, United States; ³Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ⁴Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; ⁵Department of Electrical Engineering and Computer Science; Harvard-MIT Division of Health Sciences a, MIT, Cambridge, MA, United States; ⁶Department of Radiology, Case Western Reserve University, Cleveland, OH, United States

Plasma 11 0106. Non-CPMG Multi-Spectral PROPELLER for Diffusion-Weighted Imaging Near Metal Implants

Kevin M. Koch¹, Ajeet Gaddipati², Ali Ersoz³, Robert Peters², Valentina Taviani⁴, Brian A. Hargreaves⁴, L. Tugan Muftuler⁵

¹Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²GE Healthcare, Milwaukee, WI, United States; ³Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Radiology, Stanford University, Stanford, CA, United States; ⁵Neurosurgery and Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States;

Plasma 12 0107.	Two-Dimensional Multiband Diffusion Weighted Imaging Valentina Taviani ¹ , Suchandrima Banerjee ² , Bruce L. Daniel ¹ , Shreyas S. Vasanawala ¹ , Brian A. Hargreaves ¹ ¹ Radiology, Stanford University, Stanford, CA, United States; ² Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States
Plasma 13 0108. Isana Merit Award Sumina cum laude	<i>In Vivo</i> Simultaneous Acquisition of Diffusion Tensor Imaging (DTI) and MR Elastography (MRE) in Mouse Brain <i>Ziying Yin¹, Steven Kearney², Richard L. Magin¹, Dieter Klatt¹</i> ¹ IRichard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ² 2Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States
Plasma 14 0109.	Rapid and Accurate PTX B1 Mapping Using 3DREAM with Dual Interferometry Daniel Brenner ¹ , Desmond H. Y. Tse ² , ³ , Patrick J. Ledden ⁴ , Claudine Neumann ¹ , Tony Stöcker ¹ , ⁵ ¹ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ² Faculty of Psychology, Maastricht University, Maastricht, Netherlands; ³ Department of Radiology, Maastricht University Medical Centre, Maastricht, Netherlands; ⁴ Nova Medical, Inc., Wilmington, MA, United States; ⁵ Department of Physics and Astronomy, University of Bonn, Bonn, Germany
Plasma 15 0110.	Accelerating Bloch-Siegert B1+ Mapping Using Modified Iterative SENSE and ESPIRiT (iSENSE) Mohammad Mehdi Khalighi ¹ , Peng Lai ¹ ¹ Applied Science Lab, GE Healthcare, Menlo Park, CA, United States
Power Pitch The Cardiova Power Pitch Thea Moderators:Dam Plasma 1 0174.	Ascular Power Hour atre, Exhibition Hall Monday 16:30-17:30 tel B. Ennis, Ph.D. & Reza Nezafat, Ph.D. Gradient-Induced Voltages on 12-Lead ECGs During High-Duty-Cycle MRI Sequences and a Theoretically Based Method to Remove Them HuaLei Zhang ¹ , Zion Tsz ho Tse ² , Charles L. Dumoulin ³ , Ronald Watkins ⁴ , Wei Wang ¹ , Jay Ward ⁵ , Raymond Kwong ¹ , William Stevenson ¹ , Ehud J. Schmidt ¹
	¹ Brigham and Women's Hospital, Boston, MA, United States; ² University of Georgia, GA, United States; ³ Cincinnati Children's Hospital Medical Center, Cincinnati, United States; ⁴ Stanford University, CA, United States; ⁵ E-TROLZ, Inc, Andover, MA, United States
Plasma 2 0175.	Automatic Detection of Inflammatory 'hotspots' in Abdominal Aortic Aneurysms to Identify Patients at Risk of Aneurysm Expansion and Rupture Yolanda Georgia Koutraki ¹ , ² , Chengjia Wang ¹ , ³ , Jennifer Robson ² , Olivia Mcbride ² , Rachael O. Forsythe ² , Tom J. MacGillivray ¹ , Calum D. Gray ¹ , Keith Goatman ³ , J. Camilleri-Brennan ² , David E. Newby ¹ , ² , Scott I. Semple ¹ , ² ¹ Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom; ² Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom; ³ Toshiba Medical Visualization System - Europe, Edinburgh, United Kingdom
Plasma 3 0176.	<i>In-Vivo</i> Lipid Quantification in Carotid Plaques Using Multi-Slice T2 Mapping: Histological Validation <i>Luca Biasiolli</i> ¹ , ² , <i>Joshua T. Chai</i> ¹ , <i>Linqing Li</i> ³ , <i>Ashok Handa</i> ⁴ , <i>Peter Jezzard</i> ³ , <i>Robin P. Choudhury</i> ¹ , <i>Matthew D.</i> <i>Robson</i> ² ¹ AVIC, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ² OCMR, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ³ FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; ⁴ Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
Plasma 4 0177.	Coronary Endothelial Function Assessment Using Self-Gated Cardiac Cine MRI with Golden Angle Acquisition and K-T Sparse SENSE <i>Jerome Yerly</i> ¹ , ² , <i>Giulia Ginami</i> ¹ , ² , <i>Giovanna Nordio</i> ¹ , ² , <i>Matthias Stuber</i> ¹ , ²

¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland

Plasma 5 0178.	Inter-Study Repeatability of Self-Gated Quantitative Myocardial Perfusion MRI Devavrat Likhite ¹ , Promporn Suksaranjit ² , Chris McGann ² , Brent Wilson ² , Imran Haider ² , Ganesh Adluru ¹ , Edward DiBella ¹ ¹ UCAIR, University of Utah, Salt Lake City, UT, United States; ² Division of Cardiovascular Medicine, Department of Medicine, University of Utah, Salt Lake City, UT, United States
Plasma 6 0179.	Initial Experience in Patients for Highly Accelerated Free-Breathing Whole-Heart Coronary MRA <i>Christoph Forman¹, Christoph Tillmanns², Michael O. Zenge¹, Michaela Schmidt¹</i> ¹ Siemens AG, Healthcare, Imaging and Therapy Systems, Magnetic Resonance, Erlangen, Germany; ² Diagnostikum Berlin, Berlin, Germany
Plasma 7 0180.	Accelerated Four-Dimensional, Multiphase, Steady-State Imaging with Contrast Enhancement (MUSIC) Using Parallel Imaging and Compressed Sensing Ziwu Zhou ¹ , Fei Han ¹ , Stanislas Rapacchi ¹ , Ihab Ayad ² , Isidro Salusky ³ , Adam Plotnik ¹ , Paul Finn ¹ , Peng Hu ¹ 'Radiology, UCLA, Los Angeles, CA, United States; ² Anesthesiology, UCLA, Los Angeles, CA, United States; ³ Pediatrics, UCLA, Los Angeles, CA, United States
Plasma 8 0181.	Dual Agent Relaxivity Cancellation (DARC) Imaging, a Novel Imaging Method for Dark Blood Post-Contrast Imaging: Application to MR Lymphangiography <i>Jeffrey H. Maki¹, Noah Briller¹, Peter C. Neligan², Gregory J. Wilson¹</i> ¹ Radiology, University of Washington, Seattle, WA, United States; ² Plastic Surgery, University of Washington, Seattle, WA, United States
Plasma 9 0182.	CMR-Footprinting: Quantifying Tissue Parameters with Clinical Pulse Sequence Simulations Improves Measurement Accuracy - An Example with MOLLI T1 Mapping <i>Christos G. Xanthis¹, ², Sebastian L. Bidhult¹, Georgios Kantasis¹, ², Mikael Kanski¹, Einar Heiberg¹, ³, Håkan</i> <i>Arheden¹, Anthony H. Aletras¹, ²</i> ¹ Cardiac MR group Lund, Dept. of Clinical Physiology, Lund University, Lund, Skåne, Sweden; ² Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece; ³ Department of Biomedical Engineering, Faculty of Engineering, Lund University, Lund, Skåne, Sweden
Plasma 10 0183.	Modified Wideband 3D Late Gadolinium Enhancement (LGE) MRI for Patients with Implantable Cardiac Devices Shams Rashid ¹ , Stanislas Rapacchi ¹ , Kalyanam Shivkumar, ¹² , Adam Plotnik ¹ , J. Paul Finn ¹ , ³ , Peng Hu ¹ , ³ ¹ Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States; ² UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, CA, United States; ³ Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, United States
Plasma 11 0184. Ismen Merit Award Magna cum laude	Black Blood Late Gadolinium Enhancement (BB-LGE) Using a Joint T ₂ Magnetization Preparation and Inversion Preparation <i>Tamer Basha¹</i> , <i>Sébastien Roujol¹</i> , <i>Kraig V. Kissinger¹</i> , <i>Beth Goddu¹</i> , <i>Warren J. Manning¹</i> , ² , <i>Reza Nezafat¹</i> ¹ Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States; ² Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
Plasma 12 0185.	"Squashing the Peanut": What It Means for <i>In-Vivo</i> Cardiac DTI Andrew D. Scott ¹ , ² , Sonia Nielles-Vallespin, ¹³ , Pedro Ferreira ¹ , ² , Laura-Ann McGill, ¹² , Dudley Pennell ¹ , ² , David Firmin, ¹² ¹ NIHR Cardiovascular Biomedical Research Unit, The Royal Brompton Hospital, London, United Kingdom; ² National Heart and Lung Institute, Imperial College London, London, United Kingdom; ³ National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
Plasma 13 0186.	Diffusion-Tensor Imaging Study of Myocardial Architecture of Situs Inversus and Situs Solitus Mutant Mouse Hearts <i>Yijen Lin Wu¹</i> , ² , <i>Yu Chen¹</i> , <i>XiaoQin Liu¹</i> , <i>Fang-Cheng Yeh³</i> , <i>T. Kevin Hitchens⁴</i> , <i>George C. Gabriel¹</i> , <i>Cecilia Wen Ya</i> <i>Lo¹</i>

¹Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States; ²Rangos Research Center Imaging Core, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States; ³Psychology, Carnegie Mellon University, Pittsburgh, PA, United States; ⁴Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States

Plasma 14 0187.	Mechanical Activation Time Mapping in Heart Failure Patients with and Without Myocardial Scar Using Cine DENSE MRI Daniel A. Auger ¹ , Sophia X. Cui ¹ , Xiao Chen ¹ , Jeffrey W. Holmes ¹ , Kenneth C. Bilchick ² , Frederick H. Epstein ¹ , ³ ¹ Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ² Department of Medicine, Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States; ³ Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
Plasma 15 0188.	A Bayesian Approach for Accelerated Phase Contrast MRI Adam Rich ¹ , Lee C. Potter ¹ , Ning Jin ² , Joshua Ash ¹ , Orlando Simonetti ³ , Rizwan Ahmad ³ ¹ Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States; ² Siemens Medical Solution, Columbus, OH, United States; ³ Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
Plasma 16 0189.	Validation of Radially Undersampled 4D-Flow-MRI in an Animal Model of Portal Hypertension Alex Frydrychowicz ¹ , Alejandro Roldan-Alzate ² , Emily Winslow ² , Dan Consigny ² , Camilo Campo ² , Utaroh Motosugi ² , Kevin M. Johnson ² , Christopher J. François ² , Oliver Wieben ² , Scott B. Reeder ² ¹ Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Hosltein, Campus Lübeck, Lübeck, Schleswig-Holstein, Germany; ² University of Wisconsin - Madison, WI, United States
Power Pitch	
ASL Method	s: Neuro
Power Pitch The	atre, Exhibition Hall Tuesday 10:00-11:00
Moderators: Susa	an T. Francis, Ph.D. & Jun Hua, Ph.D.
ISMRM MERITAWARD SUMMA CUM LAUDE	The And vesser Encoded TCASL: A Free Educit with Air the Timmings Thomas W. Okell ^{*1} , Wouter Teeuwisse ^{*2} , ³ , Michael A. Chappell ¹ , ⁴ , Matthias J.P. van Osch ² , ³ ¹ FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom; ² dept. of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Netherlands; ³ Leiden Institute for Brain and Cognition, Leiden, Netherlands; ⁴ IBME, Department of Engineering Sciences, University of Oxford, Oxford, United Kingdom
Plasma 2 0265	A Novel Multiphase Scheme for Simultaneous ASL and BOLD Acquisition
ISMRM MERIT AWARD SUMMA CUM LAUDE	Paula Croal ¹ , Emma Hall ¹ , Penny Gowland ¹ , Susan Francis ¹ ¹ Sir Peter Mansfield Imaging Centre, Department of Physics & Astronomy, The University of Nottingham, Nottingham, Nottingham, Nottinghamshire, United Kingdom
Plasma 3 0766	Wedge-Shaped Slice-Selective Adiabatic Inversion Pulse for Bolus Temporal Width Control in Pulsed Arterial
1 lasilla 5 0200.	Spin Labeling
	<i>Jia Guo¹, Richard B. Buxton¹, Eric C. Wong¹, ²</i> ¹ Radiology, UC San Diego, La Jolla, CA, United States; ² Psychiatry, UC San Diego, La Jolla, CA, United States
Plasma 4 0267.	Multiband Background Suppressed Turbo-FLASH Imaging with CAIPIRINHA for Whole-Brain Distortion-
ismen merit Award Summa cum lande	Free PCASL Imaging at 3 and 7T <i>Yi Wang¹, Steen Moeller², Xiufeng Li², An T. Vu², Kate Krasileva¹, Kamil Ugurbil², Essa Yacoub², Danny JJ Wang¹</i> ¹ Neurology, UCLA, Los Angeles, CA, United States; ² Center of Magnetic Resonance Research, University of Minnesota, MN, United States
Plasma 5 0268	Single-Shot 3D-EPI PCASL with Background Suppression
I IASHIA 5 0200.	Markus Boland ¹ , Rüdiger Stirnberg ¹ , Daniel Brenner ¹ , Tony Stöcker ¹ , ²
mugun un tunot	¹ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ² Department of Physics and Astronomy, University of Bonn, Germany

Plasma 6 0269.	Single-Shot Whole-Brain Background-Suppressed PCASL MRI with 1D Accelerated 3D RARE Stack-Of-
isuwa weer awaro magna cum laude	Spirals Readout Marta Vidorreta ¹ , Ze Wang ² , ³ , Yulin V. Chang ¹ , ⁴ , María A. Fernández-Seara ⁵ , John A. Detre ¹ ¹ Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; ² Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang Province, China; ³ Departments of Radiology and Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; ⁴ Department of Radiology, University of Pennsylvania, PA, United States; ⁵ Functional Neuroimaging Laboratory, CIMA, University of Navarra, Navarra, Spain
Plasma 7 0270.	Improving Motion Robustness of Pseudo-Continuous Arterial Spin Labeling by Using Real-Time Motion Correction Michael Helle ¹ , Peter Koken ¹ , Julien Sénégas ¹ ¹ Philips Research, Hamburg, Germany
Plasma 8 0271.	Prospective Motion Correction for Artefact Reduction in Pseudo-Continuous Arterial Spin Labelling with a 3D GRASE Readout. Benjamin Knowles ¹ , Federico von Samson-Himmelstjerna ² , ³ , Matthias Guenther ² , ⁴ , Maxim Zaitsev ¹ ¹ Medical Physics, University Medical Centre, Freiburg, Germany; ² Fraunhofer Mevis, Bremen, Germany; ³ Charité Medical University, Center for Stroke Research, Berlin, Germany; ⁴ University of Bremen, Germany
Plasma 9 0272.	An Off-Resonance Correction Method for Vessel-Encoded Pseudo-Continuous Arterial Spin Labeling Using the Optimized Encoding Scheme Eleanor S K Berry ¹ , Peter Jezzard ¹ , Thomas W. Okell ¹ ¹ FMRIB centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Plasma 10 0273.	3D Weighted Least Squares Algorithm for Partial Volume Effect Correction in ASL Images <i>Pablo García-Polo¹, ², Adrian Martín³, ⁴, Virginia Mato⁵, Alicia Quirós⁶, Fernando Zelaya⁷, Juan Antonio Hernandez- Tamames⁵</i> ¹ A. A. Martinos Center for Biomedical Imaging, Mass. General Hospital, M+Visión Advanced Fellowship, Charlestown, MA, United States; ² Centre for Biomedical Technology - Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain; ³ Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁴ 3Applied Mathematics, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ⁵ Department of Electrical Technology, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ⁶ Cardiology, Hospital Clínico San Carlos, Madrid, Spain; ⁷ Department of Neuroimaging, King's College London, London, United Kingdom
Plasma 11 0274.	Dynamic 3D ASL in 20 Seconds Per Frame with Model-Based Image Reconstruction <i>Li Zhao¹, Samuel W. Fielden², Xue Feng², Max Wintermark³, John P. Mugler III⁴, Josef Pfeuffer⁵, Craig H. Meyer², ⁴ ¹Radiology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States; ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³Radiology, Stanford University, Stanford, CA, United States; ⁴Radiology, University of Virginia, Charlottesville, VA, United States; ⁵Application Development, Siemens Healthcare, Erlangen, Germany</i>
Plasma 12 0275.	Subtraction Free Arterial Spin Labeling: A New Bayesian-Inference Based Approach for Gaining Perfusion Data from Time Encoded Data Federico C A von Samson-Himmelstjerna ¹ , ² , Michael A. Chappell ³ , Jan Sobesky ² , Matthias Günther ¹ ¹ Fraunhofer MEVIS, Bremen, Germany; ² Center for Stroke Research (CSB), Charité University Medicine Berlin, Berlin, Germany; ³ Institute of Biomedical Engineering & FMRIB Centre, University of Oxford, Oxforshire, United Kingdom
Plasma 13 0276.	Arterial Spin Labeling Without Control/label Pairing and Post-Labeling Delay: An MR Fingerprinting Implementation Pan Su ¹ , Deng Mao ¹ , Peiying Liu ¹ , Yang Li ¹ , Babu G. Welch ² , Hanzhang Lu ¹ ¹ Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States; ² Department of Neurological Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, United States
Plasma 14 0277.	Diffusion Sensitivity of 3D-GRASE in ASL Perfusion <i>Xiang He¹, Thang Le², Hoi-Chung Leung², Parsey Ramin³, Mark Schweitzer¹</i> ¹ Department of Radiology, Stony Brook University, Stony Brook, NY, United States; ² Department of Psychology, Stony Brook University, NY, United States; ³ Department of Psychiatry, Stony Brook University, NY, United States

Plasma 15	0278.	Comparison of Cerebral Blood Flow and Arterial Transit Time Mapping Methods: Look-Locker ASL, Hadamard Encoded ASL, and Multi-TI ASL with Variable Bolus and TR <i>Megan Johnston¹, Youngkyoo Jung¹,</i> ² ¹ Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, NC, United States; ² Radiology, Wake Forest School of Medicine, Winston-Salem, NC, United States			
Power P	Pitch				
The Cut	tting l	Edge of Diffusion MRI			
Power Pite	ch The	atre, Exhibition Hall Tuesday 13:30-14:30			
<u>Moderator</u>	rs:Hele	en Zhou, Ph.D. & David Raffelt, Ph.D.			
Plasma 1	0339.	SLICE Dithered Enhanced Resolution Simultaneous MultiSlice (SLIDER-SMS) for High Resolution (700 Um) Diffusion Imaging of the Human Brain			
		Kawin Setsompop ¹ , Berkin Bilgic ¹ , Aapo Nummenmaa ¹ , Qiuyun Fan ¹ , Stephen F. Cauley ¹ , Susie Huang ¹ , Itthi			
		Chatnuntawech ² , Yogesh Rathi ³ , Thomas Witzel ¹ , Lawrence L. Wald ¹			
		[*] Martinos Center for Biomedical Imaging, Charlestown, MA, United States; [*] Massachusetts Institute of Technology, Cambridge, MA, United States; ³ Brigham and Women's Hospital. Boston, MA, United States			
Plasma 2	0340.	Higher-Order Spin-Echo Selection for Reduced FOV Diffusion Imaging of the Brainstem at 7T Bertram Jakob Wilm ¹ , Signe Johanna Vannesjo ¹ , Klaas Paul Pruessmann ¹ ¹ University and ETH Zurich, Zurich, Switzerland			
Plasma 3	0341.	Navigated PSF Mapping for Distortion-Free High-Resolution <i>In-Vivo</i> Diffusion Imaging at 7T <i>Myung-Ho In¹, Posnansky Oleg¹, Oliver Speck¹</i> ¹ Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany			
Plasma 4	0342.	Compressed-Sensing-Accelerated Spherical Deconvolution Jonathan I. Sperl ¹ , Tim Sprenger, ¹² , Ek T. Tan ³ , Marion I. Menzel ¹ , Christopher J. Hardy ³ , Luca Marinelli ³ ¹ GE Global Research, Munich, BY, Germany; ² IMETUM, Technical University Munich, Munich, BY, Germany; ³ GE Global Research, Niskayuna, NY, United States			
Plasma 5	0343.	3D Myofiber Reconstruction from <i>In Vivo</i> Cardiac DTI Data Through Extraction of Low Rank Modes <i>Martin Genet</i> ¹ , <i>Constantin von Deuster</i> ¹ , ² , <i>Christian T. Stoeck</i> ¹ , ² , <i>Sebastian Kozerke</i> ¹ , ² ¹ Institut for Biomedical Engineering, ETHZ, Zurich, Switzerland; ² Imaging Sciences and Biomedical Engineering, KCL, London, United Kingdom			
Plasma 6 ISMRM MERIT # Magna cum	0344. Laude	<i>In Vivo</i> and <i>Ex Vivo</i> Characterization of Extracellular Space (ECS) in Mouse GBM Using PGSE and OGSE Olivier Reynaud ¹ , ² , Kerryanne V. Winters ¹ , ² , Dung Minh Hoang ¹ , ² , Youssef Zaim Wadghiri ¹ , ² , Dmitry S. Novikov ¹ , ² , Sungheon Gene Kim ¹ , ²			

¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States

 Plasma 7
 0345. Detection of Curvature and Microscopic Anisotropy of Neurites at Short Length Scales

 Jonathan Scharff Nielsen¹, Tim B. Dyrby¹, Henrik Lundell¹

 ¹Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark

Plasma 8	0346.	Assessing Diffusion Time Effects on Microstructural Comparment Estimates in Human White Matter Using 7T
ISMRM MERIT AWARD		DwSTEAM
summa cun	laude	Silvia De Santis ¹ , ² , Derek K. Jones ¹ , Alard Roebroeck ²
		¹ CUBRIC Cardiff University, Cardiff, United Kingdom; ² Maastricht University, Maastricht, Netherlands

 Plasma 9
 0347. Why Should Axon Diameter Mapping Use Low Frequency OGSE? Insight from Simulation

 Ivana Drobnjak¹, Hui Zhang¹, Andrada Ianus¹, Enrico Kaden¹, Daniel C. Alexander¹

 ¹Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom

Plasma 10 0348.	Evaluating a Semi-Continuous Multi-Compartmental Intra-Voxel Incoherent Motion (IVIM) Model in the Brain: How Does the Method Influence the Results in IVIM? <i>Vera Catharina Keil¹, Burkhard Maedler², Hans Heinz Schild¹, Dariusch Reza Hadizadeh¹</i> ¹ Radiology, UK Bonn, Bonn, NRW, Germany; ² Radiology MRI Unit, PHILIPS Healthcare, Hamburg, Germany
Plasma 11 0349.	Tissue-Type Segmentation Using Non-Negative Matrix Factorization of Multi-Shell Diffusion-Weighted MRI Images <i>Ben Jeurissen¹, Jacques-Donald Tournier², ³, Jan Sijbers¹</i> ¹ Minds-Vision Lab, Dept. of Physics, University of Antwerp, Antwerp, Belgium; ² Centre for the Developing Brain, King's College London, London, United Kingdom; ³ Dept. of Biomedical Engineering, King's College London, London, United Kingdom
Plasma 12 0350.	On Evaluating the Accuracy and Biological Plausibility of Diffusion MRI Tractograms <i>David Romascano¹, Alessandro Dal Palú², Jean-Philippe Thiran¹, ³, Alessandro Daducci¹, ⁴</i> ¹ Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ² Department of Mathematics and Computer Science, University of Parma, Parma, Italy; ³ Department of Radiology, University Hospital Center and University of Lausanne, Lausanne, Vaud, Switzerland; ⁴ Center for Biomedical Imaging, Signal Processing Core., Lausanne, Vaud, Switzerland
Plasma 13 0351.	A Generative Model of White Matter Axonal Orientations Near the Cortex Michiel Cottaar ¹ , Saad Jbabdi ¹ , Matthew F. Glasser ² , Krikor Dikranian ² , David C. van Essen ² , Timothy E. Behrens ¹ , Stamatios N. Sotiropoulos ¹ ¹ FMRIB Centre, University of Oxford, Oxford, United Kingdom; ² Washington University School of Medicine, Saint Louis, MO, United States
Plasma 14 0352.	Dynamic' Seeding: Informed Placement of Streamline Seeds in Whole-Brain Fibre-Tracking <i>Robert Elton Smith¹, J-Donald Tournier², ³, Fernando Calamante¹, ⁴, Alan Connelly¹, ⁴</i> ¹ Imaging division, The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; ² Centre for the Developing Brain, King's College London, London, United Kingdom; ³ Department of Biomedical Engineering, King's College London, London, United Kingdom; ⁴ Department of Medicine, The University of Melbourne, Heidelberg, Victoria, Australia
Plasma 15 0353.	A Machine Learning Based Approach to Fiber Tractography <i>Peter F. Neher¹, Michael Götz¹, Tobias Norajitra¹, Christian Weber¹, Klaus H. Maier-Hein¹</i> ¹ Medical Image Computing Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
Power Pitch Molecular Im Power Pitch Thea	aging & Spectroscopy atre. Exhibition Hall Tuesday 16:00-17:00
Moderators Peter	r van Zijl. Ph.D. & Carolyn E. Mountford, D.Phil.
Plasma 1 0414.	Citicoline as a Theranostic Agent Detected by CEST MRI Hanwei Chen ¹ , ² , Yuguo Li ³ , ⁴ , Anna Jablonska ¹ , Shuixing Zhang ⁵ , Jeff W. Bulte ¹ , ³ , Peter C.M. Van Zijl, ⁴⁶ , Mirek Janowski ¹ , ⁷ , Piotr Walczak ¹ , Guanshu Liu, ¹³ ¹ Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; ² Radiology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, China; ³ F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute,

Hospital, Guangzhou, Guangdong, China; ³F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ⁴Department of Radiology, Johns Hopkins University, Baltimore, MD, United States; ⁵Department of Radiology, Guangdong General Hospital, Guangzhou, Guangdong, China; ⁶F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ⁷NeuroRepair Department, MMRC PAS, Warsaw, Poland

Plasma 2	0415.	MEMRI of Organotypic Rat Hippocampal Slice Cultures
ISMEN MEDIT A	WARD	Alexia Daoust ¹ Stanhan Dodd ¹ Alan Koratshy ¹

Alexia Daoust¹, Stephen Dodd¹, Alan Koretsky¹ ¹NINDS, LFMI, NIH, Bethesda, MD, United States

Plasma 3 0416.	Radical-Free Mixture of Co-Polarized 13C-Metabolites for Probing Separate Biochemical Pathways
ISMRM MERIT AWARD	Simultaneously In Vivo by Hyperpolarized 13C MR
Summa cum tauoc	Jessica AM Bastiaansen ¹ , ² , Hikari AI Yoshihara ⁵ , [*] , Andrea Capozzi ⁵ , Juerg Schwitter [*] , Matthew E. Merritt [*] , Arnaud
	<i>Comment</i> ³ ¹ Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ² Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³ Institute of Physics of Biological Systems, EPFL, Lausanne, Switzerland; ⁴ Division of Cardiology and Cardiac MR Center, University Hospital Lausanne (CHUV), Lausanne, Switzerland; ⁵ Advanced Imaging Research Center, Department of Radiology, Molecular Biophysics, Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, United States
Plasma 4 0417.	In Vivo PH Imaging of Mouse Kidneys Using a Frequency-Dependent ParaCEST Agent
	¹ Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ² Department of Chemistry, The University of Texas at Dallas, Richardson, TX, United States
0.410	
Plasma 5 0418.	Image-Guided Delivery of Liposomal Nano-Constructs Largeting Lumor Vasculature Sudath Hanyarachehige ¹ Voshinori Kato ¹ ² Wanlian Zhu ¹ Losaph M. Backar ³ Marina V. Backar ³ Susanta K
magna cum laude	Sudain Hapuarachenige, Toshinori Kalo, , wenilan Zhu, Joseph M. Backer, Marina v. Backer, Susania K. Sarkar ⁴ Dmitri Artemov ^{1, 5}
	¹ Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ² Life Science Tokyo Advanced Research Center, Hoshi University, Japan; ³ SibTec, Inc.,, Brookfield, CT, United States; ⁴ Sanofi Oncology, Cambridge, MA, United States; ⁵ Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
Plasma 6 0419.	Micro-MRI and Fluorescence Imaging of Myeloperoxidase Activity in Human Brain Vascular Pathology <i>Dung Minh Hoang¹, Matthew J. Gounis², Youssef Zaim Wadghiri¹, Peter Caravan³, Alexei A. Bogdanov Jr.</i> ² ¹ Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University, New York, NY, United States; ² Radiology, University of Massachusetts Medical School, Worcester, MA, United States; ³ Radiology, A.Martinos' Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
Plasma 7 0420.	Molecular Imaging Studies of a Robust Gd-Sucrose Scaffold Applied to MR-Colonography Gary V. Martinez ¹ , Parastou Foroutan ² , Valerie E. Moberg ¹ , Suryakiran Navath ³ , Roha Afzal ¹ , Robert J. Gillies ¹ , Eugene A. Mash ³ , David L. Morse ¹ ¹ Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States; ² Bruker Biospin, Billerica, MA, United States; ³ Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
Plasma 8 0421.	Two-Dimensional Shaped Voxel MRS in the Human Brain at 3 T
ISMRM MERIT AWARD	Patrick Waxmann ¹ , Ralf Mekle ¹ , Florian Schubert ¹ , Andre Kuehne ² , Tomasz Dawid Lindel ¹ , Frank Seifert ¹ , Oliver
Jumina tana autor	Speck ³ , Bernd Ittermann ¹ ¹ Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Berlin, Germany; ² Medical University of Vienna, Vienna, Austria; ³ Otto-von-Guericke-University, Magdeburg, Germany
0.400	
Plasma 9 0422.	In Vivo Quantification of ATP Synthesis Rates in Rat Skeletal Muscle by "P Spectroscopic Magnetic Resonance
ISMRR MERT AWARD Summa cum laude	<i>Charlie Yi Wang¹, Yuchi Liu¹, Mark Alan Griswold, ¹², Xin Yu, ¹²</i> ¹ Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ² Radiology, Case Western Reserve University, Cleveland, OH, United States
	BOMPO CH D I WHAT OF T
Plasma 10 0423.	² °C MRS of the Brain Without Decoupling Keshav Datta ¹ , Arif Wibowo ² , Stephen R. Lynch ² , Daniel Spielman ³ ¹ Dept. of Electrical Engineering, Stanford University, Stanford, CA, United States; ² Dept. of Chemistry, Stanford University, CA, United States; ³ Dept. of Radiology, Stanford University, Stanford, CA, United States
Plasma 11 AADA	In Viva Assessment of Intracellular NAD ⁺ /NADH Baday State in Human Brain at A Tasla
1 asilia 11 - 0424.	Ming Lu ¹ , Wei Chen ¹ , Xiao-Hong Zhu ¹ ¹ Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
0425. Diffusion-Weighted MR Spectroscopy Feasibility in Clinical Studies at 3 T : The Effect of Reducing the Plasma 12 ismem merit award magna cum laude

Acquisition Time Investigated by Bootstrapping *Francesca Branzoli¹*, ², *Daniel Garcia-Lorenzo¹*, ², *Romain Valabrègue¹*, ², *Stephane Lehéricy¹*, ² ¹Institut du Cerveau et de la Moelle épinière – ICM, Centre de Neuroimagerie de Recherche – CENIR, Paris, France; ²Sorbonnes Université, Université Pierre et Marie Curie and Inserm UMR-S1127; CNRS, UMR 7225, Paris, France

0426. Metabolome Profiling by HRMAS NMR Spectroscopy of Hyperfunctioning Parathyroid Glands Plasma 13

ismem merit award magna cum laude

Stéphanie Battini¹, Alessio Imperiale¹,², David Taieb³, Karim Elbayed¹, Frédéric Sebag⁴, Laurent Brunaud⁵, Izzie-Jacques Namer¹,⁶

¹ICube laboratory UMR 7357, University of Strasbourg/CNRS and FMTS, Strasbourg, France; ²University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Hautepierre, Strasbourg, France; ³La Timone University Hospital, European Center for Research in Medical Imaging, Aix-Marseille University, Marseille, France; ⁴Department of Endocrine Surgery, La Timone University Hospital, Aix-Marseille University, Marseille, France; ⁵Department of Digestive, Hepato-Biliary and Endocrine Surgery, Brabois University Hospital, Nancy, France; ⁶University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, Strasbourg, France

0427. Metabolomic Assessment of Succinate Dehydrogenase Dysfunction in Pheochromocytomas and Paragangliomas Plasma 14 by 1H-HRMAS NMR Spectroscopy: Clinical and Pathophysiological Implications magna cum laude

Alessio Imperiale¹,², Stéphanie Battini¹, Philippe Roche³, François-Marie Moussallieh¹, Ercument A Cicek⁴, Frédéric Sebag⁵, Laurent Brunaud⁶, Anne Barlier⁷, Karim Elbayed¹, Anderson Loundou⁸, Philippe Bachellier⁹, Bernard *Goichot¹⁰, Constantine A Stratakis^{11, 12}, Karel Pacak¹³, David Taieb¹⁴, Izzie-Jacques Namer¹, ²* ¹ICube laboratory UMR 7357, University of Strasbourg/CNRS and FMTS, Strasbourg, France; ²University Hospitals of Strasbourg, Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, Strasbourg, France; ³Integrative Structural & Chemical Biology (iSCB) & INT-3D Molecular Modeling Platform, Cancer Resear, CNRS UMR7258; INSERM U1068; Institut Paoli Calmettes; Aix-Marseille University UM105, Marseille, France; ⁴Lane Center for Computational Biology, School of Computer Science, , Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15222, United States; ⁵Department of Endocrine Surgery, La Timone University Hospital, Aix-Marseille University, Marseille, France; ⁶Department of Digestive, Hepato-Biliary and Endocrine Surgery, Brabois University Hospital, Nancy, France; ⁷Laboratory of Biochemistry and Molecular Biology, Conception Hospital, Aix-Marseille, University, Marseille, France; 8Department of Public Health, Aix-Marseille University, Marseille, France; 9Department of Visceral Surgery and Transplantation, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France; ¹⁰Department of Internal Medicine, Diabetes and Metabolic Disorders, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France; ¹¹Section on Genetics and Endocrinology (SEGEN), Program on Developmental Endocrinology and Genetics (PDEGEN), Bethesda, United States; ¹²Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States; ¹³Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, United States; 14La Timone University Hospital, European Center for Research in Medical Imaging, Marseille, France

0428. Adapting Volumetric 1H Echo-Planar Spectroscopic Imaging of the Human Brain from 3 to 7 Tesla Plasma 15 Karim Snoussi¹,², Joseph S. Gillen¹,², Michael Schär¹,², Richard A.E. Edden¹,², Andrew A. Maudsley³, Peter B.

Barker¹.²

¹Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medidine, Baltimore, MD, United States; ²Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States; ³Miller School of Medicine, University of Miami, Miami, FL, United States

Power Pitch

Neuro Power Posters

Power Pitch Theatre, Exhibition Hall Wednesday 10:00-11:00

Moderators: Bruce R. Rosen, M.D., Ph.D. & Samantha J. Holdsworth, Ph.D.

0507. MR Imaging of Crocodilians Can Help for Brain Volume Estimation of Some Extinct Vertebrates Plasma 1 Daniel Jirak¹, Jiri Janacek², Martin Kundrat, ²

¹IKEM, Prague, Czech Republic; ²Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; ³Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden

0508. Improved FDG Kinetic Analysis in Brain Tumors Through Simultaneous MR/PET Acquisition Plasma 2

Anne-Kristin Vahle¹,², Harikrishna Rallapalli¹,², Artem Mikheev¹,², Thomas Koesters¹,², Kai Tobias Block¹,², Jean Logan¹,², Timothy Shepherd¹,², Girish Fatterpekar¹,², David Faul³, Fernando Emilio Boada¹,²</sup> ¹Center for Advanced Imaging Innovation and Research, Dept. of Radiology, New York University School of Medicine, New York, NY, United States; ²Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, New York, NY, United States; ³Siemens Healthcare, New York, NY, United States

Power Pitch

Plasma 3	0509.	White Matter Tract Integrity, Amyloid Burden and Structural Atrophy in Normal Aging and Mild Cognitive Impairment: A PET-MRI Study. Ileana O. Jelescu ¹ , Timothy M. Shepherd ¹ , Dmitry S. Novikov ¹ , Yu-Shin Ding ¹ , Thomas Koesters ¹ , Kent P. Friedman ¹ , Jacqueline Smith ¹ , James E. Galvin ² , Els Fieremans ¹ ¹ Center for Biomedical Imaging, Dept. of Radiology, NYU Langone Medical Center, New York, United States; ² Alzheimer Disease Center, Depts. of Neurology, Psychiatry and Population Health, NYU Langone Medical Center, New York, United States
Plasma 4	0510.	Magnetization Prepared ZTE to Address Multiple Diagnostic Contrasts Peter Börnert ¹ , ² , Jan Groen ³ , Jouke Smink ³ , Kay Nehrke ¹ ¹ Philips Research, Hamburg, Germany; ² Radiology, LUMC, Leiden, Netherlands; ³ Philips Healthcare, Best, Netherlands
Plasma 5	0511. VARD AUDO	Ultrashort Echo Time (UTE) Imaging of Myelin: T2* Analysis Vipul R. Sheth ¹ , Hongda Shao ¹ , Jun Chen ¹ , Jody Corey-Bloom ² , Graeme M. Bydder ¹ , Jiang Du ¹ ¹ Radiology, University of California, San Diego, CA, United States; ² Neurosciences, University of California, San Diego, CA, United States
Plasma 6	0512.	Effects of Real-Time fMRI Neurofeedback of the Amygdala Specific to Major Depressive Disorder <i>Vadim Zotev¹, Kymberly D. Young¹, Raquel Phillips¹, Masaya Misaki¹, Jerzy Bodurka¹, ²</i> ¹ Laureate Institute for Brain Research, Tulsa, OK, United States; ² College of Engineering, University of Oklahoma, Tulsa, OK, United States
Plasma 7	0513.	Reduced Connectivity in 7-Year-Old Preterm Brain Networks Relates to Adverse Perinatal Events, Cognitive and Motor Impairment Deanne Thompson ¹ , ² , Jian Chen ¹ , Richard Beare ¹ , Christopher Adamson ¹ , Zohra Ahmadzai ¹ , Claire Kelly ¹ , Terrie Inder ³ , Lex Doyle ¹ , ⁴ , Marc Seal ¹ , Peter Anderson ¹ , ⁵ ¹ Murdoch Childrens Research Institute, Parkville, Victoria, Australia; ² Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; ³ Brigham and Women's Hospital, Massachusettes, United States; ⁴ Royal Women's Hospital, Parkville, Victoria, Australia; ⁵ Paediatrics, University of Melbourne, Parkville, Victoria, Australia
Plasma 8	0514.	Effect of Repetitive Transcranial Magnetic Stimulation on fMRI Resting-State Connectivity in Multiple System Atrophy Ying-hui Chou ¹ , Hui You ² , Han Wang ² , Yan-Ping Zhao ² , Bo Hou ² , Nan-kuei Chen ¹ , Feng Feng ² ¹ Duke Brain Imaging and Analysis Center, Durham, NC, United States; ² Peking Union Medical College Hospital, Beijing, China
Plasma 9 Ismow Ment An Summa cum la	0515. MARD aube	<i>In-Vivo</i> Evidence of Transcranial Direct Current Stimulation (TDCS) Induced Magnetic-Field Changes in Human Brain Revealed by MRI <i>Mayank V. Jog¹, Robert Smith², Kay Jann², Walter Dunn³, Allan Wu², Danny JJ Wang²</i> ¹ Biomedical Engineering, University of California Los Angeles, Los Angeles, CA, United States; ² Neurology, University of California Los Angeles, Los Angeles, CA, United States; ³ Psychiatry, University of California Los Angeles, Los Angeles, CA, United States
Plasma 10	0516.	Functional Consequences of Neurite Orientation Dispersion and Density in Humans Across the Adult Lifespan Arash Nazeri ¹ , ² , M. Mallar Chakravarty ³ , ⁴ , David J. Rotenberg ¹ , Tarek K. Rajji ¹ , Yogesh Rathi ⁵ , Oleg V. Michailovich ⁶ , Aristotle N. Voineskos ¹ ¹ Centre for Addiction and Mental Health, Toronto, ON, Canada; ² Department of Psychiatry, University of Toronto, Toronto, ON, Canada; ³ Department of Psychiatry, McGill University, Montreal, QC, Canada; ⁴ Cerebral Imaging Centre, Douglas Institute, Verdun, QC, Canada; ⁵ Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, United States; ⁶ Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
Plasma 11 ISMRM MERIT AW SUMMA CUM LA	0517. aude	Aneurysm Wall Permeability as a Measure of Rupture Risk and Bleb Formation Charles G. Cantrell ¹ , Parmede Vakil ¹ , Sameer A. Ansari ² , Timothy J. Carroll ¹ ¹ Biomedical Engineering, Northwestern University, Chicago, IL, United States; ² Radiology, Northwestern University, Chicago, IL, United States

Plasma 12 0518.	Intracranial Atherosclerotic Lesion Characteristics Correlate with Cerebrovascular Lesion Load After TIA or Ischemic Stroke: A 7.0 Tesla MRI Study Nikki Dieleman ¹ , Anja G. van der Kolk ¹ , Jaco J.M. Zwanenburg ¹ , ² , Manon Brundel ³ , Anita A. Harteveld ¹ , Geert Jan Biessels ³ , Fredy Visser ¹ , ⁴ , Peter R. Luijten ¹ , Jeroen Hendrikse ¹ ¹ Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ² Image Science Institute, University Medical Center Utrecht, Utrecht, Netherlands; ⁴ Philips, Best, Netherlands
Plasma 13 0519.	Characterization of Rat Spinal Cord Vasoreactivity Using Arterial Spins Labelling at 9.4 T <i>Mohamed Tachrount¹, Andrew Davies², Roshni Desai², Kenneth Smith², David Thomas¹, Xavier Golay¹</i> ¹ UCL Institute of Neurology, London, United Kingdom; ² Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
Plasma 14 0520.	Diffusion Tensor Imaging and Magnitization Transfer Parameters Correlate with the White Matter Pathology in Mild Traumatic Brain Injury <i>Tsang-Wei Tu¹, Rashida A. Williams², Jacob D. Lescher², L. Christine Turtzo², Joseph A. Frank²</i> ¹ Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD - Maryland, United States; ² Radiology and Imaging Sciences, National Institutes of Health, MD, United States
Plasma 15 0521.	<i>In Vivo</i> Evaluation of Ocular Physiology and Structural Integrity of the Optic Nerve Upon Whole Eye Transplantation Using Gadolinium-Enhanced MRI and Diffusion Tensor Imaging

Yolandi van der Merwe¹, ², Leon C. Ho¹, ³, Yang Li⁴, Maxine R. Miller⁴, ⁵, Chiaki Komatsu⁴, Hongkun Wang⁴, Michael B. Steketee⁵, Seong-Gi Kim¹, ⁶, Joel S. Schuman, ²⁵, Kia M. Washington⁴, ⁵, Kevin C. Chan¹, ⁵, the WET Consortium⁵ ¹Neuroimaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States; ²Department of Bioengineering, University of Pittsburgh, PA, United States; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; ⁴Department of Plastic and Reconstructive Surgery, University of Pittsburgh, PA, United States; ⁵Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; ⁶Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea

Power Pitch

Advances in fMRI

Power Pitch Theatre, Exhibition Hall Wednesday 13:30-14:30				
Moderators	Moderators: Karla L. Miller, Ph.D. & T.B.A.			
Plasma 1	0589.	Individual-Subject Mapping of Functional Networks from Sparse Spontaneous BOLD Events Cesar Caballero Gaudes ¹ , Ziad S Saad ² , Mathijs Raemaekers ³ , Nick F. Ramsey ³ , Natalia Petridou ⁴ ¹ BCBL. Basque Center on Cognition, Brain and Language, Donostia, Guipuzcoa, Spain; ² Statistical and Scientific Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; ³ Brain Center Rudolf Magnus, Department of Neurology and Neurosurgery,, UMC Utrecht, Utrecht, Netherlands; ⁴ Radiology, Imaging Division, UMC Utrecht, Utrecht, Netherlands		
Plasma 2	0590.	A Machine Learning Case for a Higher Order Control Plexus in the Frontal Pole Cortex Nishant Zachariah ¹ , Zhihao Li ² , ³ , Jason Langley ² , Shiyang Chen ² , Mark Davenport ¹ , Justin Romberg ¹ , Xiaoping Hu ² ¹ Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States; ² Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States; ³ Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong, China		
Plasma 3	0591.	Calibrating BOLD Latency with High Temporal Resolution Precision Using Magnetic Resonance Inverse Imaging Ruo-Ning Sun ¹ , Ying-Hua Chu ¹ , Yi-Cheng Hsu ¹ , Wen-Jui Kuo ² , Fa-Hsuan Lin ¹ ¹ Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ² Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan		
Plasma 4	0592.	Cortical Depth Dependence of Physiological Fluctuations and Whole-Brain Resting-State Functional Connectivity at 7T Jonathan R. Polimeni ¹ , Marta Bianciardi ¹ , Boris Keil ¹ , Lawrence L. Wald ¹ , ² ¹ Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; ² Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States		

Plasma 5	0593.	2D EPI at 9.4T with Slice-Specific Spokes Pulse RF Excitation for B1+ Homogenisation Benedikt A Poser ¹ , Desmond HY Tse ¹ , ²
		¹ Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ² Department of Radiology, Maastricht University, Maastricht, Netherlands
Plasma 6	0594.	Relationships Between Excitation-Inhibition Balance and Whole-Brain Oxygen Extraction Fraction in Human Brain
		Swati Rane ¹ , Brandon Ally ² , Emily Mason ² , Subechhya Pradhan ³ , Erin Hussey ² , Kevin Waddell ³ , Hanzhang Lu ⁴ , ⁵ , Manus Donahue. ²³
		¹ Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ² Neurology, Vanderbilt University, Nashville, TN, United States; ³ Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴ Radiology, UT Southwestern, Dallas, TX, United States; ⁵ Psychiatry, UT Southwestern, Dallas, TX, United States
Plasma 7	0595.	Dynamic Brain States Sequential Modelling Based on Spontaneous Brain Activity of Resting-State fMRI
ISMRM MERIT. Magna cum	laude	Shiyang Chen, Jason Langley, Alaoping Hu ¹ The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
Plasma 8	0596.	Failure of the "standard" fMRI Analysis in the Visual Cortex Using a Smooth Visual Stimulus
ismen merit magna cum	Laude	¹ Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada; ² Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany; ³ Department of Electrical and Computer Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada; ⁴ Centre d'imagerie moléculaire de Sherbrooke (CIMS), Université de Sherbrooke, Sherbrooke, Sherbrooke, Sherbrooke, Radiology, Université de Sherbrooke, Sherbrooke, QC, Canada; ⁵ Department of Diagnostic Radiology, Université de Sherbrooke, Sherbrooke, QC, Canada
Plasma 9	0597.	BOLD Calibration with Interleaved Susceptometry-Based Oximetry Zachary B. Rodgers ¹ Frin K. Englund ² Maria A. Fernandez-Searg ³ Felix W. Wehrli ¹
		¹ Radiology, University of Pennsylvania, Philadelphia, PA, United States; ² Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States; ³ Neuroimaging Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Navarra, Spain
Plasma 10	0598.	Multimodal Validation of Physiological MRI: Triple Oxygen PET and NIRS
		¹ FMRIB, University of Oxford, Oxford, Oxfordshire, United Kingdom; ² WBIC, University of Cambridge, Cambridge, Cambridge, Cambridgeshire, United Kingdom
Plasma 11	0599.	Measurement of μ-Opioid Receptor Driven Neurovascular Coupling Signals Using Simultaneous PET/MRI Hsiao-Ying Wey ¹ Jacob M. Hooker ¹ Michael S. Placzek ^{1, 2} Bruce R. Rosen ¹ Joseph B. Mandeville ¹
		¹ A. A. Martinos Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ² McLean Hospital, Harvard Medical School, Belmont, MA, United States
Plasma 12	0600.	Simultaneous Multi-Slice Functional CBV Measurements at 7 T
magna cum	laude	<i>A. Poser²</i> ¹ Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; ² Maastricht Brain Imaging Centre, Netherlands
Dia	0601	Distinct Neurophysiological Convolutor of Clobal Vo. Local Desting State (MDI Networks
r Iasma 13 ISMRM MERIT Magna cum	ward Laude	<i>Haiguang Wen¹, Zhongming Liu,</i> ¹² ¹ Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States; ² Biomedical Engineering, Purdue University, West Lafayette, IN, United States
Plasma 14	0602.	Functional Pathways in Monkey Brain Mapped Using Resting State Correlation Tensors <i>Tung-Lin Wu¹</i> , Feng Wang ¹ , ² , Li Min Chen, ²³ , Adam W. Anderson, ²³ , Zhaohua Ding ¹ , ² , John C. Gore, ²³

¹Vanderbilt University Institute of Imaging Science , Nashville , TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³Vanderbilt University Institute of Imaging Science, Nashville, TN, United States

 Plasma 15
 0603. Subcortical Grey Matter Susceptibility Mapping from Standard fMRI Studies

 Hongfu Sun^l, Peter Seres^l, Alan H. Wilman^l
 Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada

Power Pitch

Cancer

 Power Pitch Theatre, Exhibition Hall
 Wednesday 16:00-17:00

 Moderators: Bachir Taouli, M.D. & T.B.A.
 Plasma 1
 0666.
 Comparing Functional Tumor Volume and Pharmacokinetic Parameter in DCE-MRI Prediction of Breast

 Cancer Therapy Response: A Preliminary Study
 Alina Tudorica¹, David C. Newitt², Karen Y. Oh¹, Nicole Roy¹, Stephen Y-C Chui¹, Arpana Naik¹, Megan L. Troxell¹, Yiyi Chen¹, Aneela Afzal¹, Megan L. Holtorf¹, Nola M. Hylton², Wei Huang¹

 'Oregon Health & Science University, Portland, OR, United States; ²University of California, San Francisco, CA, United States

Plasma 2 0667. Can Model Weighting Improve the Accuracy of DCE-MRI Parameter Estimation? Xia Li^l, Lori R. Arlinghaus^l, Erin Rericha^l, Thomas Yankeelov^l ¹Vanderbilt University, Nashville, TN, United States

Plasma 3 0668. Impact of Non-Rigid Motion Correction on Pharmaco-Kinetic Analysis for Breast Dynamic Contrast-Enhanced MRI

Venkata Veerendra Nadh Chebrolu¹, Dattesh Shanbhag¹, Reem Bedair², Sandeep Gupta³, Patrice Hervo⁴, Scott Reid⁵, Fiona Gilbert², Andrew Patterson⁶, Martin Graves⁷, Rakesh Mullick⁸ ¹Medical Image Analysis Lab, GE Global Research, Bangalore, Karnataka, India; ²Radiology, University of Cambridge, Cambridge, United Kingdom; ³Biomedical Image Analysis Lab, GE Global Research, NY, United States; ⁴GE Healthcare, Buc, France; ⁵GE Healthcare, Amersham, United Kingdom; ⁶Cambridge University Hospitals Trust, Cambridge, United Kingdom; ⁸Diagnostics & Biomedical Technologies, GE Global Research, Bangalore, Karnataka, India

Plasma 4 0669. Dynamic Contrast Enhanced MRI Estimate of Tumor Interstitial Fluid Pressure in Solid Brain Tumors

¹³ Madhava P. Aryal¹, Tavarekere N. Nagaraja², Rasha Elmghribi, ¹³, Kelly A. Keenan², Swayamprava Panda¹, Glauber Cabral¹, Stephen L. Brown⁴, James R. Ewing, ¹³

¹Dept. of Neurology, Henry Ford Hospital, Detroit, MI, United States; ²Dept. of Anesthesiology, Henry Ford Hospital, Detroit, MI, United States; ³Dept. of Physics, Oakland University, Rochester, MI, United States; ⁴Dept. of Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States

Plasma 5 0670. Quantitative Perfusion Measurements in Renal Masses with Arterial Spin Labeling and Dynamic Contrast Enhanced MRI at 3T Correlate with Microvessel Density at Histopathology Yue Zhang¹, Payal Kapur², ³, Qing Yuan¹, Ananth Madhuranthakam¹, ⁴, Ingrid Carvo⁵, Sabina Signoretti⁵, Ivan Dimitrov⁶, Yin Xi¹, Katherine Wicks¹, Jeffrey Cadeddu¹, ³, Vitaly Margulis³, James Brugarolas⁷, ⁸, Ivan Pedrosa¹, ⁴ ¹Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Pathology, University of Texas

Southwestern Medical Center, Dallas, TX, United States; ³Urology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁵Pathology, Brigham and Women's Hospital, Boston, MA, United States; ⁶Philips Medical Systems, Cleveland, OH, United States; ⁷Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, University of Texas Southwestern Medical Center, Dal

Plasma 6 0671. Classification of Tumor Sub-Volumes Based on Dynamic Contrast Enhanced MRI Model Hierarchy for Locally Advanced Cervical Cancer

Jesper Folsted Kallehauge¹,², Thomas Nielsen³, Markus Alber¹, Søren Haack,²⁴, Erik Morre Pedersen⁵, Jacob Christian Lindegaard², Anne Ramlov², Kari Tanderup⁶,⁷

¹Dept. of Medical Physics, Aarhus University Hospital, Aarhus, Denmark; ²Dept. of Oncology, Aarhus University Hospital, Aarhus, Denmark; ³CFIN/Mindlab, Aarhus University Hospital, Aarhus, Denmark; ⁴Dept. of Clinical Engineering, Aarhus University Hospital, Aarhus, Denmark; ⁵Dept. of Radiology, Aarhus University Hospital, Aarhus, Denmark; ⁶Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark; ⁷Dept. of Clinical Medicine, Aarhus University , Aarhus, Denmark

Plasma 7	0672.	Evaluation of Stretched-Exponential Model for Diffusion-Weighted Imaging of Breast Lesions Using High B Values: Comparison with Monoexponential Diffusion Weighted Imaging <i>Chunling Liu¹</i> , <i>Changhong Liang¹</i> , <i>Yingjie Mei²</i> , <i>Zaiyi Liu¹</i> , <i>Jine Zhang¹</i> ¹ Department of Radiology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; ² Philips Healthcare, Guangzhou, Guangdong, China
Plasma 8	0673.	SUV-ADC Mapping of Malignant and Benign Prostate Lesions with PET-MRI Yachao Liu ¹ , Jiangping Gao ² , Jiajin Liu ¹ , Hui Liu ³ , Yong Xu ² , Baixuan Xu ¹ , Jiahe Tian ¹ ¹ Nuclear Medicine Department, PLA 301 General Hospital, Beijing, China; ² Urology Department, PLA 301 General Hospital, Beijing, China; ³ NEA MR Collaboration, Siemens Ltd., China, Shanghai, China
Plasma 9	0674.	Simultaneous ¹⁸ F-FACBC PET/MRI for Loco-Regional Staging of Prostate Cancer: Considerations on Imaging Protocol Design Mattijs Elschot ¹ , Kirsten M. Selnæs ¹ , ² , Brage Krüger-Stokke ¹ , ³ , Øystein Størkersen ⁴ , Helena Bertilsson ⁵ , ⁶ , Siver A. Moestue ¹ , ² , Tone F. Bathen ¹ , ² ¹ Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Sør-Trøndelag, Norway; ² St Olavs Hospital, Trondheim, Sør-Trøndelag, Norway; ³ Department of Radiology, St Olavs Hospital, Trondheim, Sør- Trøndelag, Norway; ⁴ Department of Pathology, St Olavs Hospital, Trondheim, Sør-Trøndelag, Norway; ⁶ Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Sør-Trøndelag, Norway
Plasma 10	0675.	Multiparametric Hybrid 18FDG-PET/MRI in Patients with Multiple Myeloma: Initial Experience Jennifer Mosebach ¹ , Christos Sachpekidis ² , Martin Freitag ¹ , Jens Hillengass ³ , Antonia Dimitrakopoulou-Strauss ² , Uwe Haberkorn ⁴ , Heinz-Peter Schlemmer ¹ , Stefan Delorme ¹ ¹ Department of Radiology, German Cancer Research Center, Heidelberg, Germany; ² Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center, Heidelberg, Germany; ³ Department of Medicine V, Multiple Myeloma Section, University of Heidelberg, Heidelberg, Germany; ⁴ Division of Nuclear Medicine, University of Heidelberg, Heidelberg, Germany
Plasma 11	0676.	4D Echo Planar Correlated Spectroscopic Imaging and DWI of Breast Cancer

Rajakumar Nagarajan¹, Neil Wilson¹, Nanette DeBruhl¹, Brian Burns¹, Melissa Joines¹, Maithili Gopalakrishnan¹, Fausto Rendon¹, Lawrence W. Bassett¹, M.Albert Thomas¹ ¹Radiological Sciences, UCLA School of Medicine, Los Angeles, CA, United States

Plasma 12 0677. Relaxation-Weighted Sodium MRI of Breast Lesions at 7T Stefan Zbyn¹, Olgica Zaric¹, Vladimir Juras¹, Katja Pinker², Alex Farr³, Nadia Benkhedah⁴, Pascal Balzer², Vladimir Mlynarik¹, Armin Nagel⁴, Christian Singer³, Thomas Helbich², Wolfgang Bogner¹, Siegfried Trattnig¹ ¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ³Department of Gynecology and Obstetrics, Medical University of Vienna, Vienna, Austria; ⁴Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Plasma 13 0678. Noninvasive Assessment of Lymphatic Impairment and Interstitial Protein Accumulation Using Chemical Exchange Saturation Transfer (CEST) MRI Manus Donahue¹, ², Paula CM Donahue³, ⁴, Swati Rane¹, Megan K. Strother¹, Allison O. Scott¹, Seth A. Smith¹ ¹Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; ²Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ³Physical Medicine and Rehabilitation, Vanderbilt University Medical Center, Nashville, TN, United States; ⁴Dayani Center for Health and Wellness, Nashville, TN, United States

Plasma 14 0679. Combining 'omics'; Metabolic Breast Cancer Subclass Correlation with Protein and Gene Expression Subtypes Tonje H. Haukaas¹,², Leslie R. Euceda¹, Guro F. Giskeødegård¹, Marit Krohn³,⁴, Ellen Schlichting³, Rolf Kåresen³,⁵, Sandra Nyberg³,⁴, Kristine Kleivi Sahlberg³,⁴, Anne-Lise Børresen-Dale³,⁴, Tone F. Bathen¹,³
¹Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, Trondheim, Norway; ²K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; ³K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; ⁴Department of Genetics, Institute for Cancer Research Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway; ⁵Department of Surgery, Oslo University Hospital, Ullevål, Oslo, Norway

Plasma 15 0680. Using Radiogenomics to Characterize MRI-Guided Prostate Cancer Biopsy Heterogeneity

Radka Stoyanova¹, Alan Pollack¹, Nicholas Erho², Charles Lynne³, Lucia Lam², Christine Buerki², Sakhi Abraham¹, Merce Jorda⁴, Olexandr Kryvenko⁴, Matthew Abramowitz¹, Elai Davicioni², Adrian Ishkanian¹ ¹Radiation Oncology, University of Miami, Miami, FL, United States; ²GenomeDx Biosciences, Vancouver, British Columbia, Canada; ³Urology, University of Miami, Miami, FL, United States; ⁴Pathology, University of Miami, Miami, FL, United States

Power Pitch High Field Applications

Dower Ditch T	The sector Exhibition Hell Thursday 10:20 11:20
<u>Fower Flich T</u>	Indied, Exhibition nan Indieday 10.30-11.30
<u>Moderators. G</u> Plasma 1 075	 4. Whole Brain Pulsed Arterial Spin Labelling at Ultra High Field with a B1⁺-Optimised Adiabatic Labelling Pulse Kieran O'Brien^{†1}, ², Fabian Zimmer^{†2}, Steffen Bollmann², Josef Pfeuffer³, Keith Heberlein⁴, Markus Barth² ¹Healthcare Sector, Siemens Ltd, Brisbane, Australia; ²The Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; ³Siemens Healthcare, Erlangen, Germany; ⁴Siemens Healthcare, Boston, MA, United States
Plasma 2 075	5. 7T Imaging of Patients with Focal Epilepsy Who Appear Non-Lesional in Diagnostic 1.5T and 3T MRI Scans: First Results Rebecca Emily Feldman ¹ , Hadrien Dyvorne ¹ , Bradley Neil Delman ¹ , Madeline Cara Fields ² , Lara Vanessa Marcuse ² , Priti Balchandani ¹ ¹ Radiology, Icahn School of Medicine at Mount Sinai, New York, United States; ² Department of Neurology, Mount Sinai Hospital, New York, United States
Plasma 3 075 Isarm Merit Award magna cum laude	6. In Vivo ³⁷ Cl MRI of Human Calf Muscle at 7T Judith Schork ¹ , Anna Kollefrath ¹ , Manuela B. Rösler ¹ , Reiner Umathum ¹ , Armin M. Nagel ¹ ¹ Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Plasma 4 075	7. T1rho and T2 Relaxation Times in Patients with Knee Osteoarthritis at 3 Tesla and 7 Tesla Cory Wyatt ¹ , Aditi Guha ¹ , Anand Venkatachari ¹ , Xiaojuan Li ¹ , Roland Krug ¹ , Douglas A.C. Kelley ² , Thomas M. Link ¹ , Sharmila Majumdar ¹ ¹ Radiology, University of California San Francisco, San Francisco, CA, United States; ² GE Healthcare Technologies, San Francisco, CA, United States
Plasma 5 075	 8. Saturation Recovery Single-Shot Acquisition (SASHA) for T₁ Mapping in the Human Heart at 7T Christopher T. Rodgers¹, Yuehui Tao¹, Stefan Piechnik¹, Alexander Liu¹, Jane Francis¹, Stefan Neubauer¹, Matthew D. Robson¹ ¹University of Oxford, Oxford, Oxon, United Kingdom
Plasma 6 075	9. Theoretical and Experimental Comparisons of Single Breath-Hold Renal Perfusion Imaging Between 3T and 7T Xiufeng Li ^l , Edward J. Auerbach ^l , Pierre-Francois Van de Moortele ^l , Kamil Ugurbil ^l , Gregory J. Metzger ^l ¹ Radiology-CMRR, University of Minnesota, Minneapolis, MN, United States
Plasma 7 076	0. Ultra-Short T _E STEAM Improves Hepatic Lipid Quantification and Profiling at 7T Martin Gajdošík ¹ , Grzegorz Chadzynski ² , ³ , Vladimír Mlynárik ¹ , Marek Chmelík ¹ , Wolfgang Bogner ¹ , Ladislav Valkovic ¹ , ⁴ , Ivica Just Kukurová ¹ , Siegfried Trattnig ¹ , Martin Krššák ¹ , ⁵ ¹ MRCE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ² Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany; ³ Department of High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ⁴ Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia; ⁵ Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
Plasma 8 076	1. Ultra-High Field <i>In Vivo</i> Localized Two Dimensional Correlated MR Spectroscopy to Probe Membrane Degradation During Progression of Alzheimer's Disease A Alia ¹ , ² , Niels Braakman ¹

¹Leiden Institute of Chemistry, Leiden University, Leiden, South Holland, Netherlands; ²Institute of Medical Physics and Biophysics, Leipzig University, Leipzig, Germany

Plasma 9 0762. In Vivo MR Microscopy of the Nervus Opticus at 3.0 T and 7.0 T: Anatomical and Diffusion Weighted Imaging in Healthy Subjects and Patients with Optic Nerve Glioma

Katharina Paul¹, Andreas Graessl¹, Jan Rieger¹, Darius Lysiak¹, Till Huelnhagen¹, Lukas Winter¹, Antje Els¹, Beate Endemann¹, Tobias Lindner², Stefan Hadlich³, Paul-Christian Krueger³, Oliver Stachs², ⁴, Soenke Langner³, Thoralf Niendorf⁴, ⁵

¹Max-Delbrueck Centre for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany; ²University Medicine Rostock, Pre-clinical Imaging Research Group, Rostock, Germany; ³University of Greifswald, Institute for Diagnotic Radiology and Neuroradiology, Greifswald, Germany; ⁴University Medicine Rostock, Department of Ophthalmology, Rostock, Germany; ⁵Experimental and Clinical Research Center, a joint cooperation between the Charite Medical Faculty and the Max-Delbrueck Center, Berlin, Germany

Plasma 10 0763. In-Vivo Proton MR Spectroscopic Imaging of the Human Brain Gliomas at 9.4 Tesla: Evaluation of Metabolite Coordinates

Grzegorz L. Chadzynski¹,², Gisela Hagberg¹,², Jonas Bause², G. Shajan², Sotirios Bisdas³, Rolf Pohmann², Klaus Scheffler¹,²

¹Dept. Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany; ²Dept. High-field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; ³Dept. Diagnostic and Interventional Neuroradiology, University of Tuebingen, Tuebingen, Germany

Plasma 11 0764. An Investigation of Lateral Geniculate Nucleus (LGN) Volume in Patients with Glaucoma Using 7T MRI. Hye Jin Jeong¹, Jong Yeon Lee², Jong Hwan Lee², Yu Jeong Kim², Eung Yeop Kim³, Yong Yeon Kim⁴, Zang-Hee Cho¹,

Young-Bo Kim

¹Neuroscience Research Institute, Gachon University, Incheon, Korea; ²Department of Ophthalmology, Gachon University, Gil Hospital, Incheon, Korea; ³Department of Radiology, Gachon University, Incheon, Korea; ⁴Department of Ophthalmology, Korea University College of Medicine, Seoul, Korea

Plasma 12 0765. Giant Intracranial Aneurysms at 7 Tesla MRI: A New Diagnostic Approach to Understand This Rare Intracranial Vascular Pathology

Bixia Chen¹,², Toshinori Matsushige²,³, Stefan Maderwald¹, Sören Johst¹, Harald H. Quick¹,⁴, Mark Edward Ladd¹,⁵, Ulrich Sure², Karsten Henning Wrede¹,²

¹Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, NRW, Germany; ²Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, NRW, Germany; ³Department of Neurosurgery, Hiroshima University Hospital, Hiroshima University, Hiroshima, Hiroshima Prefecture, Japan; ⁴High Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, NRW, Germany; ⁵Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany

Plasma 13 0766. High Resolution Spectroscopic Imaging with Ultra Short TE in Patients with Multiple Sclerosis and Brain Tumors at 7T

Gilbert Hangel¹, Bernhard Strasser², Michal Považan², Stephan Gruber², Marek Chmelik², Georg Widhalm³, Engelbert Knosp³, Assunta Dal-Bianco⁴, Fritz Leutmezer⁴, Siegfried Trattnig², Wolfgang Bogner²

¹MCRE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Vienna, Austria;
²MCRE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Vienna, Austria;
³Department of Neurosurgery, Medical University of Vienna, Wien, Vienna, Austria;
⁴Department of Neurology, Medical University of Vienna, Wien, Vienna, Austria;

Plasma 14 0767. Examples of Clinical Imaging at 7T: Successes and Challenges Stephen E. Jones¹, Se-Hong Oh¹, Erik Beall¹, Michael Phillips¹, Ken Sakaie¹, Irene Wang², Mark Lowe¹ ¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States; ²Neurologic Institute, Cleveland Clinic, Cleveland, OH, United States

Plasma 15 0768. Towards Clinical Cardiac MR at 7.0 T: Early Experience with Black Blood RARE Imaging in Patients with Hypertrophic Cardiomyopathy

Till Huelnhagen¹, Katharina Paul¹, Andreas Pohlmann¹, Andreas Graessl¹, Jan Rieger², Darius Lysiak², Christof Thalhammer¹, Marcel Prothmann³, Jeanette Schulz-Menger³, ⁴, Thoralf Niendorf⁴, ⁴ ¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany; ²MRI.TOOLS GmbH, Berlin, Germany; ³Dept. of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin, Germany; ⁴Experimental and Clinical Research Center, a joint cooperation between the Charite Medical Faculty and the Max-Delbrueck Center, Berlin, Germany

Power Pitch Body	
Power Pitch The	atre, Exhibition Hall Thursday 13:30-14:30
<u>Moderators:Eliz</u> Plasma 1 0838.	 Babeth M. Hecht, M.D. & Valentina Taviani, Ph.D. Does Using a 16-Element Receive-Array Improve Whole-Liver ³¹P Metabolite Ratio Quantification at 7T? Lucian A. B. Purvis¹, William T. Clarke¹, Michael Pavlides¹, Stefan Neubauer¹, Matthew D. Robson¹, Christopher T. Rodgers¹ ¹Department of Cardiovascular Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
Plasma 2 0839.	Combined Gadoxetic Acid and Gadofosveset Enhanced Liver MRI: Detection and Characterization of Focal Liver Lesions <i>Peter Bannas¹</i> , ² , <i>Candice A. Bookwalter¹</i> , <i>Tim Ziemlewicz¹</i> , <i>Utaroh Motosugi¹</i> , <i>Richard Bruce¹</i> , <i>Theodora A.</i> <i>Potretzke¹</i> , <i>Scott B. Reeder¹</i> , ³ ¹ Radiology, University of Wisconsin-Madison, Madison, WI, United States; ² Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ³ Medical Physics, University of Wisconsin-Madison, WI, United States
Plasma 3 0840.	Adipose Tissue Hydration as a Potential Non-Invasive Marker for Adipose Tissue Hypertrophy Navin Michael ¹ , Suresh Anand Sadananthan ¹ , Jadegoud Yaligar ² , Swee Shean Lee ² , Melvin Khee-Shing Leow ¹ , ³ , Chin Meng Khoo ⁴ , Eric Yin Hao Khoo ⁴ , Kavita Venkataraman ⁵ , Yung Seng Lee ¹ , ⁶ , Yap Seng Chong ¹ , ⁷ , Peter D. Gluckman ¹ , E. Shyong Tai ⁴ , S. Sendhil Velan ² , ⁸ ¹ Singapore Institute for Clinical Sciences, A*STAR, Singapore; ² Singapore BioImaging Consortium, A*STAR, Singapore; ³ Department of Endocrinology, Tan Tock Seng Hospital, Singapore; ⁴ Department of Medicine, Yong Loo Lin School of Medicine , National University of Singapore, Singapore; ⁵ Saw Swee Hock School of Public Health, National University of Singapore, Singapore; ⁶ Department of Paediatrics , Yong Loo Lin School of Medicine, Singapore; ⁷ Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, Singapore; ⁸ Clinical Imaging Research Centre, A*STAR, Singapore
Plasma 4 0841.	Modelling Skull Dynamics During Brain Magnetic Resonance Elastography to Evaluate Wave Delivery Strategies Deirdre M. McGrath ¹ , ² , Alejandro F. Frangi ¹ , Iain D. Wilkinson ² , Zeike A. Taylor ¹ ¹ CISTIB, Center for Computational Imaging & Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ² Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
Plasma 5 0842.	Isocaloric Fructose Restriction for 10 Days Reduces MR-Measured Liver, Pancreatic and Visceral Fat in High Sugar-Consuming, Obese Children Susan M. Noworolski ¹ , Kathleen Mulligan ² , Natalie Korn ¹ , Molly Gibson ¹ , Viva W. Tai ² , ³ , Michael Wen ² , Ayca Erkin-Cakmak ⁴ , Alejandro Gugliucci ⁵ , Robert H. Lustig ⁴ , Jean-Marc Schwarz ⁶ ¹ Radiology & Biomedical Imaging, University of California, San Francisco, CA, United States; ² Medicine, University of California, San Francisco, CA, United States; ⁴ Pediatrics, University of California, San Francisco, CA, United States; ⁵ Research, Touro University College of Osteopathic Medicine, Vallejo, CA, United States;
Plasma 6 0843.	The Effect of Parallel Radiofrequency Transmission on Arterial Input Function Selection in 3T DCE-MRI of Prostate Cancer Hatim Chafi ¹ , Saba N. Elias ² , Huyen T. Nguyen ² , Harry T. Friel ³ , Michael V. Knopp ² , BeiBei Guo ⁴ , Steven B. Heymsfield ⁵ , Guang Jia ¹ ¹ Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; ² Department of Radiology, The Ohio State University, Columbus, OH, United States; ³ Clinical Science Operations, Philips Healthcare, Highland Heights, OH, United States; ⁴ Department of Experimental Statistics, Louisiana State University, Baton Rouge, LA, United States; ⁵ Metabolism - Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, United States
Plasma 7 0844.	Automatic Combined Whole-Body Muscle and Fat Volume Quantification Using Water-Fat Separated MRI in Postmenopausal Women Janne West ¹ , ² , Thobias Romu, ²³ , Anna-Clara Spetz Holm ⁴ , Hanna Lindblom ¹ , Lotta Lindh-Åstrand ⁴ , Magnus Borga, ²³ ,

Mats Hammar⁴, Olof Dahlqvist Leinhard¹, ² ¹Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; ²Center for Medical Imaging Science and Visualization, Linköping, Sweden; ³Department of Biomedical Engineering, Linköping University, Linköping, Sweden; ⁴Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

Plasma 8	0845.	Stimulated Echo Diffusion Weighted Imaging of the Liver at 3T <i>Hui Zhang¹, Aiqi Sun¹, Xiaodong Ma¹, Zhe Zhang¹, Ed X. Wu², ³, Hua Guo¹</i> ¹ Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ² Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China; ³ Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China
Plasma 9	0846.	Characterizing Water Diffusion and Perfusion Features of the Healthy and Malignant Pancreas Using Diffusion-Tensor and Diffusion Weighted MRI Noam Nissan ¹ , Talia Golan ² , Edna Furman-Haran ¹ , Sara Apter ² , Yael Inbar ² , Arie Ariche ² , Barak Bar Zakay ² , Yuri Goldes ² , Michael Schvimer ² , Dov Grobgeld ¹ , Hadassa Degani ¹ ¹ Weizmann Institute of Science, Rehovot, Israel; ² Sheba Medical Center, Israel
Plasma 10	0847.	Utility of Combined Ga-68 DOTA-TOC PET and Eovist MRI Utilizing PET/MRI Thomas A. Hope ¹ , Carina Mari Aparici ¹ , Eric Nakakura ² , Henry VanBrocklin ¹ , Miguel Hernandez Pampaloni ¹ , James Slater ¹ , Salma Jivan ¹ , Judy Yee ¹ , Emily Bergsland ³ ¹ Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ² Department of Surgery, UCSF, San Francisco, CA, United States; ³ Department of Medicine, UCSF, San Francisco, CA, United States
Plasma 11	0848.	Imaging of Dissolved-Phase Hyperpolarized Xenon-129 in Human Kidneys John P. Mugler, III ¹ , G. Wilson Miller ¹ , Craig H. Meyer ² , Kun Qing ¹ , Jaime F. Mata ¹ , Steven Guan ² , Kai Ruppert ¹ , ³ , Iulian C. Ruset ⁴ , ⁵ , F. William Hersman ⁴ , ⁵ , Talissa A. Altes ¹ ¹ Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, United States; ² Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³ Cincinnati Children's Hospital, Cincinnati, OH, United States; ⁴ Xemed, LLC, Durham, NH, United States; ⁵ Physics, University of New Hampshire, Durham, NH, United States
Plasma 12 Iswam went a magna cum l	0849.	Renal Blood Oxygenation Level-Dependent Imaging in Longitudinal Follow-Up of the Donated and the Remaining Kidney in Renal Transplantation Maryam Seif ¹ , Ute Eisenberger ² , Tobias Binser ¹ , Harriet C. Thoeny ³ , Fabienne Krauer ¹ , Chris Boesch ¹ , Bruno Vogt ⁴ , Peter Vermathen ¹ ¹ Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ² Dept. Nephrology, University Hospital Essen- Duisburg , Essen, Germany; ³ Dept. Radiology, Neuroradiology and Nuclear Medicine, University Hospital of Bern, Bern, Switzerland; ⁴ Dept. Nephrology, Hypertension and Clinical Pharmacology, University Hospital of Bern, Bern, Switzerland

Plasma 13 0850. Redistribution of Fractional Ventilation After Circumscribed Primary Lung Injury and Atelectasis Yi Xin¹, Maurizio Cereda², Hooman Hamedani¹, Harrilla Profka¹, Justin Clapp¹, Stephen Kadlecek¹, Brian P. Kavanagh³, Rahim R. Rizi¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States; ³Hospital for Sick Children, Toronto, Ontario, Canada

 Plasma 14
 0851.
 Three-Dimensional Pulmonary ¹H MRI Multi-Region Segmentation Using Convex Optimization

 Insurance constraint and the segmentation using convex optimization (1, 2)

Plasma 15 0852. Ventilation Heterogeneity in Obstructive Airways Disease – Comparing Multi-Breath Washout-Imaging with Global Lung Measurements Felix C. Horn¹, Helen Marshall¹, Salman Siddiqui², Alexander Horsley³, Laurie Smith¹, Ina Aldag⁴, Richard Kay⁵,

Christopher J. Taylor⁴, Juan Parra-Robles¹, Jim M. Wild¹ ¹Sheffield University, Sheffield, United Kingdom; ²University of Leicester, United Kingdom; ³University of Manchester, United Kingdom; ⁴Sheffield Children's NHS Foundation Trust, NHS, United Kingdom; ⁵Novartis, Switzerland

Traditional Poster						
Cancer:	Other,	Original	Research			
E 1.11.541	TT. 11	N 1	10.45.10			

Exhibition Hall Monday 10:45-12:45

1075. 3D Textural Features of Conventional MRI Predict Survival in Childhood Medulloblastoma Ahmed E. Fetit¹, ², Jan Novak², ³, Simrandip K. Gill², ³, Martin Wilson², ³, Andrew C. Peet², ³, Theodoros N. Arvanitis¹, ² ¹Institute of Digital Healthcare, WMG, University of Warwick, Coventry, West Midlands, United Kingdom; ²Birmingham Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, United Kingdom; ³University of Birmingham, Birmingham, West Midlands, United Kingdom

1076. Hyperpolarized 13C Diffusion MRS of Copolarized Pyruvate and Fumarate Detects Evidence for Increased Lactate Export in 8932 Pancreas Carcinoma Cells Compared to MCF-7 Cells

Benedikt Feuerecker¹, Markus Durst², Dieter Saur³, Marion I. Menzel⁴, Markus Schwaiger¹, Franz Schilling¹ ¹Nuclear Medicine, Technische Universität München, Munich, Bavaria, Germany; ²GE Global Research, Munich, Germany; ³Internal Medicine, Technische Universität München, Munich, Bavaria, Germany; ⁴GE Global Research, Garching, Bavaria, Germany

Traditional Poster Breast Cancer Technical Exhibition Hall Monday 10:45-12:45

1077. High Spatial Resolution DWI for Evaluation of Breast Tumor Early Treatment Response: Association of ADC Changes with PCR

Lisa J. Wilmes¹, Wei-Ching Lo¹, Wen Li¹, David C. Newitt¹, Suchandrima Banerjee², Evelyn Proctor¹, Emine U. Saritas³, Ajit Shankaranarayanan², Nola M. Hylton¹

¹University of California San Francisco, San Francisco, CA, United States; ²GE Healthcare, Menlo Park, CA, United States; ³Bilkent University, Ankara, Turkey

1078. Non-Cartesian Compressed Sensing with Fat/Water Decomposition: Feasibility Study for High Performance Breast DCE-MRI

Jorge E. Jimenez¹, Leah C. Henze Bancroft¹, Roberta M. Strigel, ¹², Kevin M. Johnson¹, Scott B. Reeder², ³, Walter F. Block¹, ³

¹Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Department of Radiology, University of Wisconsin School of Medicine and Public health, Madison, WI, United States; ³Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States

1079. Breast DCE with Fat Suppression: Enabling Quantitative Measurements

Maria A. Schmidt¹, Eva Kousi¹, Araminta Ledger¹, Erica Scurr², Cheryl Richardson², Georgina Hopkinson², Elizabeth O'FLynn¹, Steven Allen², Romney Pope², Robin Wilson², M Leach¹ ¹CR-UK and EPSRC Cancer Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, Surrey, United Kingdom; ²Department of Radiology, Royal Marsden NHS Foundation Trust, Chelsea, London, United Kingdom

1080. A Quadrant-Based Quantitative Analysis of Background Parenchymal Enhancement in Breast MRI

Ella F. Jones¹, Natalie Hartman¹, Helen Park¹, Ania Azziz¹, David C. Newitt¹, John Kornak², Catherine Kilfa¹, Bonnie N. Joe¹, Nola M. Hylton¹

¹Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States; ²Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States

1081. High-Resolution Proton Density Weighted Dixon Sequences Maximize Precision of Breast Density Measurements

Araminta EW Ledger¹, Maria A. Schmidt¹, Marco Borri¹, Erica D. Scurr², Julie Hughes², Alison Macdonald², Toni Wallace², Robin Wilson², Martin O. Leach¹

¹CR-UK Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; ²Radiology, The Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom

Traditional Poster

- 1082. Modelling Vasculature and Cellular Restriction in Breast Tumours Using Diffusion MRI Colleen Bailey¹, Sarah Vinnicombe², Eleftheria Panagiotaki¹, Shelley A. Waugh², John H. Hipwell¹, Patsy Whelehan², Sarah E. Pinder³, Andrew Evans², Daniel C. Alexander¹, David J. Hawkes¹
 ¹Centre for Medical Image Computing, University College London, London, United Kingdom; ²Dundee Cancer Centre, Ninewells Hospital and Medical School, Dundee, United Kingdom; ³Breast Research Pathology, Research Oncology, King's College London and Guy's Hospital, London, United Kingdom
- 1083. Clinical Experience of Acquiring Both High Spatial and High Temporal Resolution Breast Dynamic Datasets Utilising a Differential Subsampling with Cartesian Ordering K-Space Acquisition Scheme Martin D. Pickles¹, Dan W. Rettmann², Kang Wang³, Lindsay W. Turnbull¹ ¹Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull, East Yorkshire, United Kingdom; ²Global MR Applications and Workflow, GE Healthcare, Rochester, MN, United States; ³Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States
- 1084. Modulated Flip Angle Single Shot Fast Spin Echo: A Potential Means for Rapid T2W Breast Imaging Martin D. Pickles¹, Daniel Litwiller², Ersin Bayram³, Lloyd Estkowski⁴, Lindsay W. Turnbull¹ ¹Centre for Magnetic Resonance Investigations, Hull York Medical School at University of Hull, Hull, East Yorkshire, United Kingdom; ²Global MR Applications and Workflow, GE Healthcare, Rochester, MN, United States; ³Global MR Applications and Workflow, GE Healthcare, Waukesha, WI, United States; ⁴Global MR Applications and Workflow, GE Healthcare, Menlo Park, CA, United States
- 1085. T₁ Mapping of Human Breast Tissue Using T₁, T₂ and PD Weighted MRI Images at 3T Anup Singh¹, Prativa Sahoo², Vedant Kabra³, Indrajit Saha², Meenakshi Singhal³, Rakesh Kumar Gupta³ ¹Center for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, Delhi, India; ²Philips India Limited, Gurgaon, Haryana, India; ³Fortis Memorial Research Institute, Gurgaon, Haryana, India

1086. Automatic Segmentation of Breast Images Using Clustering and Dynamic Programming

José Angel Rosado-Toro¹, Tomoe Barr², Marilyn T. Marron³, Jean-Phillipe Galons⁴, Patricia Thompson³, Alison Stopeck³, Jeffrey Joel Rodríguez⁵, María I. Altbach⁴ ¹Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ²Biomedical Engineering, University of

Arizona, Tucson, AZ, United States; ³Arizona Cancer Center, University of Arizona, Tucson, AZ, United States; ⁴Medical Imaging, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁴Medical Imaging, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ⁵Electrical and Computer Engi

1087. Correlation of 3D MR-Based Percent Breast Density with Apparent Diffusion Coefficient of the Breast Fibroglandular Tissue

Jeon-Hor Chen¹, ², Hon J. Yu¹, Yifan Li¹, Yoon Jung Choi³, Po Yun Huang⁴, Min-Ying Su¹ ¹Center for Functional Onco-Imaging, University of California, Irvine, CA, United States; ²Department of Radiology, Eda Hospital and I-Shou University, Kaohsiung, Taiwan; ³Department of Radiology, Kangbuk Samsung Hospital, Seoul, Korea; ⁴Department of Medical Imaging, China Medical University, Taichung, Taiwan

1088. A Comparison of Breast Tissue T1 Mapping Using Conventional Multi-Flip Angle and 2-Point Dixon Techniques

Reem Bedair¹, Mary McLean², Andrew Patterson³, Roie Manavaki¹, John Griffiths², Fiona Gilbert¹, Martin Graves³ ¹University of Cambridge, Department of Radiology, Cambridge, Cambridgeshire, United Kingdom; ²Cancer Research UK Cambridge Research Institute, Cambridge, Cambridgeshire, United Kingdom; ³Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom

1089. Optimisation of B-Value Distribution for Intravoxel Incoherent Motion (IVIM) Imaging of Breast Cancer with Clinical Results

Nina L. Purvis¹, Peter Gibbs², Martin D. Pickles², Lindsay W. Turnbull² ¹Centre for MR Investigations, Hull York Medical School, Hull, East Yorkshire, United Kingdom; ²Centre for MR Investigations, University of Hull at HYMS, Hull, East Yorkshire, United Kingdom

1090. Highly Accelerated DCE-MRI Pharmacokinetic Map Estimation Through Frequency Domain Based Tofts Model (HAET)

Nithin N. Vajuvalli¹, C K Dharmendra Kumar¹, Manoj G. Bhosale¹, ², Sairam Geethanath¹ ¹Medical Imaging Research Centre, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India; ²Government College of Engineering (COEP), Pune, Maharastra, India

1091. Design of a Spatially Varying Saturation Pulse Through Least-Squares Tse Chiang Chen¹, Philip Beatty¹ ¹Medical Biophysics, University of Toronto, Toronto, ON, Canada

Traditional Poster Cancer: Preclinical Studies of Animal Models Power Pitch Theatre, Exhibition Hall Monday 10:45-12:45

- 1092. Monitoring Cancer Treatment: Quantitative MRI of Tumor Micro-Structure and Metabolism with Chemical Exchange Saturation Transfer and Diffusion Weighted MRI Rozhin Youseft¹, Xiaoyong Huang², Stanley K. Liu², Greg J. Stanisz¹, ³ ¹Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Sunnybrook Research Institute, Toronto, Ontario, Canada; ³Sunnybrook Research Institute, Toronto, Ontario, Canada
- 1093. Determination of Tumor Response to Hypoxia-Activated Prodrug TH-302 in Rat Glioma Models Ashley M. Stokes¹, Charles P. Hart², C. Chad Quarles¹ ¹Institute of Imaging Science, Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Threshold Pharmaceuticals, CA, United States

1094. Multimodal Imaging of a Mouse Model of Colorectal Carcinoma Metastasis in the Liver Rajiv Ramasawmy¹, ², Sean Peter Johnson¹, ², Thomas Anthony Roberts¹, Daniel J. Stuckey¹, Anna L. David³, Rosamund Barbara Pedley², Mark Francis Lythgoe⁺¹, Bernard Siow⁺¹, Simon Walker-Samuel⁺¹ ¹Centre for Advanced Biomedical Imaging, University College London, London, Greater London, United Kingdom; ²Cancer Institute, University College London, London, Greater London, United Kingdom; ³Institute for Women's Health, University College London, London, Greater London, United Kingdom

1095. In Vivo Magnetic Resonance Elastography in Pediatric Brain Tumor Models

Jessica K.R. Boult¹, Jin Li¹, Yann Jamin¹, Maria Vinci², ³, Sergey Popov², ³, Karen Barker⁴, Zai Ahmad⁴, Craig Cummings¹, Suzanne A. Eccles³, Jeffrey C. Bamber¹, Ralph Sinkus⁵, Louis Chesler⁴, Chris Jones², ³, Simon P. Robinson¹

¹Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, United Kingdom; ²Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom; ³CR-UK Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom; ⁴Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom; ⁵Division of Imaging Sciences & Biomedical Engineering, Kings College London, London, United Kingdom

1096. High-Resolution MRI Analysis of Breast Cancer Xenografts on the CAM @ 11.7T

Zhī Zuo¹, ², Tatiana Syrovets³, Felicitas Genze³, Alireza Abaei², Genshan Ma⁴, Thomas Simmet³, Volker Rasche¹, ² ¹Internal Medicine II, University Hospital Ulm, Ulm, Baden-Wurttemberg, Germany; ²Core Facility Small Animal MRI, Medical Faculty, Ulm University, Ulm, Baden-Wurttemberg, Germany; ³Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Baden-W⁻¹rttemberg, Germany; ⁴Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu, China

1097. OKN-007 Decreases Tumor Necrosis and Tumor Cell Proliferation and Increases Apoptosis in a Pre-Clinical F98 Rat Glioma Model

*Rheal A. Towner*¹, *Patricia Coutinho De Souza*¹, *Krithika Balasubramanian*², *Charity Njoku*¹, *Nataliya Smith*¹, *David L. Gillespie*³, *Andrea Schwager*⁴, *Osama Abdullah*⁵, *Kar-Ming Fung*⁶, *Debra Saunders*¹, *Randy L. Jensen*³

¹Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States; ²Radiology & Biomedical Imaging, University of California San Francisco, CA, United States; ³Huntsman Cancer Insitute, University of Utah Health Sciences Center, UT, United States; ⁴Neurobiology & Anatomy, University of Utah Health Sciences Center, UT, United States; ⁵Small Animal Core Facility, University of Utah, UT, United States; ⁶Pathology, University of Oklahoma Health Sciences Center, OK, United States

1098. Oxidative Ketone Body Metabolism in Rat Brain Tumors and the Effect of the Ketogenic Diet: Evidence from In Vivo¹H-[¹³C] MRS

Henk M. De Feyter¹, Kevin L. Behar², Kevan L. Ip¹, Fahmeed Hyder¹, Lester L. Drewes³, Robin A. de Graaf¹, Douglas L. Rothman¹

¹Department of Diagnostic Radiology, Yale University, New Haven, CT, United States; ²Department of Psychiatry, Yale University, CT, United States; ³Department of Biomedical Sciences, University of Minnesota, MN, United States

1099. MnMRI of Pancreatic Cancer

Lara Leoni¹, Martin Andrews², Chin-Tu Chen³, Barry Lai⁴, Brian B. Roman⁵ ¹University of Chicago, Chicago, II, United States; ²University of Chicago, IL, United States; ³Radiology, University of Chicago, IL, United States; ⁴Argonne National Laboratory, IL, United States; ⁵radiology, university of chicago, Chicago, IL, United States

1100. Intravoxel Incoherent Motion Diffusion Weighted Imaging(IVIM-DWI) on a Mouse Xenografts Model of Human Nasopharyngeal Carcinoma CNE-2 Cell Line: A Preliminary Study on 3.0T MRI

Youping Xiao¹, Yunbin Chen¹, Jianji Pan², Ying Chen¹, Yiqi Yao¹, Xiang Zheng¹, Xiangyi Liu¹, Dechun Zheng¹, Weibo Chen³

¹Radiology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China; ²Radiation Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China; ³Philips Healthcare, Shanghai, China

1101. Mechanical Characterization of a Mouse GL261 Glioma Model Using MR Elastography

Jing Guo¹, Simon Bayerl², Jürgen Braun³, Peter Vajkoczy², Ingolf Sack¹ ¹Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ²Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; ³Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany

1102. MR Characterization of a Syngeneic Orthotopic Ovarian Tumor Model

Marie-France Penet¹, Balaji Krishnamachary¹, Flonné Wildes¹, Yelena Mironchik¹, Chien-Fu Hung², TC Wu², Zaver M. Bhujwalla¹

¹JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

1103. MRI Accurately Identifies Early Murine Mammary Cancers and Reliably Differentiates Between in Situ and **Invasive Cancer: Correlation of MRI with Histology** Devkumar Mustafi¹, Erica Markiewicz¹, Marta Zamora¹, Xiaobing Fan¹, Jeffrey Mueller², Suzanne D. Conzen³,

Gregorv S. Karczmar¹

¹Radiology, The University of Chicago, Chicago, IL, United States; ²Pathology, The University of Chicago, Chicago, IL, United States; ³Medicine, Section of Hematology and Oncology, The University of Chicago, Chicago, IL, United States

1104. Validation of Anti-VEGF Therapy in a Radiation Necrosis Mouse Model

Carlos J. Perez-Torres¹, Liya Yuan², Robert E. Schmidt³, Keith M. Rich², Robert E. Drzymala⁴, Joseph JH Ackerman¹, ⁵. Joel R. Garbow¹

¹Radiology, Washington University, Saint Louis, MO, United States; ²Neurosurgey, Washington University, Saint Louis, MO, United States; ³Neuropathology, Washington University, Saint Louis, MO, United States; ⁴Radiation Oncology, Washington University, Saint Louis, MO, United States; 5Chemistry, Washington University, Saint Louis, MO, United States

1105. Correlation of Quantitative MRI-Derived Tumor Characteristics with Histology in Breast Cancer Murine Models

Anna G. Sorace¹, ², Stephanie L. Barnes¹, ², Jennifer G. Whisenant¹, ², Mary E. Loveless¹, Thomas E. Yankeelov¹, ² ¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States

1106. Importance of Characterizing Water Content in Quantifying Metabolites in Pancreatic Cancer and Normal Pancreas

Marie-France Penet¹, Balaji Krishnamachary¹, Tariq Shah¹, Yelena Mironchik¹, Anirban Maitra², Zaver M. Bhujwalla¹

¹JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²MD Anderson Cancer Center, The University of Texas, TX, United States

1107. Evaluation of Nanoparticle Accumulation and Treatment Efficacy for a Combined Heavy-Ion-Beam Irradiation and Drug-Delivery Tumor Therapy

Daisuke Kokuryo¹, Eiji Yuba², Kenji Kono², Tsuneo Saga¹, Ichio Aoki¹ ¹Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; ²Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan

1108. NMR Based Pharmacometabolomics for Evaluating the Drug Response of Polyherbal Formulations Gaurav Sharma¹, Somenath Ghatak¹, Arun Kumar Verma², Thirumurthy Velpandian³, Rama Jayasundar¹ ¹NMR, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Pharmacology, All India Institute of Medical Sciences, New Delhi, Delhi, India;

Traditional PosterCancer: Clinical & Preclinical Studies on New Contrast MechanismsExhibition HallMonday 10:45-12:45

1109. Relaxation Along Fictitious Field, Diffusion Weighted Imaging, and T₂ Mapping of Prostate Cancer: "SMAN GERT AWARD magina cum laube

Ivan Jambor¹, Marko Pesola¹, Harri Merisaari², Pekka Taimen³, Peter J. Boström⁴, Timo Liimatainen⁵, Hannu J. Aronen¹

¹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ²Turku PET Centre, University of Turku, Turku, Finland; ³Department of Pathology, Turku University Hospital, Turku, Finland; ⁴Department of Urology, Turku University Hospital, Turku, Finland; ⁵Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland

1110. Repairing the Brain with Physical Exercise: Insights from Cortical Thickness Analysis of an Exercise Trial in Pediatric Brain Tumor Survivors

Kamila U. Szulc¹, Ade Oyefiade², Lily Riggs¹, ², Eric Bouffet³, ⁴, Suzanne Laughlin⁵, Brian W. Timmons⁶, Jason P. Lerch⁷, Cynthia B. de Medeiros², Jovanka Skocic¹, Donald J. Mabbott¹, ²

¹Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; ²Department of Psychology, Hospital for Sick Children, Toronto, Ontario, Canada; ³Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada; ⁴Department of Pediatrics, Hospital for Sick Children, Toronto, Ontario, Canada; ⁵Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; ⁶Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada; ⁷Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada

1111. Manganese-Enhanced MRI of Minimally Gadolinium-Enhancing Breast Tumors

Hai-Ling Margaret Cheng¹, ², Tameshwar Ganesh², Reza Bayat Mokhtari³, Mosa Alhamami², Herman Yeger³ ¹Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; ²Physiology & Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; ³Developmental & Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada

Traditional Poster Tumor Therapy Response: Preclinical & Clinical (except Brain Tumor) Exhibition Hall Monday 10:45-12:45

1112. Investigating PH and Other Effects of a Proton Pump Inhibitor (PPI) in Cancer Models with ³¹P Magnetic Resonance

Gopal Varma¹, Xiaoen Wang¹, Han Xie², Gerburg Wulf³, Pankaj Seth², David C. Alsop¹, Aaron K. Grant¹, Vikas P. Sukhatme²

¹Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; ²Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; ³Division of Hematology and Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States

1113. 19F MRSI of Capecitabine in the Liver Using Broadband TxRx Antennas and Dual-Frequency Excitation Pulses at 7T

Jetse van Gorp¹, Peter Seevinck¹, Anna Andreychenko², Alexander Raaijmakers², Peter Luijten³, Miriam Koopman⁴, Vincent Boer³, Dennis Klomp³

¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands; ³Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Department of Medical Oncology, University Medical Center Utrecht, Utrecht, Netherlands

1114. Mean-Shift Clustering for Assessing Response Heterogeneity in Bone Metastases Sarah Ann Mason¹, Nina Tunariu¹, Dow-Mu Koh¹, David J. Collins¹, Martin O. Leach¹, Matthew D. Blackledge¹ ¹Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom

1115. cPLA2 Inhibition Affects the Relationship Between Vascular Function and Structure in a Patient-Derived Breast Cancer Model: A Correlation Study of DCE-MRI Vs. Micro-CT

Eugene Kim¹, Astrid Jullumstrø Feuerherm², ³, Berit Johansen², ³, Olav Engebraaten⁴, Gunhild Mari Mælandsmo⁴, Tone Frost Bathen¹, Siver Andreas Moestue¹

¹MR Cancer Group, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; ²Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway; ³Avexxin AS, Trondheim, Norway; ⁴Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway

1116. Assessing the Utility of Oxygen-Enhanced Magnetic Resonance Imaging (OE-MRI) to Predict Radiation Response of Rat Prostate Tumors

Derek A. White¹, ², Zhang Zhang³, Heling Zhou¹, Debu Saha³, Peter Peschke⁴, Zhongwei Zhang¹, Ralph P. Mason⁵ ¹Radiology, University of Texas Southwestern, Dallas, TX, United States; ²Bioengineering, University of Texas at Arlington, TX, United States; ³Radiation Oncology, University of Texas Southwestern, Dallas, TX, United States; ⁴Clinical Cooperation Unit Molecular Radiooncology, German Cancer Center, Heidelberg, Germany; ⁵Radiology, University of Texas Southwestern , Dallas, TX, United States

1117. Quantitative Analysis of Multi-Parametric FLT-PET/MRI in Evaluating Early Treatment Response in Renal Cell Carcinoma

Jacob Antunes¹, Satish Viswanath¹, Mirabela Rusu¹, Laia Valls², Norbert Avril², Christopher Hoimes², Anant Madabhushi¹

¹Center for Computational Imaging and Personalized Diagnostics, Case Western Reserve University, Cleveland, OH, United States; ²University Hospitals Case Medical Center, Cleveland, OH, United States

1118. Early Detection of Treatment-Induced Apoptosis in Tumors Using Temporal Diffusion Spectroscopy MRI *Xiaoyu Jiang¹, Hua Li¹, Ping Zhao¹, H. Charles Manning¹, Junzhong Xu¹, John C. Gore¹* ¹Institute of Imaging Science, vanderbilt university, nashville, TN, United States

Traditional Poster Tumor Perfusion & Permeability Applications Exhibition Hall Monday 10:45-12:45

1119. Highly Accelerated DCE-MRI Using Region of Interest Compressed Sensing

Amaresha Shridhar Konar¹, Nithin N. Vajuvalli¹, Rashmi R. Rao¹, Divya Jain¹, Dharmendra CK Kumar¹, Sairam Geethanath¹

¹Medical Imaging Research Center, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India

1120. Perfusion Correlated Heterogeneity in NSCLC Patient Tumor Glucose Metabolism

*Christopher Hensley*¹, *Eunsook Jin*², ³, *Naama Lev-Cohain*⁴, *Qing Yuan*⁴, *Kemp Kernstine*⁵, *Craig Malloy*⁶, ⁷, *Robert Lenkinski*, ⁶⁷, *Ralph Deberardinis*⁸, ⁹

¹Children's Research Institute, University of Texas Southwetern Medical Center, Dallas, TX, United States; ²Advanced Imaging Research Center, University of Texas Southwetern Medical Center, TX, United States; ³Internal Medicine, University of Texas Southwetern Medical Center, TX, United States; ⁴Radiology, University of Texas Southwetern Medical Center, TX, United States; ⁵Cardiovascular and Thoracic Surgery, University of Texas Southwetern Medical Center, TX, United States; ⁶Advanced Imaging Research Center, University of Texas Southwetern Medical Center at Dallas, TX, United States; ⁷Radiology, University of Texas Southwetern Medical Center at Dallas, TX, United States; ⁸Children's Research Institute, University of Texas Southwetern Medical Center at Dallas, TX, United States; ⁹Pediatrics, University of Texas Southwetern Medical Center at Dallas, TX, United States;

1121. Monitoring Quantitative Tumor Blood Volume in Mouse Brain Under Bevacizumab by the RSST1-MRI Method.

Michel Sarraf¹, ², Flavien Caraguel¹, François Berger¹, Boudewijn Van Der Sanden¹, Hana Lahrech¹ ¹CEA-CLINATEC, Grenoble, Isère, Rhône-Alpes, France; ²Saint Joseph University, Beyrouth, Lebanon

Traditional Poster Cancer: Cells, Biopsy, Body Fluids Exhibition Hall Monday 10:45-12:45

1122. 13C NMR Studies of Lymphoma and Melanoma Cells in the Perfusion Bioreactor and *In Vivo* Xenografts for Flux Calculation

Seung-Cheol Lee¹, Jeffrey Roman¹, Kavindra Nath¹, David Nelson¹, Kevin Muriuki¹, Alexander Shestov¹, Jerry Glickson¹

¹Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States

- 1123. 13C MRS/Bioreactor Technique to Study Melanoma: Quantifying Glutaminolysis and De Novo Lipogenesis Alexander A. Shestov¹, Anthony Mancuso², Pierre Gilles Henry³, Dennis B. Leeper⁴, Jerry David Glickson⁵ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Radiology, University of Pennsylvania, PA, United States; ³University of Minnesota, MN, United States; ⁴Radiation Oncology, Thomas Jefferson University, PA, United States; ⁵Radiology, University of Pennsylvania, PA, United States
- **1124.** Noninvasive Image-Based Quantification of 18F-Fluoromisonidazole (FMISO) Uptake Using PET/MRI Dragana Savic¹, Youngho Seo¹, Randall Hawkins¹, Soonmee Cha¹, Miguel Pampaloni¹, Sharmila Majumdar¹, Ramon Barajas¹

¹Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, United States

1125. Investigation of Prostate Cancer Metabolomics with Prostate Biopsy Cores

Emily Decelle¹, Taylor Fuss¹, Shulin Wu¹, Adam Feldman², Douglas Dahl², Aria Olumi², W Scott McDougal², Chin-Lee Wu¹, Leo L. Cheng³

¹Pathology, Massachusetts General Hospital, Boston, MA, United States; ²Urology, Massachusetts General Hospital, Boston, MA, United States; ³Pathology and Radiology, Massachusetts General Hospital, Boston, MA, United States

- 1126. Differences in Phospholipid and Lipid Metabolism Between Cancer Cells in Culture and in Solid Tumors Noriko Mori¹, Flonné Wildes¹, Tomoyo Takagi¹, Kristine Glunde¹, ², Zaver M. Bhujwalla¹, ²
 ¹The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, MD, United States
- 1127. Glutamate Dehydrogenase Inhibition Reduces Glutamine Conversion Into 2HG in IDH1-Mutated Cancer Cells as Detected by ¹³C MRS

Tom Peeters¹, Vincent Breukels¹, Corina van den Heuvel², Anna Navis², Sanne van Lith², Jack van Asten¹, Remco Molenaar³, William Leenders², Arend Heerschap¹

¹Department of Radiology and Nuclear Medicine, Radboudumc, Nijmegen, Netherlands; ²Department of Pathology, Radboudumc, Nijmegen, Netherlands; ³Department of Cell Biology and Histology, Academic Medical Center, Amsterdam, Netherlands

1128. In Vivo High Resolution Multifrequency MR Elastography of Neuro Tumors Compared to Single Cell Mechanical Properties

Ingolf Sack¹, Anatol Fritsch², Steve Pawlizak², Martin Reiss-Zimmermann³, Karl-Titus Hoffmann³, Felix Arlt⁴, Wolf Müller⁵, Jing Guo¹, Jürgen Braun⁶, Josef Käs²

¹Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ²Physics and Earth Sciences, University of Leipzig, Saxony, Germany; ³Department of Neuroradiology, University Hospital, University of Leipzig, Saxony, Germany; ⁴Department of Neurosurgery, University Hospital, University of Leipzig, Saxony, Germany; ⁵Department of Neuropathology, University Hospital, University of Leipzig, Saxony, Germany; ⁶Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany

1129. Amine as a Novel Biomarker for Differentiating Malignancy of Breast Cancer Cells *Xiao-Yong Zhang¹, Jingping Xie¹, Hua Li¹, Junzhong Xu¹, John C. Gore¹, Zhongliang Zu¹* ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States

Traditional PosterBreast Cancer ClinicalExhibition HallMonday 10:45-12:45

1130. Assessment of Tumor Morphology on Diffusion-Weighted Breast MRI: Diagnostic Value of Reduced FOV High Resolution Diffusion-Weighted Imaging

Maarten W. Barentsz¹, Valentina Taviani², Jung M. Chang³, Debra M. Ikeda², Kanae K. Myiake⁴, Suchandrima Banerjee⁵, Maurice A.A.J. van den Bosch¹, Brian A. Hargreaves², Bruce L. Daniel² ¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Radiology, Stanford University, Stanford, CA, United States; ³Radiology, Seul National University Hospital, Seul, Korea; ⁴Diagnostic Imaging and Nuclear Medicine, Kyoto University Hospital, Kyoto, Japan; ⁵Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States

1131. DW-PSIF in Breast MRI

Catherine J. Moran¹, Jung Min Chang², Marcus T. Alley¹, Kanae Kawai Miyake¹, Debra M. Ikeda¹, Brain A. Hargreaves¹, Kristin L. Granlund¹, Bruce L. Daniel¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²Seoul National University Hospital, Seoul, Korea

1132. Breast Tumors Characterization Using Diffusion Kurtosis Imaging Yongming Dai¹, Junxiang Zhang², Dongmei Wu³ ¹Philips Healthcare, Shanghai, China; ²Department of Radiology, The First Affiliated Hospital of Bengbu Medical College,, Anhui, China; ³Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China

1133. Novel Dynamic Contrast Enhanced Breast MRI with High Spatiotemporal Resolution and Fat Separation: Image Quality Compared to the Clinical Standard-Of-Care MRI

Roberta M. Strigel¹,², Courtney K. Morrison², Leah C. Henze Bancroft¹, James H. Holmes³, Kang Wang³, Wendy B. DeMartini¹, Alejandro Munoz del Rio¹,², Frank R. Korosec¹,²

¹Radiology, University of Wisconsin, Madison, WI, United States; ²Medical Physics, University of Wisconsin, Madison, WI, United States; ³Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States

- 1134. MRI Functional Parameters in Breast Cancer:T2*, ADC and Contrast Agent Uptake Evanthia Kousi¹, Maria A. Schmidt¹, Marco Borri¹, Cheryl Richardson², Georgina Hopkinson², Elizabeth A.M. O'Flynn¹, Robin M. Wilson², Steven Allen², Romney J.E. Pope², Martin O. Leach¹ ¹CR-UK and EPSRC Imaging Centre, Royal Marsden NHS Foundation Trust and Institute of Cancer Reasearch, Sutton, Surrey, United Kingdom; ²Department of Radiology, Royal Marsden NHS Foundation Trust, Chelsea, London, United Kingdom
- 1135. Magnetization Transfer Ratio Variations in Malignant Breast Lesions and Parenchyma Andrew J. Patterson¹, Mary M. McLean², Reem Bedair¹, Andrew N. Priest¹, John R. Griffiths², Martin J. Graves¹, Fiona J. Gilbert¹
 ¹Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, England, United Kingdom; ²Cancer Research UK Cambridge Institute, Li Ka Shing Cambridge, Cambridge, England, United Kingdom
- 1136. Evaluation of Lipid Composition in Patients with Benign Tissue and Cancer Using Multiple Gradient Echo MRI Melanie Freed¹, ², Pippa Storey¹, ², Alana Amarosa Lewin¹, Melanie Moccaldi¹, Linda Moy¹, Sungheon G. Kim¹, ² ¹Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research (CAI2R), Dept. Radiology, NYU School of Medicine, New York, NY, United States
- 1137. Quantitative DCE Analysis for Breast Imaging: The Benefit of Dixon Fat-Water Separation in an Ultrafast TWIST-VIBE Protocol

Elisabeth Weiland¹, Sandra Peter², Dominik Nickel¹, Rolf Janka², Michael Uder², Evelyn Wenkel² ¹MR Application Development, Siemens Healthcare, Erlangen, Germany; ²Radiology, University of Erlangen, Germany

- 1138. Alterations to Breast Tissue Chemistry in Women at Risk of Cancer: 2D MR Spectroscopy In Vivo Study Jessica Buck¹, Saadallah Ramadan¹, Leah Best², Judith Silcock³, Jameen Arm², Scott Quadrelli¹, Gorane Santamaria¹, Kin Men Leong², Peter Lau², Peter Malycha¹, David Clark¹, ³, Carolyn Mountford¹, ⁴
 ¹Centre for MR in Health, University of Newcastle, NSW, Australia; ²Calvary Mater Hospital, Newcastle, NSW, Australia; ³The Breast and Endocrine Centre, Gateshead, NSW, Australia; ⁴Centre for Clinical Spectroscopy, Department of
- 1139. Assessment of Background Parenchymal Enhancement in Breast MRI of BRCA 1/2 Mutation Carriers Compared to Matched Controls

Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States

Alana Amarosa Lewin¹, Sungheon Kim¹, James S. Babb¹, Amy N. Melsaether¹, Jason McKellop¹, Melanie Moccaldi², Ana Paula Klautau Leite³, Linda Moy¹

¹Radiology, New York University School of Medicine, New York, United States; ²Radiology, New York University Cancer Institute, New York, United States; ³Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil

1140. A Practical Approach to Pharmacokinetic Modelling in Monitoring Neoadjuvant Chemotherapy in Breast Cancer

Reem Bedair¹, Andrew Patterson², Mary McLean³, Roie Manavaki¹, Scott Reid⁴, John Griffiths³, Martin Graves², Fiona Gilbert¹

¹University of Cambridge, Department of Radiology, Cambridge, Cambridgeshire, United Kingdom; ²Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom; ³Cancer Research UK Cambridge Research Institute, Cambridge, Cambridgeshire, United Kingdom; ⁴GE Healthcare, Diagnostic Imaging, Buckingham, Buckinghamshire, United Kingdom

1141. Characterization of Invasive Breast Cancer Using Quantitative DCE-MRI at 3.0T

Reem Bedair¹, Martin Graves², Mary McLean³, Scott Reid⁴, Roie Manavaki¹, John Griffiths³, Andrew Patterson², Fiona Gilbert¹

¹University of Cambridge, Department of Radiology, Cambridge, Cambridgeshire, United Kingdom; ²Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom; ³Cancer Research UK Cambridge Research Institute, Cambridge, Cambridgeshire, United Kingdom; ⁴GE Healthcare, Diagnostic Imaging, Buckingham, Buckinghamshire, United Kingdom

1142. Influence of Breast Cancer Receptor Status on Multi-Parametric Magnetic Resonance Imaging for Predicting Treatment Response: Preliminary Results Via Li¹ Vandang G. Abramson¹ Lovi P. Anlinghaus¹ Halmook Kang¹ Japan M. Williams¹ Piahand G. Abramson¹

Xia Li¹, Vandana G. Abramson¹, Lori R. Arlinghaus¹, Hakmook Kang¹, Jason M. Williams¹, Richard G. Abramson¹, A. Bapsi Chakravarthy¹, Praveen Pendyala¹, Thomas E. Yankeelov¹ ¹Vanderbilt University, Nashville, TN, United States

- **1143.** Does Breast Peritumoral Tissue Hold Valuable Information for Texture Analysis? *Michael Fox^l*, *Peter Gibbs^l*, *Martin Pickles^l*, *Lindsay W. Turnbull^l* ¹Centre for MR Investigations, HYMS at University of Hull, Hull, East Yorkshire, United Kingdom
- 1144. The Association of Breast Density with Tumor Subtypes: Evaluation with 3D MRI Jeon-Hor Chen¹, ², Yifan Li¹, Yoon Jung Choi³, Chen-Pin Chou⁴, Tsung-Lung Yang⁴, Min-Ying Su¹ ¹Center for Functional Onco-Imaging, University of California, Irvine, CA, United States; ²Department of Radiology, Eda Hospital and I-Shou University, Kaohsiung, Taiwan; ³Department of Radiology, Kangbuk Samsung Hospital, Seoul, Korea; ⁴Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- 1145. Minkowski Functionals in MRI: A New Texture Analysis Tool in Breast MRI Michael Fox¹, Peter Gibbs¹, Martin Pickles¹, Lindsay W. Turnbull¹ ¹Centre for MR Investigations, HYMS at University of Hull, Hull, East Yorkshire, United Kingdom
- 1146. Estimation of Fat Fractions in Different Subtypes of Breast Cancer Using In-Vivo 1H MRS Study Khushbu Agarwal¹, Uma Sharma¹, Smriti Hari², Vurthaluru Seenu³, Rajinder Parshad³, Naranamangalam R. Jagannathan¹ ¹Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of

Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, Delhi, India

Traditional PosterCancer: ProstateExhibition HallMonday 10:45-12:45

1147. Rapid Quantitative T2-Mapping of the Prostate Using 3D Dual Echo Steady State (DESS) Isabel Dregely¹, Daniel AJ Margolis, Kyung Sung¹, Novena Rangwala¹, Steve Raman², Holden H. Wu¹ ¹Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ²University of California Los Angeles, CA, United States

1148. Modelling Tissue Microstructure in Bone Metastases from Prostate Cancer Using VERDICT MRI

Colleen Bailey¹, Eleftheria Panagiotaki¹, Nina Tunariu², Matthew R. Orton³, Veronica A. Morgan³, Thorsten Feiweier⁴, David J. Hawkes¹, Martin O. Leach³, David J. Collins³, Daniel C. Alexander¹ ¹Centre for Medical Image Computing, University College London, London, United Kingdom; ²Radiology, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, United Kingdom; ³CR-UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom; ⁴Healthcare Sector, Siemens AG, Erlangen, Germany

1149. A Novel Prostate MR Elastography Technique Based on Image Similarity

Seyed Reza Mousavi¹, Seyyed Mohammad Hesabgar², Timothy Scholl², ³, Abbas Samani², ³ ¹Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada; ²Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ³Robarts Research Institute, London, Ontario, Canada

1150. DCE-MRI Appearance of Prostate After Androgen Deprivation Therapy – Preliminary Results Lucy E. Kershaw¹, ², Andrew J. McPartlin, ²³, Ananya Choudhury, ²³ ¹CMPE, The Christie NHSFT, Manchester, United Kingdom; ²Institute of Cancer Sciences, The University of Manchester, Manchester, United Kingdom; ³Oncology, The Christie NHSFT, Manchester, United Kingdom

1151. Comparison of Prostate Tumor Volume Delineation Between Multi-Parametric MRI Sequences When Planning for Hypofractionated Radiotherapy

Hugh Harvey¹, Veronica Morgan², David Dearnaley³, Sharon Giles², Alison Macdonald², Julia Murray³, Nandita deSouza¹

¹CRUK Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, United Kingdom; ²The Royal Marsden NHS Foundation Trust, Surrey, United Kingdom; ³Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom

1152. Sensitive Detection of Zinc(II) in the Prostate with a Gadolinium-Based MRI Contrast Agent

*Veronica Clavijo Jordan*¹, ², *Christian Preihs*¹, *Shiuhwei Chen*³, *Shanrong Zhang*¹, *Wen-hong Li*³, *Neil Rofsky*², *Dean Sherrv*¹, ⁴

¹Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ²Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ³Departments of Cell Biology and of Biochemistry, UT Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Chemistry, UT Dallas, TX, United States; ⁴Departmen

1153. Bi-Exponential Diffusion Analysis in Normal Prostate and Prostate Cancer: Transition Zone and Peripheral Zone Considerations

Thiele Kobus¹, ², Andriy Fedorov¹, Clare Tempany¹, Robert Mulkern³, Ruth Dunne¹, Stephan E. Maier¹ ¹Radiology, Brigham and Women's Hospital, Boston, MA, United States; ²Radiology, Radboud UMC, Nijmegen, Netherlands; ³Radiology, Children's Hospital, Boston, MA, United States

1154. A Novel Computer-Assisted Approach for Prostate Cancer Diagnosis on T2w MRI

Haibo Wang¹, Satish viswanath², Asha Singanamalli³, Anant Madabhushi⁴ ¹Case Western Reserve University, Cleveland Heights, OH, United States; ²Biomedical Engineering, Case Western Reserve University, Cleveland Heights, OH, United States; ³Case Western Reserve University, OH, United States; ⁴Biomedical Engineering, Case Western Reserve University, OH, United States

1155. MRI-Guided Focal Laser Ablation of Prostate Cancer: Comparison of Targeted and Ablated Volumes

Holden H. Wu¹, Alan Priester², ³, Shyam Natarajan², ³, Kyunghyun Sung¹, Daniel Margolis¹, Warren Grundfest², ³, Leonard Marks, ³⁴, Steven Raman¹

¹Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ²Biomedical Engineering, University of California Los Angeles, CA, United States; ³Center for Advanced Surgical and Interventional Technology (CASIT), University of California Los Angeles, CA, United States; ⁴Urology, University of California Los Angeles, CA, United States;

1156. Pilot: MRI Differences Associated with Dutasteride and Finasteride Treatments in Patients with Low Risk Prostate Cancer

*Olga Starobinets*¹, ², *John Kornak*³, *John Kurhanewicz*¹, ², *Susan M. Noworolski*¹, ² ¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²Graduate Group in Bioengineering, UC Berkeley, Berkeley, CA, United States; ³Epidemiology and Biostatistics, UCSF, San Francisco, CA, United States

1157. Diagnostic Performance of 68Ga-PSMA-PET/MRI Versus 68Ga-PSMA-PET/CT in the Evaluation of Lymph Node and Bone Metastases of Prostate Cancer

Martin Thomas Freitag¹, Jan Radtke¹, ², Boris Hadaschik², Uwe Haberkorn³, Heinz-Peter Schlemmer¹, Matthias Roethke¹, Ali Afshar-Oromieh³

¹Department of Radiology, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany; ²Department of Urology, University hospital of Heidelberg, Heidelberg, Baden-Wuerttemberg, Germany; ³Department of Nuclear Medicine, University hospital of Heidelberg, Baden-Wuerttemberg, Germany

1158. The Influence of Polyamines on Metabolite Ratios in the Prostate at 7 Tesla

Mariska P. Luttje¹, Catalina S. Arteaga de Castro², Peter R. Luijten¹, Marco van Vulpen¹, Uulke A. van der Heide³, Dennis WJ Klomp¹

¹Imaging Division, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Radiotherapy, the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, Netherlands; ³Department of Radiotherapy, , the Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, Netherlands

- 1159. Clinical Assessment of B1+ Inhomogeneity Effects on Quantitative Prostate MRI at 3.0 T *Xinran Zhong¹*, ², *Novena Rangwala¹*, *Steven Raman¹*, *Daniel Margolis¹*, *Holden Wu¹*, ², *Kyunghyun Sung¹*, ² ¹Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ²Biomedical Physics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States
- 1160. Validation of Real Time Virtual Sonography (RVS) for Targeted MR-Ultrasound Guided Transrectal Prostate Biopsies Against Transperineal Template Saturation Biopsies for Service Development

Victoria Sherwood¹, Donald MacDonald², James Harding³, Nicholas Hedley³, Kieran Jefferson², Chris Koller¹, Charles Hutchinson³

¹Department of Radiology Physics, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, Warwickshire, United Kingdom; ²Department of Urology, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, Warwickshire, United Kingdom; ³Department of Radiology, University Hospitals Coventry & Warwickshire NHS Trust, Coventry, Warwickshire, United Kingdom

1161. T2-Weighted 3D Variable-Flip Angle Turbo Spin Echo Compared to Standard 2D T2-Weighted Imaging at 3T for Prostate Cancer Detection in a Patient Cohort Undergoing MR/US Fusion Biopsy Steven M. Shea¹, Joseph M. Yacoub¹, Gopal N. Gupta², Grace Yoon³, Ari Goldberg¹ ¹Radiology, Loyola University Chicago, Maywood, IL, United States; ²Urology, Loyola University Chicago, Maywood, IL, United States; ³Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States

1162. In Vivo Sodium Imaging of Human Prostate Cancer

Justin Charles Peterson¹, Adam Farag², Trevor Szekeres², Eli Gibson², ³, Aaron D. Ward², ³, Joseph Chin⁴, Stephen Pautler⁵, Glenn Bauman⁴, Cesare Romagnoli⁴, Robert Bartha¹, ², Timothy J. Scholl¹, ² ¹Medical Biophysics, Western University, London, Ontario, Canada; ²Robarts Research Institute, Ontario, Canada; ³Biomedical Engineering, Western University, Ontario, Canada; ⁴London Health Sciences Centre, Ontario, Canada; ⁵St. Joseph's Health Care, Ontario, Canada

1163. Initial Evaluation of T2 Shine-Through Elimination with Relax DWI

Paul Summers¹, Daniel Chong², Valentina Elli³, Daniele Giardiello⁴, Mehran Vaziri¹, Giuseppe Petralia¹, Massimo Bellomi¹, ³

¹European Institute of Oncology, Milan, Italy; ²Stillpig Software, Sarawak, Malaysia; ³University of Milan, Milan, Italy; ⁴University of Milan - Bicocca, Milan, Italy

1164. Using Multiparametric MRI to Differentiate Prostate Cancer in the Anterior Aspect of the Gland

Olga Starobinets¹, ², Jeffry Simko³, ⁴, Kyle Kuchinsky³, Sonam Machingal¹, John Kurhanewicz¹, ², Peter R. Carroll⁴, Kirsten L. Greene⁴, Susan M. Noworolski¹, ²

¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²Graduate Group in Bioengineering, UC Berkeley, Berkeley, CA, United States; ³Pathology, UCSF, San Francisco, CA, United States; ⁴Urology, UCSF, San Francisco, CA, United States

1165. Validation of T2 Mapping for Treatment Response Monitoring in Longitudinal Multi-Center Clinical Trials Petra J. van Houdt¹, Harsh K. Agarwal², ³, Laurens B. van Buuren¹, Marko Ivancevic⁴, Søren Haack⁵, Jesper Folsted Kallehauge⁶, Peter L. Choyke³, Uulke A. van der Heide¹ ¹Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, Netherlands; ²Philips Research NA, Briarcliff Manor, MD, United States; ³National Cancer Institute, National Institutes of Health, Bethesda, NY, United States; ⁴Philips Healthcare, Best, Netherlands; ⁵Clinical Engineering, Aarhus University Hospital, Aarhus, Denmark; ⁶Medical Physics, Aarhus University Hospital, Aarhus, Denmark 1166. A Multi-Site Study to Develop a New Pseudo-Quantitative T2w MRI Map for Prostate Cancer Characterization: Preliminary Findings

Satish Easwar Viswanath¹, Chun Yeung Yim², Nicolas Bloch³, Mark Rosen⁴, John Kurhanewicz⁵, Anant Madabhushi⁶ ¹Case Western Reserve University, Cleveland, OH, United States; ²Rutgers University, New Brunswick, NJ, United States; ³Boston University, MA, United States; ⁴University of Pennsylvania, PA, United States; ⁵University of California San Francisco, CA, United States; ⁶Case Western Reserve University, OH, United States

1167. Diagnostic Performance of the ESUR PI-RADS Scoring System for Multiparametric MRI of the Prostate: Systematic Comparison of Four Parameters Versus Three Parameters for Detection and Grading of Prostate Cancer

Stephan Polanec¹, Katja Pinker¹, Martin Suasani¹, Peter Brader¹, Dietmar Georg¹, Thomas Helbich¹, Pascal Baltzer¹ ¹General Hospital of the Medical University of Vienna!, Vienna, Austria

1168. Radiogenomics of Prostate Cancer: Association Between Quantitative Multi-Parametric MRI Features and PTEN Expression

Aytekin Oto¹, David VanderWeele², Yulei Jiang¹, Stephanie Maria McCann¹, Xiaobing Fan¹, Jianing Wang¹, Tatjana Antic³

¹Radiology, The University of Chicago Medicine, Chicago, IL, United States; ²Internal Medicine, The University of Chicago Medicine, Chicago, IL, United States; ³Pathology, The University of Chicago Medicine, Chicago, IL, United States

1169. The Application of Sparse Reconstruction to High Spatio-Temporal Resolution Dynamic Contrast Enhanced MRI of the Prostate: Initial Clinical Experience with Effect on Image and Parametric Perfusion Characteristic Quality

Adam⁷T. Froemming¹, Eric A. Borisch², Joshua D. Trzasko², Roger C. Grimm², Armando Manduca², Phillip Young³, Stephen J. Riederer³, Akira Kawashima³

¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Physiology and Biomedical Engineering, Mayo Clinic, MN, United States; ³Radiology, Mayo Clinic, MN, United States

Traditional Poster

Cancer: Other Cancer

Exhibition Hall Monday 10:45-12:45

1170. Pre-Operative T Stage Evaluation of Esophageal Carcinoma: A Comparison Study Between Self-Gating Radial VIBE and Breath-Hold VIBE

Fengguang Zhang¹, Jinrong Qu¹, Hui Liu², Xiang Li¹, Hongkai Zhang¹, Hailiang Li¹, Grimm Robert³, Kiefer Berthold³, Xuejun Chen¹

¹Radiology, Henan Tumor Hospital, Zhengzhou, Henan, China; ²NEA MR Collaboration, Siemens Ltd., China, Shanghai, China; ³Healthcare, Siemens AG, Erlangen, Germany

1171. Isotropic Diffusion Spectrum Imaging Constrained by Independent Component Analysis with a Ball and Stick Model to Assess Cellularity of Brain Tumors

JEONG-WON JEONG¹, ², Csaba Juhász¹, ³, Sandeep Mittal, ³⁴, Edit Bosnyák¹, Diane C. Chugani¹, ² ¹Pediatrics and Neurology, Wayne State University, Detroit, MI, United States; ²Children's Hospital of Michigan, Detroit, MI, United States; ³Karmanos Cancer Institute, Detroit, MI, United States; ⁴Neurosurgery and Oncology, Wayne State University, Detroit, MI, United States

1172. Comparison of Intravoxel Incoherent Motion Characteristics Between Different Tumor Stages and Grades in Rectal Cancer

Hongliang Sun¹, Yanyan Xu¹, Aiping Song², Wu Wang ¹Radiology, China-Japan Friendship Hospital, Beijing, China; ²China-Japan-Friendship Hospital, Beijing, China

1173. Whole Body Multi-Parametric MRI; a Comparison of the Diagnostic Performance of Different Sequences Arash Latifoltojar¹, Margaret Hall-Craggs², Alan Bainbridge², Charles House², Kannan Rajesparan², Stuart Taylor¹, Kwee Yong¹, Neil Rabin², Shonit Punwani¹ ¹University College London, London, United Kingdom, ²University College London, United Kingdom

¹University College London, London, United Kingdom; ²University College London Hospital, London, United Kingdom

Traditional Poster Musculoskeletal - General

Exhibition Hall Monday 10:45-12:45

1174. Reproducibility of Morphological Measurements and Muscle DTI Parameters in the Masticatory System of Healthy Subjects.

Jose D Sergio Almeida¹, Flora Gröning², Jiabao He¹ ¹Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, Scotland, United Kingdom; ²Anatomy and Musculoskeletal Research Programme, University of Aberdeen, Aberdeen, Scotland, United Kingdom

1175. Bone Imaging Using an Inversion Recovery Prepared UTE Sequence Michael Carl¹, Jiang Du², Graeme M. Bydder²

¹GE Healthcare, San Diego, CA, United States; ²UCSD, CA, United States

1176. RF and Coil Inhomogeneity Correction in 2D Leg Images: A New Method Comparing with LEMS Faezeh Fallah¹, ², Christian Wuerslin¹, Fritz Schick¹, Bin Yang² ¹Section on Experimental Radiology, University Clinic of Tübingen, Tübingen, Baden-Wuerttemberg, Germany; ²Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Baden-Wuerttemberg, Germany

1177. Accurate Quantitative Assessment of Synovitis in Rheumatoid Arthritis Using Pixel by Pixel, Time-Intensity Curve Shape Analysis

Taro Sakashita¹, Tamotsu Kamishima², Hiroyuki Sugimori³, Meiki Tou⁴, Atsushi Noguchi⁵, Michihito Kawano⁶, Tatsuya Atsumi⁵

¹Graduate School of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan; ²Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan; ³Department of Radiology, Hokkaido University Hospital, Hokkaido, Japan; ⁴Graduate School of Health Sciences, Hokkaido University, Hokkaido, Japan; ⁵Internal Medicine 2, Hokkaido University Hospital, Hokkaido, Japan; ⁶Obihiro-Kosei General Hospital, Hokkaido, Japan

1178. Quantitative Evaluation of Synovial Membrane and Effusion in Knee Osteoarthritis:

Junghyo Kim¹, Takashi Nishii², Hidetoshi Hamada¹, Masaki Takao¹, Takashi Sakai¹, Tetsuya Tomita³, Kazuma Futai³, Hisashi Tanaka⁴, Hideki Yoshikawa¹, Nobuhiko Sugano¹

¹Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; ²Department of Orthopaedic Medical Engineering, Osaka University Graduate School of Medicine, Osaka, Japan; ³Departments of Orthopedic Biomaterial Science, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; ⁴Department of Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; ⁴Department of Radiology, Osaka

1179. Fat Suppression with Double Off-Resonance RF Pulses for Musculoskeletal Imaging at 3.0T

Yeji Han¹, Yeon Chul Ryu², Jun-Young Chung¹ ¹Department of Biomedical Engineering, Gachon University, Incheon, Korea; ²Neuroscience Research Institute, Gachon University, Incheon, Korea

1180. Assessment of Acetabular Cartilage and Labrum for Painful Hips Using Radial MRI with Biochemical and Morphological Sequences: Arthroscopic Verification HIDETOSHI HAMADA¹, Takashi Nishii¹, Kim Junghyo¹, Hisashi Tanaka², Nobuhiko Sugano¹

¹Departments of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; ²Department of Diagnostic and Interventional Radiology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan

- 1181. Cartilage Evaluation by GagCEST at 3 Tesla After Arthroscopic Partial Meniscectomy Olgica Zaric¹, Pavol Szomolanyi¹, Vladimir Mlynarik¹, Vladimir Juras¹, Siegfried Trattnig¹ ¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- 1182. Knee Cartilage Evaluation Using Gag-CEST Imaging at 3T: Correlation to the Arthroscopic Grading Takako Aoki¹, Hiroshi Kawaguchi², Takahiro Watanabe, Yomei Tachibana³, Hiroshi Imai⁴, Benjamin Schmitt⁵, Mamoru Niitsu³
 ¹Radiology, Saitama medical university hospital, Moroyama-machi, Iruma-gun, Japan; ²National Institute of Radiological Sciences, Japan; ³Saitama medical university, Japan; ⁴Siemens Japan K.K., Japan; ⁵Healthcare Sector, Siemens Ltd., Australia

1183. Detection of Patellofemoral Overload by $T_{1\rho}$ MRI

Kevin D'Aquilla¹, Miltiadis Zgonis², J. Bruce Kneeland³, Hari Hariharan¹, Ravinder Reddy¹ ¹Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Department of Orthopedic Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA, United States; ³Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States

1184. Assessment of Inter-Operator Agreement in Manual Image-Segmentation of Femoral Cartilage

Hon J. Yu¹, ², Taiki Nozaki¹, Yasuhito Kaneko¹, Kayleigh Kaneshiro¹, Ran Schwarzkopf³, Hiroshi Yoshioka¹ ¹Radiological Sciences, University of California, Irvine, CA, United States; ²Tu & Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, United States; ³Orthopaedic Surgery, University of California, Irvine, CA, United States

1185. Ultra Structure of Articular Cartilage

Soorena Azam Zanganeh¹, Chantal Pauli², Christine B. Chung³, Eric Chang³, Graeme M. Bydder³, Darryl DLima², Jiang Du³

¹Radiology, University of California, San Diego, San Diego, CA, United States; ²Department of Molecular and Experimental Medicine, the Scripps Research Institute, San Diego, CA, United States; ³Radiology, University of California, San Diego, San Diego, CA, United Kingdom

1186. Multi-Echo SWI of Knee Cartilage

Joanna Yuen¹, Jachin Hung², Vanessa Wiggermann¹,², Robert McCormack³, Agnes d'Entremont⁴,⁵, Alexander Rauscher¹,²

¹UBC MRI Research Centre, Vancouver, British Columbia, Canada; ²Department of Physics and Astronomy, The University of British Columbia, Vancouver, British Columbia, Canada; ³Department of Orthopaedics, The University of British Columbia, Vancouver, British Columbia, Canada; ⁴Department of Mechanical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada; ⁵Centre for Hip Health and Mobility, Vancouver, British Columbia, Canada

1187. Sodium Inversion Recovery MRI on the Knee Joint with an Optimal Inversion Pulse Jae-Seung Lee¹, Ding Xia¹, Ravinder R. Regatte¹ ¹Department of Radiology, New York University, New York, NY, United States

1188. Patients at Risk for Tendinopathy and Chondropathy in Patients with Diabetes Mellitus Type I – Identification by Means of Quantitative Sodium MR Imaging at Ultra High Field (7 Tesla) – a Feasibility Study Wolfgang Marik¹, Stefan Nemec, Stefan Zbyn², Martin Zalaudek², Bernhard Ludvik³, Manuela Karner², Siegfried Trattnig²

¹ Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²MR Centre of Excellence, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ³Clinic for Internal Medicine III, Department of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria

1189. Topographic Modifications of T1-Gd in Early Osteoarthritic Tibial Cartilage by MRI at Microscopic Resolution *Ji hyun Lee¹, Farid Badar², Yang Xia³, ⁴*

Traditional Poster

¹Oakland Univ, Rochester, MI, United States; ²Oakland Univ, MI, United States; ³Physics, Oakland University, Rochester, MI, United States; ⁴Center for Biomedical Research, Oakland University, MI, United States

1190. Multiparametric MR Relaxometry for Articular and Epiphyseal Cartilage During Skeletal Maturation in a **Goat Model**

Luning Wang¹, Mikko J. Nissi², Ferenc Toth, Cathy Carlson, Jutta Ellermann¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Twin Cities, Minneapolis, MN, United States; ²Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland

1191. Validation of Adiabatic T₁ρ and T₂ρ Mapping of Articular Cartilage at 3T Victor Casula¹, ², Joonas Autio³, Mikko J. Nissi³, ⁴, Michaeli Shalom⁴, Silvia Mangia⁴, Edward Auerbach⁴, Jutta Ellermann⁴, Eveliina Lammentausta³, Miika T. Nieminen¹, ³ ¹Department of Radiology, University of Oulu, Oulu, Finland; ²Medical Research Center Oulu, Oulu University Hospital and

University of Oulu, Oulu, Finland; ³Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; ⁴Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, United States

1192. Importance of Biexponential T2* and Partial Volume Effect Corrections on Quantification of Sodium Concentrations and Fixed Charge Density of Articular Cartilage with ²³Na-MRI at 7T

Lasse P. Räsänen¹, Stefan Zbyn², Miika T. Nieminen³, ⁴, Eveliina Lammentausta³, Xeli Deligianni⁵, ⁶, Oliver Bieri⁵, Siegfried Trattnig², Rami Korhonen¹

Department of Applied Physics, University of Eastern Finland, Kuopio, Finland; ²MR Centre-High Field MR, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria; ³Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; ⁴Department of Radiology, University of Oulu, Oulu, Finland; ⁵Division of Radiological Physics - Department of Radiology, University of Basel Hospital, Basel, Switzerland; ⁶Merian Iselin Klinik, Basel, Switzerland

1193. Reduction of Magic Angle Effect for Quantitative MRI of Articular Cartilage In Vivo

Mikko Johannes Nissi¹,², Victor Casula¹,², Eveliina Lammentausta,²³, Shalom Michaeli⁴, Silvia Mangia⁴, Edward Auerbach⁴, Jutta Ellermann⁴, Miika T. Nieminen¹, ³

¹Department of Radiology, Institute of Diagnostics, University of Oulu, Oulu, Finland; ²Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; ³Department of Radiology, Oulu University Hospital, Oulu, Finland; ⁴CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, United States

1194. A Multi-Purpose Flexible Antenna for Musculoskeletal MR Imaging at 3T

Fan Jia¹, Rui Zhang², Hongyang Yuan², Jue Zhang¹, ², Diange Zhou³, ⁴, Xiaoying Wang, ¹⁵, Jing Fang¹, ² ¹Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; ²College of Engineering, Peking University, Beijing, China; ³Arthritis Clinic and Research Center, Peking University People's Hospital, Beijing, China; ⁴ Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; ⁵Dept. of Radiology, Peking University First Hospital, Beijing, China

1195. Measuring 3D Knee Dynamics Using Center Out Radial Ultra-Short Echo Time Trajectories with a Low Cost **Experimental Setup**

Martin Krämer¹, Karl-Heinz Herrmann¹, Heide Boeth², Christoph von Tycowicz³, Christian König², Stefan Zachow³, Rainald M. Ehrig³, Hans-Christian Hege³, Georg N. Duda², Jürgen R. Reichenbach¹ ¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University

Jena, Jena, Germany; ²Julius Wolff Institute and Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, Berlin, Germany; ³Zuse Institute Berlin, Berlin, Germany

1196. Simultaneous Time-Resolved Measurement of Blood Flow, Perfusion and Oxygen Consumption in Lower Leg **During Recovery from Exercise.**

Adil Bashir¹, Robert Gropler¹, Jie Zheng¹ ¹Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, United States

1197. Imaging of the Knee Using 3D Fast Spin Echo with Compressed Sensing

Scott A. Reid¹, Kevin F. King², David J. Lomas³, Florine van der Wolf-de Lijster³, Lloyd Estkowski², Martin J. Graves³ ¹GE Healthcare, Chalfont St Giles, United Kingdom; ²GE Healthcare, Waukesha, WI, United States; ³Radiology, Addenbrooke's Hospital & University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

1198. 3D TSE Imaging Using Sparse-Sense Acceleration: Comparison with Conventional 2D TSE Imaging for Detection of Internal Derangement of the Knee

Michael Paul Recht¹, Ricardo Otazo², Leon Rybak², Soterios Gyftopoulos², Catherine Petchprapa², Christian Geppert³, Mary Bruno², Esther Raithel³ ¹Radiology, NYU School of Medicine, New York, United States; ²Radiology, NYU School of Medicine, NY, United States; ³Siemens Healthcare, Germany

- **1199.** Effect of 16-Channel Flex Array Coil on PET Standardized Uptake Values for PET/MR Imaging of the Knee *Feliks Kogan¹, Jarrett Rosenberg¹, Sloane Brazina¹, Audrey Fan¹, Dawn Holley¹, Garry Gold¹* ¹Department of Radiology, Stanford University, Stanford, CA, United States
- 1200. A Primary Study of *In Vivo* Morphological Semi-Quantitative Assessment of Knee Osteoarthritis Using Dual-Echo 3D UTE Imaging: Compared with Traditional Sequences

Shihong Li¹, Guangwu Lin¹, Chuntao Ye¹, Haizhen Qian¹, Panli Zuo², Caixia Fu³, Yanqing Hua¹, David M. Grodzki⁴, Ming Ji¹

¹Radiology, Huadong Hospital, Fudan University, Shanghai, China; ²Siemens Healthcare, MR Collaborations NE Asia, Beijing, China; ³Application R&D Department, Siemens Shenzhen Magnetic Resonance Ltd., Shanghai, China; ⁴Magnetic Resonance, Siemens Healthcare, Erlangen, Germany

- **1201.** High Resolution T1ρ-Mapping of Articular Cartilage in the Wrist at 3T Joep van Oorschot¹, Mark Gosselink¹, Fredy Visser², Alexandra de Rotte¹, Peter Luijten¹, Dennis Klomp¹ ¹University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Noord-Brabant, Netherlands
- 1202. Regional Variation in Canine Knee Cartilage T2 Relaxation Times: Assessment of Normative Values Sarah L. Pownder¹, Kei Hayashi², Parina H. Shah¹, Hollis G. Potter¹, Matthew F. Koff¹ ¹Department of Radiology and Imaging - MRI, Hospital for Special Surgery, New York, United States; ²College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- 1203. T1rho Mapping of the Entire Femoral Cartilage Using Novel Depth and Angle Dependent Analysis Taiki Nozaki¹, Yasuhito Kaneko¹, Hon J. Yu¹, Kayleigh Kaneshiro¹, Ran Schwarzkopf², Takeshi Hara³, Hiroshi Yoshioka¹ ¹Radiological Sciences, University of California, Irvine, Orange, CA, United States; ²Orthopaedic Surgery, University of California,

¹Radiological Sciences, University of California, Irvine, Orange, CA, United States; ²Orthopaedic Surgery, University of California, Irvine, Orange, CA, United States; ³Intelligent Image Information, Gifu University Graduate School of Medicine, Gifu, Japan

- 1204. Positional Reproducibility of a Displacement Controlled MRI-Compatible Loading Device to Assess In Vivo Articular Cartilage Deformation Hongsheng Wang¹, Parina H. Shah², Suzanne Maher¹, Scott Rodeo³, Hollis G. Potter², Matthew F. Koff² ¹Department of Biomechanics, Hospital for Special Surgery, New York, United States; ²Department of Radiology and Imaging - MRI, Hospital for Special Surgery, New York, United States; ³Sports Medicine and Shoulder Service, Hospital for Special Surgery, New York, United States
- 1205. Robust T2 Mapping of Knee Cartilage Under in Situ Mechanical Loading Using Prospective Motion Correction Thomas Lange¹, Michael Herbst¹, ², Benjamin R. Knowles¹, Kaywan Izadpanah³, Maxim Zaitsev¹ ¹Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ³Department of Orthopedic and Trauma Surgery, University Medical Center Freiburg, Freiburg, Germany

- 1206. Normal T2 Map Profile of the Entire Femoral Cartilage Using a Novel Angle/layer Dependent Approach Yasuhito Kaneko¹, Taiki Nozaki¹, Hon Yu¹, Kayleigh Kaneshiro¹, Ran Schwarzkopf², Takeshi Hara³, Hiroshi Yoshioka¹ ¹Radiological Sciences, University of California, Irvine, Orange, CA, United States; ²Orthopaedic Surgery, University of California, Irvine, Orange, CA, United States; ³Division of Regeneration and Advanced Medical Sciences, Gifu University Graduate School of Medicine, Gifu, Japan
- 1207. T1ρ Measurements in the Intervertebral Discs: Analysis of Reproducibility and Diurnal Changes Volkan Emre Arpinar^l, Weitian Chen², L Tugan Muftuler^l, ³ ¹Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ²Global Applied Science Laboratory, GE Healthcare, CA, United States; ³Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, United States
- 1208. High Spatial Resolution MRI of Temporo-Mandibular Joint at 7.0 Tesla Using a Modestly Shaped 8 Channel Transceiver RF Coil Array

Jan Rieger¹, Claudia Kronnerwetter², Andreas Graessl³, Helmar Waiczies¹, Roman Leicht¹, Beate Endemann³, Siegfried Trattnig², Thoralf Niendorf³, ⁴

¹MRI.TOOLS GmbH, Berlin, Germany; ²High Field MR Centre, Department of Biomedical Imaging und Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ³Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany; ⁴Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty a, Berlin, Germany

1209. Regional Variation in Canine Knee Meniscus T2* Relaxation Times: Assessment of Normative Values and Histologic Correlation

Sarah L. Pownder¹, Parina H. Shah¹, Kei Hayashi², Hollis G. Potter¹, Matthew F. Koff¹ ¹Department of Radiology and Imaging - MRI, Hospital for Special Surgery, New York, United States; ²College of Veterinary Medicine, Cornell University, Ithaca, NY, United States

- **1210.** In Vitro Demonstration of the Vasculature of Human and Bovine Meniscus of the Knee with MRI at 11.7T Ju Chen¹, Qun He¹, Jihye Baek¹, Daryl D'Lima¹, Jiang Du¹, Nikolaus M. Szeverenyi¹, Graeme Bydder¹ ¹University of California, San Diego, CA, United States
- **1211.** Real Time Fat Suppressed MRI of the Knee Joint During Flexion/extension Allows the Study of PCL Motion Valentina Mazzoli¹, ², Andre Sprengers³, Aart J. Nederveen², Gustav J. Strijkers¹, ⁴, Klaas Nicolay¹, Nico Verdonschot³,

¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Department of Radiology, Academic Medical Center, Amsterdam, Netherlands; ³Orthopaedic Research Lab, Radboud University Medical Center, Nijmegen, Netherlands; ⁴Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands; ⁵Laboratory of Biomechanical Engineering, University of Twente, Enschede, Netherlands

1212. Preliminary Results of Early Detection of Baseball Elbow Using Low Field Magnetic Resonance Imaging Specialized for Small Joints Yoshikazu Okamoto¹, Kivoshi Maehara¹, Tetsuya Kanahori¹

Yoshikazu Okamoto', Kiyoshi Maehara', Tetsuya Kanahor ¹University of Tsukuba, Tsukuba, Ibaraki, Japan

1213. T2 Mapping of the Supraspinatus Tendon: A Feasibility Study Soterios Gyftopoulos¹, Konstantin Krepkin², Mary Bruno², Jose G. Raya³ ¹Radiology, NYU Langone Medical Center, New York, NY, United States; ²Radiology, NYU Langone Medical Center, New York, NY, United States; ³Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School Of Medicine, New York, Ny, United States 1214. Non-Gaussian Diffusion Weighted Imaging for Assessing Degenerative Changes in Intervertebral Disc Composition

Masaki Katsura¹,², Yuichi Suzuki², Akihiro Kasahara², Harushi Mori¹, Akira Kunimatsu¹, Yoshitaka Masutani³, Masaaki Hori⁴, Shigeki Aoki⁴, Kuni Ohtomo¹

¹Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; ²Radiology, The University of Tokyo Hospital, Tokyo, Japan; ³Intelligent Systems, Hiroshima City University, Hiroshima, Japan; ⁴Radiology, School of Medicine, Juntendo University, Tokyo, Japan

- 1215. Characterization of an Animal Model of Spinal Instability Using MR Elastography and Mechanical Testing Ephraim I. Ben-Abraham¹, Jun Chen², Richard L. Ehman²
 ¹Mayo Graduate School, Mayo Clinic, Rochester, MN, United States; ²Radiology, Mayo Clinic, Rochester, MN, United States
- 1216. Whole Spine Vertebral Bone Marrow Proton Density Fat Fraction Mapping: Anatomical Variation and Gender-Specific Reference Database

Thomas Baum¹, Samuel P. Yap¹, Michael Dieckmeyer¹, Stefan Ruschke¹, Holger Eggers², Hendrik Kooijman³, Ernst J. Rummeny¹, Jan S. Bauer⁴, Dimitrios C. Karampinos¹

¹Department of Radiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany; ²Philips Research Laboratory, Hamburg, Germany; ³Philips Healthcare, Hamburg, Germany; ⁴Section of Neuroradiology, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany

1217. A Comparison of Three Approaches for Defining Nucleus Pulposus and Annulus Fibrosus on Sagittal MR Images.

Yi-Xiang Wang¹, Greta SP Mok², Duo Zhang³, Shu-Zhong Chen¹, Jing Yuan⁴ ¹Dept Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ²Department of Electrical and Computer Engineering, University of Macau, Macau SAR, Macau; ³Department of Electrical and Computer Engineering, University of Macau, Macau SAR, Macau; ⁴Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong

1218. Assessment of the Stiffness of Intervertebral Disk in Rat Model with Magnetic Resonance Elastography

Yifei Liu¹, Julia Zelenakova², Kejia Cai², ³, Robert Kleps⁴, Thomas J. Royston¹, ², Richard L. Magin², Andrew Larson⁵, Weiguo Li⁴, ⁵

¹Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States; ²Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ³Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States; ⁴Research Resource Center, University of Illinois at Chicago, Chicago, IL, United States; ⁵Department of Radiology, Northwestern University, Chicago, IL, United States

1219. 3D Ultra-Short TE Imaging of the Spine for Vertebral Segmentation

Wingchi Edmund Kwok¹,², Terry K. Koo³

¹Department of Imaging Sciences, University of Rochester, Rochester, NY, United States; ²Rochester Center for Brain Imaging, University of Rochester, Rochester, NY, United States; ³Department of Research, New York Chiropractic College, Seneca Falls, NY, United States

1220. Vertebral Bone Marrow Fat Content Measured by MRI Associated with Lower Bone Mineral Density: A Human Cadaver Study

Miyuki Takasu¹, Yuji Akiyama¹, Ryuji Akita¹, Kazushi Yokomachi¹, Yoko Kaichi¹, Shuji Date¹, Masatoshi Honda², Kazuo Awai¹

¹Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan; ²Philips Electronics, Tokyo, Japan

1221. Frequency Dependant Shear Properties of Bovine Ex Vivo Intervertebral Disc.

Delphine Perie¹, Pierre-Francois Beauchemin¹, Phil Bayly², Joel R. Garbow², John Schmidt², Ruth Okamoto², Farida Cheriet¹

¹Mechanical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; ²Mechanical Engineering and Materials Science, Washington University in St. Louis, Saint Louis, MO, United States

- 1222. Value of 3D FSE STIR Images with Blood-Suppression Pulse Technique for the Brachial Plexus at 3T Tsutomu Inaoka¹, Masayuki Odashima¹, Mitsuyuki Tozawa¹, Hiroyuki Nakazawa¹, Masahiro Sogawa¹, Tomoya Nakatsuka¹, Rumiko Kasai¹, Hitoshi Terada¹ ¹Radiology, Toho University Sakura Medical Center, Sakura, Chiba, Japan
- 1223. MR Diffusion Is Sensitive to Mechanical Loading in Human Intervertebral Disks Ron N. Alkalay¹, Carl-Fredrik Westin², Dominik Meier², David B. Hackney³ ¹Orthopedics, Beth Israel Deaconess Medical Center, Boston, MA, United States; ²Radiology, Brigham and Women's Hospital, Boston, MA, United States; ³Radiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- 1224. Water-Fat Separated MRI for Detecting Increased Fat Infiltration in the Multifidus Muscle in Patients with Severe Neck Problems Due to Chronic Whiplash Associated Disorder Anette Karlsson¹, ², Anneli Peolsson³, Janne West, ²³, Ulrika Åslund³, Thobias Romu¹, ², Örjan Smedby, ²³, Peter Zsigmond⁴, Olof Dahlqvist Leinhard, ²³

*Zsigmond*⁴, *Olof Dahlqvist Leinhard*, ²³ ¹Department of Biomedical Engineering, Linköping University, Linköping, Sweden; ²Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; ³Department of Medical and Health Sciences, Linköping University, Linköping, Sweden; ⁴Department of Neurosurgery and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden

- 1225. Dynamic Measurement of Muscle R2, R2' and R2* During Ischemia and Reactive Hyperemia Chengyan Wang¹, Rui Zhang², Xiaodong Zhang³, He Wang⁴, Kai Zhao³, Jue Zhang¹, ², Xiaoying Wang, ¹³, Jing Fang¹, ² ¹Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; ²College of Engineering, Peking University, Beijing, China; ³Department of Radiology, Peking University First Hospital, Beijing, China; ⁴Philips Research China, Shanghai, China
- 1226. Muscular Fat Fraction Determination by Quantitative T2-MRI, Reproducibility in Facioscapulohumeral Muscular Dystrophy and Healthy Volunteers Linda Heskamp¹, Barbara Helena Janssen¹, Arend Heerschap¹ ¹Radiology, Radboud university medical center, Nijmegen, Netherlands
- 1227. Modeling Duchenne Muscular Dystrophy Disease Progression: A Longitudinal Multicenter MRI Study William D. Rooney¹, Yosef Berlow¹, Sean C. Forbes², Rebecca J. Willcocks², James Pollaro¹, William T. Triplett³, Dah-Jyuu Wang⁴, Barry J. Byrne⁵, Richard Finkel⁶, Barry S. Russman⁷, Erika L. Finanger⁷, Michael J. Daniels⁸, H. Lee Sweeney⁹, Glenn A. Walter³, Krista H. Vandenborne²
 ¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ²Department of Physical Therapy, University of Florida, Gainesville, FL, United States; ³Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States; ⁴Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, United States; ⁵Department of Pediatrics, University of Florida, Gainesville, FL, United States; ⁶Department of Neurology, Nemours Children's Hospital, Orlando, FL, United States; ⁷Shriners Hospital, Portland, OR, United States; ⁸Division of Statistics & Scientific Computation, University of Texas, Austin, TX, United States; ⁹Department of Pharamcology and Therapeutics, University of Florida, Gainesville, FL, United States
- 1228. MRI Monitoring for Muscular Dystrophy Mice Treated with Gene Therapy Joshua Park¹, Jacqueline Wicki², Sue Knoblaugh³, Jeffrey Chamberlain², ⁴, Donghoon Lee¹ ¹Radiology, University of Washington, Seattle, WA, United States; ²Neurology, University of Washington, Seattle, WA, United States; ³Fred Hutchinson Cancer Research Center, Seattle, WA, United States; ⁴Biochemistry, University of Washington, Seattle, WA, United States
- **1229.** Inter-Echo Time Dependence of CPMG Relaxation Rate Around Capillaries in Skeletal Muscle Tissue *Felix T. Kurz¹, Thomas Kampf², Lukas R. Buschle³, Sabine Heiland⁴, Martin Bendszus⁴, Christian H. Ziener, ¹³* ¹Heidelberg University, Heidelberg, BW, Germany; ²University of Wuerzburg, Bavaria, Germany; ³German Cancer Research Center, Heidelberg, BW, Germany; ⁴Heidelberg University, BW, Germany

1230. Quantification of the Inflammatory Process in Muscles of Patients with Facioscapulohumeral Muscular Dystrophy.

Linda Heskamp¹, Barbara H. Janssen¹, Arend Heerschap¹ ¹Radiology, Radboud university medical center, Nijmegen, Netherlands

1231. MRI Characterization of Individual Muscles in Patients with Sporadic Inclusion Body Myositis (SIBM) Using a Semi-Automatic Segmentation Approach

Didier Laurent¹, Attila Nagy², Steve Pieper², Harlem Gongxeka¹, Celeste Pretorius¹, Stefan Baumann¹ ¹Biomarker Department, Novartis, Basel, Switzerland; ²Isomics, Inc, Cambridge, Ma, United States

1232. Improvement of Thigh Muscle MRI Image Processing Efficiency Using a Batch-Scripted N4ITK Intensity Normalization Algorithm Implemented in 3D Slicer Prashant Bansal¹, David Bennett¹, Xiaodong Tao¹, Sally Warner¹ ¹Medical Imaging, PAREXEL Informatics, Billerica, MA, United States

1233. Quantifying Muscle Inflammation with Diffusion Basis Spectrum Imaging

Carlos J. Perez-Torres¹, Neva B. Watson², Yong Wang¹, ³, Paul T. Massa², ⁴, Sheng-Kwei Song¹, ³ ¹Radiology, Washington University, St. Louis, MO, United States; ²Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States; ³Hope Center for Neurological Disorders, Washington University, St. Louis, MO, United States; ⁴Neurology, SUNY Upstate Medical University, Syracuse, NY, United States

1234. Time-Dependent Diffusion as a Biomarker for Rotator Cuff Atrophy

*Gregory Lemberskiy*¹, ², *Dmitry Novikov*¹, *Mary Bruno*¹, *Els Fieremans*¹, *Soterios Gyftopoulos*¹ ¹Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ²Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States; ³Sackler Institute Sciences, New York, NY, United States; ³Sackler Institute Sciences; ³Sackler Institute

1235. Skeletal Muscle Perfusion Measured with Pseudo-Continuous Arterial Spin-Labeling MRI After Dorsiflexion Contractions

Sean C. Forbes¹, Jingfeng Ma¹, Glenn A. Walter¹, Krista Vandenborne¹, Song Lai¹ ¹University of Florida, Gainesville, FL, United States

1236. Towards Clinical Ultrahigh Field Musculoskeletal MRI: Comparison of Shoulder Imaging at 1.5T, 3.0T and 7.0T

Marko Hoehne¹, ², *Andreas Graessl²*, *Jan Rieger³*, *Antje Els⁴*, *Beate Endemann²*, *Thomas Herold¹*, *Thoralf Niendorf²*, ⁵ ¹HELIOS Klinikum Berlin Buch, Berlin, Germany; ²Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; ³MRI.TOOLS GmbH, Berlin, Germany; ⁴Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; ⁵Experimental and Clinical Research Center (ECRC), Charite Campus Berlin Buch, Humboldt-University, Berlin, Germany

1237. Canine MRI for X-Linked Myotubular Myopathy

Joshua Park¹, Martin Childers², Donghoon Lee¹ ¹Radiology, University of Washington, Seattle, WA, United States; ²Rehabilitation Medicine, University of Washington, Seattle, WA, United States

1238. Quantitative Measurement of Blood Flow in Contracting Rat Muscle Using MR Angiography

Anne Tonson¹, ², Jonathan Kasper, ², Ronald A. Meyer³, ⁴, Robert W. Wiseman, ²⁵ ¹ Physiology Department, Michigan State University, East Lansing, MI, United States; ²Biomedical Imaging Research Center, Michigan State University, East Lansing, MI, United States; ³Physiology and Radiology Departments, Michigan State University, East Lansing, MI, United States; ⁴Biomedical Imaging Research Center, East Lansing, MI, United States; ⁵Physiology and Radiology Departments, Michigan State University, East Lansing, MI, United States 1239. Depiction of Muscle Activation Induced by Electromyostimulation in the Calf Muscle by Using T2-Weighted MRI at 3.0 T

Reinhard Rzanny¹, Patrick Hiepe¹, Kevin Tschiesche¹, Alexander Gussew¹, Norman Stutzig² ¹AG Medical Physics, University Hospital Jena, Jena, Thüringen, Germany; ²Institute of Sport- and Movement science, University of Stuttgart, Stuttgart, Baden-Würtemberg, Germany

1240. Is Intramyocellular Lipid a Diffusion-Restricting Factor in Skeletal Muscle Cells? *Yoshikazu Okamoto¹, Shintaro Mori¹, Tomonori Isobe¹, Yuji Hirano¹, Hiroaki Suzuki¹, Manabu Minami¹* ¹University of Tsukuba, Tsukuba, Ibaraki, Japan

1241. MR Characterization of Murine Model of Dystrophy on a DBA Background

Ravneet Vohra¹, Sean Forbes², Krista Vandenborne³, Elizabeth Mcnally⁴, Glenn Walter⁵ ¹Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States; ²Physical Therapy, University of Florida, Gainesville, FL, United States; ³Physical Therapy, University of Florida, FL, United States; ⁴Department of Medicine, University of Chicago, Chicago, IL, United States; ⁵Physiology and Functional Genomics, University of Florida, Gainesville, FL, United States

1242. Skeletal Muscle Motion Maps from Post-Contraction Gradient Echo Spin Saturation Effect

Andrew D. Davis¹, Michael D. Noseworthy², ³ ¹Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada; ²Electrical and Computer Engineering, McMaster University, Ontario, Canada; ³School of Biomedical engineering, McMaster University, ON, Canada

1243. Obesity Decrease the Eigenvalues of Muscles

Yasuharu Watanabe¹, Keisaku Kimura², Masahiro Umeda¹, Tomokazu Murase³, Toshihiro Higuchi³, Chuzo Tanaka³, Shoji Naruse⁴

¹Medical Infomatics, Meiji University of Integrative Medicine, Kyoto, Japan; ²Health Promoting and Preventive Medicine, Meiji University of Integrative Medicine, Kyoto, Japan; ³Neurosurgery, Meiji University of Integrative Medicine, Kyoto, Japan; ⁴Health Care and Checkup, Daini Okamoto General Hospital, Kyoto, Japan

1244. Myogenic Differentiation of Magnetically Labeled Mesenchymal Stem Cells

Natalie M. Pizzimenti¹, Christiane Mallett², Robert W. Wiseman¹, ², Erik M. Shapiro² ¹Physiology Department, Michigan State University, East Lansing, MI, United States; ²Radiology Department, Michigan State University, East Lansing, MI, United States

1245. Multimodal Determination of Load Changes in the Muscle - A Combination of ¹H-MEGA-PRESS and Blood ^{15Max Merri Avano} ^{15Max Merri Avano} ^{15Max Merri Avano} ^{15Max Merri Avano}

Kevin Tschiesche¹, Alexander Gussew¹, Maria Glöckner², Steffen Derlien², Jürgen R. Reichenbach¹ ¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; ²Institute for Physiotherapy, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany

1246. Acute Effects of Exercise on Quantum Filtered Sodium Spectroscopy in Human Calf Muscle Alireza Akbari¹, Dinesh Kumbhare², ³, Michael Noseworthy⁴, ⁵ ¹School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; ²Department of Medicine, University of Toronto, Ontario, Canada; ³University Health Network, Toronto Rehabilitation Institute, Ontario, Canada; ⁴Electrical and Computer Engineering, McMaster University, Ontario, Canada; ⁵School of Biomedical Engineering, McMaster University, Ontario, Canada;

1247. Simultaneous Multi-Slice Echo Planar Imaging with Blipped CAIPIRINHA: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle

Lukas Filli¹, Marco Piccirelli¹, David Kenkel¹, Roman Guggenberger¹, Gustav Andreisek¹, Val M. Runge¹, Andreas Boss¹

¹University Hospital Zurich, Zurich, ZH, Switzerland

1248. In Vivo Imaging of the Motion of the Temporomandibular Joint Components Using a Pseudo-Dynamic 3D Imaging Technique

Reni Biswas¹, Karen Chen², ³, Eric Y. Chang², Sheronda Statum¹, Won C. Bae¹, Christine B. Chung², ³ ¹Department of Radiology, University of California, San Diego, San Diego, CA, United States; ²VA San Diego Healthcare System, San Diego, CA, United States; ³University of California, San Diego, CA, United States

1249. Assessment of Resting Skeletal Muscle Alkaline Pi Pool and PDE Concentration by ³¹P-MRS at 7T and Its Relation to Mitochondrial Capacity and Pi-To-ATP Exchange Rate

Ladislav Valkovic¹, ², Marjeta Tušek Jelenc¹, Barbara Ukropcová³, ⁴, Wolfgang Bogner¹, Matej Vajda⁵, Thomas Heckmann⁶, Miroslav Baláž³, Marek Chmelík¹, Ivan Frollo², Norbert Bachl⁶, Jozef Ukropec³, Siegfried Trattnig¹, Martin Krššák¹, ⁷

¹High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia; ³Obesity section, Diabetes and Metabolic Disease Laboratory, Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia; ⁴Institute of Pathophysiology, Faculty of Medicine, Commenius University, Bratislava, Slovakia; ⁵Faculty of Physical Education and Sport, Commenius University, Bratislava, Slovakia; ⁶Department of Sports and Physiological Performance, University of Vienna, Vienna, Austria; ⁷Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria

1250. Muscle Mitochondrial Dysfunction Relates to Decreased Peripheral Insulin Sensitivity in Female Youth with Type 2 Diabetes

Mark S. Brown¹, Abhinav Gupta², Melanie Cree-Green², Gregory Coe², Amy Baumgartner², Bradley R. Newcomer³, Kristen J. Nadeau²

¹Radiology, University of Colorado Anschutz, Aurora, CO, United States; ²Pediatrics, University of Colorado Anschutz, Aurora, CO, United States; ³Diagnostic and Clinical Sciences, University of Alabama, Birmingham, AL, United States

Traditional Poster

Animal Model - Other

Exhibition Hall Monday 16:30-18:30

1251. Veterinary Diagnostic MRI at an Academic Medical Center: Tips, Tricks, and Pathological Confirmation

Dara L. Kraitchman¹,², Larry Gainsburg³, Jan Fritz², Patrick R. Gavin⁴, Nathan Pate⁵, Elizabeth Ihms⁵, Joseph Mankowski⁵, Rebecca Krimins¹,²

¹Center for Image-Guided Animal Therapy, Johns Hopkins University, Baltimore, MD, United States; ²Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ³Mid-Atlantic Veterinary Neurology and Neurosurgery, Catonsville, MD, United States; ⁴M.R. Vets, Sagle, ID, United States; ⁵Molecular and Comparative Pathobiology, Johns Hopkins University, Baltimore, MD, United States

1252. Assessment of Experimental Cerebral Malaria Using Diffusion Tensor Imaging at Ultra-High Magnetic Field

Teodora-Adriana Perles-Barbacaru¹,², Bruno Miguel de Brito Robalo¹,³, Emilie Pecchi¹,², Georges Emile Raymond Grau⁴, Monique Bernard¹,², Angèle Viola¹,²

¹Centre de Résonance Magnétique Biologique et Médicale, CRMBM UMR CNRS 7339, Marseille, France; ²Aix-Marseille Université, Marseille, France; ³University of Lisbon, Institute of Biophysics and Biomedical Engineering, Lisbon, Portugal; ⁴Department of Pathology, Sydney Medical School, The University of Sydney, Camperdown, Australia

1253. Custom-Fit, 3D-Printed Marmoset Brain Holders for Comparison of Histology with MRI

Joseph Guy¹, ², Pascal Sati¹, Steven Jacobson³, Afonso C. Silva⁴, Daniel S. Reich¹ ¹Translational Neuroradiology Unit, Neuroimmunology Branch, National Institute of Neurologic Disorders and Stroke, Bethesda, MD, United States; ²Department of Biochemistry, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ³Viral Immunology Section, Neuroimmunology Branch, National Institute of Neurologic Disorders and Stroke, Bethesda, MD, United States; ⁴Cerebral Microcirculation Unit, Laboratory of Functional and Molecular Imaging, National Institute of Neurologic Disorders and Stroke, Bethesda, MD, United States

Traditional Post	er	
Novel Brain Met	hods	
Exhibition Hall	Monday 16.30-18.30	

1254. Imaging the Human Brain with Dissolved Xenon MRI at 1.5T Madhwesha Rao¹, Neil Stewart¹, Graham Norquay¹, Paul Griffiths¹, Jim Wild¹ ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom

1255. 4D Phase Contrast EPI for Assessing 3D Volumetric Strain Rate in the Human Brain Over the Cardiac Cycle

ismen merit award magna cum laudo Nils Noorman¹, Sebastian Hirsch², Jürgen Braun³, Peter R. Luijten¹, Ingolf Sack², Jaco J.M. Zwanenburg¹ ¹Department of Radiology, University Medical Center, Utrecht, Netherlands; ²Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ³Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany

- 1256. Kinetic Oscillatory Stimulation (KOS) in the Nasal Cavity Studied by Resting-State fMRI *Tie-Qiang Li¹*, *Rolf Hallin²*, *Jan-Erik Juto³* ¹Department of Medical Physics, Karolinska University Hospital, Karolinska Huddinge, Stockholm, Sweden; ²Department of Neurophysiology, Karolinska University Hospital, Karolinska Huddinge, stockholm, Sweden; ³Department of CLINTEC, Karolinska Institute, Huddinge, stockholm, Sweden
- 1257. Influence of Respirations on Cerebrospinal Fluid (CSF) Movement Using BSSFP Time-Spatial Labeling Inversion Pulse (Time-SLIP)

Shinya Yamada¹, *Yuichi Yamashita²*, *Masao Yui²*, *Cheng Ouyang³*, *Masao Nakahashi²*, *Mitsue Miyazaki³* ¹Toshiba Rinkan Hospital, Sagamihara, Kanagawa, Japan; ²Toshiba Medical Systems Corp., Tochigi, Japan; ³Toshiba Medical Research Institute, IL, United States

1258. A First Insight in Regional Brain Changes After Parabolic Flight: A Voxel-Based Morphometry Study. Angelique Van Ombergen¹, Ben Jeurissen², Floris Vanhevel³, Dirk Loeckx⁴, Vincent Dousset⁵, Paul M. Parizel³, Floris L. Wuyts¹

¹Antwerp University Research centre for Equilibrium and Aerospace, University of Antwerp, Edegem, Antwerp, Belgium; ²iMinds/Visionlab, Department of Physics, University of Antwerp, Antwerp, Belgium; ³Department of Radiology, Antwerp University Hospital, Edegem, Antwerp, Belgium; ⁴icoMetrix, Leuven, Belgium; ⁵Neuroradiology Department, CHU Pellegrin, Bordeaux, France

1259. Evaluating Artifact Introduced by Intra-Subject Motion Correction in Functional MRI Lisha Yuan^l, Jianhui Zhong^l, Hongjian He^l

magna cum laude

¹Center for Brain Imaging Science and Technology, ZheJiang University, Hangzhou, Zhejiang, China

1260. Reliability and Reproducibility of Arterial Transit Time-Corrected Whole-Brain Pseudo-Continuous Arterial Spin Labeling

Kazunobu Tsuji¹, Tatsuro Tsuchida¹, Yasuhiro Fujiwara¹, ², Masayuki Kanamoto¹, Tsuyoshi Matsuda³, R. Marc Lebel⁴, Hirohiko Kimura¹

¹Radiology, University of Fukui, Yoshida-gun, Fukui, Japan; ²Medical Imaging, Kumamoto University, Kumamoto, Japan; ³Global MR Applications and Workflow, GE Healthcare, Tokyo, Japan; ⁴Global MR Applications and Workflow, GE Healthcare, AB, Canada

1261. Inspiration Drives Cerebrospinal Fluid Flow in Humans

Steffi Dreha-Kulaczewski¹, Arun Jospeh², ³, Klaus-Dietmar Merboldt², Hans Ludwig⁴, Jutta Gaertner⁵, Jens Frahm², ³ ¹Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center, Goettingen, Germany; ²Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut fuer biophysikalische Chemie, Goettingen, Germany; ³partner site Goettingen, German Center for Cardiovascular Research, Germany; ⁴Department of Neurosurgery, Division of Pediatric Neurosurgery, University Medical Center Goettingen, Germany; ⁵Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center, Goettingen, Germany 1262. Sparsity-Based Superresolution MR Imaging Using Dual Dictionaries

*Jean-Christophe Brisset*¹, *Riccardo Otazo*¹, *Yulin Ge*¹ ¹Department of Radiology, New York University School of Medicine, New York, NY, United States

1263. Diffusion-Weighted Thermometry Using Subarachnoid Space Cerebrospinal Fluid in Subacute Carbon Monoxide Poisoning Patients

Shunrou Fujiwara¹, Yoshichika Yoshioka², Tsuyoshi Matsuda³, Hideaki Nishimoto¹, Toshiyuki Murakami¹, Akira Ogawa¹, Kuniaki Ogasawara¹, Makoto Sasaki⁴, Takaaki Beppu¹, ⁵ ¹Department of Neurosurgery, Iwate Medical University, Morioka, Iwate, Japan; ²WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan; ³MR Applications and Workflow Asia Pacific, GE Healthcare Japan, Tokyo, Japan; ⁴Division of Ultrahigh Field MRI, Institu, Iwate Medical University, Yahaba, Iwate, Japan; ⁵Hyperbaric Medicine, Iwate Medical University, Morioka, Iwate, Japan

Traditional Poster Fetal & Pediatric Neuroimaging: Clinical Studies Exhibition Hall Monday 16:30-18:30

1264. MRI Based Semi-Automatic Volumetric Measurements of the Fetal Brain

Daphna Link¹, ², Michael Braginsky³, Leo Joskowicz³, Liat Ben Sira⁴, Gustavo Malinger⁵, Ariel Many⁶, Dafna Ben Bashat¹, ⁷

¹Functional Brain Center, The Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ²Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ³School of Engineering and Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel; ⁴Division of Pediatric Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁵Obstetrics and Gynecology US Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁶Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁷Sackler Faculty of Medicine and Sagol school of neuroscience, Tel Aviv University, Tel Aviv, Israel

- 1265. Mapping the Preterm Newborn Brain: A Diffusion Tensor Study of the Cerebellum's Early Neural Connections Lillian Gabra Fam¹,², Jeanie LY Cheong¹,³, Alexander Leemans⁴, Christopher L. Adamson¹, Richard Beare¹, Marc L. Seal¹,⁵, Peter J. Anderson¹,⁵, Lex W. Doyle¹,³, Alicia J. Spittle¹,⁶, Deanne K. Thompson¹,⁷
 ¹Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; ²Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia; ³Royal Women's Hospital, Melbourne, Victoria, Australia; ⁴Image Sciences Institute, University Medical Center Utrecht, Netherlands; ⁵Department of Paediatrics, University of Melbourne, Victoria, Australia; ⁶Royal Women's Hospital, Melbourne, Victoria, Australia; ⁷Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- 1266. Diffusion MRI Identifies Enhanced Connection of Neural Pathways in Toddlers with Autism Spectrum Disorder J. Mitra¹, E. Conti², ³, K-K. Shen¹, J. Fripp¹, O. Salvado¹, S. Calderoni², A. Guzzetta², ³, S. Rose¹ ¹Australian e-Health & Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia; ²Dept. of Developmental Neuroscience, Stella Maris Scientific Institute, Pisa, Italy; ³University of Pisa, Pisa, Italy
- 1267. White Matter Development in Preterm Infants at Term Equivalent Age: Assessment Using TBSS Hye Jin Jeong¹, So-Yeon Shim², Dong Woo Son³, Mira Chung⁴, Sukyoung Park⁴, Zang-Hee Cho¹ ¹Neuroscience Research Institute, Namdong-gu, Incheon, Korea; ²Ewha Womans University, Division of Neonatology, Seoul, Korea; ³Gachon University, Division of Neonatology, Incheon, Korea; ⁴Gachon University, Department of Early Childhood Education, Gyeonggi Province, Korea
- 1268. Pituitary Perfusion Characteristics in Idiopathic Central Precocious Puberty: Evaluation with Dynamic Contrast Enhanced T1-Weighted MR Imaging Using Brix Pharmacokinetic Model Chao-Ying Wang¹, Shih-Wei Chiang², ³, Ping-Huei Tsai⁴, ⁵, Hua-Shan Liu⁴, ⁵, Hsiao-Wen Chung², Hung-Wen Kao³, Chun-Jung Juan³, Cheng-Yu Chen⁴, ⁵
 ¹Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Taiwan; ²Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Taiwan; ³Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Taiwan; ⁴Imaging Research Center, Taipei Medical University, Taipei, Taiwan, Taiwan; ⁵Department of Medical Imaging, Taipei Medical University, Taipei, Taiwan

- 1269. The Reduction of Flow Artifacts in T1W Spiral Spin-Echo Imaging: A Preliminary Study in Children Zhiqiang Li¹, Houchun H. Hu², Dinghui Wang¹, Jeffrey H. Miller², John P. Karis³, James G. Pipe¹ ¹Imaging Research, Barrow Neurological Institute, Phoenix, AZ, United States; ²Radiology, Phoenix Children's Hospital, Phoenix, AZ, United States; ³Neuroradiology, Barrow Neurological Institute, Phoenix, AZ, United States
- 1270. Arterial Spin Labeling Perfusion Imaging Performed in Acute Perinatal Stroke Reveals Hyperperfusion in Association with Cerebral Ischemic Injury

Christopher G. Watson¹,², Mathieu Dehaes³, Borjan A. Gagoski³, P. Ellen Grant, ³⁴, Michael J. Rivkin¹,⁴ ¹Neurology, Boston Children's Hospital, Boston, MA, United States; ²Graduate Program for Neuroscience, Boston University, Boston, MA, United States; ³Newborn Medicine, Boston Children's Hospital, MA, United States; ⁴Radiology, Boston Children's Hospital, Boston, MA, United States

1271. fMRI Measures of the Dorsal Visual Cortex Correlates with Behavioral Performance and Cortical Thickness Tanya Poppe¹, Myra Leung¹, Anna Tottman², Jane Alsweiler³, Frank Bloomfield², Jane Harding², Ben Thompson¹, ¹Department of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; ²Liggins Institute, University of Auckland, Auckland, New Zealand; ³Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand; ⁴Department of Optometry and Vision Science, University of Waterloo, Waterloo, Ontario, Canada

Traditional Poster Normal Developing Brain

Monday 16:30-18:30 Exhibition Hall

1272. Longitudinal Cortical Maturation in Typically Developing Infants and Children Justin M. Remer¹, Douglas C. Dean III¹, ², Sara D'Arpino¹, Elise Croteau-Chonka¹, Holly Dirks¹, Sean C.L. Deoni¹, ³ ¹Advanced Baby Imaging Lab, School of Engineering, Brown University, Providence, RI, United States; ²Waisman Lab for Brain Imaging and Behavior, University of Wisconsin, Madison, WI, United States; ³Department of Pediatric Radiology, Children's Hospital Colorado, Aurora, CO, United States

1273. Clustering Analysis of Human Infant Brain Maturation Based on Multi-Parametric MR Images Jessica Lebenberg¹, Cyril Poupon², Bertrand Thirion³, François Leroy¹, Jean-François Mangin⁴, Ghislaine Dehaene-Lambertz¹, Jessica Dubois¹ ¹Cognitive Neuroimaging Unit U992, INSERM-CEA, Gif-Sur-Yvette, Essonne, France; ²UNIRS, CEA, Gif-Sur-Yvette, Essonne, France; ³Parietal, INRIA, Gif-Sur-Yvette, Essonne, France; ⁴UNATI, CEA, Gif-Sur-Yvette, Essonne, France

1274. Mapping the Myelin G-Ratio During Neurodevelopment

Douglas Dean¹,², Elise Croteau-Chonka², Holly Dirks², Andrew L. Alexander³, Sean Deoni²,⁴ ¹Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; ²Engineering, Brown University, Providence, RI, United States; ³Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; ⁴Children's Hospital Colorado, Dever, CO, United States

1275. Neural Correlates of the Longitudinal Development of Phonological Processing in Early Childhood Andrea S. Miele^{1, 2}, Holly Dirks², Dannielle John Whiley², Terry Harrison-Goldman^{1, 3}, Viren D'Sa³, Sean Deoni², ⁴ ¹Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, RI, United States; ²Advanced Baby Imaging Laboratory, Brown University, Providence, RI, United States; ³Pediatrics, Neurodevelopmental Center, MHRI, Pawtucket, RI, United States; ⁴Pediatric Radiology, Children's Hospital Colorado, CO, United States

1276. 18q- Brain Development with Age and the Effect of Deletion Size

Xi Tan¹, Jannine Cody², Jack L. Lancaster¹ ¹Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ²Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
1277. A Metabolic Study of Normal Mouse Brain Maturation Using Hyperpolarized 13C

Yiran Chen¹, Robert Bok¹, Subramanian Sukumar¹, Hosung Kim⁷, Xin Mu¹, Ann Sheldon¹, A James Barkovich¹, Donna *M.* Ferriero^l, Duan Xu^{l}

¹University of California San Francisco, San Francisco, CA, United States

1278. Developmental Changes in Neurochemical Profiles of the Mouse Midbrain and Hippocampus

Ivan Tkac¹, Kathleen Czerniak², Lanka Dasanavaka², Biplab Dasgupta³, Raghavendra Rao² ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States; ³Division of Hematology/Oncology, Cincinnati Children's Hospital, Cincinnati, OH, United States

1279. Metabolite Distributions in Human Aging Brain - A Study with Short-TE Whole Brain MR Spectroscopic Imaging

Xiao-Qi Ding¹, Helen Maghsudi¹, Andrew A. Maudsley², Mohammad Sabati², Sulaiman Sheriff², Martin Schütze¹, Paul Bronzlik¹, Heinrich Lanfermann¹

¹Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Lower Saxony, Germany; ²Department of Radiology, University of Miami School of Medicine, Miami, FL, United States

1280. Novel Probabilistic Neonatal Cortical Brain Atlas

Bonnie Alexander¹, Andrea Murray¹, Jian Chen¹, ², Wai Yen Loh¹, ³, Claire Kelly¹, Richard Beare¹, Lillian Gabra Fam¹, ⁴, Peter Anderson¹, ⁴, Lex Doyle¹, ⁵, Alicia Spittle¹, ⁵, Jeanie Cheong¹, ⁵, Marc Seal¹, ⁴, Deanne Thompson¹, ³ ¹Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; ²Dept of Medicine, Monash University, Melbourne, Australia; ³Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; ⁴Dept of Paediatrics, The University of Melbourne, Melbourne, Australia; ⁵Royal Women's Hospital, Melbourne, Australia

1281. Characterisation of Sensori-Motor CBF and BOLD Functional Responses During Early Development with **Dual-Echo PCASL and fMRI**

Thomas Alderliesten¹, ², Esben Thade Petersen³, Manon JNL Benders¹, ², Petra MA Lemmers², Alessandro Allievi⁴, Julia Wurie¹, Serena J. Counsell¹, Etienne Burdet⁴, A. David Edwards¹, ⁴, Jo V. Hajnal¹, ⁵, Tomoki Arichi¹, ⁴ ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Department of Neonatology, University Medical Center Utrecht, Utrecht, Netherlands; ³Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Department of Bioengineering, Imperial College London, London, United Kingdom; ⁵Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom

1282. Functional Network Interactions During Typical Development in Infancy and Early Childhood

Jonathan O'Muircheartaigh¹,², Douglas C. Dean³, Lindsay Walker⁴, Nicole Waskiewicz⁴, Holly Dirks⁴, Sean Deoni⁴, ⁵ Department of Neuroimaging, King's College London, London, United Kingdom; ²Centre for the Developing Brain, King's College London, London, United Kingdom; ³Waisman Center, University of Wisconsin-Madison, WI, United States; ⁴School of Engineering, Brown University, RI, United States; ⁵Department of Pediatric Radiology, Children's Hospital Colorado, Denver, CO, United States

1283. Modulation of Resting-State Brain Networks in Newborns by Heel Prick

Lara Lordier¹, Frédéric Grouiller², Dimitri Van de Ville^{2, 3}, Ana Sancho Rossignol⁴, Maria Isabel Cordero⁴, François Lazevras², François Ansermet⁴, Petra S. Hüppi¹

Division of Development and Growth, Department of Pediatrics, University of Geneva, Geneva, Switzerland; ²Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland; ³Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ⁴Division of Child and Adolescent Psychiatry, Department of Pediatrics, University of Geneva, Geneva, Switzerland

1284. Differences in Brain Activation Associated with Infant Diet: An fMRI Study

Xiawei Ou¹, ², R.T. Pivik¹, ³, Aline Andres¹, ³, Mario Cleves¹, ³, Thomas Badger¹, ¹Arkansas Children's Nutrition Center, Little Rock, AR, United States; ²Radiology and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; ³University of Arkansas for Medical Sciences, AR, United States

ISMRM MERIT AWARD magna cum laude

Traditional Poster Autism & Neuro Development Exhibition Hall Monday 16:30-18:30

1285. Reduced Cerebral Blood Flow in Boys with Duchenne Muscular Dystrophy Nathalie Doorenweerd¹, ², Eve M. Dumas², Eidrees Ghariq¹, ³, Sophie Schmid¹, ³, Chiara S.M. Straathof², Pietro Spitali⁴, Ieke Ginjaar⁵, Beatrijs H. Wokke², Debby G.M. Schrans⁶, Janneke C. van den Bergen², Erik W. van Zwet⁷, Andrew G. Webb¹, Mark A. van Buchem¹, Mathias J.P. van Osch¹, ³, Jan J.G.M. Verschuuren², Jos G.M. Hendriksen⁶, Erik H. Niks², Hermien E. Kan¹, ¹Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Zuid Holland,

Netherlands; ²Department of Neurology, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands; ³Leiden Institute for Brain and Cognition, Leiden, Zuid Holland, Netherlands; ⁴Department of Human Genetics, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands; ⁵Department of Clinical Genetics, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands; ⁶Department of Neurological Learning Disabilities, Kempenhaeghe Epilepsy Center, Heeze, Noord-Brabant, Netherlands; ⁷Department of Medical Statistics, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands; ⁸Department of Neurology, Maastricht University Medical Center, Limburg, Netherlands

1286. Reciprocal Alterations of White Matter Microstructure in Carriers of Deletions Versus Duplications at the 16p11.2 Chromosomal Locus Are Associated with Cognitive and Behavioral Impairment

Yi-Shin Chang¹, Julia P. Owen¹, Tony Thieu¹, Nicholas Pojman¹, Polina Bukshpun¹, Mari Wakahiro¹, Elysa Marco¹, Jeffrey Berman², John E. Spiro³, Wendy Chung⁴, Randy Buckner⁵, Timothy Roberts², Srikantan Nagarajan¹, Elliott Sherr¹, Pratik Mukherjee¹

¹University of California in San Francisco, San Francisco, CA, United States; ²Children's Hospital of Philadelphia, Philadelphia, PA, United States; ³Simons Foundation, New York, United States; ⁴Columbia University, New York, United States; ⁵Harvard University, Boston, MA, United States

1287. Altered Tract Integrity of the Social Communication Network and Its Functional Correlations in High-

Functioning Autism: A Diffusion Spectrum Imaging (DSI) Study Yu-Chun Lo¹, Yu-Jen Chen¹, Yung-Chin Hsu¹, Susan Shur-Fen Gau², ³, Wen-Yih Isaac Tseng¹, ⁴ ¹Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; ²National Taiwan University College of Medicine, Department of Psychiatry, Taipei, Taiwan; ³Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; ⁴Molecular Imaging Center, National Taiwan University, Taipei, Taiwan

1288. Subcortical Rather Than Cortical Changes Mediate the Clinical Profile on ADHD Boys at an Earlier Stage Qi Liu¹, Lizhou Chen¹, Ying Chen², Xinyu Hu¹, Ming Zhou¹, Fei Li¹, Lanting Guo², Qiyong Gong¹, Xiaoqi Huang¹ ¹Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; ²Deptmeny of Psychiatry, West China Hospital of Sichuan University, P.R.China, Chengdu, Sichuan, China

1289. Age Related Changes of the Interrelationships of White Matter in Autism Spectrum Disorder

Douglas Dean¹, Brittany Travers¹, Erin Bigler², Molly Prigge³, Alyson Froehlich³, Nicholas Lange⁴, Janet Lainhart¹, Andrew Alexander¹

¹Waisman Center, University of Wisconsin-Madison, Madison, WI, United States; ²Brigham Young University, Provo, UT, United States; ³University of Utah, Salt Lake City, UT, United States; ⁴Harvard School of Medicine and McLean Hospital, Belmont, MA, United States

1290. Functional Connectivity of Altered Grey Matter Regions in Autism Spectrum Disorder: Correlations with Clinical Testing

Letizia Casiraghi¹,², Fulvia Palesi,²³, Gloria Castellazzi,²⁴, Andrea De Rinaldis,²⁴, Carol Di Perri⁵, Claudia AM Wheeler-Kingshott⁶, Egidio D'Angelo¹,

¹Department of Brain and Behavioral Sciences, University of Pavia, Pavia, PV, Italy; ²Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, PV, Italy; ³Department of Physics, University of Pavia, Pavia, PV, Italy; ⁴Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy; ⁵Department of Brain and Behavioural Sciences, University of Pavia, Pavia, PV, Italy: ⁶NMR Research Unit, Department of Neuroinflammation, Oueen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom

1291. Altered Functional Connectivity of Emotional Network in Children with Attention-Deficit/Hyperactivity Disorder

Lizhou Chen¹, *Ning He²*, *Qi Liu¹*, *Xinyu Hu¹*, *Lanting Guo²*, *Xiaoqi Huang¹*, *Qiyong Gong¹* ¹Huaxi MR Research Center (HMRRC), West China Hospital of Sichuan University, Chengdu, Sichuan, China; ²Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China

1292. Multi-Parametric Magnetic Resonance to Investigate Aggression: A Study at 11.7T on the BALB/cJ Mouse Model

Houshang Amiri¹, ², Amanda Jager², Sjaak J. A. van Asten¹, Arend Heerschap¹, Jeffrey Glennon² ¹Department of Radiology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands

1293. Altered Functional and Structural Connectivities Within Defalut Mode Network in Adolescents with Autism Spectrum Disorder

Ĥsiang-Yun Sherry Chien¹, Susan Shur-Fen Gau², Yu-Jen Chen¹, Yu-Chun Lo¹, Hsiang-Yuan Lin², Yung-Chin Hsu¹, Wen-Yih Isaac Tseng¹, ³

¹Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Taiwan; ²Department of Psychiatry, National Taiwan University College of Medicine, Taipei, Taiwan, Taiwan; ³Molecular Imaging Center, National Taiwan University, Taipei, Taiwan, Taiwan

1294. Investigating Brain Connectomic Alterations in Autism Using Reproducibility of Independent Components Derived from Resting State fMRI

Mohammed Syed¹, Zhi Yang², Gopikrishna Deshpande³, ⁴

¹Department of Computer Science and Software Engineering, Auburn University, Auburn, AL, United States; ²Key Laboratory of Behavioral Sciences, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; ³Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ⁴Department of Psychology, Auburn University, Auburn, AL, United States

1295. A T2 MR Study of Brain Development in a Valproic Acid Model of Autism Loredana Sorina Truica¹, Sarah Raza¹, J. Keiko McCreary¹, Ian Q. Whishaw¹, Robbin Gibb¹ ¹Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada

1296. Diffusion Tensor Imaging Metrics May Be Less Sensitive Than Volumetry/morphology in Measuring Differences in Mouse Models Related to Autism.

Jacob Ellegood¹, Jan Scholz¹, Mark Henkelman¹, ², Jason P. Lerch¹, ² ¹Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; ²Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

1297. Diffusion Tensor Imaging to Assess Gray and White Matter Microstructural Brain Abnormalities in a Feline Model of Alpha-Mannosidosis

Manoj Kumar¹, Jeff T. Duda¹, Sea-Young Yoon², Jessica Bagel³, Patricia O'Donnell³, Charles Vite³, Stephen Pickup¹, James C. Gee¹, John H. Wolfe⁴, Harish Poptani¹

¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Research Institute of the Children's Hospital of Philadelphia, PA, United States; ³School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United States; ⁴Research Institute of the Children's Hospital of Philadelphia, PA, United

1298. Increased Frontal Irregularity of Resting State fMRI in Children with Autism Spectrum Disorders

Robert X. Smith¹, Devora Beck-Pancer², Rosemary McCarron², Kay Jann¹, Leanna Hernandez², Mirella Dapretto², Danny JJ Wang¹

¹Neurology, UCLA, Los Angeles, CA, United States; ²Psychiatry and Biobehavioral Sciences, UCLA, Los Angeles, CA, United States

Traditional Poster		
Normal Brain fMRI		

Exhibition Hall Monday 16:30-18:30

1299. The Healthy Human Cerebellum Engaging in Complex Patterns: An fMRI Study Adnan A.S. Alahmadi¹, ², Matteo Pardini¹, ³, Rebecca S. Samson¹, Karl J. Friston⁴, Ahmed T. Toosy¹, ⁵, Egidio D'Angelo⁶, ⁷, Claudia A.M. Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²Department of Diagnostic Radiology, Faculty of Applied Medical Science, KAU, Jeddah, Saudi Arabia; ³Department of Neurosciences, Ophthalmology and Genetics, University of Genoa, Genoa, Italy; ⁴Wellcom Centre for Imaging Neuroscience, UCL, Institute of Neurology, London, United Kingdom; ⁵NMR Research Unit, Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom; ⁶C. Mondino National, Neurological Institute, Pavia, Italy; ⁷Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy

1300. fMRI Demonstrates Response Selectivity to the Behaviorally Relevant Sounds in the Midbrain

magna cum laude

Jevin W. Zhang¹,², Patrick P. Gao¹,², Shu-Juan Fan¹,², Dan H. Sanes³, Ed X. Wu¹,² ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; ³Center for Neural Science, New York University, New York, NY, United States

1301. Hierarchical Intra-Network Organization of the Visual Network from Resting-State fMRI Data Yanlu Wang¹, Tie-Qiang Li¹, ² ¹Clinical Sciences, Intervention and Technology, Karolinska Institute, Stockholm, Stockholms Län, Sweden; ²Medical Physics,

[']Clinical Sciences, Intervention and Technology, Karolinska Institute, Stockholm, Stockholms Län, Sweden; ⁻Medical Physics, Karolinska University Hospital, Huddinge, Stockholms Län, Sweden

1302. Causal Brain Correlates of Autonomic Nervous System Outflow

Andrea Duggento¹, Marta Bianciardi², Lawrence L. Wald², Luca Passamonti³, Riccardo Barbieri⁴, ⁵, Maria Guerrisi¹, Nicola Toschi¹, ²

¹Medical Physics Section, Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; ²Department of Radiology, A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, United States; ³Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; ⁴Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA, United States; ⁵Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, MA, United States

1303. Sensitivity of Bold and Perfusion Contrasts Derived from Dual-Echo ASL in Localising Active and Imagery Movements

Silvia Francesca Storti¹, Ilaria Boscolo Galazzo², Francesca Pizzini², Stefania Montemezzi², Paolo Manganotti³, Gloria Menegaz¹

¹Department of Computer Science, University of Verona, Verona, Italy; ²Department of Neuroradiology, AOUI of Verona, Verona, Italy; ³Department of Neurological and Movement Sciences, University of Verona, Verona, Italy

1304. Cortical Modulation of Binaural Interaction on the Midbrain

*Shu-Juan Fan*¹, ², *Jevin W. Zhang*¹, ², *Patrick P. Gao*¹, ², *Dan H. Sanes*³, *Ed X. Wu*¹, ² ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; ³Center for Neural Science, New York University, New York, NY, United States

1305. Contrast and Duration Dependence of the Negative BOLD Response to Visual Stimulation in Visual and Auditory Cortical Regions at 7T

João Jorge¹,², Patrícia Figueiredo², Rolf Gruetter¹,³, Wietske van der Zwaag⁴

¹Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ²Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal; ³Department of Radiology, University of Lausanne and University of Geneva, Lausanne, Switzerland; ⁴Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Traditional Poster					
Normal	Brain	Spectros	scopy		

Exhibition Hall Monday 16:30-18:30

1306. Accelerated 2D J-Resolved MRS Through Non-Uniform Sampling and Iterative Soft Thresholding Andrew Prescot¹, Xianfeng Shi², Perry Renshaw², ³

¹Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Psychiatry, University of Utah, Salt Lake City, UT, United States; ³VISN 19 MIRECC, Salt Lake City, UT, United States

1307. Developmental Changes of Neurochemical Profile in Rat Retrosplenial Cortex Measured by *In Vivo* ¹H-MRS *Hui Zhang^l*, *Hao Lei^l*

¹State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China

1308. Usefulness of LCModel Analysis with an Experimental Basis Set in Brain 1H-MRS at 3T Hyeon-Man Baek¹, ², Youngjae Jeon¹, Jooyun Kim¹, Mirim Bang¹, Gyunggoo Cho¹, Chaejoon Cheong¹ ¹Center for MR Research, Korea Basic Science Institute, Ochang, Chungbuk, Korea; ²Department of Bio-Analytical Science, University of Science & Technology, Yuseong-gu, Daejeon, Korea

1309. The Intraoral Stimulus Increases the Regional Brain Temperature in the Insular Cortex of Rats: A Proton MR Spectroscopy Study

Chizuko Inui-Yamamoto¹, ², *Tsuyoshi Shimura*³, *Izumi Ohzawa*², *Yoshichika Yoshioka*¹, ² ¹Laboratory of Biofunctional Imaging, WPI IFReC, Osaka University, Suita, Osaka, Japan; ²Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; ³Graduate School of Human Sciences, Osaka University, Suita, Osaka, Japan

1310. Choline – a Differential Marker of Glutamatergic Neurotransmission ?

Anke Henning¹, ², Simone Grimm³, ⁴, Erich Seifritz³, Milan Scheidegger², ³ ¹Max Planck Institut for Biological Cybernetics, Tuebingen, Baden-Wuertemberg, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; ³Department of Psychiatry, Psychotherapy, and Psychosomatics, University Hospital of Psychiatry Zurich, Zurich, Switzerland; ⁴Clinic for Psychiatry and Psychotherapy, Charite Berlin, Berlin, Germany

1311. Bilateral Sensorimotor GABA Correlation Is Not Driven by Voxel Segmentation

Nicolaas AJ Puts¹, ², Stephanie Heba³, Ashley D. Harris¹, ², David J. McGonigle⁴, ⁵, C. John Evans⁵, Hubert Dinse⁶, Martin Tegenthoff², Tobias Schmidt-Wilcke³, Richard A. Edden¹, ²

¹Russell H. Morgan Dept. of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ²F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³Dept. of Neurology, BG-klinikum Bergmannsheil, Ruhr - University, Bochum, Germany; ⁴School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom; ⁵CUBRIC/School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom; ⁶Neural Plasticity lab, Institute for Neuroinformatics, Ruhr - University Bochum, Bochum, Germany

1312. Preserved Whole Brain N-Acetylaspartate During Mild Hypercapnia Challenge

Sanjeev Chawla¹, Yulin Ge¹, Hanzhang Lu², Olga Marshall¹, Ke Zhang¹, Brian J. Soher³, Oded Gonen¹ ¹Radiology, New York University Langone Medical Center, New York, NY, United States; ²Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Radiology, Duke University Medical Center, Durham, NC, United States

1313. T₂ Estimation of Downfield Metabolites in Human Brain at 7T Nicole D. Fichtner¹, ², Anke Henning, ²³, Niklaus Zoelch², Chris Boesch¹, Roland Kreis¹ ¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; ³Max Planck Institute for Biological Cybernetics, Tuebingen, Germany 1314. Specificity of Task-Active Modulation of Hippocampal Glutamate in Response to Associative Learning: A ¹H Functional Magnetic Resonance Spectroscopy Study

Jeffrey A. Stanley¹, Ashley Burgess¹, Dalal Khatib¹, Karthik Ramaseshan¹, Noa Ofen¹, David R. Rosenberg¹, Vaibhav A. Diwadkar¹

¹Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States

Traditional Poster

Normal Aging Brain

Exhibition Hall Monday 16:30-18:30

1315. Age-Related Microstructural Changes Quantified Using Myelin Water Imaging and Advanced Diffusion MRI Thibo Billiet¹, ², Mathieu Vandenbulcke³, Burkhard Mädler⁴, ⁵, Ronald Peeters, Thijs Dhollander⁶, ⁷, Hui Zhang⁸, Sabine Deprez¹, ², Bea RH Van den Bergh⁹, ¹⁰, Stefan Sunaert¹, ², Louise Emsell¹, ²
¹Translational MRI, KU Leuven, Leuven, Belgium; ²Radiology, University Hospitals, Leuven, Belgium; ³Old Age Psychiatry, KU Leuven, Belgium; ⁴Philips Healthcare, Hamburg, Germany; ⁵Neurosurgery, University of Bonn, Bonn, Germany; ⁶Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; ⁷Elektrotechniek - ESAT, KU Leuven, Belgium; ⁸Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom; ⁹Psychology, Tilburg University, Tilburg, Netherlands; ¹⁰Health Psychology, KU Leuven, Leuven, Belgium

1316. NODDI Measures Appear to Be Sensitive to Both Age and Gender

*Chandana Kodiweera*¹, *Andrew Alexander*², *Yu-Chien Wu*³ ¹Dartmouth Brain Imaging Center, Dartmouth College, Hanover, NH, United States; ²Waisman Brain Imaging Lab, University of Wisconsin, Madison, WI, United States; ³Center for Neuroimaging, Indiana University, Indianapolis, IN, United States

1317. Age Related Differences in Myelin Content Assessed Using Myelin Water Fraction Imaging Muzamil Arshad¹, ², Jeffrey A. Stanley³, Naftali Raz⁴, ⁵

¹Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States; ²MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, United States; ³Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, United States; ⁴Psychology, Wayne State University, MI, United States; ⁵Institute of Gerontology, MI, United States

1318. Adapting a White Matter Lesion Segmentation Algorithm for Large Cohort Studies

Leonie Lampe¹,², Alexander Schaefer¹,³, Christopher J. Steele¹, Katrin Arélin¹,², Dominik Fritzsch⁴, Matthias L. Schroeter¹,², Arno Villringer¹,², Pierre-Louis Bazin¹ ¹Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ²Leipzig Research Centre for Civilization Diseases & Clinic of Cognitive Neurology, University of Leipzig, Germany; ³Clinical Imaging Research Centre & Singapore Institute for Neurotechnology, National University of Singapore, Singapore; ⁴Department of Neuroradiology, University Hospital Leipzig, Germany

1319. Group Analysis of Threshold-Free Cluster Enhancement Score with Application to Normal Ageing White Matter Study by Diffusion Spectrum Imaging

*PIN-YU CHEN*¹, ², *Yu-Ling Chang*³, *Yu-Jen Chen*¹, *Yu-Chun Lo*¹, *Yung-Chin Hsu*¹, *Wen-Yih I. Tseng*¹, ⁴ ¹Center For Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, Taiwan; ²Department of Life Science, National Taiwan University, Taipei, Taiwan, Taiwan; ³Department of Psychology, National Taiwan University, Taipei, Taiwan; ⁴Molecular Imaging Center, National Taiwan University, Taiwan, Taiwan; ⁴Molecular Imaging Center, National Taiwan University, Taiwan, Taiw

- 1320. Characterization of White Matter Change and the Adjacent White Matter with Diffusion Tensor MRI Shuzhong Chen¹, Vincent Mok², Yi-Xiang Wang¹, Ka Sing Wong², Winnie CW Chu¹ ¹Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ²Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- **1321.** Cerebrospinal Fluid Volumetric MRI Mapping as a Simple Measurement for Evaluating Brain Atrophy. Jill Britt De Vis¹, Jaco J. Zwanenburg¹, Jolanda M. Spijkerman¹, Geert J. Biessels¹, Jeroen Hendrikse¹, Esben T. Petersen¹

¹University Medical Center Utrecht, Utrecht, Netherlands

1322. Neural and Cognitive Substrates of Omega-3 Fatty Acid Supplementation: A Voxel-Based Morphometry Study in Aged Mice

Marco Pagani¹, ², Debora Cutuli³, ⁴, Adam Liska¹, Paola Caporali³, ⁴, Daniela Laricchiuta³, ⁴, Francesca Foti³, ⁴, Cristina Neri⁴, Laura Petrosini⁴, Alessandro Gozzi¹

¹CNCS, Istituto Italiano di Tecnologia - IIT, Rovereto, TN, Italy; ²CIMeC - Center for Mind and Brain Sciences, UNITN - Università di Trento, Rovereto, TN, Italy; ³University "Sapienza", Rome, Italy; ⁴Santa Lucia Foundation, Rome, Italy

1323. Altered Antioxidant Profile in the Healthy Elderly Occipital and Posterior Cingulate Cortices Measured Via 7 T ¹H MRS

Malgorzata Marjanska¹, J. Riley McCarten², Laura S. Hemmy², Dinesh K. Deelchand¹, Melissa Terpstra¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Minneapolis VA Medical Center, Geriatric Research and Clinical Center, MN, United States

1324. Consistency of ¹H-MRS in the Putamen of Healthy Adult Controls Over Six Years.

Bretta Russell-Schulz¹, Terri L. Petkau², Blair R. Leavitt, ²³, Alex L. MacKay, ¹⁴ ¹Radiology, University of British Columbia, Vancouver, BC, Canada; ²Centre for Molecular Medicine and Therapeutics, Child & Family Research Institute, Vancouver, BC, Canada; ³Medical Genetics, University of British Columbia, Vancouver, BC, Canada; ⁴Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada

1325. Serum BDNF Correlates with Connectivity in the (Pre)motor Hub in the Aging Human Brain: A Resting State fMRI Study

Karsten Mueller¹, Harald E. Möller¹, Katrin Arelin¹,², Jürgen Kratzsch³, Tobias Luck⁴, Steffi Riedel-Heller⁴, Arno Villringer¹,², Matthias L. Schroeter¹,²

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ²Clinic for Cognitive Neurology, University of Leipzig, Germany; ³Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Germany; ⁴Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Germany

- **1326.** The Sensitivity of Olfactory fMRI in Quantifying Olfactory Performance During Normal Aging *Brittany Martinez¹, Jianli Wang¹, Prasanna Karunanayaka¹, Megha Vasavada², Paul J. Eslinger³, Qing X. Yang¹, ⁴ ¹Radiology, Penn State College of Medicine, Hershey, PA, United States; ²Neurology, UCLA, Los Angeles, CA, United States; ³Neurology, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurology, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA,*
- 1327. The Effect of Age on Wide-View Retinotopic Mapping of Central and Periphery Visual Areas Wei Zhou¹, ², Eric R. Muir¹, ³, Jinqi Li¹, Crystal Franklin¹, Timothy Q. Duong¹, ²
 ¹Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States; ²Radiology, University of Texas Health Science Center, San Antonio, TX, United States
- 1328. The Effect of Behavioral Performance During Multistep Cognitive Processing on the Extraction of Age-Related Changes from Resting State Network Activation Toshiharu Nakai¹, Ayuko Tanaka¹, Mitsunobu Kunimi¹, Sachiko Kiyama¹, Annabel SH Chen² ¹Neuroimaging & Neuroinformatics, National Center for Geriatrics and Gerontology, Ohbu, Aichi, Japan; ²Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University, Singapore, Singapore
- **1329.** Age-Related Changes in Default Mode Sub-Networks *Xueli Wang¹, Jin Xu¹, XiuFen Zhang¹, Xiaolong Peng¹, Pan Lin¹* ¹Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China

1330. Brain Expansion Capacity: Measuring Brain Volume Adaptation to Water Loading in the Human Brain Jack Knight-Scott¹ ¹Radiology, Children's Healthcare of Atlanta, Atlanta, GA, United States

'Radiology, Children's Healthcare of Atlanta, Atlanta, GA, United States

1331. Age-Related Increased R2 and R2* Correlates with Increased Brain Iron in a Normal Ageing Mouse Model *Thomas Walker¹, Christos Michaelides¹, Harry Parkes², William Crum¹, Tina Geraki³, Amy Herlihy⁴, Po-Wah So¹* ¹Department of Neuroimaging, Institute Of Psychiatry, King's College London, London, United Kingdom; ²CR-UK, Clinical MR Research Group, Institute of Cancer Research, Sutton, Surrey, United Kingdom; ³Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; ⁴Agilent Technologies, Yarnton, Oxfordshire, United Kingdom

1332. Age Associated Iron Deposition in Basal Ganglia Increases with Physical Fitness

Adam G. Thomas¹,², Andrea Dennis², Nancy B. Rawlings², Charlotte J. Stagg², Helen Dawes³, Heidi Johansen-Berg², Peter A. Bandettini¹

¹NIMH, Bethesda, MD, United States; ²FMRIB, University of Oxford, Oxford, United Kingdom; ³Movement Sciences Group, Oxford Brookes University, Oxford, United Kingdom

1333. Determinants of Iron Accumulation in the Normal Ageing Brain

Lukas Pirpamer¹, Edith Hofer¹, Paul Freudenberger², Stephan Seiler¹, Christian Langkammer³, Franz Fazekas¹, Stefan Ropele¹, Reinhold Schmidt¹

¹Department of Neurology, Medical University of Graz, Graz, Styria, Austria; ²Molecular Biology and Biochemistry, Medical University of Graz, Styria, Austria; ³MGH/HST Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States

1334. Iron Content of Functional Networks in the Aged Human Cortex

Valerie C. Anderson¹, Manoj K. Sammi¹, Yosef A. Berlow¹, Jeffrey A. Kaye², Joseph F. Quinn², William D. Rooney¹ ¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ²Department of Neurology, Oregon Health & Science University, Portland, OR, United States

Traditional PosterBrain Resting State & Default Mode NetworkExhibition HallMonday 16:30-18:30

1335. Separation of VLF Fluctuations from Periodic Cardiorespiratory Noise with Critically Sampled Magnetic Resonance Encephalography.

Vesa Kiviniemi¹, Xindi Wang³, Vesa Korhonen¹, Tuija Keinänen³, Yu-Feng Zang⁴, Pierre LeVan⁵, Shella Keilholz⁶ ¹Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland; ²Beijing Normal University, Beijing, China; ³Clinical Neurophysiology, MRC, Oulu University Hospital, Oulu, Finland; ⁴Hangzhou Normal University, Hangzhou, China; ⁵University of Freiburg, Freiburg, Germany; ⁶Emory University, Atlanta, GA, United States

- 1336. Short- And Long-Term Effects of Hormonal Contraceptives Use on the Default Mode Network Timo De Bondt¹, ², Dirk Smeets³, Pim Pullens¹, ², Wim Van Hecke³, Yves Jacquemyn⁴, ⁵, Paul M. Parizel¹, ² ¹Radiology, Antwerp University Hospital, Antwerp, Belgium; ²Radiology, University of Antwerp, Antwerp, Belgium; ³icoMetrix, Leuven, Belgium; ⁴Gynaecology and Obstaetrics, Antwerp University Hospital, Antwerp, Belgium; ⁵Gynaecology and Obstaetrics, University of Antwerp, Antwerp, Belgium
- 1337. Task-Induced Deactivation Does Not Disrupt Functional Coupling of the Default Mode Network During the Movement

Oleksii Omelchenko¹, Zinayida Rozhkova² ¹Human and Animal Physiology, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine; ²Radiology, Medical Clinic BORIS, Kyiv, Ukraine 1338. Coupling Between the Salience Network and Default-Mode Network Predicts Task-Induced Deactivation Through Regional Glutamate and GABA Concentrations

Hong Gu^l , *Yuzheng Hu*^l, *Xi Chen*^l, *Yihong Yang*^l ¹National Institute on Drug Abuse, NIH, Baltimore, MD, United States

- 1339. Investigating Task-Based Activation and Functional Connectivity in the White Matter Using fMRI at 3 Tesla Don Marciel Ragot¹, ², Erin Mazerolle³, J. Jean Chen¹, ⁴ ¹Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; ²Engineering Science, University of Toronto, Ontario, Canada; ³University of Calgary, Ontario, Canada; ⁴Medical Biophysics, University of Toronto, Ontario, Canada
- 1340. BrainVR: The Virtual Reality Brain Connectivity Navigator Ricardo Ribeiro¹, Inês Neiva¹, Hugo Alexandre Ferreira¹ ¹Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon, Lisboa, ., Portugal
- 1341. High Frequency Coherence in Pediatric Primary Motor Cortices

Karolina J. Urban¹, ², Karen M. Barlow³, ⁴, Laronna Sewell², Bradley G. Goodyear¹, ⁵, Jeff F. Dunn¹, ⁵ ¹Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ²Neurosciences, University of Calgary, Calgary, Alberta, Canada; ³Pediatrics and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; ⁴Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; ⁵Radiology, University of Calgary, Calgary, Alberta, Canada

1342. FcMRI Maps Genomic Influence on Acute Alterations of Caudate Putamen Functional Networks with Consomic Rat Strategy

Zhixin Li¹, Chenxuan Li², Christopher P. Pawela², ³ ¹Plastic Surgery, Medical College of Wisconsin, Milwaukee, WI, United States; ²Plastic Surgery, Medical College of Wisconsin, WI, United States; ³Biophysics, Medical College of Wisconsin, WI, United States

1343. Inter-Vender and Inter-Session Reliability of Resting State Functional Magnetic Resonance Imaging (RsfMRI): Implications for Multicenter Studies

Won-Jin Moon¹, Hyeong Su An², Jae-Kyun Ryu³, Ju Yeon Park, Won Sung Yun, Jin Woo Choi, Geon-Ho Jahng⁴, Jang-Yeon Park

¹Department of Radiology , Konkuk University School of Medicine, Seoul, Korea; ²1. Department of Radiology, Konkuk University School of Medicine, Seoul, Korea; ³2. Department of Biomedical Engineering, Konkuk University, Seoul, Korea; ⁴Kyunghee University, Seoul, Korea

- **1344.** Task-Induced Deactivation in Medial Structures of the Default Mode Network Varied According to Task Types Kayako Matsuo¹, Katsuaki Suzuki¹, Keisuke Wakusawa², Kiyokazu Takebayashi¹, Yasuo Takehara³, Norio Mori¹ ¹Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ²Research Center for Child Mental Development, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ³Department of Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- **1345.** Physiological Characterization of a Robust Survival Rodent fMRI Method Hanbing Lu¹, Julia K. Brynildsen¹, Li-Ming Hsu¹, Thomas Ross¹, Elliot A. Stein¹, Yihong Yang¹ ¹Neuroimaging Research Branch, National Institute on Drug Abuse, NIH, Baltimore, MD, United States

Traditional PosterMood Disorders & PsychosisExhibition HallMonday 16:30-18:30

1346. Does the Interpretation of Task-Based BOLD Activation in Adolescent Bipolar Disorder Require TRUST? Arron W.S. Metcalfe¹, Benjamin I. Goldstein², ³, David E. Crane¹, Antonette Scavone³, Hanzhang Lu⁴, Bradley J. MacIntosh⁵, ⁶ ¹Brain Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; ²Psychiatry & Pharmacology, University of Toronto, Ontario, Canada; ³Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ⁴University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁵Department of Medical Biophysics, University of Toronto, Ontario, Canada; ⁶Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada

1347. ECT-Induced Structural Changes in the Human Brain; a Case Series

Leif Oltedal¹, ², Ute Kessler¹, ³, Nathan S. White⁴, Hauke Bartsch⁵, Bjarne Hansen³, Lars Ersland⁶, Renate Grüner², Joshua Kuperman⁴, Dominic Holland⁷, Kenneth Hugdahl, ³⁸, Ketil J. Ødegaard¹, ³, Anders M. Dale, ⁴⁵ ¹Department of Clinical Medicine, University of Bergen, Bergen, Norway; ²Department of Radiology, Haukeland University Hospital, Bergen, Norway; ³Division of Psychiatry, Haukeland University Hospital, Bergen, Norway; ⁴Department of Radiology, University of California, San Diego, CA, United States; ⁵Multi-Modal Imaging Laboratory, University of California, San Diego, CA, United States; ⁸Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway

1348. Multiparametric MRI Assessment of Chronic Social Defeat-Induced Changes in Mouse Brain Function, Metabolism, and Structure

Joanes Grandjean¹, Damiano Azzinnari², Aline Seuwen¹, Erich Seifritz², Christopher Pryce², Markus Rudin³, ⁴ ¹Institute for Biomedical Engineering, ETH and University Zurich, Switzerland; ²Psychiatric University Hospital Zurich, Zurich, Switzerland; ³Institute for Biomedical Engineering, ETH and University Zurich, Zurich, Select, Switzerland; ⁴Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland

1349. Altered Topographical Organization of the Default-Mode Network in First-Episode Remitted Geriatric Depression.

Zan Wang¹, Yonggui Yuan², Hao Shu¹, Feng Bai¹, Jiayong You³, Zhijun Zhang¹ ¹Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China; ²Psychosomatics and Psychiatry, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China; ³Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, China

1350. Trait and State-Dependent Abnormalities of Bipolar Disorder Detected by Quantitative T1rho Mapping Casey P. Johnson¹, Lois A. Warren², Gary E. Christensen³, Jess G. Fiedorowicz², Vincent A. Magnotta¹, John A. Wemmie², ⁴

¹Radiology, University of Iowa, Iowa City, IA, United States; ²Psychiatry, University of Iowa, Iowa City, IA, United States; ³Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States; ⁴Veterans Affairs Medical Center, Iowa City, IA, United States

1351. A Pilot fMRI Study of the Effect of Negative Stressful Factors on the Onset of Female Depression bian haiman^l, ji shengzhang^l, zhuo chunjun², li gongying³, ren junjie^l ¹the Fourth Central Hospital of Tianjin, tianjin, China; ²Tianjin Anning Hospital, tianjin, China; ³Department of psychiatry, Jining Medical University, shandong, China

1352. Neurostructural Correlates of NCAN, a Genome-Wide Significant Risk Gene for Psychiatric Disorders Harald Kugel¹, Udo Dannlowski², ³, Dominik Grotegerd², Ronny Redlich², Janina Suchy³, Nils Opel², Thomas Suslow², ⁴, Carsten Konrad³, Patricia Ohrmann², Jochen Bauer², Tilo Kircher³, Axel Krug³, Andreas Jansen³, Bernhard T. Baune⁵, Walter Heindel¹, Katharina Domschke⁶, Volker Arolt², Christa Hohoff², Marcella Rietschel⁷, Stephanie H. Witt⁷

¹Department of Clinical Radiology, University of Münster, Muenster, NRW, Germany; ²Department of Psychiatry, University of Münster, Muenster, NRW, Germany; ³Department of Psychiatry, University of Marburg, Marburg, HE, Germany; ⁴Department of Psychosomatic Medicine and Psychotherapy, University of Leipzig, Leipzig, SN, Germany; ⁵Discipline of Psychiatry, University of Adelaide School of Medicine, Adelaide, SA, Australia; ⁶Department of Psychiatry, University of Würzburg, Würzburg, BY, Germany; ⁷Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Mannheim, BW, Germany

1353. Decreased Posterior Default Mode Network for Depression Patients

*Hu Cheng*¹, *Rui Yang*², *Hongbo Zhang*², *Xiaoping Wu*², *Junle Yang*², *Mingyue Ma*², *Yanjun Gao*², *Hongsheng Liu*², *Shengbin Li*²

¹Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; ²Xi'an Jiaotong University, Xi'an, Shanxi, China

1354. Cognitive Control for Processing and Inhibition of Facial Emotional Expressions

SENTHIL S. KUMARAN¹, BHOOMIKA R. KAR², SUNITA GUDWANI¹, ANKEETA SHARMA¹ ¹DEPARTMENT OF NMR AND MRI FACILITY, ALL INDIA INSTITUTE OF MEDICAL SCIENCES, New Delhi, Delhi, India; ²Centre of Behavioural and Cognitive Sciences, UNIVERSITY OF ALLAHABAD, Allahabad, Uttar Pradesh, India

1355. Reproducibility of Metabolite Measurements in Patients with Schizophrenia at 7T

Subechhya Pradhan¹, Joseph S. Gillen¹, ², S. Andrea Wijtenburg³, Ashley D. Harris¹, Laura M. Rowland³, Peter B. Barker¹.

¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Kennedy Krieger Institute, Baltimore, MD, United States; ³Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, MD, United States

1356. Condition Specific Frequency Patterns in Rs-fMRI Measurement of a Neurodevelopmental Rat Model of **Schizophrenia**

Ekkehard Küstermann¹, Vani Thimmashetty², Jannis Gundelach³, Lena Wischhof³ ¹"In-vivo-MR" AG, FB2, Universität Bremen, Bremen, Germany; ²"In-vivo-MR" AG, FB2, Universität Bremen, Bremen, Germany; ³Department of Neuropharmacology, Brain Research Institute, University of Bremen, Bremen, Germany

Traditional Poster Anxiety & PTSD

Exhibition Hall Monday 16:30-18:30

1357. Global Brain Network Alterations in Post-Traumatic Stress Disorder and Post-Concussion Syndrome D Rangaprakash¹, Gopikrishna Deshpande¹, ², D Narayana Dutt³, Thomas A. Daniel², Adam Goodman², Jeffrey S. Katz, ¹², Nouha Salibi¹, ⁴, Thomas S. Denney Jr¹, ², MAJ Michael N. Dretsch⁵, ⁶ ¹AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States;

²Department of Psychology, Auburn University, Auburn, AL, United States; ³Department of Medical Electronics, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India; ⁴MR R&D, Siemens Healthcare, Malvern, PA, United States; ⁵National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States; ⁶U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States

1358. Inter-Hemispheric Functional and Anatomical Connectivity Abnormalities in Traffic Accident-Induced PTSD: A Study Combining fMRI and DTI

Yawen Sun¹, Yan Zhou¹, Wang Zhen², Zhenyu Zhou³, Yong Zhang³, Jieqing Wan⁴, Jianrong Xu¹ ¹Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; ²Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ³GE Healthcare, Shanghai, China; ⁴Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China

1359. Assessment of Stress-Induced Neurochemical Alterations in a Rat Model of Chronic Stress Using In Vivo¹H MRS at 11.7 Tesla

Fawzi Boumezbeur¹, Riccardo Magalhães², Ashley Novais², Sébastien Mériaux¹, Michel Bottlaender¹, Arnaud Cachia³, Thérèze Jay³, Nuno Sousa²

¹NeuroSpin, DSV/I2BM, Commissariat à l'Energie Atomique, Gif-sur-Yvette, France; ²ICVS/3B's-PT, School of Health Sciences, University of Minho, Braga, Portugal; ³Inserm U894, Center for Psychiatry and Neurosciences, University Paris-Descartes, Paris, France

1360. Amygdala Functional Connectivity After Real-Time fMRI Neurofeedback Emotional Training in Combat-Related PTSD

Raquel Phillips¹, Vadim Zotev¹, Kymberly Young¹, Chung Ki Wong¹, Brent Wurfel¹, Matthew Meyer¹, ², Frank Krueger¹, ³, Matthew Feldner¹, ⁴, Jerzy Bodurka¹, ⁵

Laureate Institute for Brain Research, Tulsa, OK, United States; ²Laureate Psychiatric Clinic and Hospital, Tulsa, OK, United States; ³Dept. of Psychology, George Mason University, Fairfax, VA, United States; ⁴Dept. of Psychological Science, University of Arkansas, Fayetteville, AR, United States; ⁵College of Engineering, University of Oklahoma, Tulsa, OK, United States

1361. Decoding of Phobic Content with Multivoxel Pattern Analysis in Patiens with Spider Phobia

Simon Schwab¹, Leila M. Soravia¹, Yosuke Morishima¹,², Masahito Nakataki¹,³, Thomas Dierks¹, Thomas E. Nichols⁴, Andrea Federspiel¹

¹Dept. of Psychiatric Neurophysiology, University Hospital of Psychiatry, University of Bern, Bern, Switzerland; ²Japan Science and Technology Agency, PRESTO, Japan; ³Department of Psychiatry, The University of Tokushima, Tokushima, Japan; ⁴Department of Statistics & WMG, University of Warwick, Coventry, United Kingdom

1362. Neural Mechanism on Hypofunction of Working Memory Maintenance with Anxiety-Provoking Distracter in Patients with Obsessive Compulsive Disorder and Generalized Anxiety Disorder

Gwang-Won Kim¹, Jong-Chul Yang², Gwang-Woo Jeong¹,

¹Research Institute of Medical Imaging, Chonnam National University Medical School, Gwang-ju, Korea; ²Psychiatry, Chonbuk National University Hospital, Jeong-ju, Korea; ³Department of Radiology, Chonnam National University Medical School, Gwang-ju, Korea

1363. Alterations of Cerebral White Matter Volume and Metabolite Concentration in Patients with Generalized Anxiety Disorder: A Voxel-Based Morphometry and 1H-MRS

Chung-Man Moon¹, Gwang-Woo Jeong^{1,2}

¹Radiology, Research Institute for Medical Imaging, Gwangju, Korea; ²Radiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea

1364. Diagnositic Prediction for Social Anxiety Disorder Via Multivariate Pattern Analysis of the Regional Homogeneity

Wenjing Zhang¹, Xun Yang¹, Su Lui¹, Yajing Meng², Li Yao¹, Yuan Xiao¹, Wei Zhang², Qiyong Gong¹ ¹Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; ²Department of Psychiatry, West China Hospital of Sichuan University, Chengdu, Sichuan, China

1365. Morphologic and Cellular Metabolic Abnormalities in DLPFC in Patients with Obsessive-Compulsive Disorder: A Voxel-Based Morphometry and 1H-MRS Study

Shin-Eui Park¹, Gwang-Woo Jeong, ¹²

¹Interdisciplinary Program of Biomedical Engineering, Chonnam National University, Gwangju, Jeollanamdo, Korea; ²Department of Radiology, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea

1366. Real-Time fMRI Neurofeedback with Simultaneous EEG in Combat-Related PTSD: Identification of EEG Measures of PTSD Severity and Treatment Response

Vadim Zotev¹, Raquel Phillips¹, Masaya Misaki¹, Chung Ki Wong¹, Brent Wurfel¹, Matthew Meyer¹, ², Frank Krueger¹, ³, Matthew Feldner¹, ⁴, Jerzy Bodurka¹, ⁵

¹Laureate Institute for Brain Research, Tulsa, OK, United States; ²Laureate Psychiatric Clinic and Hospital, Tulsa, OK, United States; ³Neuroscience Dept., George Mason University, Fairfax, VA, United States; ⁴Dept. of Psychological Science, University of Arkansas, Fayetteville, AR, United States; ⁵College of Engineering, University of Oklahoma, Tulsa, OK, United States

1367. Metabolic and Microstructural Alterations Associated with Individual Differences in Trait Anxiety: Preliminary Evidence from Magnetic Resonance Spectroscopy and DTI Based Tractography Study Subash Khushu¹, Shilpi Modi¹, Poonam Rana¹, Richa Trivedi¹

¹NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi, India

1368. Biophysical Modeling of High Field Diffusion MRI Demonstrates Micro-Structural Aberration in Chronic Mild Stress (CMS) Rat Brain

Ahmad Raza Khan¹, Andrey Chuhutin², Brian Hansen², Ove Wiborg³, Christopher D. Kroenke⁴, Sune Nørhøj Jespersen²

¹Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; ²Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; ³Centre for Psychiatric Research, Aarhus University Hospital, Risskov, Denmark; ⁴Advanced Imaging Research Center, Oregon Health & Science University, Beaverton, OR, United States

Traditional Poster	
Epilepsy	
Exhibition Hall	Monday 16:30-18:30

- **1369.** Disrupted Modular Organization of Structural Cortical Network Topology in New-Onset Pediatric Epilepsy *Jie Zheng¹*, *Rushi Rajyaguru¹*, *Jeffery Riley¹*, *Gultekin Gulsen¹*, *Bruce Hermann²*, *Jack Lin¹* ¹University of California, Irvine, Irvine, CA, United States; ²University of Wisconsin School of Medicine and Public Health, WI, United States
- 1370. Characteristic MR Findings in Seizures Associated with Nonketotic Hyperglycemia (NKH): Diagnostic Value of Contrast Enhanced FLAIR Imaging (CE-FLAIR)

Eun Kyoung Lee¹, Eun Ja Lee¹ ¹Radiology, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Korea

1371. Multimodal Quantitative Imaging Detects Functional But Not Structural Abnormalities in Idiopathic Generalized Epilepsy

Megan L. McGill¹, Orrin Devinsky², Xiuyuan Wang², Brian T. Quinn², Heath Pardoe², Chad Carlson², Tracy Butler², Ruben Kuzniecky², Thomas Thesen² ¹Radiology, New York University School of Medicine, New York, NY, United States; ²Comprehensive Epilepsy Center, Neurology,

¹Radiology, New York University School of Medicine, New York, NY, United States; ²Comprehensive Epilepsy Center, Neurology, New York University School of Medicine, New York, NY, United States

1372. Improve Lateralizing Sensitivity in Temporal Lobe Epilepsy by Combining Structural MRI with Regional Cerebral Blood Flow and Apparent Diffusion Coefficient

Xiaoqin GUO¹, ², Shangchen XU³, Guangbin WANG¹, Yi ZHANG⁴, Lingfei GUO¹, Bin ZHAO¹ ¹MRI, Shandong Medical Imaging Research Institution, Jinan, Shandong, China; ²Medicine, Shandong University, Jinan, Shandong, China; ³Neurosurgery, Shandong Provincial Hospital, Shandong, China; ⁴Medical Imaging Processing Center, Shandong Medical Imaging Research Institution, Shandong, China

1373. Different Epileptic Brain Networks in Unilateral Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis Identified by the Whole Brain Tract-Based Automatic and Surface-Based Analyses

Yao-Chia Shih¹, ², *Yu-Jen Chen²*, *Yung-Chin Hsu²*, *Yu-Chun Lo²*, *Hong-Huei Liu³*, *Wen-Yih Issac Tseng²*, ⁴ ¹Graduate Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; ³Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan; ⁴Molecular Imaging Center, National Taiwan University, Taipei, Taiwan

- **1374.** MR-Microscopy of Human Hippocampi: Multiparametric Characterization of Hippocampal Sclerosis *Clarissa Gillmann¹*, *Roland Coras²*, *Michael Uder¹*, *Ingmar Blümcke²*, *Tobias Bäuerle¹* ¹Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; ²Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany
- 1375. Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy Utilizing DTI Structural Connectome

Kouhei Kamiya¹, Yuichi Suzuki², Shiori Amemiya¹, Naoto Kunii³, Kensuke Kawai⁴, Harushi Mori¹, Akira Kunimatsu¹, Nobuhito Saito³, Shigeki Aoki⁵, Kuni Ohtomo¹

¹Department of Radiology, The University of Tokyo, Bunkyo, Tokyo, Japan; ²Department of Radiological Technology, The University of Tokyo Hospital, Bunkyo, Tokyo, Japan; ³Department of Neurosurgery, The University of Tokyo, Bunkyo, Tokyo, Japan; ⁴Department of Neurosurgery, NTT Medical Center Tokyo, Shinagawa, Tokyo, Japan; ⁵Department of Radiology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan

Summa cum laude

1376. Graph-Theoretical Analysis of DTI Reveals Disruption in Global and Regional Structural Networks in Children with Localization-Related Epilepsy

Mojdeh Zamyadi¹, Carter Snead², Sam Doesburg¹, Mary Lou Smith¹, Elysa Widjaja³ ¹Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; ²Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada; ³Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada

1377. A Longitudinal Study of MR Correlates During Epileptogenesis in a Mouse Model of Temporal Lobe Epilepsy Niels Leonard Schwaderlapp¹, Philipp Janz², Jochen Leupold¹, Ute Häussler², Thomas Lange¹, Dominik v. Elverfeldt¹, Carola Haas², Jürgen Hennig¹, Laura-Adela Harsan¹, Pierre LeVan¹ ¹Medical Physics, University Medical Center Freiburg, Freiburg, BW, Germany; ²Exp. Epilepsy Research, University Medical Center Freiburg, Freiburg, BW, Germany

1378. MR Spectroscopic Studies of Early Post Status Epilepticus in Rats

Yijen Lin Wu¹, ², Patrice Pearce¹, Amedeo Rapuano³, T. Kevin Hitchens⁴, Nihal deLanerolle³, Jullie W. Pan¹, ⁵ ¹Neurology, University of Pittsburgh, Pittsburgh, PA, United States; ²Developmental Biology, University of Pittsburgh, Pittsburgh, PA, , United States; ³Neurosurgery, Yale University, New Haven, CT, United States; ⁴Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States; ⁵Radiology, University of Pittsburgh, PA, United States

1379. The Use of Magnetic Resonance Spectroscopy in the Evaluation of Epilepsy in Pediatric Patients Marisa Blitstein¹, Sandra Rincon¹, Paul Caruso¹, Ronald Thibert², Ramon Gilberto Gonzalez¹, ³, Eva-Maria Ratai, ³⁴ ¹Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ²Neurology / Pediatric Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; ³A. A. Martinos Center for Biomedical Imaging, MA, United States; ⁴Department of Radiology, Neuroradiology Division, Massachusetts General Hospital, Harvard Medical School , Boston, MA, United States

1380. Investigating Longitudinal Metabolite and Electrophysiologic Changes Associated with Epileptogenesis *In Vivo* in a Rat Model of Interictal Spiking Using ¹H MRS at 7 Tesla

Helen Wu¹, ², Danielle Senador³, Matthew Galloway⁴, Jeffrey Loeb⁵, Jeffrey Stanley⁴ ¹Wayne State University School of Medicine, Detroit, MI, United States; ²MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, United States; ³Wayne State University School of Medicine, MI, United States; ⁴Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, United States; ⁵Neurology and Rehabilitation Medicine, University of Illinois at Chicago, IL, United States

1381. Functional Connectivity in Nocturnal Frontal Lobe Epilepsy: An fMRI Resting State Study

Stefania Evangelisti¹, Laura Ludovica Gramegna¹, Claudia Testa¹, David Neil Manners¹, Stefano Zanigni¹, Claudio Bianchini¹, Francesca Bisulli, ², Laura Licchetta, Ilaria Naldi, Lorenzo Ferri, Paolo Tinuper, ², Caterina Tonon¹, Raffaele Lodi¹

¹Functional MR Unit, Policlinico S.Orsola-Malpighi, Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy; ²IRCCS Institute of Neurological Sciences of Bologna, Bologna, Italy

1382. The Value of Resting State-fMRI for Detecting Epileptogenic Zone in Patients with Focal Epilepsy

Jianzhong Yin¹, ², Bofeng Zhao¹, Zhijuan Chen³, Weidong Yang³, Yu Qing⁴, Li Cai⁵, Panli Zuo⁶, Hongyan Ni¹, ², Wen Shen¹, ²

¹Radiology Department, Tianjin First Central Hospital, Tianjin, China; ²Tianjin Medical Imaging Institution, Tianjin, China; ³Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China; ⁴Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China; ⁶Clinical PET-CT Center, Tianjin Medical University General Hospital, Tianjin, China; ⁶MR Collaboration, Siemens Healthcare China, Beijing, China

Tradition	ial Poster
Multiple	Sclerosis

Exhibition Hall Monday 16:30-18:30

- 1383. Moments of the T2 Spectrum as a Marker of Resolving Edema in New MS Lesions Sneha Pandya¹, Elizabeth Monohan², Michael Dayan¹, Susan A. Gauthier², Ashish Raj¹ ¹Radiology, Weill Cornell Medical College, New York, NY, United States; ²Neurolgy, Weill Cornell Medical College, New York, NY, United States
- 1384. Different MRI Measures Predict Clinical Deterioration and Cognitive Impairment in MS: A 5 Year Longitudinal Study

Elisabetta Pagani¹, Maria A. Rocca¹, ², Paolo Preziosa¹, ², Sarlota Mesaros³, Massimiliano Copetti⁴, Melissa Petrolini¹, Jelena Drulovic³, Massimo Filippi¹, ²

¹Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, MI, Italy; ²Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; ³Neurology Clinic, Clinical Centre of Serbia, University of Belgrade, Belgrade, Yugoslavia; ⁴Biostatistics Unit, IRCCS-Ospedale Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy

1385. Optimizing Gray-Matter White-Matter Contrast on Three-Dimensional Double Inversion Recovery MRI Using Patient-Specific Inversion Times

Refaat E. Gabr¹, Xiaojun Sun¹, Amol S. Pednekar², Ponnada A. Narayana¹ ¹Department of Diagnostic and Interventional Imaging, The University of Texas Health Science Center at Houston, Houston, TX, United States; ²Philips Healthcare, Cleveland, OK, United States

1386. Comparative Study of Quantitative MRI Markers of Disease Progression in Primary Progressive Multiple Sclerosis

Govind Nair¹, Danish Ghazali¹, Blake Snyder¹, Joan Ohayon¹, Daniel S. Reich¹, Irene Cortese¹, Bibiana Bielekova¹ ¹NINDS, National Institutes of Health, Bethesda, MD, United States

1387. Highly Reproducible Whole Brain Myelin Water Mapping with FAST-T2 in 4 Minutes Using Geometric Echo Time Sampling

Thanh D. Nguyen¹, Kofi Deh¹, Sneha Pandya¹, Elizabeth Monohan¹, Ashish Raj¹, Yi Wang¹, Susan A. Gauthier¹ Weill Cornell Medical College, New York, NY, United States

1388. Cognitive Reserve and Functional Connectivity in the Brain at Rest in Relapsing Remitting Musltiple Sclerosis Barbara Basile¹, ², Laura Serra¹, Barbara Spanò³, Valeria Studer⁴, Silvia Rossi⁴, Diego Centonze⁴, Carlo Caltagirone⁵, Marco Bozzali¹

¹Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy; ²Association of Cognitive Psychotherapy, School of Cognitive Psychotherapy, Roma, Italy; ³Neuroimaging Laboratory, Santa Lucia Foundation, Roma, Italy; ⁴Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy; ⁵Institute of Neurology, Università Cattolica, roma, Italy

1389. Statistical Brain Network Analysis in Female Relapsing Remitting Multiple Sclerosis Patients Using Diffusion Tensor Imaging

AmirHussein Abdolalizadeh¹, ², Arash Nazeri², Tina Roostaei², Mohammad Ali Sahraian², Shokufeh Sadaghiani², Bahram Mohajer¹, Mohammad Hadi Aarabi¹

¹Interdisciplinary Neuroscience Research Program (INRP), Tehran, Iran; ²Multiple Sclerosis Research Center (MSRC), Tehran, Iran

1390. The Influence of Surgical Correction on White Matter Microstructural Integrity in Rabbits with Familial Coronal Suture Craniosynostosis

Lesley M. Foley¹, Shinjini Kundu², Wendy Fellows-Mayle³, T Kevin Hitchens¹, ⁴, Gustavo K. Rohde², Ramesh Grandhi³, Christopher M. Bonfield³, Mark P. Mooney⁵

¹Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh, PA, United States; ²Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States; ³Department of Neurological Surgery, University

of Pittsburgh, Pittsburgh, PA, United States; ⁴Department of Biological Sciences, Carnegie Mellon University, Pittsburgh , PA, United States; ⁵Department of Anthropology, University of Pittsburgh, PA, United States

1391. Central Sulcus and Pericentral Cortical Changes in Multiple Sclerosis

Louise Pape¹, Artem Mikheev¹, Jeffrey Huang¹, Joseph Herbert¹, Henry Rusinek¹, Yulin Ge¹ ¹Radiology/Center for Biomedical Imaging, NYU Langone Medical Center, New York, NY, United States

1392. Resting State Fluctuation Amplitude Indicates Impaired Cerebrovascular Reactivity in Multiple Sclerosis Mark J. Lowe¹, Katherine A. Koenig¹, Xiaopeng Zhou¹, Wanyong Shin¹, Robert Bermel², Lael Stone², Micheal D. Phillips¹

¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States; ²Neurologic Institute, Cleveland Clinic, Cleveland, OH, United States

1393. Hippocampi and Epilepsy in MS Patients: A Diffusion Weighted Imaging Study with NODDI.

Alberto De Luca¹, ², Marco Castellaro¹, Stefania Montemezzi³, Massimiliano Calabrese⁴, Alessandra Bertoldo¹ ¹Department of Information Engineering, University of Padova, Padova, PD, Italy; ²Department of Neuroimaging, Scientific Institute, IRCCS "Eugenio Medea", Bosisio Parini, LC, Italy; ³Radiology Unit, Azienda Ospedaliera di Verona, Verona, Italy; ⁴Neurology Section, Department Of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy

1394. Volumetric Cervical Spinal Cord Atrophy Differs Between Younger and Older Onset Relapsing-Remitting Multiple Sclerosis (RRMS) and Correlates with Disability

Courtney A. Bishop¹,², Emma McCarthy³, Richard Nicholas², Lesley Honeyfield⁴, Paolo A. Muraro²,⁵, Adam D. Waldman²,⁴, Rexford D. Newbould¹,⁶

¹Imanova Centre for Imaging Sciences, London, United Kingdom; ²Division of Brain Sciences, Imperial College London, London, United Kingdom; ³University of Warwick, Coventry, United Kingdom; ⁴Department of Imaging, Imperial College Healthcare NHS Trust, United Kingdom; ⁵Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, United Kingdom; ⁶Division of Experimental Medicine, Imperial College London, United Kingdom

- **1395.** Relationship of Resting State Functional Connectivity and Visual Acuity in MS Patients with Optic Neuritis Blessy Mathew¹, Mark J. Lowe¹, Rob Bermel¹ ¹Cleveland Clinic, Cleveland, OH, United States
- 1396. Longitudinal Analysis of Advanced and Conventional Magnetic Resonance Imaging Measures of Disease Impact in Multiple Sclerosis

Guillaume Bonnier¹,², Bénédicte Mortamet¹,², Jean-Philippe Thiran², Gunnar Krueger¹,², Tobias Kober¹,², Cristina Granziera¹

¹Siemens ACIT – CHUV Radiology, Siemens Healthcare IM BM PI & Department of Radiology CHUV, Lausanne, Vaud, Switzerland; ²LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland

1397. A Novel Double Inversion Recovery MRI Pulse Sequence: Improved Lesion Characterization for Demyelinating WM and Cortical Lesions in Multiple Sclerosis?

Jan-Mendelt Tillema¹, John Port², Pascal Atanga¹, Yunhong Shu², ³, Claudia Lucchinetti¹, Istvan Pirko¹ ¹Neurology, Mayo Clinic, Rochester, MN, United States; ²Radiology, Mayo Clinic, Rochester, MN, United States; ³Biomedical Engineering and Medical Physics, Mayo Clinic, Rochester, MN, United States

1398. Application of Vector QSM for Imaging Multiple Sclerosis Lesions

Lijie Tu¹, ², *Cynthia Wisnieff³*, *Susan Gauthier, David Pitt⁴*, *Yi Wang¹*, *Tian Liu⁵* ¹Radiology, Weill Cornell Medical College, New York, NY, United States; ²Applied & Engineering Physics, Cornell University, Ithaca, NY, United States; ³Tufts University, MA, United States; ⁴Neurology, Yale University, New Haven, CT, United States; ⁵Medimagemetric, LLC, New York, NY, United States 1399. Are Outer Cortical MTR Changes Caused Predominantly by MR-Visible Cortical Lesions or Abnormalities in the Normal-Appearing Grey Matter?

Rebecca Sara Samson¹, Manuel Jorge Cardoso², ³, Nils Muhlert¹, Varun Sethi¹, Oezguer Yaldizli¹, Maria A. Ron¹, Sebastian Ourselin², ³, David H. Miller¹, Claudia A M Wheeler-Kingshott¹, Declan T. Chard¹, ⁴ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²Centre for Medical Image Computing, UCL Department of Computer Sciences, London, England, United Kingdom; ³Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, England, United Kingdom; ⁴NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom

- 1400. Detection of Demyelination and Remyelination in Multiple Sclerosis by Analysis of T2* Relaxation at 7T Xiaozhen Li¹, ², Peter van Gelderen¹, Pascal Sati³, Jacco de Zwart¹, Daniel Reich³, Jeff Duyn¹ ¹Advanced MRI Section, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States; ²Dept. NVS, Karolinska Institutet, Huddinge, Stockholm, Sweden; ³Translational Neuroradiology Unit, DNN, NINDS, National Institutes of Health, Bethesda, MD, United States
- 1401. Brain Temperature Is Elevated in Relapsing-Remitting Relative to Progressive Multiple Sclerosis Victoria M. Leavitt¹, Alayar Kangarlu², Feng Liu², Claire S. Riley³, James F. Sumowski⁴
 ¹Columbia University Medical Center, New York, United States; ²New York State Psychiatric Institute, New York, United States; ³Columbia University Medical Center, NY, United States; ⁴Kessler Foundation, NJ, United States

1402. Mapping the G-Ratio Within MS Lesions Mara Cercignani¹, Giovanni Giulietti², Barbara Spano¹², Marco Bozzali² ¹CISC, Brighton and Sussex Medical School, Brighton, East Sussex, United Kingdom; ²Neuroimaging Laboratory, Santa Lucia Foundation, Rome, Italy

1403. Detecting Iron Deposition in Multiple Sclerosis Using Susceptibility Contrast Imaging

Bing Yao¹, ², *Sarah Wood¹*, ³, *Zhiguo Jiang⁴*, *Glenn Wylie¹*, ², *John DeLuca¹*, ² ¹Rocco Ortenzio Neuroimaging Center, Kessler Foundation, West Orange, NJ, United States; ²Department of Physical Medicine & Rehabilitation, Rutgers University, Newark, NJ, United States; ³Psychology Department, Montclair State University, Montclair, NJ, United States; ⁴Human Performance Engineering Lab, Kessler Foundation, West Orange, NJ, United States

1404. Neurite Orientation Dispersion and Density Imaging (NODDI) in Multiple Sclerosis

Sourajit Mitra Mustafi¹, Chandana Kodiweera², Jennifer S. Randolph³, James C. Ford³, Heather A. Wishart³, Yu-chien Wu¹

¹Center for Neuroimaging, Indiana University, Indianapolis, IN, United States; ²Dartmouth College, NH, United States; ³Dartmouth Medical School, Lebanon, NH, United States

1405. Quantitative Susceptibility Mapping (QSM) Indicates Disturbed Brain Iron Homeostasis in Neuromyelitis Optica

*Thomas Martin Doring*¹, Vanessa Granado², Gustavo Tukamoto, Fernanda Rueda, Andreas Deistung³, Juergen Reichenbach⁴, Emerson Gasparetto⁵, Ferdinand Schweser⁶

¹Radiodiagnostic Imaging, DASA, Rio de janeiro, Brazil; ²Radiologia, CDPI, Rio de Janeiro, Brazil; ³Medical Physics, Uni Jena, Thueringen, Germany; ⁴Medical Physics Group, Uni Jena, Thueringen, Germany; ⁵DASA, Rio de Janeiro, Brazil; ⁶CTRC and Buffalo Neuroimaging Analysis Center, University of NY, Buffalo NY, United States

1406. Comparison of Segmentation Techniques to Measure Tissue-Specific Atrophy in Multiple Sclerosis

Patricia Alves Da Mota¹, Ferran Prados², Wallace J. Brownlee¹, Manuel Jorge Cardoso², Matteo Pardini¹, Nicolas Toussaint², Declan T. Chard³, Sébastien Ourselin², David H. Miller¹, Claudia AM Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²Department of Medical Physics and Bioengineering Wolfson House, Translational Imaging Group CMIC, London, England, United Kingdom; ³NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom

1407. An 8 Month Longitudinal Study of T1 Measures in MS Patients Using 3D MPnRAGE

Steven R. Kecskemeti¹, Andrew L. Alexander¹,², Aaron S. Field³ ¹Waisman Center, University of Wisconsin, Madison, WI, United States; ²Medical Physics, University of Wisconsin, Madison, WI, United States; ³Radioilogy, University of Wisconsin, Madison, WI, United States

1408. Fully-Automated Single-Image T2 White Matter Hyperintensity Mapping and Quantification with FSL

Nathan C. Wetter¹,², Elizabeth A. Hubbard³, Robert W. Motl³, Bradley P. Sutton¹,² ¹Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, United States; ³Kinesiology and Community Health, University of Illinois at Urbana-Champaign, IL, United States

Traditional Poster

Traumatic Brain Injury

Exhibition Hall Monday 16:30-18:30

1409. Experimental TBI Results in Pathophysiology Resembling Motor Neuron Disease

David K. Wright¹,², Chris Van Der Poel³, Li Yang⁴, Stuart McDonald³, Roger Ordidge¹, Terence J. O'Brien⁴, Leigh A. Johnston⁵, Sandy R. Shultz⁴

¹Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria, Australia; ²The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; ³Department of Human Biosciences, La Trobe University, Victoria, Australia; ⁴Department of Medicine, The University of Melbourne, Victoria, Australia; ⁵NeuroEngineering Laboratory, School of Engineering, The University of Melbourne, Victoria, Australia

1410. High Spatial Resolution MRI Unveils the Mystery of Moderate Traumatic Brain Injury

Qiang Shen¹, Lora Talley Watts¹, Shiliang Huang¹, Michael O'Boyle¹, Justin Alexander Long¹, Timothy Q. Duong¹ Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States

1411. Multimodal Imaging of Functional Alterations of the Thalamus Following Mild Traumatic Brain Injury Chandler Sours¹,², Elijah George¹,², Steven Roys¹,², Jiachen Zhuo¹,², Rao P. Gullapalli¹,² ¹Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; ²Magnetic Resonance Research Center, Baltimore, MD, United States

1412. A Comparative Study of Diffuse and Focal Traumatic Brain Injury Using Multi-Echo Susceptibility Weighted ismem merit award magna cum laude **Imaging in Rodent Model**

Sanjay Verma¹, Bhanu Prakash KN², Sankar Seramani², Enci Mary Kan³, Kian Chye Ng³, Mui Hong Tan³, Jia Lu³, S Sendhil Velan²

¹Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore, Singapore; ²Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore, Singapore; ³Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore

magna cum laude

1413. Longitudinal Analysis of Structural and Functional Connectivity of the Thalamus and Anterior Cingulate **Cortex in Mild Traumatic Brain Injury**

Armin Iraji¹, Natalie Wiseman¹, Robert Welch¹, Brian O'Neil¹, Andrew Kulek¹, Syed Imran Ayaz¹, E Mark Haacke¹, Zhifeng Kou¹

¹Wayne State University, Detroit, MI, United States

1414. Axonal Alterations at Acute Stage of a Non-Impact, Blast-Induced Rat Brain Injury Model By In Vivo diffusion ismem merit award magna cum laude

Shiyu Tang¹,², Su Xu¹,², William L. Fourney³,⁴, Ulrich H. Leist³,⁴, Julie L. Proctor⁵,⁶, Gary Fiskum⁵,⁶, Rao P. Gullapalli¹,²

¹Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States; ²Core for Translational Research in Imaging @ Maryland, University of Maryland, Baltimore, MD, United States; ³Department of Mechanical Engineering, University of Maryland, Baltimore, MD, United States; ⁴Center of Energetics Concepts Development, University of

Maryland, Baltimore, MD, United States; ⁵Department of Anesthesiology, University of Maryland, Baltimore, MD, United States; ⁶Shock, Trauma, and Anesthesiology Research Center, University of Maryland, Baltimore, MD, United States

1415. DTI Predicts Functional Deficit in Professional Boxers.

Wanyong Shin¹, Blessy Mathew¹, Katherine Koenig¹, Banks Sarah², Mark J. Lowe¹, Michael Phillips¹, Michael Modic³, Charles Bernick²

¹Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; ²Lou Ruvo Center for Brain Health, Cleveland Clinic Foundatoin, Las Vegas, Nervada, United States; ³Neurological Institute, Cleveland Clinic Foundatoin, Cleveland, OH, United States

1416. Evidence for Abnormal Venous Drainage in a Closed Head Model of Pediatric Mild Traumatic Brain Injury Using 9.4T MRI

Elizabeth Imhof¹, *Michael Esser*, ¹², *Carolyn JoAnne MacMillan¹*, *Richelle Mychasiuk*, ¹², *Jeffrey F. Dunn¹*, ² ¹University of Calgary, Calgary, Alberta, Canada; ²Alberta Children's Hospital Research Institute, Calgary, Alberta, Canada

- 1417. Parametric Response Map (PRM) Is a Promising Tool for the Monitoring of Post Traumatic Cerebral Edema Jules Grèze¹, ², Pierre Bouzat¹, ², Jean-François Payen¹, ², Emmanuel Barbier², Benjamin Lemasson² ¹CHU Grenoble, Grenoble, France; ²equipe 5, Grenoble Institute of Neuroscience, Grenoble, France
- 1418. Comparison of DTI Group Analysis Using Non-Linear and Linear Registration Techniques Blessy Mathew¹, Wanyong Shin¹, Mingyi Li¹, Mark J. Lowe¹, Sarah Banks², Michael Phillips¹, Michael T. Modic¹, Charles Bernick² ¹Cleveland Clinic, Cleveland, OH, United States; ²Cleveland Clinic, Las Vegas, NV, United States

1419. Fractal Analysis of the Brain Blood Oxygenation Level Dependent (BOLD) Signal in the Left Putamen of Mild Traumatic Brain Injury (MTBI) Patients

Olga Dona¹, Michael Noseworthy²

¹Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; ²Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada

1420. Connectome-Scale Assessment of Structural and Functional Connectivity in Mild Traumatic Brain Injury at the Acute Stage

Armin Iraji¹, Hanbo Chen², Natalie Wiseman¹, Tuo Zhang², Robert Welch¹, Brian O'Neil¹, Andrew Kulek¹, Syed Imran Ayaz¹, Xiao Wang¹, Conor Zuk¹, E. Mark Haacke¹, Tianming Liu², Zhifeng Kou¹ ¹Wayne State University, Detroit, MI, United States; ²University of Georgia, GA, United States

1421. Default-Mode Network Functional Connectivity Progression in the Days Following a Single Sports Concussion Victoria L. Morgan¹, Andrew J. Gregory², Allen K. Sills³ ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ²Ortho-Sports Medicine, Vnderbilt University, Nashville, TN, United States; ³Neurosurgery, Vanderbilt University, Nashville, TN, United States

1422. Brain Injury and Mechanisms of Action of HBO2 for Persistent Post-Concussive Symptoms After Mild Traumatic Brain Injury (BIMA): Auditory Functional Magnetic Resonance Imaging at Baseline Priya Santhanam¹, Peter Cartwright², Thomas G. Perkins³, ⁴, Terrence R. Oakes¹, John Graner¹, Gerard P. Riedy¹, ⁵, Lindell K. Weaver⁶, ⁷, William W. Orrison, ²⁸

¹National Intrepid Center of Excellence (NICoE), Bethesda, MD, United States; ²Imgen, LLC, Las Vegas, NV, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Perkins Consultative Resources LLC, Fort Collins, CO, United States; ⁵Uniformed Services University of the Health Sciences, Bethesda, MD, United States; ⁶Department of Hyperbaric Medicine, Intermountain LDS Hospital and Intermountain Medical Center, Salt Lake City, UT, United States; ⁷School of Medicine, University of Utah, Salt Lake City, UT, United States; ⁸Department of Health Physics, University of Nevada Las Vegas, Las Vegas, NV, United States

1423. Resting-State Functional Magnetic Resonance Imaging Connectivity and Behavioral Outcomes in Traumatic Brain Injury

Shiliang Huang¹, Qiang Shen¹, Lora Talley Watts¹, Justin Alexander Long¹, Wei Li¹, Timothy Q. Duong¹ ¹Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States

- 1424. Anomalous Cognitive and Re-Experiencing Networks in Recent Onset Post-Traumatic Stress Disorder Shun Qi¹, Panli Zuo², langlang Gao¹, Ying Liu, Mathias Nittka³, Hong Yin ¹ Xijing Hospital, Fourth Military Medical University, xian, shaanxi, China; ²Siemens Healthcare, MR Collaborations NE Asia, shaanxi, China; ³Siemens Healthcare, Germany, Germany
- 1425. Towards Precision Neuroimaging: Standardization of DTI of a Multicenter Traumatic Brain Injury Study Eva M. Palacios¹, Alastair J. Martin², Frank Ezekiel², Esther L. Yuh², Geoffrey T. Manley³, Pratik Mukherjee² ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ³Neurological Surgery, San Francisco General Hospital, San Francisco, CA, United States
- 1426. High School Football Athletes with a History of Concussion Have Relatively Vulnerable and Faster Aging Resting State Brain Network Than Those Without Kausar Abbas¹, Trey E. Shenk¹, Thmoas M. Talavage¹, ² ¹Electrical and Computer Engineering Department, Purdue University, West Lafayette, IN, United States; ²Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
- 1427. Quantitative Susceptibility Mapping Using Three Dimensional Segmented Echo-Planar Imaging Wen-Tung Wang¹, Dzung Pham¹, John A. Butman¹, ² ¹National Institutes of Health, Bethesda, MD, United States; ²Center for Neuroscience and Regenerative Medicine, MD, United States

1428. Single-Subject Diffusion Tensor Imaging Changes After Concussion

Kathryn Yvonne Manning¹, Arthur Brown², Robert Bartha², Gregory A. Dekaban, Christy Barreira, Tim Doherty³, Lisa Fischer⁴, Sandra Shaw⁴, Douglas Fraser⁵, Ravi S. Menon² ¹Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ²Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada; ³Physical Medicine and Rehabilitation, University of Western Ontario, London, Ontario, Canada; ⁴Primary Care Sport Medicine, Fowler Kennedy Sport Medicine, London, Ontario, Canada; ⁵Paediatrics Critical Care Medicine, London Health Sciences Centre, London, Ontario, Canada

1429. Metabolic Alterations at the Interface of Brain Matters in MTBI Patients: 1H MRSI Study.

Eva Heckova¹, *Michal Bittsansky¹*, ², *Stefan Sivak³*, *Dusan Dobrota¹* ¹Jessenius Faculty of Medicine in Martin, Comenius University, Bratislava, Slovakia; ²Radiodiagnostic Clinic, Martin University Hospital, Martin, Slovakia; ³Clinic of Neurology, Martin University Hospital, Martin, Slovakia

1430. Diffusion Tensor Imaging Changes in Rugby Players Without Diagnosed Concussion

Kathryn Yvonne Manning^T, Gregory A. Dekaban², Christy Barreira², Sandra Shaw³, Robert Bartha⁴, Lisa Fischer³, Arthur Brown⁴, Ravi S. Menon⁴

¹Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ²Robarts Research Institute, London, Ontario, Canada; ³Primary Care Sport Medicine, Fowler Kennedy Sport Medicine Clinic, London, Ontario, Canada; ⁴Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada

1431. Suppression of Streak Artifacts in Quantitative Susceptibility Mapping

*Wen-Tung Wang¹, Dzung Pham¹, John A. Butman,*¹² ¹Center for Neuroscience and Regenerative Medicine, Bethesda, MD, United States; ²Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD, United States

1432. Recovery of Consciousness in Brain Injury: Insights from the Structural and Functional Connectome Amy Kuceyeski¹, Sudhin Shah², Jonathan Dyke³, Stephen Bickel⁴, Farras Abdelnour³, Nicholas Schiff, Henning Voss, Ashish Raj
¹Padialogu and Brain and Mind Besserach Institute, Weill Compell Medical College, New York, NY, United States, ²Newselegy, Wei

¹Radiology and Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; ²Neurology, Weill Cornell Medical College, NY, United States; ³Radiology, Weill Cornell Medical College, NY, United States; ⁴Neurology, Albert Einstein College of Medicine, NY, United States

1433. Prediction of Recovery from Mild TBI Using Genetic Programming Analysis of DTI Data

Richard Watts¹, Margaret J. Eppstein², Alex Thomas³, Joshua P. Nickerson¹, Hugh Garavan⁴, Trevor Andrews¹, ⁵, Christopher G. Filippi⁶, Kalev Freeman³

¹Department of Radiology, University of Vermont College of Medicine, Burlington, VT, United States; ²Department of Computer Science, University of Vermont, Burlington, VT, United States; ³Department of Surgery, University of Vermont College of Medicine, Burlington, VT, United States; ⁴Department of Psychiatry, University of Vermont College of Medicine, Burlington, VT, United States; ⁵Philips Healthcare, Cleveland, OH, United States; ⁶University of Vermont College of Medicine, Department of Neurology, Burlington, VT, United States

Traditional Poster

Cerebrovascular Reactivity & Compliance

Exhibition Hall Monday 16:30-18:30

1434. Non-Invasive Measurement of Cerebral Arterial Compliance During Post Exercise Ischemia

Esther Warnert¹, Emma Hart², Kevin Murphy¹, Adele Babic³, Judith Hall³, Richard Wise¹ ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; ²BHI Cardionomics Research Group, Bristol University, Bristol, United Kingdom; ³Department of Anaesthetics and Intensive Care Medicine, Cardiff University, Cardiff, United Kingdom

- 1435. Test-Retest Reproducibility of BOLD-CVR Measures in Children Using a Computer-Controlled CO₂ Challenge Jackie Leung¹, Junseok Kim², Andrea Kassner¹, ³ ¹The Hospital for Sick Children, Toronto, Ontario, Canada; ²Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; ³Medical Imaging, University of Toronto, Toronto, Ontario, Canada
- **1436.** Characterization of Vascular Response in White Matter to Hypercapnia and Hyperoxia Binu P. Thomas¹, Virendra Mishra¹, Shin-Lei Peng¹, Hao Huang¹, Hanzhang Lu¹ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
- 1437. Comparing Cerebrovascular Reactivity Measured Using BOLD and Cerebral Blood Flow at Various Vascular Tension Levels

Sheliza Halani¹, Jonathan B. Kwinta², Ali M. Golestani², Yasha B. Khatamian², J. Jean Chen¹, ³ ¹Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; ²Rotman Research Institute, Baycrest, Ontario, Canada; ³Medical Biophysics, University of Toronto, Ontario, Canada

1438. Investigating the Effect of Cardiorespiratory Fitness on Cerebrovascular Reactivity Using Breath-Hold fMRI Hannah Furby¹, Molly G. Bright¹, Esther AH Warnert¹, Chris J. Marley², Damian M. Bailey², Richard G. Wise¹ ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; ²Neurovascular Research Laboratory, University of South Wales, Pontypridd, United Kingdom

1439. T2, Diffusion, and Perfusion Abnormalities Are Associated with Impaired Cerebrovascular Reactivity in the Normal-Appearing White Matter of Elderly Subjects with Leukoaraiosis.

Kevin Sam¹,², Boris Peltenburg², Adrian P. Crawley², Julien Poublanc², Olivia Sobczyk², Diem Pham³, David E. Crane³, Christopher J.M. Scott³, Alicia A. McNeely³, Daniel M. Mandell², Joseph A. Fisher¹, Sandra E. Black³, David J. Mikulis²

¹Department of Physiology, University of Toronto, Toronto, Ontario, Canada; ²Department of Medical Imaging, Toronto Western Hospital, Toronto, Ontario, Canada; ³Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, Ontario, Canada

1440. Evaluation of Respiratory Fluctuation in Cerebral Venous Blood Oxygenation for Diagnosis of Arteriolar Function

Keigo Nishi¹, Minghui Tang¹, Toru Yamamoto² ¹Graduate school of health Sciences, Hokkaido university, Sapporo, Hokkaido, Japan; ²Faculty of Health Sciences, Hokkaido university, Sapporo, Hokkaido, Japan

Traditional Poster

Brain perfusion, oxygenation & metabolic rate

Exhibition Hall Monday 16:30-18:30

1441. Validating a Power Relationship Between Cerebral Blood Volume and Cerebral Blood Flow Jie Huang¹

¹Department of Radiology, Michigan State University, East Lansing, MI, United States

1442. Mapping Human Cerebral Vascular/Metabolic Activity Coupling at High-Resolution

*William D. Rooney*¹, ², *Xin Li*¹, *Dennis N. Bourdette*³, *Charles S. Springer, Jr.*¹, ² ¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ²Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States; ³Department of Neurology, Oregon Health & Science University, Portland, OR, United States

- **1443.** The Effects of Hypo-Baric Pressure on Cerebral Blood Flow Damon Philip Cardenas¹, Eric R. Muir¹, Timothy Q. Duong¹ ¹University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- 1444. Preliminary Study of Hypoxic Exposure Effect on Cerebral Blood Perfusion of Pilots Using 3D ASL Jie Liu^l, Wanshi Zhang², Long Qian³, Mingxi Liu^l, Xianrong Xu², Limin Meng²
 ¹The Fourth Military Medical University, Xi'an, Shanxi, China; ²Air Force General Hospital, Beijing, China; ³GE Healthcare China, Beijing, China
- 1445. Quantification of Perfusion and Xenon-Transport Across the Blood-Brain Barrier in Humans with Hyperpolarized ¹²⁹Xe Brain MR at 1.5T Madhwesha Rao¹, Neil Stewart¹, Graham Norquay¹, Jim Wild¹ ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- 1446. The Impact of Fluctuated TCBF Induced by Cardiac Pulsation on the Global CMRO2 Measurement *Chou-Ming Cheng*¹, ², *Hsiao-Wen Chung*², *Jen-Chuen Hsieh*¹, ³, *Shing-Jong Lin*¹, *Tzu-Chen Yeh*⁴, ⁵ ¹Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Taiwan; ²Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taiwan, Taiwan; ³Institute of Brain Science, National Yang-Ming University, Taiwan, Taiwan; ⁴Department of Radiology, Taipei Veterans General Hospital, Taiwan, Taiwan; ⁵Institute of Brain Science, National Yang-Ming University, Taiwan, Taiwan
- 1447. Comparative Analyses of Magnetic Field Correlation Imaging, Quantitative Susceptibility Mapping and Transverse Relaxation Rate R2* Indices of Brain Iron in Healthy Adults Vitria Adisetiyo¹, Jens H. Jensen¹, Chu-Yu Lee¹, Donna R. Roberts¹, Maria V. Spampinato¹, Joseph A. Helpern¹, ² ¹Radiology and Radiological Science, Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ²Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- **1448.** Time Course and Distribution of Feraheme in the Normal Human Brain at 7T Michael Zeineh¹, Samantha Holdsworth¹, Michael Moseley¹, Brian Rutt¹ ¹Radiology, Stanford University, Stanford, CA, United States

1449. The Relative Contributions of the Transition Metals Iron and Manganese to T₁ and T₂ in White and Gray Matter

*Kimberly L. Desmond*¹, ², *Alia Al-Ebraheem*¹, *Rafal Janik*², ³, *Wendy Oakden*², ⁴, *Jacek M. Kwiecien*⁵, *Wojciech Dabrowski*⁶, *Kalotina Geraki*⁷, *Greg J. Stanisz*², ⁴, *Michael Farquharson*¹, *Nicholas A. Bock*¹ ¹Medical Physics and Radiation Sciences, McMaster University, Hamilton, Ontario, Canada; ²Imaging Research, Sunnybrook Research Institute, Toronto, Ontario, Canada; ³Medical Biophysics, University of Toronto, Ontario, Canada; ⁴Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ⁵Pathology & Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; ⁶Anaesthesiology and Intensive Therapy, Lublin Medical University, Lublin, Poland; ⁷Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom

1450. Assessing Reproducibility and Changes in Oxygenation with R2' During Clinical Hypercapnic and Hypoxic Gas Challenges

Wendy W. Ni¹, ², Thomas Christen², Greg Zaharchuk² ¹Department of Electrical Engineering, Stanford University, Stanford, CA, United States; ²Department of Radiology, Stanford University, Stanford, CA, United States

Traditional P	oster			
Lung/Medias	tinum			
Exhibition Hall	Tuesday 10:00-12:00			
1451. Quantitative T ₁ Mapping and Oxygen Enhanced MRI in Patients with Interstitial Lung Disease				
ISMRM MERIT AWARD	Kerry Hart', ² , Helen Marshall', Neil Stewart', Martin Deppe', Steve Bianchi', Rob Ireland ² , Moira Whyte [*] , David			

Kerry Hart¹, ², Helen Marshall¹, Neil Stewart¹, Martin Deppe¹, Steve Bianchi³, Rob Ireland², Moira Whyte⁴, David Kiely³, Jim Wild¹

¹Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom; ²Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, United Kingdom; ³Pulmonary Vascular Disease Unit, Royal Hallamshire Hospital, Sheffield, United Kingdom; ⁴Academic Unit of Respiratory Medicine, University of Sheffield, Sheffield, United Kingdom

1452. Robust 3D MRI of the Mouse Lung Using ZTE Imaging with Background Correction

Markus Weiger¹, Mingming Wu, ¹², Moritz Christoph Wurnig³, David Kenkel³, Wolfgang Jungraithmayr⁴, Andreas Boss³, Klaas Paul Pruessmann¹

¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Karlsruhe, Germany; ³Institute for Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; ⁴Division of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland

- 1453. Longitudinal MRI of Progressive Pulmonary Fibrosis in a Transgenic, TGF-Alpha-Induced Mouse Model Zackary I. Cleveland¹, R. Scott Dunn², Cynthia R. Davidson³, Jinbang Guo¹, ⁴, Jason C. Woods¹, ⁵, William D. Hardie³ ¹Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, OH, United States; ³Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, OH, United States; ⁴4) Department of Physics, , Washington University, St. Louis, MO, United States; ⁵4) Department of Physics, Washington University, St. Louis, MO, United States
- 1454. Pulmonary MRI of Infants in the Neonatal Intensive Care Unit: Initial Experience with 3D Radial UTE Andrew D. Hahn¹, Nara S. Higano², ³, Laura L. Walkup², Xuefeng Cao², ⁴, Robert P. Thomen², ³, Jean A. Tkach⁵, Charles L. Dumoulin⁶, ⁷, Kevin M. Johnson¹, Scott K. Nagle¹, ⁸, Jason C. Woods², ³, Sean B. Fain¹, ⁸ ¹Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ²Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ³Department of Physics, Washington University in St Louis, St. Louis, MO, United States; ⁴Department of Physics, University of Cincinnati, OH, United States; ⁵Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁶Imaging Research Center -Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁷Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States; ⁸Department of Radiology, University of Wisconsin - Madison, WI, University of Cincinnati, Cincinnati, OH, United States; ⁸Department of Radiology, University of Wisconsin - Madison, MA, United States
- 1455. A Double Echo Ultra Short Echo Time Acquisition for Respiratory Motion Suppressed High Resolution Imaging of the Lung

Jean Delacoste¹,², Jerome Chaptinel¹,², Catherine Beigelman¹, Davide Piccini³,⁴, Alain Sauty⁵,⁶, Matthias Stuber¹,²

¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Department of Radiology, Center for Biomedical Imaging (CIBM) and University Hospital (CHUV), Lausanne, Switzerland; ⁴Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ⁵Adult CF multisites unit, Hospital of Morges, Morges, Switzerland; ⁶Service of Pneumology, Department of Medicine, University Hospital (CHUV), Lausanne, Switzerland

- 1456. Ultra-Fast Steady-State Free Precession Pulse Sequence for Pulmonary Fourier Decomposition MRI Grzegorz Bauman¹, Orso Pusterla¹, Oliver Bieri¹ ¹Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Basel-Stadt, Switzerland
- 1457. ¹⁹F/¹H MR Molecular Imaging Following Anti-Angiogenic Therapy in a Translatable Preclinical Asthma Model Anne Schmieder¹, Jochen Keupp², Huiying Zhang³, Todd Williams³, John Stacy Allen³, Xiaoxia Yang³, Erik Storrs³, Krishna Paranandi³, Elizabeth Wagner⁴, Gregory Lanza³
 ¹Washington University Medical School, St Louis, MO, United States; ²Philips Research Europe, Hamburg, Germany; ³Washington University Medical School, St Louis, MO, United States; ⁴Johns Hopkins School of Medicine, Baltimore, MD, United States

1458. Utility of T1-PETRA Sequence in the Evaluation of Neonatal Airways

Noriko Aida¹, Kumiko Nozawa¹, Yuta Fujii¹, Mikako Enokizono¹, Masahiko Sato², Koki Kusagiri², Yasutake Muramoto², Yuichi Suzuki², Jun Shibasaki³, Katsuaki Toyoshima³, Katsutoshi Murata⁴, David Grodzki⁵ ¹Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan; ²Radiological technology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan; ³Neonatology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan; ⁴Research & Collaboration, Imaging & Therapy System, Siemens Japan, Tokyo, Japan; ⁵Magnetic Resonace, Siemens Healthcare, Erlangen, Bavaria, Germany

- **1459.** Detection of Chronic Allograft Dysfunction Using Ventilation-Weighted Fourier Decomposition Lung MRI Andreas Voskrebenzev¹, ², Lena Becker¹, ², Marcel Gutberlet¹, ², Christian Schönfeld¹, ², Julius Renne¹, ², Jan Hinrichs¹, ², Till Kaireit¹, ², Tobias Welte, ²³, Frank Wacker¹, ², Jens Gottlieb, ²³, Jens Vogel-Claussen¹, ² ¹Institute of Diagnostic and Interventional Radiology, Medical School Hanover, Hanover, Germany; ³Department of Pneumology, Medical School Hanover, Hanover, Germany
- 1460. Self-Gating of Respiratory Motion for Pulmonary Ultra Short Echo Time MRI of Infants in the NICU Andrew D. Hahn¹, Xuefeng Cao², ³, Nara S. Higano², ⁴, Jean A. Tkach⁵, Robert P. Thomen², ⁴, Scott K. Nagle¹, ⁶, Gregory Lee², Kevin M. Johnson¹, Sean B. Fain¹, ⁶, Jason C. Woods², ⁴
 ¹Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ²Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ³Department of Physics, University of Cincinnati, Cincinnati, OH, United States; ⁴Department of Physics, Washington University in St Louis, St. Louis, MO, United States; ⁵Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁶Department of Radiology, University of Wisconsin - Madison, MJ, United States
- 1461. A 19F 1H Linear Dual Tuned RF Birdcage Coil for Rat Lung Imaging at 3T *Gowtham Gajawada¹*, ², *Tao Li¹*, *Marcus J. Couch¹*, ², *Matthew S. Fox*³, ⁴, *Mitchell Albert¹*, ² ¹Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada; ²Lakehead University, Thunder Bay, Ontario, Canada; ³Robarts Research Institute, London, Ontario, Canada; ⁴Department of Medical Biophysics, Western University, London, Ontario, Canada
- 1462. Lung Imaging at Ultra-High Magnetic Fields in Rodents Marta Tibiletti¹, Detlef Stiller², Volker Rasche¹, Andrea Bianchi² ¹Core Facility Small Animal MRI, Ulm University, Ulm, Baden-Württemberg, Germany; ²Target Discovery Research, In-vivo imaging laboratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Baden-Württemberg, Germany
- **1463.** Perfluorohexane Liquid MRI of Mouse Lungs in a Dual-Tuned ¹H/¹⁹F Coil Alexandr A. Khrapitchev¹, James R. Larkin¹, Stavros Melemenidis¹, Konstantinos Papoutsis², Peter Thelwall³, Nicola R. Sibson¹

¹CRUK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; ²Department of Engineering Science, University of Oxford, Oxford, United Kingdom; ³Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle, United Kingdom

- 1464. T₂' Relaxometry of the Human Lung at 1.5 and 3 Tesla Jascha Zapp¹, Sebastian Domsch¹, Lothar R. Schad¹ ¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
- 1465. In Vivo Assessment of Non-Small Cell Lung Cancer: Detection of Early Response to Concurrent Chemoradiotherapy by Using T1 Based Dynamic Contrast Enhanced MRI Xiuli Tao¹, Han Ouyang¹, Li Liu¹, Feng Ye¹, Ying Song¹, Zihua Su², Xiao Xu², Ning Wu¹ ¹Department of Diagnostic Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijinh, Beijing, China; ²GE Healthcare, Beijing, China
- 1466. Dynamic 3D MRI of the Whole Lung Using Constrained Reconstruction with Learned Dictionaries Sampada Bhave¹, Sajan Goud Lingala², John Newell¹, Alejandro Comellas¹, Mathews Jacob¹ ¹University of Iowa, Iowa City, IA, United States; ²Electrical Engineering, University of Southern California, Los Angeles, CA, United States
- 1467. Respiratory Self-Gating Using 3D Half-Echo Stack-Of-Stars TrueFISP (TrueSTAR) Grzegorz Bauman¹, Oliver Bieri¹ ¹Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Basel-Stadt, Switzerland
- 1468. Ultrashort Echo Time Magnetic Resonance Imaging of the Lung Using a High-Relaxivity T1 Blood-Pool Contrast Agent

Joris Tchouala Nofiele¹, Weiran Cheng², Inga E. Haedicke², Tameshwar Ganesh¹, Xiao-an Zhang², Hai-Ling Margaret Cheng, ¹³

¹Hospital for Sick Children, Toronto, Ontario, Canada; ²Chemistry, University of Toronto, Toronto, Ontario, Canada; ³Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

- **1469. 3D** Ultrashort TE (UTE) MRI Repeatability Within the Thorax and Its Application to Pulmonary Fibrosis. *Alexander Weller¹, Sharon L. Giles², Veronica A. Morgan², David Collins¹, David M. Higgins³, Nandita M. de-Souza¹* ¹CRUK Cancer Imaging Centre, Institute of Cancer Research, Sutton, Surrey, United Kingdom; ²MRI Department, Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ³Clinical Science, Philips Healthcare, Guildford, Surrey, United Kingdom
- **1470.** Regional Measurements of Pulmonary Strain Index Using a Low Field Portable Device Mikayel Dabaghyan¹, Iga Muradyan², ³, Alan Hrovat¹, James P. Butler², ³, Angelos Kyriazis², ³, Mirko I. Hrovat¹, Samuel Patz², ³

¹Mirtech, Inc., Boston, MA, United States; ²Brigham & Women's Hospital, Boston, MA, United States; ³Harvard Medical School, Boston, MA, United States

- 1471. Can Baseline T1-DCE-MRI Perfusion and Permeability Parameters Predict Concurrent Chemoradiotherapy Response in Patients of NSCLC? Xiuli Tao¹, Han Ouyang¹, Li Liu¹, Feng Ye¹, Ying Song¹, Xiao Xu², Zihua Su², Ning Wu¹ ¹Department of Diagnostic Radiology, Cancer Hospital Chinese Academy of Medical Sciences, Beijinh, Beijing, China; ²GE Healthcare, Beijing, China
- 1472. Imaging Chronic Rejection in Mouse Lung Allografts with ¹H MRI Jinbang Guo¹, ², Xingan Wang³, Anne K. Perl⁴, Zackary I. Cleveland¹, Randy Giaquinto⁵, Andrew E. Gelman³, Jason C. Woods¹, ²

¹Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Department of Physics, Washington University in St. Louis, St. Louis, MO, United States; ³Department of Surgery, Washington University in St. Louis, St. Louis, St. Louis, MO, United States; ⁴Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ⁵Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Hos

- 1473. Volumetric Non-Contrast Pulmonary Perfusion Using Pseudo-Continuous Arterial Spin Labeling Joshua S. Greer¹, ², Xinzeng Wang², Ivan Pedrosa², ³, Ananth J. Madhuranthakam², ³ ¹Bioengineering, UT Dallas, Dallas, TX, United States; ²Radiology, UT Southwestern, Dallas, TX, United States; ³Advanced Imaging Research Center, UT Southwestern, Dallas, TX, United States
- 1474. Free Breathing 3D Lung Imaging Using Self-Gating with an Efficient Sampling Scheme *Cord Bastian Meyer¹, Stefan Weick², Michael Völker³, Frederick Mantel², Felix Breuer, ¹³, Peter Michael Jakob¹, ³ ¹Experimental Physics 5, University of Würzburg, Würzburg, Bavaria, Germany; ²Department of Radiation Oncology, University Hospital Würzburg, Würzburg, Bavaria, Germany; ³Research Center Magnetic Resonance Bavaria e. V. (MRB), Würzburg, Bavaria, Germany*
- 1475. Multi-Stage Three-Dimensional UTE Lung Imaging by Image-Based Self-Gating Marta Tibiletti¹, Jan Paul², Andrea Bianchi³, Stefan Wundrak², Wolfgang Rottbauer², Detlef Stiller³, Volker Rasche, ¹² ¹Core Facility Small Animal MRI, Ulm University, Ulm, Baden-Württemberg, Germany; ²Internal Medicine II, University Hospital Ulm, Ulm, Baden-Württemberg, Germany; ³Target Discovery Research, In-vivo imaging laboratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Baden-Württemberg, Germany
- 1476. Breath-Hold UTE Lung Imaging Using a Stack-Of-Spirals Acquisition

John P. Mugler, III¹, Samuel W. Fielden², Craig H. Meyer², Talissa A. Altes¹, G. Wilson Miller¹, Alto Stemmer³, Josef Pfeuffer³, Berthold Kiefer³

¹Radiology & Medical Imaging, University of Virginia, Charlottesville, VA, United States; ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³Siemens Healthcare, Erlangen, Germany

1477. Pulmonary Imaging of Acute Lung Injury in Mice with ZTE

Iga Muradyan¹, Raja-Elie Abdulnour², ³, Angelos Kyriazis¹, Samuel Patz⁴, Bruce Levy², ⁵ ¹Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ²Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ³Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ⁴Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ⁵Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States

- 1478. Static Lung Volumes Assessed on MRI with Spirometry Control in Comparison to Body-Plethysmography Yanping Sun¹, Christian M. Lo Cascio¹, Firas S. Ahmed², Meghaq A. Parikh¹, Yongqiang Tan², Binsheng Zhao², Robert C. Basner¹, Paul Enright³, Martin R. Prince⁴, R Graham Barr¹ ¹Medicine, Columbia University Medical Center, New York, NY, United States; ²Radiology, Columbia University Medical Center, New York, NY, United States; ³Medicine, University of Arizona, Tucson, AZ, United States; ⁴Radiology, Cornell University Medical Center, New York, NY, United States
- 1479. Ultra-Short Echo Time MRI Measurements of Emphysema Using Principal Component Analysis Khadija Sheikh¹, ², Dante Capaldi¹, ², Sarah Svenningsen¹, ², David G. McCormack³, Grace Parraga¹, ²
 ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

- 1480. Pulmonary Nodule/Mass Assessment by Computed Diffusion-Weighted Imaging with High B-Value: How to Improve the Detection and Differentiation Capability with Acquired Diffusion-Weighted Imaging Hisanobu Koyama¹, Yoshiharu Ohno¹, Shinichiro Seki¹, Takeshi Yoshikawa¹, Sumiaki Matsumoto¹, Katsusuke Kyotani², Masao Yui³, Hitoshi Yamagata³, Kazuro Sugimura¹ ¹Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ²Kobe University Hospital, Kobe, Hyogo, Japan; ³Toshiba Medical Systems Corporation, Otawara, Tochigi, Japan
- 1481. How Volume Affects the Pulmonary MRI Signal: Investigations with 3D Ultra-Fast Balanced Steady-State Free Precession

Orso Pusterla¹, Oliver Bieri¹, Gregor Sommer², Grzegorz Bauman¹ ¹Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland; ²Clinic of Radiology and Nuclear Medicine, Department of Radiology, University of Basel Hospital, Basel, Switzerland

1482. First Clinical Lung MRI Using an Active Breathing Coordinator

Evangelia Kaza¹, David J. Collins¹, Richard Symonds-Tayler¹, Fiona McDonald², Helen A. McNair³, Erica Scurr², Dow-Mu Koh², Martin O. Leach¹

¹CR-UK Cancer Imaging Centre, Institute of Cancer Research London and Royal Marsden Hospital, London, United Kingdom; ²The Royal Marsden NHS Foundation Trust, London, United Kingdom; ³Department of Radiotherapy, Royal Marsden NHS Foundation Trust and Institute of Cancer Research, Sutton, United Kingdom

1483. Clinical Feasibility of 3D Ultra-Fast Balanced Steady-State Free Precession MRI of the Lung in Patients with Severely Limited Breath-Holding Capability

Gregor Sommer¹, Mark Wiese², Nicolin Hainc¹, Jens Bremerich¹, Oliver Bieri³, Grzegorz Bauman³ ¹Clinic of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland; ²Clinic of Thoracic Surgery, University of Basel Hospital, Basel, Switzerland; ³Clinic of Radiology and Nuclear Medicine - Radiological Physics, University of Basel Hospital, Basel, Switzerland

1484. Proton Perfusion Maps from Time Series of the Pulmonary Vasculature

Samuel Patz¹, ², Iga Muradyan¹, ², Ritu R. Gill¹, ², Ravi T. Seethamraju³, Aaron B. Waxman¹, ², James P. Butler¹, ² ¹Brigham and Women's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Siemens Medical Systems, Boston, MA, United States

Traditional Poster

Hyperpolarized Gas Imaging

Exhibition Hall Tuesday 10:00-12:00

1485. Integrated Spectroscopic Imaging (CSI) and Chemical Shift Saturation Recovery (CSSR) of Hyperpolarized ¹²⁹Xe in the Human Lungs

Neil James Stewart¹, Jim Michael Wild¹ ¹Academic Unit of Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

1486. Hyperpolarized ¹²⁹Xe Dissolved-Phase MR Spectroscopy in Mice Changes with Lung Cancer Progression

Rohan S. Virgincar¹, Simone Degan², ³, Matthew S. Freeman⁴, Mu He⁵, Bastiaan Driehuys³ ¹Biomedical Engineering, Duke University, Durham, NC, United States; ²Center for Molecular and Biomolecular Imaging, Duke University, Durham, NC, United States; ³Radiology, Duke University Medical Center, Durham, NC, United States; ⁴Medical Physics Graduate Program, Duke University, Durham, NC, United States; ⁵Electrical and Computer Engineering, Duke University, Durham, NC, United States

1487. Optimized Gridding Reconstruction for 3D Radial MRI of Hyperpolarized ¹²⁹Xe

Scott H. Robertson¹, Rohan S. Virgincar², Mu He³, S. Sivaram Kaushik², Matthew S. Freeman¹, Bastiaan Driehuys⁴ ¹Medical Physics Graduate Program, Duke University, Durham, NC, United States; ²Department of Biomedical Engineering, Duke University, Durham, NC, United States; ³Department of Electrical and Computer Engineering, Duke University, Durham, NC, United States; ⁴Radiology, Duke University Medical Center, Durham, NC, United States

- 1488. Gas Uptake Measures on Hyperpolarized Xenon-129 MRI Are Inversely Proportional to Lung Inflation Level Kun Qing¹, Nicholas J. Tustison¹, Tallisa A. Altes¹, Kai Ruppert¹, ², Jaime F. Mata¹, G. Wilson Miller¹, Steven Guan¹, Iulian C. Ruset³, ⁴, F. William Hersman³, ⁴, John P. Mugler, III¹ ¹University of Virginia, Charlottesville, VA, United States; ²Cincinnati Children's Hospital, OH, United States; ³Xemed LLC, NH, United States; ⁴University of New Hampshire, NH, United States
- 1489. In Vivo Dynamic Measurement of Pulmonary Blood Oxygenation and Cardiac Output Using Hyperpolarised ¹²⁹Xe

Graham Norquay¹, Neil Stewart¹, Jim Wild¹ ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom

1490. Optimal Glass Forming Solvent and Photo-Induced Radicals Yield 129Xe Hyperpolarization Via Sublimation-DNP to Biomedical Imaging Standards

Andrea Capozzi¹, Christophe Roussel², Arnaud Comment¹, Jean-Noel Hyacinthe³ ¹Institute of Physics of Biological Systems, EPFL, Lausanne, Vaud, Switzerland; ²Section of Chemistry and Chemical Engineering, Institute of Chemical Sciences and Engineering, EPFL, Lausanne, Vaud, Switzerland; ³University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland

- 1491. ¹²⁹Xe Dynamic Spectroscopy and Modelling: A Repeatability and Method Comparison Study Neil James Stewart¹, Helen Marshall¹, Jim Michael Wild¹ ¹Academic Unit of Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- 1492. Mapping ¹²⁹Xenon ADC of Radiation-Induced Lung Injury at Low Magnetic Field Strength Using a Sectoral Approach

*Krzysztof Wawrzyn*¹, ², *Alexei Ouriadov*¹, *Elaine Hegarty*¹, *Susannah Hickling*³, *Giles Santyr*¹, ⁴ ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, Western University, London, Ontario, Canada; ³Department of Medical Physics, McGill University, Montreal, Quebec, Canada; ⁴The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada

- 1493. Effect of RF Pulse Repetition Time on Gas Transfer for Dissolved Hyperpolarized ¹²⁹Xe MRI Brandon Zanette¹, ², Matthew S. Fox³, Ozkan Doganay, ³⁴, Elaine Hegarty, ²³, Giles E. Santyr, ¹² ¹Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada; ³Robarts Research Institute, London, Ontario, Canada; ⁴Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
- 1494. Regional Mapping of Gas Uptake by Lung Tissue and Blood in Subjects with COPD Using Hyperpolarized Xenon-129 MRI

Kun Qing¹, Talissa A. Altes¹, Y. Michael Shim¹, Nicholas J. Tustison¹, Kai Ruppert¹, ², Chengbo Wang¹, ³, Jaime F. Mata¹, G. Wilson Miller¹, Steven Guan¹, Iulian C. Ruset⁴, ⁵, F. William Hersman⁴, ⁵, John P. Mugler, III¹ ¹University of Virginia, Charlottesville, VA, United States; ²Cincinnati Children's Hospital, OH, United States; ³The University of Nottingham Ningbo China, Zhejiang, China; ⁴Xemed LLC, NH, United States; ⁵University of New Hampshire, NH, United States

1495. Investigation of an Animal Model of Pulmonary Fibrosis - *Ex Vivo* Lung MRI Using a Perfluorocarbon Compound as a Contrast Agent for Hyperpolarized ¹²⁹Xe

Clementine Lesbats¹, Anthony Habgood², David ML Lilburn³, Joseph S. Six⁴, Gisli Jenkins², Galina E. Pavlovskaya¹, Thomas Meersmann¹

¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; ²School of Medicine, University of Nottingham, Nottingham, United Kingdom; ³Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, United Kingdom; ⁴Carestream Health Inc., White City, OR, United States

1496. T2* and Frequency Shift Maps of Healthy and CF Subjects

Steven Guan¹, Kun Qing¹, Tally Altes¹, John Mugler III¹, Iulian Ruset², ³, Deborah Froh¹, Grady Miller¹, James Brookeman¹, Jaime Mata¹

¹University of Virginia, Charlottesville, VA, United States; ²University of New Hampshire, NH, United States; ³Xemed LLC, NH, United States

1497. Hyperpolarized ¹²⁹Xe Imaging of the Lung Using Spiral IDEAL

Ozkan Doganay¹,², Trevor Wade², Elaine Hegarty², Krzysztof Wawrzyn², Rolf F. Schulte³, Charles McKenzie¹,², Giles Santvr, 24

¹Western University, London, Ontario, Canada: ²Robarts Research Institute, London, Ontario, Canada: ³GE Global Research, Munich, Germany; ⁴Peter Gilgan Centre for Research and Learning, Toronto, Ontario, Canada

1498. Validation of ¹²⁹Xe Diffusion MRI as a Measure of Airspace Enlargement in Human Lungs Robert Paul Thomen¹, ², James D. Quirk³, David Roach¹, Tiffany Egan-Rojas¹, Kai Ruppert¹, Iulian Ruset⁴, Talissa Altes⁵, Dmitriy Yablonskiy³, Jason C. Woods¹, ²

¹Center for Pulmonary Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Physics, Washington University in St Louis, St Louis, MO, United States; ³School of Medicine, Washington University in St Louis, St Louis, MO, United States; ⁴XeMed, LLC, Durham, NH, United States; ⁵Radiology, University of Virginia Hospital Medical Center, VA, United States

- 1499. Evaluation of Radiation-Induced Lung Injury by Hyperpolarized Xenon Zhiying Zhang¹, Haidong Li¹, Xianping Sun¹, Xiuchao Zhao¹, Chaohui Ye¹, Xin Zhou¹ ¹National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
- 1500. Multi Nuclear 3D Multiple Breath Washout Imaging with ³He and ¹²⁹Xe Using a Dual Tuned Coil Felix C. Horn¹, Madhwesha Rao¹, Neil J. Stewart¹, Helen Marshall¹, Juan Parra-Robles¹, Jim M. Wild¹ ¹Academic Radiology, University of Sheffield, Sheffield, United Kingdom
- 1501. Comparing Pulmonary MRI Using Inert Fluorinated Gases and Hyperpolarized ³He: Is ¹⁹F MRI Good Enough? Marcus J. Couch¹,², Iain K. Ball², Tao Li², Matthew S. Fox³,⁴, Birubi Biman⁵,⁶, Mitchell S. Albert¹, ¹Lakehead University, Thunder Bay, Ontario, Canada; ²Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada; ³Robarts Research Institute, London, Ontario, Canada; ⁴Department of Medical Biophysics, Western University, London, Ontario, Canada; ⁵Thunder Bay Regional Health Sciences Centre, Thunder Bay, Ontario, Canada; ⁶Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
- 1502. Feasibility of Hyperpolarized Helium-3 MRI-Guided Bronchoscopic Assessment of Emergent Ventilation Defect **Regions in Asthma**

David G. Mummy¹, Robert P. Thomen², Stanley J. Kruger³, Alfonso Rodriguez³, Robert V. Cadman³, Nizar N. Jarjour⁴, Loren C. Denlinger⁴, Ronald L. Sorkness^{4, 5}, Mark L. Schiebler⁶, Jason C. Woods⁷, Sean B. Fain^{3, 6} ¹Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, United States; ²Physics, Washington University in St. Louis, St. Louis, MO, United States; ³Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ⁴Allergy, Pulmonary & Critical Care Medicine, Department of Medicine, University of Wisconsin - Madison, Madison, WI, United States; Pharmacy, University of Wisconsin - Madison, Madison, WI, United States; Radiology, University of Wisconsin - Madison, Madison, WI, United States; ⁷Pediatrics, University of Cincinnati, Cincinnati, OH, United States

1503. Rapid Tracheal Flow Measurements During Forced Inhalation and Exhalation

Kai Ruppert¹,², Bora Sul³, Kun Qing², Vineet Rakesh³, Craig H. Meyer², John P. Mugler III², Anders Wallqvist³, Michael J. Morris⁴, Talissa A. Altes², Jaques Reifman³

¹Cincinnati Children's Hospital, Cincinnati, OH, United States; ²University of Virginia, Charlottesville, VA, United States; ³Department of Defense Biotechnology High Performance Computing Software Applications Institute, United States Army Medical Research and Materiel Command, Fort Detrick, MD, United States; ⁴Department of Medicine, San Antonio Military Medical Center, Fort Sam Houston, TX, United States

Traditional Poster

- **1504.** Ventilation-Perfusion Analysis with Co-Registered Hyperpolarized Gas and CE ¹H Perfusion MRI Paul J.C. Hughes¹, Bilal A. Tahir¹, ², Felix C. Horn¹, Helen Marshall¹, Rob H. Ireland¹, ², James M. Wild¹ ¹Academic Unit of Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²Academic Unit of Clinical Oncology, University of Sheffield, South Yorkshire, United Kingdom
- 1505. Approaching the Theoretical Limit for ¹²⁹Xe Hyperpolarisation with Continuous-Flow Spin-Exchange Optical Pumping

Graham Norquay¹, Neil Stewart¹, Jim Wild¹ ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom

1506. Anatomical Distribution of Fractional Ventilation and Oxygen Uptake Imaged by Multibreath Wash-In Helium-3 MRI in Human Subjects

Hooman Hamedani¹, Stephen Kadlecek¹, Yi Xin¹, Hoora Shaghaghi¹, Sarmad Siddiqui¹, Milton Rossman², Rahim R. Rizi¹

¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Medicine, University of Pennsylvania, Philadelphia, PA, United States

1507. A Volume Saddle Coil for Hyperpolarized ¹²⁹Xe Lung Imaging

Wolfgang Loew¹, Robert Thomen², Ron Pratt¹, Zackary Cleveland², Charles Dumoulin¹, Jason Woods², Randy O. Giaquinto¹

¹Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Center for Pulmonary Imaging Research, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States

Traditional PosterHepatobilliaryExhibition HallTuesday 10:00-12:00

1508. Postprandial Hepatic Glycogen Levels Following a Low V High Glycaemic Index Breakfast: A ¹³C MRS Study S Bawden¹, ², MC Stephenson³, K Hunter⁴, M Taylor⁵, L Marciani¹, PG Morris², IA Macdonald⁶, GP Aithal¹, PA Gowland²

¹NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom; ²Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; ³Agency for Science, Technology and Research, Singapore; ⁴Unilever Discover, Bedfordshire, University of Nottingham, United Kingdom; ⁵Faculty of Human Nutrition, University of Nottingham, United Kingdom; ⁶School of Life Sciences, University of Nottingham, United Kingdom

1509. 2D Localized COSY for the Quantification of Omega-3 PUFA Content in Oil Phantoms and *In Vivo* in Rat Liver *Sharon Janssens¹, Marina D.B. Sabbadini¹, Klaas Nicolay¹, Jeanine J. Prompers¹* ¹Biomedical NMR, Eindhoven University of Technology, Eindhoven, Noord-Brabant, Netherlands

1510. A 7 Day Low V High Glycaemic Index Diet Reduces Liver Fat Content

S Bawden¹,², M Stephenson³, K Hunter⁴, M Taylor⁵, PG Morris², L Marciani¹, IA Macdonald⁶, GP Aithal¹, PA Gowland²

¹NIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom; ²Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; ³Agency for Science, Technology and Research, Singapore; ⁴Unilever Discover, Bedfordshire, University of Nottingham, United Kingdom; ⁵Faculty of Human Nutrition, University of Nottingham, United Kingdom; ⁶School of Life Sciences, University of Nottingham, United Kingdom

1511. The Role of IVIM and Chemical Shift Imaging in Detecting Early Hepatic Complications of Diabetes Mellitus Type 2

Sonia Isabel Goncalves¹, ², Filipe Caseiro Alves², ³, Miguel Castelo Branco¹, ² ¹Institute for Biomedical Imaging and Life Sciences, Coimbra, Portugal; ²Faculty of Medicine, University of Coimbra, Coimbra, Portugal; ³Radiology, University Hospital Coimbra, Coimbra, Portugal

1512. Oral Lipid Challenge: The Effects of Saturated Fat on Hepatic Gluconeogenesis, ATP Production, and Fat Accumulation in Healthy Humans

Paul Begovatz¹, Sabine Kahl¹, ², Peter Nowotny¹, Bettina Nowotny¹, ², Michael Roden¹, ² ¹Leibniz Center for Diabetes Research at Heinrich Heine University, Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany; ²University Hospital, Department of Endocrinology and Diabetology, Düsseldorf, Germany

1513. High SNR Improves the Repeatability of Proton Density Fat Fraction Measurements in the Liver Utaroh Motosugi¹, ², Diego Hernando¹, Peter Bannas¹, ³, Scott B. Reeder¹, ⁴

¹Radiology, University of Wisconsin, Madison, WI, United States; ²Radiology, University of Yamanashi, Yamanashi, Japan; ³Radiology, University Hospital Hamburg-Eppendorf, , Hamburg, Germany; ⁴Medical Physics, University of Wisconsin, Madison, WI, United States

1514. Evaluation of Novel Multi Echo MRS and MRI Sequences for Iron and Fat Overload Quantification at 3T in One Breath-Hold

Anita Kiani¹, Elise Bannier¹, Giulio Gambarota², ³, Hervé Saint-Jalmes², ³, Yves Gandon¹ ¹Radiology, University Hospital of Rennes, Rennes, France; ²INSERM, UMR 1099, Rennes, France; ³Université de Rennes 1, LTSI, Rennes, France

1515. Effect of Gadolinum on Hepatic Fat Quantification Using Multi-Echo Reconstruction Technique with T2* Correction and Estimation

MINGMEI GE¹, JING ZHANG², ZIHENG ZHANG², XINHUAI WU¹ ¹ ¹ The Military General Hospital of Beijing PLA,, Beijing, China; ²GE Healthcare China, Beijing, China

1516. Feasibility of MR Elastography of the Liver in Obese Patients at Risk for NAFLD

Curtis N. Wiens¹, Alan B. McMillan¹, Nathan S. Artz¹,², Rashmi Agni³, Nikolaus Szeverenyt⁴, William Haufe⁴, Catherine Hooker⁴, Meng Yin⁵, Guilherme M. Campos⁶, Claude Sirlin⁴, Scott B. Reeder¹,⁷ ¹Department of Radiology, University of Wisconsin, Madison, WI, United States; ²Department of Radiological Sciences, St. Jude Children's Research Hospital, Memphis, TN, United States; ³Department of Pathology, University of Wisconsin, Madison, WI, United States; ⁴Department of Radiology, Mayo Clinic, Rochester, MN, United States; ⁶Department of Surgery, University of Wisconsin, Madison, WI, United States; ⁷Department of Madison, WI, United States; ⁶Department of Radiology, Mayo Clinic, Rochester, MN, United States; ⁶Department of Surgery, University of Wisconsin, Madison, WI, United States; ⁷Department of Medical Physics, University of Wisconsin, Madison, WI, United States

1517. Dual Echo, PDFF and MDIXON Compared to ¹H-MRS for Fat Fraction Estimation: Only PDFF Can Accurately Measure Low Fat Fractions.

Jurgen Henk Runge¹, Ulrich H. Beuers², Aart J. Nederveen¹, Jaap Stoker¹ ¹Radiology, Academic Medical Center, Amsterdam, Noord-Holland, Netherlands; ²Gastroenterology & Hepatology, Academic Medical Center, Amsterdam, Noord-Holland, Netherlands

1518. Effect of Gd-EOB-DTPA on T1-Weighted Dual Echo In-Phase and Opposed-Phase MR Images for Focal Liver Lesion Detection

Jin Wang¹, Lin Luo², Yunhong Shu³, Hong Shan⁴, Bingjun He¹

¹The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; ²The University of Hong Kong-Shenzhen Hospital, Guangdong, China; ³Mayo Clinic, MN, United States; ⁴The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangzhou, Guangdong, China

1519. Effect of Conventional Gadolinium Contrast Agents on IDEAL Based Hepatic Fat-Fraction Measurements *Florine SW van der Wolf - de Lijster¹, Andrew J. Patterson¹, Martin J. Graves¹, David J. Lomas¹* ¹Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, United Kingdom 1520. Intravoxel Incoherent Motion Diffusion-Weighted Imaging and Texture Heterogeneity for Staging of Hepatic Fibrosis in Children

WEIMIN AN¹, JING ZHANG², HUI XIE¹ ¹ department of radiology, 302 military hospital of china, Beijing, China; ²GE Healthcare China, Beijing, China

- **1521.** Inter-Observer Agreement of Liver Biopsy and Liver MR Elastography Jun Chen¹, Meng Yin¹, Jayant Talwalkar¹, Kevin Glaser¹, Thomas Smyrk¹, Richard Ehman¹ ¹Mayo Clinic, Rochester, MN, United States
- 1522. Evaluation of Liver Stiffness in Constrictive Pericarditis Bogdan Dzyubak¹, Eric R. Fenstad², Jae K. Oh¹, Eric E. Williamson¹, James Glockner¹, Phillip M. Young¹, Richard L. Ehman¹, Philip A. Araoz¹, Sudhakar K. Venkatesh¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Cardiovascular Diseases, Mayo Clinic, Rochester, MN, United States

1523. Revisiting the Potential of Alternating Repetition Time Balanced Steady State Free Precession Imaging in the Abdomen at 3T

Oliver J. Gurney-Champion¹,², Remy Klaassen³,⁴, Jaap Stoker¹, Arjan Bel², Hanneke W.M. van Laarhoven⁵, Aart J. Nederveen¹, Sonia I. Goncalves⁶

¹Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Radiation Oncology, Academic Medical Center, Amsterdam, Netherlands; ³Department of Medical Oncology, Academic Medical Center, Amsterdam, Netherlands; ⁴Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁵Department of Medical Oncology, Academic Medical Center, Amsterdam, Netherlands; ⁶Institute for Biomedical Imaging and Life Sciences, University of Coimbra, Coimbra, Portugal

1524. Comparison of Navigated DISCO Dynamic Imaging with Rotated Slab Excitation to Current Standard for Post-Contrast Imaging in Pediatric MR Enterography

Dean Kolnick⁷, Kang Wang², Andrew Phelps⁷, Pauline Worters², John Mackenzie¹, Jesse Courtier¹ ¹Department of radiology and biomedical imaging, UCSF, San Francisco, CA, United States; ²GE Healthcare, CA, United States

1525. Comparison of CAIPIRINHA-VIBE, Radial-VIBE, and Conventional VIBE for Free-Breathing Dynamic Contrast-Enhanced MRI (DCE-MRI): A Preliminary Study

Nieun Seo¹, Seong Joon Park¹, Bohyun Kim¹, Chang Kyung Lee¹, Jisuk Park¹, In Seong Kim², Berthold Kiefer³ ¹Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea; ²Siemens Healthcare, Seoul, Korea; ³Siemens Healthcare, Erlangen, Germany

1526. Simultaneous Acquisition Sequence for High Accuracy Whole Liver Perfusion Quantification(SAHA)

Jia Ning¹, Bida Zhang², Honsum Li¹, Dan Zhu¹, Feng Huang², Shuo Chen¹, Peter Koken³, Jouke Smink⁴, Huijun Chen¹ ¹Center for Biomedical Imaging Research, Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Philips Research China, Beijing, China; ³Innovative Technologies, Research Laboratories, Philips Technologie GmbH, Hamburg, Germany; ⁴Philips Healthcare, MR Clinical Science, Best, Netherlands

1527. Distinguishing Early and Progressed HCC Using Texture Analysis Using Gadoxetic Acid-Enhanced Hepatobiliary Phase Image

Morisaka Hiroyuki¹, Utaro Motosugi¹,², Shintaro Ichikawa¹, Katsuhiro Sano¹, Tomoaki Ichikawa¹, Masayuki Nakano³, Hiroshi Onishi¹

¹Department of Radiology, University of Yamanashi, Chuo, Yamanashi, Japan; ²Department of Radiology, University of Wisconsin, Madison, WI, United States; ³Department of Pathology, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan

1528. Hypoenhancing Liver Lesion on Both Portovenous and Delayed Phase Gadobutrol and Gadofosveset-Enhanced MRI as a Sign of Malignancy in the Diagnosis of Colorectal Liver Metastases (CRLM) Helen Cheung¹, Paul Karanicolas², Chirag Patel¹, Natalie Coburn², Masoom A. Haider¹, Calvin Law², Laurent Milot¹

ismem merit award magna cum laude ¹Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ²Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

1529. Prospect of Hypovascular Hepatocellular Nodules Showing Hyper-Intensity Only in the Hepatobiliary Phase of Gd-EOB-DPTA Enhanced Magnetic Resonance Imaging in Cirrhosis or Chronic Hepatitis Atsushi Higaki¹, Tsutomu Tamada¹, Akira Yamamoto¹, Yasufumi Noda¹, Kazuya Yasokawa¹, Katsuyoshi Ito¹ ¹Radiology, Kawasaki Medical School, Kurashiki city, Okayama, Japan

1530. Phospholipidosis Affects Hepatobiliary Function as Assessed by Gadoxetate DCE-MRI

Stephen Lenhard¹, Debra Paul², Mally Lev³, Lindsey Webster⁴, Christopher Goulbourne⁵, Richard Peterson⁵, Richard Miller⁶, Beat Jucker¹

¹Pre-clinical and Translational Imaging, GlaxoSmithKline, King of Prussia, PA, United States; ²LAS, GlaxoSmithKline, King of Prussia, PA, United States; ³DMPK, GlaxoSmithKline, King of Prussia, PA, United States; ⁴DMPK, GlaxoSmithKline, Research Triangle Park, NC, United States; ⁶LAS, MC, United States; ⁶LA

1531. Efficient Fat Suppression by Slice-Selection Gradient Reversal in Stimulated Echo Diffusion Weighted Liver Imaging

Hui Zhang¹, Ed X. Wu², ³, Hua Guo¹

¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong SAR, China; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong SAR, China

1532. Correlation of Histological and IVIM-Derived Measures of Vascularity in Hypo- And Hypervascularized Pancreatic Lesions

Miriam Klauss¹, Philipp Mayer¹, Klaus Maier-Hein², Frank Bergmann³, Thilo Hackert⁴, Lars Grenacher¹, Bram Stieltjes⁵

¹Diagnostic and Interventional Radiology, University hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany; ²DKFZ, Heidelberg, Baden-Württemberg, Germany; ³Pathology, University of Heidelberg, Baden-Württemberg, Germany; ⁴Surgery, University hospital Heidelberg, Baden-Württemberg, Germany; ⁵Radiology, University hospital Basel, Basel, Switzerland

1533. Navigated 3D MRCP with Compressed Sensing

Scott A. Reid¹, Kevin F. King², Florine van der Wolf-de Lijster³, Martin J. Graves³, Lloyd Estkowski², David J. Lomas³ ¹GE Healthcare, Chalfont St Giles, United Kingdom; ²GE Healthcare, Waukesha, WI, United States; ³Radiology, Addenbrooke's Hospital & University of Cambridge, Cambridge, Cambridgeshire, United Kingdom

- **1534.** Use of Enhanced T2 Star-Weighted Angiography (ESWAN) to Distinguish Severity of Liver Cirrhosis *CHUNMEI MA¹*, *Ailian Liu¹*, *YE LI¹*, *LIHUA CHEN¹*, *HEQING WANG¹* ¹The first affiliated hospital of Dalian medical university, Dalian, Liaoning, China
- 1535. T1p Relaxation of the Liver; Comparison of the Continuous Wave and Stretched Type Adiabatic Hyperbolic Scant (HS) Pulses for the Assessment of Liver Function Yukihisa Takayama¹, Akihiro Nishie², Yoshiki Asayama², Kousei Ishigami², Yasuhiro Ushijima², Daisuke Okamoto², Nobuhiro Fujita², Koichiro Morita², Tomoyuki Okuaki³, Hiroshi Honda² ¹Department of Radiology Informatics and Network, Kyushu University, Graduate School of Medical Sciences, Fukuoka, Japan; ²Department of Clinical Radiology, Kyushu University, Graduate School of Medical Sciences, Fukuoka, Japan; ³Philips Healthcare APAC, Tokyo, Japan
- **1536.** The Prevalence and Natural History of Pancreatic Cysts in Autosomal Dominant Polycystic Kidney Disease Jin Ah Kim¹, Jon D. Blumenfeld², ³, Silvina P. Dutruel¹, Nanda Deepa Thimmappa Deepa Thimmappa¹, Warren O. Bobb², Stephanie Donahue², Ashley E. Giambre⁴, Martin R. Prince¹

¹Radiology, Weill Cornell Medical College, New York, United States; ²The Rogosin Institute, NY, United States; ³Medicine, Weill Cornell Medical College, NY, United States; ⁴Healthcare Policy and Research, Weill Cornell Medical College, NY, United States

- **1537.** Aortic Pulse Wave Velocity Measured Using4D-Flow MRI in Patients with Portal Hypertension Matthew R. Smith¹, Alejandro Roldan-Alzate¹, Oliver Wieben¹, ², Scott B. Reeder¹, ², Christopher J. Francois¹ ¹Radiology, University of Wisconsin, Madison, WI, United States; ²Medical Physics, University of Wisconsin, Madison, WI, United States
- 1538. Accelated Non-Contrast-Enhanced MR Portography with Undersampled K-Space Using Compressed Sensing Reconstruction

Hiroyoshi Isoda¹, Koji Fujimoto¹, Shigeki Arizono: ¹, Akihiro Furuta¹, Takayuki Yamamoto¹, Yasutaka Fushimi¹, Aki Kido¹, Kaori Togashi¹, Naotaka Sakashita² ¹Kyoto University Graduate School of Medicine, Kyoto, Japan; ²Toshiba Medical Systems Corporation MRI Systems Division, Otawara, Tochigi, Japan

Traditional Poster Renal, Pelvis & Fetal Exhibition Hall Tuesday 10:00-12:00

1539. Preliminary Application of Diffusion Kurtosis Imaging in the Diagnosis of Prostate Cancer Jing Guo-dong¹, Wang Li¹, Wang Jian¹, LU Jian-ping¹ ¹Chang Hai Hospital, Shang Hai, China

1540. High-Resolution Computed DWI with High B-Value: A Preliminary Study for Improving Prostate Cancer Detection at 3T MR System

Yoshiko Ueno¹, Satoru Takahashi², Yoshiharu Ohno², ³, Katsusuke Kyotani⁴, Masao Yui⁵, Yoshimori kassai⁵, Kazuhiro Kitajima⁶, Kazuro Sugimura¹

¹Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ²Department of Radiology, Kobe University Graduate School of Medicine, Hyogo, Japan; ³Advanced Biomedical Imaging Research, Kobe University Graduate School of Medicine, Hyogo, Japan; ⁴Division of Radiology, Kobe University Hospital, Hyogo, Japan; ⁵MRI Systems Development Department, Toshiba Medical Systems Corp, Tochigi, Japan; ⁶Department of Radiology, Hyogo College of Medicine, Hyogo, Japan

1541. Multi-B-Value Diffusion Weighted Imaging Acquired on a 3T MR Scanner: Comparison of the Apparent Diffusion Coefficient in Prostate Cancer Detection and the Contribution of B-Value Images in ADC Map Interpretation.

Thomas de Perrot¹, Bénédicte M A Delattre¹, Lindsey A. Crowe², Iris Friedli¹, Marc Pusztaszeri³, Jean-Christophe Tille³, Christophe Iselin⁴, Jean-Paul Vallée¹

¹Division of Radiology, Geneva University Hospital, Geneva, Switzerland; ²Division of Radiology, Geneva University Hospital, Geneva, Switzerland; ³Division of Clinical Pathology, Geneva University Hospital, Geneva, Switzerland; ⁴Division of Urologic Surgery, Geneva University Hospital, Geneva, Switzerland

1542. Characterisation of Placental Diffusion in Twin Pregnancies Using Diffusion-Weighted Magnetic Resonance Imaging

Soha Said Ramadan¹, Pablo Caro Dominguez¹, ², Jorge H. Davila¹, ², Melissa Valdez Quintana¹, ², Julie Hurteau-Miller¹, ², David Grynspan, ²³, Felipe Moretti, ²⁴, Elka Miller¹, ² ¹Department of Radiology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; ²Department of Diagnostic Imaging,

¹Department of Radiolog⁷, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; ²Department of Diagnostic Imaging, University of Ottawa, Ottawa, Ontario, Canada; ³Department of Pathology, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada; ⁴Department of Obstetrics, Gynecology and Newborn Care, The Ottawa Hospital, Ottawa, Ontario, Canada

1543. A Novel Non-Invasive MRI Tool for Quantification of Placental Oxygen Transport *In Vivo Reut Avni¹*, *Joel Garbow²*, *Michal Neeman¹*

ISMRM MERIT AWARD Summa cum laude

¹Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; ²Biomedical MR laboratory, Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, United States

1544. Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging of the Placenta: Evaluation of Perfusion Changes in the Supine and Left Lateral Decubitus Positions

Skorn Ponrartana¹, Sherin U. Devaskar², Jonathan M. Chia³, Vidya Rajagopalan⁴, Hollie A. Lai¹, David Miller⁵, Vicente Gilsanz¹

¹Radiology, Children's Hospital Los Angeles, Los Angeles, CA, United States; ²Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Radiology, Children's Hospital Los Angeles, CA, United States; ⁵Obstetrics and Gynecology, University of Southern California, CA, United States

1545. An Anthropomorphic MR Phantom of the Gravid Abdomen Including the Uterus, Placenta, Fetus and Fetal Brain.

Pablo Garcia-Polo¹, Borjan Gagoski², Bastien Guerin³, Eric Gale³, Elfar Adalsteinsson⁴, ⁵, P. Ellen Grant², Lawrence L. Wald³, ⁵

¹Martinos Center, MGH, M+Visión Advanced Fellowship, Charlestown, MA, United States; ²Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; ³Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ⁴Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁵Harvard-MIT Health Sciences and Technology, Cambridge, MA, United States

- **1546.** Comparison of US and MR Measurement of Fetal Biometrics at 28-32 Weeks with a Real-Time MR Sequence Nicholas Hilliard¹, Rebecca Baker¹, Andrew Patterson¹, Martin Graves¹, Christoph Lees², Pat Set¹, David J. Lomas¹ ¹Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom; ²Department of Maternofetal Medicine, Imperial College Healthcare NHS Trust, London, United Kingdom
- 1547. High Resolution NMR Parameter Mapping of a CS23 Chemically Fixed Human Embryo at 9.4 T Katsumi Kose¹, Yosuke Otake¹, Akiyoshi Nagata¹, Tomoyuki Haishi², Shigehito Yamada³ ¹Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan; ²MRTechnology Inc., Tsukuba, Ibaraki, Japan; ³Kyoto University, Kyoto, Japan
- 1548. Comparison of Uterine Artery Pulsatility and Resistivity Indices Using Magnetic Resonance Imaging and Doppler Ultrasound

*Rebecca Hawkes*¹, Andrew Patterson², Andrew Priest², Martin J. Graves², Nicholas Hilliard², Patricia Set¹, David Lomas¹

¹Radiology, Addenbrooke's Hospital, Cambridge, Cambridgeshire, United Kingdom; ²Radiology, Addenbrooke's Hospital, Cambridge, United Kingdom

- **1549.** Study of the Correlation Between Fetus Ages and Ossification Center of Atlanto-Axial Vertebrae Using MRI Hui Zhao¹, Tianyi Qian², Yong Wu¹, Shuwei Liu³, Lianxiang Xiao¹, Xiangtao Lin¹, ⁴ ¹Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China; ²MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ³China Research Center for Sectional and Imaging Anatomy, School of Medicine, Shandong University, Shandong, China; ⁴China Research Center for Sectional and Imaging Anatomy, School of Medicine, Shandong University, Shandong, China;
- **1550.** Decidualized Adenomyosis: MR Imaging Findings Including Diffusion-Weighted Imaging Mayumi Takeuchi¹, Kenji Matsuzaki¹, Masafumi Harada¹ ¹Department of Radiology, University of Tokushima, Tokushima, Japan
- 1551. Multiparametric MRI Characterization of Funaki Sub-Types of Uterine Fibroids Considered for MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU) Therapy

Sajan Andrews¹, Qing Yuan¹, April Bailey¹, Naira Muradyan², Robert Staruch¹, ³, Rajiv Chopra¹, ⁴, Ivan Pedrosa¹, ⁴ ¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ²iCAD Inc, Nashua, NH, United States; ³Philips Research, Briarcliff Manor, NY, United States; ⁴Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States 1552. Importance of Intravenous Contrast Administration to Improve the Diagnostic Accuracy of Preoperative MRI for Uterine Leiomyosarcoma

Gigin Lin¹, Yu-Ting Huang¹, Koon-Kwan Ng¹, Shu-Hang Ng¹ ¹Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital and Institute for Radio, Chang Gung Memorial Hospital and Chang Gung University, Linkou, Taoyuan, Taiwan

- **1553.** Computed Diffusion-Weighted Imaging for Differentiating Decidualized Endometrioma from Ovarian Cancer Mayumi Takeuchi¹, Kenji Matsuzaki¹, Masafumi Harada¹ ¹Department of Radiology, University of Tokushima, Tokushima, Japan
- **1554.** Comprehensive Diagnostic Strategy for Cystic Masses in the Female Pelvis with Advanced MR Techniques Mayumi Takeuchi¹, Kenji Matsuzaki¹, Masafumi Harada¹ ¹Department of Radiology, University of Tokushima, Tokushima, Japan
- **1555.** MR Imaging Features of Ovarian Fibroma, Fibrothecoma and Thecoma Sung Bin Park¹, Jong Beum Lee¹, Hyun Jeong Park¹ ¹Chung-Ang University Hospital, Seoul, Korea
- 1556. An Interactive Computer-Aided Diagnosis System for Detecting Metastatic Lymph Node in Female Pelvis Based on Diffusion Weighted Imaging *Tiing Yee Siow¹, Yu-Chun Lin¹, Gigin Lin¹* ¹Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- 1557. Faster and Improved MRI of Rectal Tumors with a Two Sequence Protocol Based on High-Resolution Free-Breathing Post-Contrast 3D SPGR Imaging with Comparison to Standard Care. Andreas M. Loening¹, Pejman Ghanouni¹, Marcus T. Alley¹, Shreyas S. Vasanawala¹ ¹Dept. of Radiology, Stanford University, Stanford, CA, United States
- 1558. Quantification of Sequence Parameter Effect on Geometric Distortions Caused by a Titanium Brachytherapy Applicator

Steven M. Shea¹, Abbie Diak², Murat Surucu², Matthew Harkenrider², Joseph M. Yacoub¹ ¹Radiology, Loyola University Chicago, Maywood, IL, United States; ²Radiation Oncology, Loyola University Chicago, Maywood, IL, United States

1559. Increased Speed and Image Quality for Single Shot Fast Spin Echo Imaging in the Pelvis Via Variable Refocusing Flip Angles and Full-Fourier Acquisition

Andreas M. Loening^T, Manojkumar Saranathan¹, Daniel V. Litwiller², Ann Shimakawa², Lloyd Estkowski², Shreyas S. Vasanawala¹

¹Dept. of Radiology, Stanford University, Stanford, CA, United States; ²GE Healthcare Global MR Applications and Workflow, Rochester, MN/Menlo Park, CA, United States

- **1560.** The Capabilities and Limitations of Clinical MRI Sequences for Detecting Kidney Stones. a Retrospective Study *El-Sayed H. Ibrahim¹, ², Joseph Cernigliaro², Mellena Bridges², Robert Pooley², William Haley²* ¹University of Michigan, Ann Arbor, MI, United States; ²Mayo Clinic, Jacksonville, FL, United States
- **1561.** Assessment of Renal Blood Flow and Oxygenation in Clear Cell Renal Cell Carcinomas Using MRI Han-Mei Zhang¹, Xiao Lv², Pan-Li Zuo³, Niels Oesingmann⁴, Bin Song¹
¹Department of radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; ²Department of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; ³Siemens Healthcare, MR Collaborations NE Asia, Beijing, China; ⁴Siemens HC, New York State, United States

- 1562. Multi-Parametric MRI Evaluation of Chronic Kidney Disease BOLD & Perfusion MRI Jon Thacker¹, Huan Tan², Lu-Ping Li, ²³, Wei Li, ²³, Ying Zhou³, Orly Kohn², Stuart Sprague, ²³, Pottumarthi Prasad, ²³ ¹Northwestern University, Chicago, IL, United States; ²University of Chicago, IL, United States; ³NorthShore University HealthSystem, IL, United States
- 1563. Non-Invasive Assessment of the Whole Kidney by MOLLI T1 Mapping in Chronic Kidney Disease Patients Iris Friedli¹, Lindsey Alexandra Crowe¹, Lena Berchtold², Solange Moll³, Karine Hadaya⁴, Pierre-Yves Martin⁴, Sophie De Seigneux⁴, Jean-Paul Vallée¹ ¹Division of Radiology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Geneva, Switzerland; ²Division of Internal Medicine, Faculty of Medicine, Geneva University Hospital, University of Geneva, Geneva, Switzerland; ³Division of Pathology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Geneva, Switzerland; ⁴Division of Nephrology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland; ⁴Division of Nephrology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland; ⁴Division of Nephrology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland; ⁴Division of Nephrology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland

1564. Multiparametric MRI Evaluation of Chronic Kidney Disease - BOLD & Diffusion MRI

Lu-Ping Li¹, Wei Li¹, Jon Thacker¹, Huan Tan¹, Ying Zhou², Orly Kohn³, Stuart Sprague⁴, Pottumarthi V. Prasad¹ ¹Center for Advanced Imaging, NorthShore University HealthSystem, Evanston, IL, United States; ²Center for Biomedical Research & Informatics, NorthShore University HealthSystem, Evanston, IL, United States; ³Department of Nephrology, University of Chicago, Chicago, IL, United States; ⁴Department of Nephrology, NorthShore University HealthSystem, Evanston, IL, United States

1565. Comprehensive Assessment of Renal BOLD MRI Using Multiple Moment Analysis: Application to Subjects with CKD

Jon Thacker¹, Lu-Ping Li², ³, Wei Li², ³, Stuart Sprague², ³, Pottumarthi Prasad², ³ ¹Northwestern University, Chicago, IL, United States; ²NorthShore University HealthSystem, IL, United States; ³University of Chicago, IL, United States

1566. Large-FOV High Temporal Resolution Free-Breathing MR Urography Using a Continuous Golden-Angle Radial Acquisition Scheme with Compressed Sensing Reconstruction: Feasibility and Comparison with Standard Cartesian Acquisition

Nainesh Parikh¹, Justin Ream¹, Hoi Cheung Zhang², Tobias Block³, Hersh Chandarana², Andrew Rosenkrantz² ¹Radiology, NYU School of Medicine, New York, NY, United States; ²Radiology, NYU School of Medicine, New York, NY, United States; ³Radiology, Center for Advanced Imaging Innovation and Research NYU School of Medicine, New York, NY, United States

1567. High Non-Linear Diffusion Fraction Correlates with Histological Fibrosis in Allograft Kidneys

*General Leung*¹, ², *Nan Jiang*³, *Anthony A. Sheen*¹, *Serge Jothy*⁴, *Darren A. Yuen*, ²⁵, *Anish Kirpalani*¹, ² ¹Medical Imaging, St. Michael's Hospital, Toronto, Ontario, Canada; ²Keenan Research Centre, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada; ³Faculty of Medicine, University of Toronto, Toronto, Canada; ⁴Department of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada; ⁵Division of Nephrology, St Michael's Hospital, Toronto, Ontario, Canada

- **1568. IVIM-DWI and Non-Contrast MRI of Allograft Kidneys in 48 Hours After Transplantation** *Yung Chieh Chang¹, Yi-Ying Wu¹, ², Jyh-Wen Chai¹, Clayton Chi-Chang Chen¹* ¹Department of Radiology, Taichung Veterans General Hospital, Taichung City, Taiwan; ²Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung City, Taiwan
- 1569. The Reliability of Magnetic Resonance Elastography (MRE) Using Multislice 2D Spin-Echo Echo-Planar Imaging (SE-EPI) and 3D Inversion Reconstruction for Assessing Renal Stiffness Gavin Low¹, ², Nicola Eve Owen³, Ilse Joubert¹, Andrew J. Patterson¹, Kevin J. Glaser⁴, Martin J. Graves¹, Graeme J.M. Alexander³, David J. Lomas¹

¹Radiology, Addenbrooke's Hospital, Cambridge, England, United Kingdom; ²University of Alberta, Edmonton, Alberta, Canada; ³Hepatology & Gastroenterology, Addenbrooke's Hospital, Cambridge, England, United Kingdom; ⁴Radiology, Mayo Clinic, MN, United States

1570. Visualization of Lupus Nephritis Using SPIO

¹ Ting Chen¹, ², ², ⁴, ⁷, ¹Zhenyu Cheng⁵, ⁶, ⁶Soyoung Lee⁷, Kai Wang⁷, Barry Ripley⁷, Tadamitsu Kishimoto⁷, ⁷, ¹Chizuko Inui-Yamamoto, ²⁷, ²Fuminori Sugihara⁷, Noriko Kitagaki⁷, Yoshiyuki Tago⁸, Shinichi Yoshida⁸, Kohji Ohno⁹, ⁷Yoshichika Yoshioka, ⁶⁷
 ¹ Immunology Frontier Research Center (IFReC), Osaka University, , Suita, Osaka, Japan; ²Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, , Suita, , Osaka, Japan; ³Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; ⁴Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, , Suita, Osaka, Japan; ⁵Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; ⁶Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, , Suita, Osaka, Japan; ⁵Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; ⁶Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, , Suita, Osaka, Japan; ⁶Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT) and Osaka University, , Suita, Osaka, Japan; ⁷Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, Japan; ⁸Biotechnology Development Laboratories, Kaneka Corporation, Takasago, Hyogo, Japan; ⁹Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan

1571. MRI of Perirenal Pathology

James Glockner¹, Christine Lee¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States

- **1572.** Setup for Quick 2D Glomerular Imaging in a Clinical 3 T MRI System Jorge Chacon-Caldera¹, Raffi Kalayciyan¹, Lothar R. Schad¹ ¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, BW, Germany
- 1573. Metabolic Imaging of Renal Triglyceride Content: Validation by Porcine Kidney Biopsies Paul de Heer¹, Jacqueline T. Jonker², Evelien H. van Rossenberg², Marten A. Engelse², Trea CM Streefland³, Ton J. Rabelink², Andrew G. Webb¹, Patrick CN Rensen³, ⁴, Hildo J. Lamb, Aiko PJ de Vries² ¹CJ Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Nephrology, Leiden University Medical Center, Leiden, Netherlands; ³Endocrinology, Leiden University Medical Center, Leiden, Netherlands; ⁴Einthoven Laboratory for Experimental Vascular Medicine, Leiden, Netherlands
- 1574. Functional Evaluation of Transplanted Kidneys with Reduced Field of View Diffusion-Weighted Imaging at 3 T Yuan Xie^l, Yanjun Li^l, Dandan Zheng², Yong Zhang³, Guangming Lu^l ¹Medical Imaging, Jingling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; ²GE healthcare China, Beijing, China; ³GE healthcare China, Shanghai, China
- 1575. Patients with High Blood Pressure Should Avoid Aspirin: Reduced Renal Perfusion in Hypertensive EP4 Knockout Mice

Greg O. Cron¹, ², Jean-François Thibodeau¹, ², Gerd Melkus¹, ², Anthony Carter², Ian G. Cameron¹, ², Nicola Schieda¹, ², Wael Shabana¹, ², Chris Kennedy¹, ²

¹Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; ²University of Ottawa, Ottawa, Ontario, Canada

- **1576.** Measurement of Renal Cortical Thickness Using Non-Contrast-Enhanced Steady-State Free Precession (SSFP) MRI with Spatially Selective Ir Pulse: Association with Renal Function Yasufumi Noda¹, Katsuyoshi Ito¹, Tsutomu Tamada¹, Akira Yamamoto¹, Kazuya Yasokawa¹, Atsushi Higaki¹ ¹Department of Radiology, Kawasaki Medical School, Kurashiki, Okayama, Japan
- 1577. Assessment of Renal Allograft Perfusion and Diffusion Using Renal ASL and IVIM Tao Ren¹, Hua Li Chen¹, Li Pan Zuo², Thorsten Feiweier³, Niels Oesingmann⁴, Wen Shen¹ ¹Department of Radiology, Tianjin First Center Hospital, Tianjin, China; ²Siemens Healthcare, MR Collaborations NE Asia, Beijing, China; ³Siemens Healthcare, Erlangen, Germany; ⁴Siemens HC, NY, United States

1578. Quantification and Reproducibility of Single Kidney Function Using DCE-MRI in Healthy Subjects

Eli Eikefjord¹,², Erling Andersen³, Jan Ankar Monssen¹, Erlend Hodneland⁴, Erik Hanson⁵, Arvid Lundervold, ¹⁴, Jarle Rørvik, ¹²

¹Radiology, Haukeland University Hospital, Bergen, Hordaland, Norway; ²Clinical Medicine, University of Bergen, Bergen, Hordaland, Norway; ³Clinical Engineering, Haukeland University Hospital, Bergen, Hordaland, Norway; ⁴Biomedicine, University of Bergen, Hordaland, Norway; ⁵Mathematics, University of Bergen, Hordaland, Norway

- 1579. Application and Analysis of Multi-Echo Sequences for Renal MRI Using EPG Sneha Prakash Potdar¹, Manoj G. Bhosale¹, ², Shivaprasad Ashok Chikop¹, Shaikh Imam¹, Antharikashanagar Bellappa Sachin Anchan¹, Sairam Geethanath¹ ¹Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, Karnataka, India; ²BioMedical Instrumentation, Government College of Engineering Pune (COEP), Pune, Maharashtra, India
- **1580.** Low Field Renal Contrast Optimization with a Portable 0.5T System *Florian Lietzmann¹*, *Mathias Düsberg¹*, *Lothar R. Schad¹* ¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Baden-Württemberg, Germany
- 1581. A Simple Method to Optimize Partial Fourier Acquisition Schemes for Glomerular Imaging Jorge Chacon-Caldera¹, Lothar R. Schad¹ ¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, BW, Germany
- 1582. Robust and Noninvasive Measurement of Renal Perfusion Using Multi-Phase Pseudo-Continuous Arterial Spin Labeling

William Jeffrey Triffo¹, Youngkyoo Jung² ¹Department of Radiology, Wake Forest School of Medicine, Winston Salem, NC, United States; ²Departments of Radiology and Biomedical Engineering, Wake Forest School of Medicine, Winston Salem, NC, United States

1583. Accurate Quantification of Blood Perfusion in the Kidney Using Pseudo-Continuous Arterial Spin Labelling: an Optimisation and Reproducibility Study Susie Clarke¹, James F. Meaney¹, Andrew J. Fagan¹

¹National Centre for Advanced Medical Imaging (CAMI), St. James's Hospital / Trinity College Dublin, Dublin 8, Ireland

- 1584. Urinary ¹H NMR-Based Metabolomics Can Distinguish Sub-Fertility Buffalo Bulls Virendra Kumar¹, Pawan Kumar¹, Khushpreet Singh², N R Jagannaathan¹, Ajeet Kumar² ¹Department of NMR, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of Veterinary Gynaecology and Obstetrics, College of Veterinary Science, GADVASU, Ludhiana, Punjab, India
- **1585.** Imaging Features of Leiomyoma in the Genitourinary Tract: Beyond the Uterus *Sung Bin Park¹* ¹Chung-Ang University Hospital, Seoul, Korea
- **1586.** Tracking of Bladder Motion and Gut Peristalsis Using MRI. Veerle Kersemans¹, Philip D. Allen¹, John S. Beech¹, Stuart Gilchrist¹, Paul Kinchesh¹, Sean C. Smart¹ ¹Department of Oncology, University of Oxford, OXford, OXON, United Kingdom

Traditional Post	er
Body DWI, Tech	nical Development & Contrast
Exhibition Hall	$T_{uesday} 10.00 12.00$

- 1587. Radioembolization Dosimetry Using Gadoxetate Disodium for Segmentation of the Healthy Liver Parenchyma Hanke J. Schalkx¹, Jip P. Prince¹, Gerrit H. van de Maat², Peter R. Seevinck³, Clemens Bos³, Wouter B. Veldhuis¹, Maarten S. van Leeuwen¹, Maurice AAJ van den Bosch¹, Marnix GEH Lam¹, Marijn van Stralen³
 ¹Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, Netherlands; ²Quirem Medical BV, Diepenveen, Netherlands; ³Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
- 1588. Variable Refocusing Flip Angle Single-Shot Fast Spin Echo of the Bowel, Initial Experience Daniel V. Litwiller¹, James F. Glockner², Ersin Bayram³ ¹Global MR Applications and Workflow, GE Healthcare, Rochester, MN, United States; ²Department of Radiology, Mayo Clinic, Rochester, MN, United States; ³Global MR Applications and Workflow, GE Healthcare, Houston, TX, United States
- 1589. Whole-Body Continuously Moving Table Fat Water Imaging with Dynamic ΔB₀ Shimming Saikat Sengupta¹, ², David S. Smith¹, ², E. Brian Welch¹, ²
 ¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Nashville, TN, United States
- 1590. Application of Mathematical Modelling to a DCE-MRI Phantom: Predicting the Shape of Contrast Agent Uptake Curves.

Laura Smith¹, Marco Borri¹, Araminta EW Ledger¹, Craig Cummings¹, Maria A. Schmidt¹, Martin O. Leach¹ ¹CR-UK Cancer Imaging Centre, Sutton, Surrey, United Kingdom

1591. Assessment of System Linearity and Response to Input Parameters in a Dynamic Contrast-Enhanced (DCE) MRI Phantom

Laura Smith¹, Araminta EW Ledger¹, Marco Borri¹, Craig Cummings¹, Maria A. Schmidt¹, Martin O. Leach¹ ¹CR-UK Cancer Imaging Centre, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom

- 1592. Homogeneous Free Whole-Body Lava-Flex Using an Adaptive Center Frequency Technique at 3T Lizhi Xie^l, Bing Wu^l, Nan Hong², Yingkui Zhang^l, Zhenyu Zhou^l ¹GE Healthcare China, Beijing, China; ²Peking University People's Hospital, Beijing, China
- **1593.** Brown Adipose Tissue Thermometry in the Paraventricular Specific Knock-Out Mouse Model at 15.2T *Myriam Diaz Martinez¹, Henry H. Ong¹, Masoud Ghamari-Langroudi², Aliya Gifford¹, ³, Roger Cone², E Brian Welch¹ ¹Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; ²Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, United States; ³Physical and Chemical Biology Program, Vanderbilt University Medical Center, Nashville, TN, United States;*
- **1594.** Nonalcoholic Fatty Liver Disease: Correlation of the Liver Parenchyma Fatty Acid with Intravoxel Incoherent Motion MR Imaging-An Experimental Study in Rat Model Seung-Man Yu¹, Hyeon-Man Baek²

¹Dep. of Radilological Science, Gimchoen University, Gimcheon, Gyeongsangbuk-do, Korea; ²Center for MR Research, Korea basic Science Institue, Ochang/Chungbuk, Korea

1595. MRI/S Assessment of Cardiac Morphology/Function and Skeletal Muscle Energetics in Mitochondrial DNA Mutated Mice

Hasan Alsaid¹, Mary V. Rambo¹, Tinamarie Skedzielewski¹, Ruth R. Osborn², Alicia M Davis M. Davis², William Rumsey², Beat M. Jucker¹

¹Preclinical & Translational Imaging, LAS, PTS, GlaxoSmithKline, King of Prussia, PA, United States; ²Stress Repair DPU, Respiratory TAU, GlaxoSmithKline, King of Prussia, PA, United States

1596. Safeguarding the Family Jewels: Using MRI to Monitor for Testicular Toxicity

Denise Welsh-McCracken¹, Yvonne Van Gessel¹, Dierdre Scully², Jacob Hesterman², Paul J. McCracken¹ ¹Eisai, Andover, MA, United States; ²InviCRO, Boston, MA, United States

1597. High Field Magnetic Resonance Angiogram of the Mouse Eye

Gangchea Lee¹, Minjung Kim², Thomas Neuberger, ¹³ ¹Biomedical Engineering, Pennsylvania State University, University Park, PA, United States; ²Biology, Pennsylvania State University, University Park, PA, United States; ³Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States

1598. B0 Inhomogeneity Correction of T2* from Fat-Water MRI: Application to a Diet-Induced Obesity Mouse Model at 15.2T

Henry H. Ong^{1, 2}, *Corey D. Webb*³, *Marnie L. Gruen*³, *Alyssa H. Hasty*³, *John C. Gore*^{1, 2}, *E. Brian Welch*^{1, 2} ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, United States

1599. Improved IVIM Model Fitting with Non-Rigid Motion Correction

*Oscar Gustafsson*¹, ², *Mikael Montelius*¹, *Maria Ljungberg*¹, ² ¹Department of Radiation Physics, University of Gothenburg, Göteborg, Sweden; ²Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Göteborg, Sweden

1600. Evaluation of Different Mathematical Models for Diffusion Weighted Imaging of Prostate Cancer Xenografts in Mice

Harri Merisaari¹,², Hanne Hakkarainen³, Heidi Liljenbäck¹,⁴, Helena Ahtinen¹,⁴, Heikki Minn⁵, Matti Poutanen⁴,⁶, Anne Roivainen¹,⁴, Timo Tiimatainen⁷, Ivan Jambor⁸

¹Turku PET Centre, University of Turku, Turku, Finland; ²Department of Information Technology, University of Turku, Turku, Finland; ³Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland; ⁴Turku Center for Disease Modeling, University of Turku, Turku, Finland; ⁵Department of Oncology and Radiotherapy, Turku University Hospital, Turku, Finland; ⁶Department of Physiology, University of Turku, Turku, Finland; ⁷Department of Biotechnology and Molecular Sciences, Kuopio, Finland; ⁸Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁹Department of Diagnostic Radiology, University of Turku, Turku, Finland

1601. Improved Abdominal Diffusion Weighted Imaging at 3T Using Optimized Shinnar-Le Roux Adiabatic Radiofrequency Pulses

Hadrien Dyvorne¹, Priti Balchandani¹ ¹Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States

summa cum laude

1602. Clinical Feasibility of Time-Dependent Diffusion MRI for Improved Prostate Cancer Grading

*Gregory Lemberskiy*¹, ², *Dmitry S. Novikov*¹, *Henry Rusinek*¹, *Els Fieremans*¹, *Andrew Rosenkrantz*¹ ¹Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States

1603. A Spatially Constrained Probability Distribution Model of Incoherent Motion (SPIM) in Quantitative Diffusion Weighted MRI

Sila Kurugol¹, Moti Freiman¹, Onur Afacan¹, Simon K. Warfield¹ ¹Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States 1604. Proposal and Evaluation of a Parameter Free Segmented Multistep Algorithm to Assess Diffusion Data with a ISMAN MEET AVANO magna cum laube

Moritz C. Wurnig¹, David Kenkel¹, Lukas Filli¹, Andreas Boss¹ ¹Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland

1605. Readout-Segmented EPI with Simultaneous, Multi-Slice Acceleration for the Rapid Acquisition of High-Resolution, Diffusion-Weighted Images of the Breast

Wei Liu¹, Himanshu Bhat², Elisabeth Weiland³, Dingxin Wang⁴, Thomas Beck³, Stephen F. Cauley⁵, David A. Porter⁶ ¹Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong, China; ²Siemens Medical Solutions USA, Inc., Charlestown, MA, United States; ³MR Application Development, Siemens Healthcare, Erlangen, Germany; ⁴Siemens Medical Solutions USA, Inc., Minneapolis, MN, United States; ⁵A.A. Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States; ⁶Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany

- 1606. Realtime B0 Inhomogeneity Correction in Multi-Station Diffusion Imaging Maggie M. Fung¹, Wu Gaohong², Lloyd Estkowski³, Dan Xu², Scott Hinks², Ersin Bayram⁴ ¹Global MR Applications and Workflow, GE Healthcare, New York City, NY, United States; ²Global MR Applications and Workflow, GE Healthcare, Waukesha, WI, United States; ³Global MR Applications and Workflow, GE Healthcare, Menlo Park, CA, United States; ⁴Global MR Applications and Workflow, GE Healthcare, Houston, TX, United States
- 1607. A Comparison of Intravoxel Incoherent Motion (IVIM) Fitting Models in the Liver Alexander D. Cohen¹, Mark D. Hohenwalter¹, Kathleen M. Schmainda¹, ² ¹Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- 1608. Spatially-Constrained Incoherent Motion (SCIM) Model Improves the Robustness of Fast and Slow Diffusion Parameter Estimation from DW-MRI Data in Various Multiple B-Value Acquisition Protocols Vahid Taimouri¹, Moti Freiman¹, Simon K. Warfield¹ ¹Radiology, Boston Children's Hospital, Boston, MA, United States
- 1609. Diffusion-Weighted Imaging Using a Statistical Model as a Functional MRI of the Kidney: Preliminary Experience

Kentaro Yamada¹, Hiroshi Shinmoto¹, Seigo Ito², Hiroo Kumagai², Tatsumi Kaji¹, Koichi Oshio³ ¹Radiology, National Defense Medical College, Tokorozawa, Saitama, Japan; ²Nephrology and Endocrinology, National Defense Medical College, Saitama, Japan; ³Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan

- 1610. Read-Fly : Homogeneous and Distortion Free Whole Body Diffusion Weighted Imaging at 1.5T and 3 T Lizhi Xie¹, Bing Wu¹, Ning Wu², Xiaocheng Wei¹, Zhenyu Zhou¹ ¹GE Healthcare China, Beijing, China; ²Chinese Academy of Medical Sciences Cancer Hospital, Beijing, China
- 1611. Lesion Detection and Workflow Optimization in Whole Body Diffusion MR Imaging Using Trimodality PET/CT+MR in the Oncology Setting. James L. Patrick¹, Perry J. Pickhardt¹, Hyungseok Jang¹, Scott B. Perlman¹, Alan B. McMillan¹ ¹Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
- 1612. Evaluation of Urinary Bladder Cancer on Synthetic FOCUS Diffusion Weighted Imaging Motoyuki Katayama¹, Takayuki Masui¹, Kimihiko Sato¹, Kei Tsukamoto¹, Kenichi Mizuki¹, Maho Hayashi¹, Tetsuya Wakayama², Yuji Iwadate² ¹Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan; ²GE Healthcare Japan, HIno, Tokyo, Japan

1613. Evaluation of Endometrial Lesion on Synthetic FOCUS Diffusion Weighted Imaging

Motoyuki Katayama¹, Takayuki Masui¹, Kimihiko Sato¹, Kei Tsukamoto¹, Kenichi Mizuki¹, Maho Hayashi¹, Tetsuya Wakayama², Yuji Iwadate²

¹Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan; ²GE Healthcare Japan, Hino, Tokyo, Japan

1614. Comparison of Mono-Exponential, Bi-Exponential and Stretched-Exponential Models Derived Parameters in Detecting Renal Cell Carcinomas

Wenhui Wang¹, Degang Ding², Dapeng Shi, Yan Bai, xiaoyue ma³, Meiyun Wang ¹Radiology, Henan Provincial People_i⁻s Hospital, Zhengzhou, Henan, China; ²Urology, Henan Provincial People_i⁻s Hospital, Zhengzhou, Henan, China; ³ Radiology, Zhengzhou University People_i⁻s Hospital & Henan Provincial People_i⁻s Hospital, Zhengzhou, Henan, China

- 1615. Abdominal Diffusion Imaging Parameters from Free-Breathing Multiple-Averaged and Finely-Sampled Decay Curves Compared to Acquisition Using Active Breathing Control Neil Peter Jerome¹, Evangelia Kaza¹, Matthew R. Orton¹, James A. d'Arcy¹, Bernd Kuehn², Dow-Mu Koh³, David J. Collins¹, Martin O. Leach¹
 ¹Radiotherapy & Imaging, The Institute of Cancer Research, Sutton, London, United Kingdom; ²Healthcare, Siemens AG, Erlangen, Germany; ³Department of Radiology, Royal Marsden Hospital, Sutton, United Kingdom
- 1616. Caloric Intake Influence on Hepatic MR Diffusion Measurement Feifei Qu¹, Pei-Herng Hor¹, ², Claudio Arena³, Debra Dees³, Raja Muthupillar³ ¹Physics Department, University of Houston, Houston, TX, United States; ²Texas Center for Superconductivity, Houston, TX, United States; ³Diagnostic and Interventional Radiology, St. Luke's Medical Center, Houston, TX, United States
- 1617. Intravoxel Incoherent Motion MRI of the Healthy Pancreas: Monoexponential and Biexponential Apparent Diffusion Parameters and Age Correlations Chao Ma¹, Li Liu¹, Jing Li¹, Li Wang¹, Luguang Chen¹, Yanjun Li¹, Yong Zhang², Shiyue Chen¹, Jianping Lu¹ ¹Radiology, Changhai Hospital of Shanghai, Shanghai, China; ²MR Group, GE Healthcare, Shanghai, China
- **1618.** Multiparametric MR Enterography Without the Use of Antiperistaltic Agents: Performance and Interpretation *Amelia Wnorowski^l*, *Flavius Guglielmo^l*, *Robert Ford^l*, *Donald Mitchell^l* ¹Thomas Jefferson University, Philadelphia, PA, United States
- 1619. Small Bowel Stenosis in Crohn's Disease: Characterizing the "STENOSIS" with MR Enterography Kai Kinder¹, Kenneth Daughters², Chris Kuzminski²
 ¹Santa Barbara Cottage Hospital, Santa Barbara, CA, United States; ²Santa Barbara Cottage Hospital, CA, United States
- 1620. Quantified Terminal Ileal Motility as a Biomarker of Crohn's Disease Activity Assessed Using Magnetic Resonance Enterography: A Prospective Study Alex Menys¹, Charlotte E Tutein Nolthenius², Carl Puylaert², Makanyanga Jesica¹, Evelien Gryspeerdt¹, Gauraang Bhatnagar¹, Nikos Dikaios¹, David Atkinson¹, Jaap Stoker², Stuart A. Taylor¹ ¹UCL, London, UK, United Kingdom; ²AMC, Netherlands, Netherlands
- 1621. Highly Accelerated 4D Radial Single Breathhold Acquisition of the Entire Gastro-Intestinal Tract Using L1 K-T SPIRIT Vlad Ceregan¹, Jelena Curcic¹,², Andreas Steingoetter¹,², Sebastian Kozerke¹

¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland

1622. Effect of Weight Loss and Regional Differences in Abdominal Adipose Tissue Hydration

Suresh Anand Sadananthan¹, Navin Michael¹, Eric Yin Hao Khoo², Melvin Khee-Shing Leow¹, ³, Chin Meng Khoo², Kavita Venkataraman⁴, Yung Seng Lee¹, ⁵, Yap Seng Chong¹, ⁶, Peter D. Gluckman¹, E. Shyong Tai², S. Sendhil Velan⁷,

¹Singapore Institute for Clinical Sciences, A*STAR, Singapore; ²Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ³Department of Endocrinology, Tan Tock Seng Hospital, Singapore; ⁴Saw Swee Hock School of Public Health, National University of Singapore, Singapore; ⁵Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ⁶Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; ⁷Singapore BioImaging Consortium, A*STAR, Singapore; ⁸Clinical Imaging Research Centre, A*STAR, Singapore

- **1623.** Visualizing and Quantifying Human Fat Digestion with IDEAL Dian Liu^l, Helen Louise Parker², Jelena Curcic¹, ², Sebastian Kozerke¹, Andreas Steingoetter¹, ² ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- 1624. Quantification of Brown Adipose Tissue in DIXON Water-Fat Separation and T2* Mapping Defeng Wang¹, Ka Long Ko¹, Steve CN Hui¹, Lin Shi², ³, Winnie CW Chu¹
 ¹Dept of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ²Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ³Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- 1625. Fast 3T Whole Body MR Exam Utilizing 2 Point DIXON T1 & T2w and Streamlined Workflow Approach Lloyd Estkowski¹, Maggie M. Fung², Ken-Pin Hwang³, Ersin Bayram³
 ¹Global MR Applications and Workflow, GE Healthcare, Menlo Park, CA, United States; ²Global MR Applications and Workflow, GE Healthcare, New York City, NY, United States; ³Global MR Applications and Workflow, GE Healthcare, Houston, TX, United States
- 1626. Improved Retinal Shape Detection Using High-Resolution MRI Compared to Partial Coherence Interferometry Jan-Willem M. Beenakker¹,², Mihai State³, Denis P. Shamonin⁴, Marrie van der Mooren³, Berend C. Stoel⁴, Andrew G. Webb¹, Gregorius PM Luyten², Patricia Piers³
 ¹Department of Radiology, C.J.Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands; ²Department of Ophthalmology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands; ³AMO Groningen BV, Groningen, Netherlands; ⁴Department of Radiology, devision of Image Processing, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands

1627. MRI of Aerated Beverages: Intragastric Behaviour and Role in Hunger Suppression

Kathryn Murray¹, Elisa Placidi¹, Ewoud Schuring², Caroline Hoad¹, Wieneke Koppenol², Luben Arnaudov², Wendy Blom², Susan Pritchard¹, Simeon Stoyanov², David Mela², Penny Gowland¹, Robin Spiller³, Harry Peters², Luca Marciani³

¹Sir Peter Mansfield Imaging Centre, Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; ²Unilever Research and Development, Unilever, Olivier van Noortlaan 120, 3133 AT Vlaardingen, Netherlands; ³Nottingham Digestive Diseases Biomedical Research Centre, Nottingham University Hospitals, Nottingham, United Kingdom

1628. Comparison of True Technical Costs of MRI and CT

Alex Lewis¹, Andreas Loening¹, Shreyas Vasanawala¹ ¹Department of Radiology, Stanford University, Stanford, CA, United States

1629. MRI-Compatible Motion Platform for Studying the Influence of Organ Motion on Body MRI

Joris Nofiele¹, Qing Yuan¹, Quinn Torres¹, Mohammad Kazem², Ken Tatebe¹, Ivan Pedrosa¹, ³, Rajiv Chopra¹, ³ ¹Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Imaging Research, Sunnybrook Research Institute, Toronto, Ontatio, Canada; ³Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States **1630.** Ratios of Visceral and Subcutaneous Fat Mass Are Linearly Correlated with Aging In-Young Lee¹, Yunjung Lee¹, Jea Seung Kim¹, Hee-Sook Jun¹, Jong-Hee Hwang¹ ¹Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea

Traditional Poster MR-Guided Focused Ultrasound Exhibition Hall Tuesday 10:00-12:00

1631. Real-Time 3D Spiral MR Thermometry

Samuel Fielden¹, Xue Feng¹, Wilson Miller², Kim Butts Pauly³, Craig Meyer¹, ² ¹Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³Radiology, University of Virginia, Charlottesville, VA, United States; ³Radiology, Stanford University, Palo Alto, CA, United States

1632. Detecting Signal Changes in Heated Bone with a 3D Spiral Ultra-Short Echo Time Sequence Samuel Fielden¹, John Mugler, III², Wilson Miller², Kim Butts Pauly³, Craig Meyer¹, ²

¹Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ²Radiology, University of Virginia, Charlottesville, VA, United States; ³Radiology, Stanford University, Palo Alto, CA, United States

1633. Fast Simultaneous Temperature and Displacement Imaging During HIFU Ablation in Swine Liver Pierre Bour¹, Fabrice Marquet¹, Solenn Toupin¹, ², Matthieu Lepetit-coiffé³, Bruno Quesson¹ ¹L'Institut de RYthmologie et de Modélisation Cardiaque, Bordeaux, Aquitaine, France; ²SIEMENS-Healthcare, Saint-Denis, Île-de-France, France; ³SIEMENS-Healthcare, Saint-Denis, Île-de-France, France

1634. MRI-Guided Transurethral Ultrasound Therapy of the Prostate Gland Using Real-Time Thermal Mapping: An Analysis of Technical Accuracy and Immediate Postinterventional Assessment of Tissue Destruction Via CE-MRI

Maya Barbara Müller-Wolf⁴, Mathieu Burtnyk², Valentin Ionel Popeneciu³, Gencay Hatiboglu³, Michele Billia⁴, Cesare Romagnoli⁵, Joseph Chin⁴, Sascha Pahernik³, Heinz-Peter Schlemmer⁶, Matthias C. Roethke⁷ ¹Radiology, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany; ²Profound Medical, Toronto, Ontario, Canada; ³Urology, University Hospital Heidelberg, Heidelberg, Baden-Wuerttemberg, Germany; ⁴Urology, Western University UWO London Victoria Hospital, London, Ontario, Canada; ⁵Radiology, Western University UWO London Victoria Hospital, London, Ontario, Canada; ⁶Radiology, German Cancer Research Center, Baden-Wuerttemberg, Germany; ⁷Radiology, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany; ⁷Radiology, German Cancer

1635. MR Imaging for the Evaluation of Boiling Histotripsy Treatment or Thermal High Intensity Focused Ultrasound Treatment in Mouse Lymphoma

Martijn Hoogenboom¹, Dylan Eikelenboom², Martijn H. den Brok², Erik Dumont³, Gosse J. Adema², Arend Heerschap¹, Jurgen J. Futterrer¹, ⁴

¹Department of Radiology and Nuclear medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Department of Tumor Immunology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ³Image Guided Therapy, Pessac, France; ⁴MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Overijssel, Netherlands

1636. DCE-MRI Permeability Analysis in Focused Ultrasound-Induced Blood–Brain Barrier Opening: The Association with Mechanical Index

Wen Yen Chai¹, ², Po Chun Chu², Chih Hung Tsai², Hao Li Liu² ¹Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taoyuan, Taiwan; ²Department of Electrical Engineering, Chang Gung University, Guishan, Taoyuan, Taiwan

1637. Targeting Effects on the Volume and Gray-To-White-Matter Ratio of the Focused-Ultrasound Induced Blood-Brain Barrier Opening in Non-Human Primates *In Vivo*

Maria Eleni Karakatsani¹, Gesthimani Samiotaki¹, Matthew Downs¹, Vincent Ferrera², Elisa Konofagou¹, ³ ¹Department of Biomedical Engineering, Columbia University, New York, NY, United States; ²Department of Neuroscience, Columbia University, New York, NY, United States; ³Department of Radiology, Columbia University, New York, NY, United States 1638. Correlation of Lesion Size to Thermal Dose Measured by MR Thermometry in MR-Guided Focused Ultrasound for the Treatment of Essential Tremor

Yuexi Huang¹, Nir Lipsman², Michael L. Schwartz³, Vibhor Krishna², Francesco Sammartino², Andres M. Lozano², Kullervo Hynynen¹,⁴

¹Sunnybrook Research Institute, Toronto, ON, Canada; ²Division of Neurosurgery, Toronto Western Hospital, Toronto, ON, Canada; ³Division of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada; ⁴Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

1639. Impact of Gradient-Induced Eddy Currents on Multi-Shot EPI-Based Temperature Map Accuracy in a Transcranial MR Guided Focused Ultrasound Applicator

Silke M. Lechner-Greite¹, Nicolas Hehn¹, Beat Werner², Eyal Zadicario³, Matthew Tarasek⁴, Desmond T.B. Yeo⁴ ¹Diagnostics, Imaging and Biomedical Technologies Laboratory, GE Global Research Europe, Garching n. Munich, Germany; ²Center for MR-Research, Children's Hospital Zurich, Zurich, Switzerland; ³InSightec Ltd., Tirat Carmel, Israel; ⁴Diagnostics, Imaging and Biomedical Technologies Laboratory, GE Global Research Niskayuna, Albany, NY, United States

1640. Expanding the Treatment Envelope for Transcranial MR-Guided Focused Ultrasound with a 256-Element Clinical Transducer

Raag D. Airan¹, Gregory T. Clement², Ari Partanen³, Martin G. Pomper¹, Keyvan Farahani¹, ⁴ ¹Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, United States; ²Biomedical Engineering, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States; ³Clinical Science MR Therapy, Philips Healthcare, Andover, MA, United States; ⁴National Cancer Institute, National Institutes of Health, Bethesda, MD, United States

1641. Focal Position Determination in Breast MRgHIFU Using 3 Tracking Coils

Bryant T. Svedin¹,², Michael J. Beck, ¹³, J. Rock Hadley, ¹⁴, Robb Merrill¹,⁴, Bradley D. Bolster Jr.⁵, Dennis L. Parker¹,⁴

¹Utah Center for Advanced Imaging Research, Salt Lake City, UT, United States; ²Physics, University of Utah, Salt Lake City, UT, United States; ³Electrical Engineering, University of Utah, UT, United States; ⁴Radiology, University of Utah, Salt Lake City, UT, United States; ⁵Siemens HealthCare, Salt Lake City, UT, United States

1642. Open-Source Small-Animal MR-Guided Focused Ultrasound System

Megan E. Poorman¹,², Vandiver L. Chaplain,²³, Ken Wilkens², Shantanu Majumdar², William A. Grissom¹,², Charles F. Caskey¹,²

¹Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ²Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Computational and Physical Biology, Vanderbilt University, Nashville, TN, United States

1643. Comparison of Magnetic Resonance Temperature Imaging for Magnetic Resonance Guided Focused Ultrasound Treatments at 3 and 1.5 T Field Strengths.

Emilee Minalga¹, Robb Merrill¹, Dennis L. Parker¹, Josh DeBever¹, J. Rock Hadley¹, Allison Payne¹ ¹UCAIR, University of Utah, Salt Lake City, UT, United States

Traditional Poster Thermotherapy & Thermometry

Exhibition Hall Tuesday 10:00-12:00

1644. MR Compatible Electrode for RF Hyperthermia with Capacitive Coupling: Feasibility Demonstration Han-Joong Kim¹, Suchit Kumar¹, Jong-Hoon Han¹, Jong-Min Kim¹, Jun-Sik Yoon¹, Seung-Koo Lee², Chulhyun Lee³, Chang-Hyun Oh¹

¹Korea University, Seoul, Korea; ²Unionmedical Corporation, Uijeongbu, Gyeonggi-do, Korea; ³The MRI Team, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, Korea

1645. A Combined Interventional High-Resolution Targeted Ablation, Thermometry and Imaging Probe

^{15MBM MERT AWARD} M.Arcan Erturk¹,², Shashank Sathyanarayana Hegde¹, Paul A. Bottomley¹

¹Radiology, Johns Hopkins University, Baltimore, MD, United States; ²Center for Magnetic Resonance Research, University of Minnesota Medical School, MN, United States

1646. Comparison of Multi-Contrast MRI for Characterization of Irreversible Electroporation Ablation Zones in a Pig Liver Model with Histopathologic Correlation

*Isabel Dregely*¹, *Kyung Sung*², *Ferdnand Osuagwu*¹, *Dong Jin Chung*¹, *Charles Lassman*², *David Lu*¹, *Holden H. Wu*¹ Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ²Pathology and Laboratory Medicine, University of California Los Angeles, CA, United States

- 1647. Analysis of Respiratory-Induced 3D Deformation of Liver Based on Branching Structure of Portal Vein Obtained with Time-Resolved Volume Acquisitions Etsuko Kumamoto¹, Tastuhiko Matsumoto², Daisuke Kokuryo³, Kagayaki Kuroda⁴, ⁵ ¹Information Science and Technology Center, Kobe University, Kobe, Hyogo, Japan; ²Graduate School of System Informatics, Kobe University, Kobe, Hyogo, Japan; ³Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; ⁴Graduate School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan; ⁵Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
- 1648. Relationship Between Temperature and T2 in Subcutaneous Fat and Bone Marrow at 3T Eugene Ozhinsky¹, Misung Han¹, Serena J. Scott², Chris J. Diederich², Viola Rieke ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Radiation Oncology, University of California San Francisco, San Francisco, CA, United States

1649. In Vivo Chemical Shift-Compensated MR Thermometry

Pooja Gaur¹, ², Beat Werner³, Pejman Ghanouni⁴, Rachelle Bitton⁴, Kim Butts Pauly⁴, William A. Grissom, ²⁵ ¹Chemical and Physical Biology, Vanderbilt University, Nashville, TN, United States; ²Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Center for MR-Research, University Children's Hospital, Zurich, Switzerland; ⁴Radiology, Stanford University, Stanford, CA, United States; ⁵Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

1650. Dynamic 3D MR Thermometry in Thoracic Vertebrae Using Controlled Aliasing in Volumetric Parallel Imaging (2D CAIPIRINHA)

Fuyixue Wang¹, Zijing Dong¹, Yuxin Hu¹, Feiyu Chen¹, Shuo Chen², Bingyao Chen³, Jiafei Yang³, Xing Wei³, Shi Wang², Kui Ying²

¹Department of Biomedical Engineering, Tsinghua University, Beijing, China; ²Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing, China; ³Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, Beijing, China

1651. Dynamical Model Parameter Adjustments in Model Predictive Filtering MR Thermometry

*Henrik Odéen*¹, ², *Dennis L. Parker*¹ ¹Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Physics and Astronomy, University of Utah, UT, United States

- 1652. Using a Double Echo Steady State (DESS) Sequence to Monitor Thermal Treatments Juan Plata¹, ², Kristin Granlund², Brian Hargreaves², Kim Butts Pauly² ¹Bioengineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States
- 1653. Towards Accurate Temperature Mapping in Adipose and Aqueous Tissue with Joint T1 and PRFS Using Balanced SSFP

*Mingming Wu*¹,², *Pauline Ferry*³, *Tim Sprenger*¹,², *Desmond Teck Beng Yeo*⁴, *Axel Haase*¹, *Silke Lechner-Greite*² ¹IMETUM, Technische Universität München, Garching, Germany; ²GE Global Research, Garching, Germany; ³IADI, Nancy, Lorraine, France; ⁴GE Global Research, Niskayuna, NY, United States

- 1654. High Speed, High Sensitivity MR Thermometry Using a Balanced Steady-State Free Precession Pulse Sequence Yuan Zheng¹, G. Wilson Miller² ¹Physics, University of Virginia, Charlottesville, VA, United States; ²Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
- 1655. 3D UTE MR Thermometry of Frozen Tissue During Cryoablation: Clinical Feasibility at 3T Christiaan G. Overduin¹, Eva Rothgang², Jurgen J. Fütterer¹, Tom W.J. Scheenen¹ ¹Radiology, Radboud University Medical Center, Nijmegen, Netherlands; ²Siemens Corporate Research, Erlangen, Germany

Traditional Poster MR-Guided Interventions

Exhibition Hall Tuesday 10:00-12:00

- 1656. Real-Time Spectral Decomposition Imaging: Moving from Minutes to Seconds Ethan K. Brodsky¹, ², Miles E. Olsen², Walter F. Block¹, ² ¹Medical Physics, University of Wisconsin, Madison, WI, United States; ²Biomedical Engineering, University of Wisconsin, Madison, WI, United States
- **1657.** A Body-Mounted MRI-Compatible Robot for Needle Interventions Such as Shoulder Arthrography *Reza Monfaredi¹*, ², *Emmanuel Wilson¹*, *Bamshad Azizi Koutenaei¹*, *Raymond Sze¹*, *Karun Sharma¹*, *Kevin Cleary*¹ ¹Sheikh Zayed Institute, Children's National Medical Center, Washington, DC, DC, United States; ²Industrial department, Azad University- South Tehran Branch, Tehran, Iran
- 1658. Empirical Investigation of Tools and Imaging Techniques for MRI-Guided Radiotherapy of Lung Cancer Tatsuya J. Arai¹, Joris Nofiele², Yam Ki Cheung¹, Rajiv Chopra², Amit Sawant¹ ¹Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, United States; ²Radiology, UT Southwestern Medical Center, Dallas, TX, United States
- 1659. Automated Classification of Vessel Disease Based on High-Resolution Intravascular Multi-Parametric Mapping MRI

*Guan Wang*¹, ², *M. Arcan Erturk*³, *Shashank Sathyanarayana Hegde*², *Paul A. Bottomley*¹, ² ¹Dept. of Electrical & Computer Engineering, Johns Hopkins University, Baltimore, MD, United States; ²Russell H. Morgan Dept. of Radiology & Radiological Sciences, Johns Hopkins University, Baltimore, MD, United States; ³Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

1660. Optimizing Accuracy and Precision of Micro-Coil Localization in Active MR Tracking Under Low SNR Conditions

Barret Daniels¹, Ronald Pratt², Randy Giaquinto¹, ², Charles Dumoulin¹, ² ¹Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; ²Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States

- 1661. Spiral Imaging for Visualization of Commercial Nitinol Guidewires with Reduced Heating Adrienne E. Campbell-Washburn¹, Toby Rogers¹, Burcu Basar¹, ², Merdim Sonmez¹, Ozgur Kocaturk¹, ², Robert J. Lederman¹, Michael S. Hansen¹, Anthony Z. Faranesh¹ ¹Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ²Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey
- 1662. Variable Echotimes in Radial Acquisitions to Achieve a Uniform Artifact for Passive MR Guidewires Axel Joachim Krafft¹, ², Simon Reiβ¹, Klaus Duering³, Michael Bock¹ ¹Radiology - Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²German Cancer Consortium (DKTK), Heidelberg, Germany; ³MaRVis Medical GmbH, Hannover, Germany

1663. isoPHASOR: Localizing Markers in a Variety of Scan Types Using Its Phase Saddles Job G. Bouwman¹, Bram A. Custers¹, Chris J.G. Bakker², Peter R. Seevinck¹ ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ²Image Sciences Institute, University Medical Center, Utrecht, Netherlands

Traditional Po	ster	
Relaxometry		
Exhibition Hall	Tuesday 13:30-15:30	
1664. A	Accelerated and Motion-Robust <i>In Vivo</i> T ₂ N	lapping from Radially Undersampled Data Using Bloch-

Simulation-Based Iterative Reconstruction *Noam Ben-Eliezer¹*, ², *Daniel K. Sodickson*¹, ², *Timothy M. Shepherd*¹, ², *Graham C. Wiggins*¹, ², *Kai Tobias Block*¹, ² ¹Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States

1665. Quantitative MR Imaging Method: All of the Main MR Parameters Can Be Obtained in Little More Than a Single Scan

Bruno Madore¹, W. Scott Hoge¹, Tai-Hsin Kuo², Cheng-Chieh Cheng¹ ¹Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ²Philips Healthcare, Taipei, Taiwan

- 1666. Paramagnetic Ion Phantom to Independently Tune T1 and T2 Kathryn E. Keenan¹, Karl A. Stupic¹, Elizabeth Horneber², Michael Boss¹, Stephen E. Russek¹ ¹National Institute of Standards and Technology, Boulder, CO, United States; ²University of Colorado, Boulder, CO, United States
- 1667. Time-Dependent Transverse Relaxation Reveals Statistics of Structural Organization in Microbead Samples Alexander Ruh¹, Philipp Emerich¹, Harald Scherer², Dmitry S. Novikov³, Valerij G. Kiselev¹
 ¹Dept. of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Dept. of Inorganic and Analytical Chemistry, University Freiburg, Freiburg, Germany; ³Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States

1668. Effects of Formalin Fixation on MR Relaxation Times in the Human Brain

Austria; ⁴Institute of Chemistry, Analytical Chemistry, University of Graz, Austria

Christoph Birkl¹, Christian Langkammer², Nicole Golob-Schwarzl³, Marlene Leoni³, Johannes Haybaeck³, Walter Goessler⁴, Franz Fazekas¹, Stefan Ropele¹ ¹Department of Neurology, Medical University of Graz, Graz, Austria; ²MGH/HST Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States; ³Department of Neuropathology, Institute of Pathology, Medical University of Graz,

1669. A Structurally Anthropomorphic Brain Phantom

Kyoko Fujimoto¹, ², *Trent V. Robertson¹*, *Vanessa Douet³*, *David G. Garmire¹*, *V. Andrew Stenger*, ¹³ ¹Department of Electrical Engineering, University of Hawaii at Manoa, Honolulu, HI, United States; ²Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ³Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ³Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ³Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States; ⁴Department of Medicine, John A. Burns School o

- 1670. Single-Shot Multi-Slice T1 Mapping at High Spatial Resolution Inversion-Recovery FLASH with Radial Undersampling and Iterative Reconstruction Xiaoqing Wang¹, Volkert Roeloffs¹, Klaus-Dietmar Merboldt¹, Dirk Voit¹, Sebastian Schaetz¹, Jens Frahm¹ ¹Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut fuer biophysikalische Chemie, Göttingen, Germany
- **1671.** Simultaneous T₁ and T₂ Mapping Using a Modified Multi-Echo Spin-Echo Sequence (MOMSE) Andreas Petrovic¹, Rudolf Stollberger²

¹Institute of Medical Engineering, University of Technology Graz, Graz, -, Austria; ²Institute of Medical Engineering, University of Technology Graz, -, Austria

1672. A Min-Max CRLB Optimization Approach to Scan Selection for Relaxometry

Gopal Nataraj¹, Jon-Fredrik Nielsen², ³, Jeffrey A. Fessler¹, ²

¹Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States; ²Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; ³Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States

1673. A Simple Method (EMoS) for T1 Mapping Is More Accurate and Robust Than the Variable Flip Angle (VFA) Method

Sofia Chavez¹,²

¹Centre for Addiction and Mental Health, Toronto, Ontario, Canada; ²Psychiatry, University of Toronto, Toronto, Ontario, Canada

1674. Qualtification of Rapid Decay Species with Short TE Spin Echo Sequence Eamon K. Doyle¹, ², Jonathan M. Chia³, Krishna Nayak, ¹⁴, John C. Wood, ¹² ¹Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; ²Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Electrical Engineering, University of Southern California, Los Angeles, CA, United States

- 1675. Whole-Brain Multi-Parameter Mapping Using Dictionary Learning Sampada Bhave¹, Sajan Goud Lingala², Casey P. Johnson¹, Vincent A. Magnotta¹, Mathews Jacob¹ ¹University of Iowa, Iowa City, IA, United States; ²Electrical Engineering, University of Southern California, Los Angeles, CA, United States
- 1676. Fast and Accurate Quantification of T1, T2 and Proton Density Using IR BSSFP with Slice Profile Correction and Model Based Reconstruction

Andreas Lesch¹, Andreas Petrovic¹, Tilman Johannes Sumpf², Christoph Stefan Aigner¹, Rudolf Stollberger¹ ¹Department for Medical Engineering, Graz University of Technology, Graz, Styria, Austria; ²Biomedizinische NMR Forschungs GmbH, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany

1677. Inversion Group (IG) Fitting: A New Fitting Algorithm for Modified Look-Locker Inversion Recovery (MOLLI) That Allows for Arbitrary Inversion Groupings

Issac Y. Yang¹, Kai-Ho Fok¹, Bernd J. Wintersperger², ³, Marshall S. Sussman², ³ ¹Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; ²Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ³Joint Department of Medican Imaging, University Health Network & Mt. Sinai Hospital, Toronto, Ontario, Canada

- 1678. Plug-N-Play Magnetic Resonance Fingerprinting (PnP-MRF) Shivaprasad Ashok Chikop¹, Antharikshanagar Bellappa Sachin Anchan¹, Shaikh Imam¹, Amaresha Shridhar Konar¹, Rashmi Rao¹, Arush Honnedevasthana Arun¹, Sairam Geethanath¹ ¹Medical Imaging Research Center, Dayananda Sagar Institutions, bangalore, Karnataka, India
- 1679. Super-Resolution T1 Mapping: A Simulation Study. Gwendolyn Van Steenkiste¹, Dirk H.J. Poot², ³, Ben Jeurissen¹, Arnold J. den Dekker¹, ⁴, Jan Sijbers¹ ¹iMinds-Vision Lab, University of Antwerp, Antwerp (Wilrijk), Antwerp, Belgium; ²BIGR (Medical informatics and Radiology), Erasmus Medical Center Rotterdam, Rotterdam, Netherlands; ³Imaging Science and Technology, Delft University of Technology, Delft, Netherlands; ⁴Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands

- 1680. Removing SSFP Banding Artifacts from DESPOT2 Images Using the Geometric Solution Tobias Charles Wood¹, Stephen J. Wastling¹, Gareth J. Barker¹ ¹Neuroimaging, King's College London, London, United Kingdom
- 1681. Ultra-Low Field NMR Relaxometry: Calibration Method and T1-Dispersion Below 1000 Hz Vasileios Zampetoulas¹, Lionel M. Broche¹, David J. Lurie¹ ¹Aberdeen Biomedical Imaging Centre,School of Medicine&Dentistry, University of Aberdeen,Foresterhill, AB25 2ZD, Aberdeen, United Kingdom
- 1682. B₁⁺ Field Mapping Improves Accuracy of T₁ Measurements in Phantoms and Normal Breast at 3.0 T Jennifer G. Whisenant¹, Lori R. Arlinghaus¹, Richard D. Dortch¹, William A. Grissom¹, Gregory S. Karczmar², Thomas E. Yankeelov¹ ¹Vanderbilt University, Nashville, TN, United States; ²University of Chicago, Chicago, IL, United States

- 1683. Exponential T2 Fitting with Even Echoes Only or Skipping the First Echo: How Well Does It Work? Kelly C. McPhee¹, Alan H. Wilman²
 ¹Physics, University of Alberta, Edmonton, Alberta, Canada; ²Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- 1684. Proton Density Mapping: Removing Receive-Inhomogeneity Using Multi-Coil Information and T1 Regularization

Aviv Mezer¹, Ariel Rokem², Trevor Hastie², Brian Wandell² ¹Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel; ²Stanford university, CA, United States

1685. Bayesian Monte Carlo Analysis of McDESPOT Mustapha Bouhrara¹, Richard G. Spencer¹ ¹National Institute on Aging, NIH, BALTIMORE, MD, United States

1686. Compensating for Stimulated Echoes in Quantitative T2 Relaxometry Dushyant Kumar¹, ², Susanne Siemonsen¹, ³, Jens Fiehler¹, Jan Sedlacik¹ ¹Neuroradiology, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; ²Multiple Sclerosis Imaging Section (SeMSI), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; ³Multiple Sclerosis Imaging Section (SeMSI), Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany; ³Multiple Sclerosis Imaging Section (SeMSI),

- **1687.** Optimization of Acquisition Parameters for Magnetic Resonance Fingerprinting Amaresha Shridhar Konar¹, Rashmi R. Rao¹, Shaik Imam¹, Shivaprasad Chikop¹, Sachin Anchan¹, Sairam Geethanath¹ ¹Medical Imaging Research Center, Dayananda Sagar College of Engineering, Bangalore, Karnataka, India
- 1688. Comparison of Indirect and Stimulated Echo Compensated T2 Relaxometry Techniques: Extended Phase Graph Vs Shinnar-Le Roux Based Modelling Kelly C. McPhee¹, Alan H. Wilman² ¹Physics, University of Alberta, Edmonton, Alberta, Canada; ²Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- 1689. Optimizing and Comparing the Efficiencies of Relaxometry Sequences in Quantitative T1 and T2 Imaging Yang Liu^l, John R. Buck^l, Shaokuan Zheng², Vasiliki N. Ikonomidou³ ¹Electrical and Computer Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, United States; ²Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States; ³Bioengineering, George Mason University, Fairfax, VA, United States

- 1690. Sources of Systematic Error in MRI Liver Fat Quantification Mark Bydder¹, Gavin Hamilton², Ajinkya Desai², Elhamy R. Heba², Tanya Wolfson², Claude B. Sirlin² ¹CRMBM UMR 7339, CNRS / Aix-Marseille Université, Marseille, France; ²University of California San Diego, CA, United States
- **1691.** Improving Noise Robustness of the Quantitative (Q)BOLD Model. Jan Sedlacik¹, Dushyant Kumar¹, Jens Fiehler¹ ¹University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- 1692. MR Fingerprint Assessment of Capillary with Quadratic Coefficient and Falling Down Parameter Feng Qi¹, ², Limiao Jiang¹, ², Quek Swee Tian¹, Ng Thian C. ¹, ² ¹Diagnostic Radiology, National University of Singapore, Singapore, Singapore, ²Clinical Imaging Research Cente, A*STAR-NUS, Singapore, Singapore
- 1693. Fast and Accurate Two-Component Relaxometry with EPG Simulations and Dictionary Searching Pierre-Yves Baudin¹, Benjamin Marty², ³, Ericky C.A. Araujo², ³, Noura Azzabou², ³, Pierre G. Carlier², ³, Paulo Loureiro de Sousa⁴ ¹Consultants for Research in Imaging and Spectroscopy, Tournai, Belgium; ²NMR Laboratory, Institute of Myology, Paris, France;

⁴Consultants for Research in Imaging and Spectroscopy, Tournai, Belgium; ⁴NMR Laboratory, Institute of Myology, Paris, France; ³NMR Laboratory, CEA/I2BM/MIRCen, Paris, France; ⁴ICube, Université de Strasbourg, CNRS, Strasbourg, France

1694. Rapid Calculation of Correction Parameters to Compensate for Imperfect RF Spoiling in Quantitative R1 Mapping

Martina F. Callaghan¹, Shaihan J. Malik², Nikolaus Weiskopf⁴ ¹Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom; ²Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom

1695. Performing Dynamic Contrast-Enhanced MRI Quality Assurance for Multi-Centre Trials Using a Multi-Compartment Phantom with Physiological T1s

Neil Peter Jerome¹, Vasia Papoutsaki¹, James A. d'Arcy¹, Harold G. Parkes¹, Nandita deSouza¹, Martin O. Leach¹, David J. Collins¹

¹Radiotherapy & Imaging, The Institute of Cancer Research, Sutton, London, United Kingdom

1696. Uncertainty Quantification of Multi-Site T1 Measurements with Polyvinylpyrrolidone (PVP) Phantom and Human Brain Using Wild Bootstrap Analysis

Congyu Liao¹, Meng Chen¹, Darong Zhu², Hongjian He¹, Song Chen¹, Qiuping Ding¹, Jianhui Zhong¹ ¹Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China; ²Hangzhou First People's Hospital, Zhejiang, China

1697. The Optimal Curve-Fitting Models for Liver T2' Measurements Iron Overload in β-Thalassemia Major Patients Busakol Ngammuang¹, Kittichai Wantanajittikul², Monruedee Tapanya¹, Suchaya Silvilairat³, Pimlak Charoenkwan³, Suwit Saekho¹

¹Department of Radiological Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; ²Biomedical Engineering Center, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; ³Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand

Traditional Poster Quantitative Susceptibility Mapping (QSM)

Exhibition Hall Tuesday 13:30-15:30

- 1698. What Is the Lorentz Sphere Correction for the MRI Measured Field Generated by Tissue Magnetic Susceptibility: The Spatial Exclusivity of Source and Observer and the Cauchy Principal Value Yi Wang¹, Dong Zhou¹, Pascal Spincemaille¹ ¹Cornell University, New York, United States
- 1699. Oligodendrocytes and the Role of Iron in Magnetic Susceptibility Driven Frequency Shifts in White Matter Tianyou Xu^l, Sean Foxley^l, Karla Miller^l ¹Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, Oxford, Oxfordshire, United Kingdom
- 1700. Lorentz Cavity Field in Media with Magnetic Structure Alexander Ruh¹, Valerij G. Kiselev¹ ¹Dept. of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
- 1701. Correlation Between Paramagnetic Ions and Quantitative Susceptibility Values of Postmortem Brain Study Jeam Haroldo Oliveira Barbosa¹, ², Rafael Emídio³, Ana Tereza Di Lorenzo Alho³, Camila Fernandes Nascimento³, André Henrique Fais Silva¹, Alexandre Valotta Silva³, Maria Conception Garcia Otaduy³, Maria da Graça Martin³, Edson Amaro Junior³, Oswaldo Baffa¹, Carlos Ernesto Garrido Salmon¹, ⁴ ¹Department of Physics - FFCLRP, University of Sao Paulo, Ribeirao Preto, Select, Brazil; ²CNRS, ICube, FMTS,, Université de Strasbourg, Strasbourg, Bas-Rhin, France; ³Department of Radiology - FM, University of Sao Paulo, Sao Paulo, Brazil; ⁴University of Nottingham, Sir Peter Mansfield Magnetic Resonance Center, Nottingham, Bas-Rhin, United Kingdom

1702. Detection and Quantification of Microbleeds on Fixed Brain Specimens

Shunshan Li¹, Mark J. Fisher², Ronald C. Kim³, David Cribbs⁴, Mark J. Hamamura¹, Vitaly Vasilevko⁴, Annlia P. Hill², Min-Ying Su¹

¹Tu&Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, United States; ²Department of Neurology, University of California, Irvine, CA, United States; ³Department of Pathology, University of California, Irvine, CA, United States; ⁴Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, United States

- 1703. Estimation of Blood Oxygenation Using Quantitative Susceptibility Mapping Alexey Dimov¹, ², Thanh Nguyen², Zhe Liu¹, ², Kofi Deh², Jingwei Zhang¹, ², Martin Prince², Yi Wang¹, ² ¹Biomedical Engineering, Cornell University, Ithaca, NY, United States; ²Radiology, Weill Cornell Medical College, New York, NY, United States
- **1704.** Susceptibility and Cross-Sectional Area Quantifications of Small Veins in Human Brain Ching-Yi Hsieh¹, Yu-Chung Norman Cheng¹, Jaladhar Neelavalli¹, E. Mark Haacke¹ ¹Wayne State University, Detroit, MI, United States
- 1705. MRI Susceptometry Measurements of Murine Brown and White Adipose Tissue Henry H. Ong^l, Robert A. Horch^l, ², John C. Gore^l, E. Brian Welch^l ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
- 1706. MR-Based R2* and Quantitative Susceptibility Mapping (QSM) of Liver Iron Overload: Comparison with SQUID-Based Biomagnetic Liver Susceptometry Samir D. Sharma¹, Bjoern P. Schoennagel², Jin Yamamura², Peter Nielsen², Regine Grosse², Hendrik Kooijman³, Roland Fischer², ⁴, Diego Hernando¹, Gerhard Adam², Peter Bannas¹, Scott R. Reeder¹, ⁵

Traditional Poster

¹Radiology, University of Wisconsin, Madison, WI, United States; ²University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ³Philips Healthcare, Hamburg, Germany; ⁴UCSF Benioff Children's Hospital Oakland, Oakland, CA, United States; ⁵Medical Physics, University of Wisconsin, Madison, WI, United States

1707. Measurement of Brain Iron and Calcium Using MR QSM and CT: Validation Using Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES)

Jingwei Zhang¹, ², Cynthia Wisnieff⁴, ², Becky Schur³, Lu Zhengrong³, David Pitt⁴, Yi Wang¹, ² ¹Biomedical Engineering, Cornell University, New York, United States; ²Radiology, Weill Cornell Medical College, New York, United States; ³Biomolecular Engineering, Case Western Reserve University, OH, United States; ⁴Neurology, Yale School of Medicine, CT, United States

1708. 2D-Segmented, Multi-TE 3D-EPI for High-Resolution R₂* and Quantitative Susceptibility Mapping at 7 Tesla *Rüdiger Stirnberg¹, Julio Acosta-Cabronero², Benedikt A. Poser³, Tony Stöcker¹, ⁴* ¹German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ²German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; ³Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ⁴Department of Physics and Astronomy, University of Bonn, Germany

1709. Wave-CAIPI and TGV for Fast Sub-Millimeter QSM at 7 Tesla

¹³ Christian Langkammer¹, Berkin Bilgic¹, Celine Louapre¹, Costanza Gianni¹, Sindhuja T. Govindarajan¹, Kawin Setsompop¹, Caterina Mainero¹ ¹⁴ MGH/HST Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States

1710. Rapid Phase Imaging with 3D Echo-Planar Imaging (EPI) for Quantitative MRI – a Simulation Study on Image Artifacts

Paul Polak¹, *Robert Zivadinov¹*, ², *Ferdinand Schweser¹*, ² ¹Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, Buffalo, NY, United States; ²Molecular and Translational Imaging Center, MRI Center, Clincal and Translational Research Center, Buffalo, NY, United States

- 1711. Improving Quantitative Susceptibility and R2* Mapping by Applying Retrospective Motion Correction Xiang Feng¹, Alexander Loktyushin², Andreas Deistung¹, Juergen R. Reichenbach¹ ¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; ²Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany
- 1712. Image Quality Improvement Using Short Range Finite Difference in QSM Reconstruction Maximilian Maerz¹, Dong Zhou², Yan Zhang², ³, Pascal Spincemaille², Lars Ruthotto¹, Yi Wang²
 ¹Department of Mathematics and Computer Science, Emory University, Atlanta, GA, United States; ²Weill Cornell Medical College, New York, NY, United States; ³Department of Radiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, United States
- 1713. Optimizing the Data Acquisition Strategy for Quantitative Susceptibility Mapping in the Liver Samir D. Sharma¹, Diego Hernando¹, Debra E. Horng, ¹², Scott B. Reeder¹, ² ¹Radiology, University of Wisconsin, Madison, WI, United States; ²Medical Physics, University of Wisconsin, Madison, WI, United States
- 1714. Interleaved 3D Multi-Slab Echo Shift Sequence for Fast T2* Weighted Imaging Yajun Ma^l, Wentao Liu^l, Weinan Tang^l, Jia-Hong Gao^l ¹Center for MRI, Peking University, Beijing, China
- 1715. Limitations of Accelerated QSM by FOV Restriction to Deep Gray Matter Ahmed M. Elkady¹, Hongfu Sun¹, Alan H. Wilman¹

¹Dept. of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada

- **1716.** Ferumoxytol-Enhanced Plural Contrast Imaging of the Human Brain Samantha J. Holdsworth¹, Thomas Christen¹, Kristen Yeom¹, Jae Mo Park¹, Greg Zaharchuk¹, Michael E. Moseley¹ ¹Department of Radiology, Stanford University, Stanford, CA, United States
- 1717. Inference at the Cluster Level from the Relationship Between QSM and Age Julio Acosta-Cabronero¹, Arturo Cardenas-Blanco¹, Peter J. Nestor¹ ¹German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany
- 1718. QSM Standardisation Routine for Unbiased Whole-Brain Analysis Julio Acosta-Cabronero¹, Matthew TJ Betts¹, Arturo Cardenas-Blanco¹, Shan Yang², Oliver Speck², Peter J. Nestor¹ ¹German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany; ²Biomedical Magnetic Resonance (BMMR), Otto-von-Guericke University, Magdeburg, Saxony-Anhalt, Germany
- 1719. Automated Segmentation of Midbrain Structures Using Quantitative Susceptibility Mapping Images Benjamín Garzón¹, Grégoria Kalpouzos¹, Rouslan Sitnikov² ¹Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden; ²MRI Research Centre, Karolinska University Hospital, Stockholm, Sweden
- 1720. Reproducibility of Quantitative Susceptibility Mapping (QSM) and R2* in the Human Brain Joon Yul Choi^l, Yoonho Nam^l, Jingu Lee^l, Jongho Lee^l
 ¹Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea
- 1721. Anatomically Dependent Variations in Magnetic Susceptibility Produces Spectral Asymmetries in High Spectral and Spatial Resolution MRI of Post-Mortem Mouse Brain Sean Foxley¹, Miriam Domowicz², Nancy Schwartz², Gregory S. Karczmar³ ¹FMRIB Centre, University of Oxford, Oxford, OXON, United Kingdom; ²Department of Pediatrics, University of Chicago, IL, United States; ³Department of Radiology, University of Chicago, IL, United States
- **1722.** Quantification of Labeled Cell Clusters in a Rat Brain *In Vivo* Using MRI *Paul Kokeny¹, Xie He², Saifeng Liu³, Ching-Yi Hsieh⁴, Quan Jiang⁵, ⁶, Yu-Chung Norman Cheng¹, E. Mark Haacke¹, ⁴ ¹School of Biomedical Engineering, Wayne State University, Detroit, MI, United States; ²School of Physics, Wayne State University, Detroit, MI, United States; ³School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; ⁴Department of Radiology, Wayne State University, Detroit, MI, United States; ⁵Department of Neurology, Henry Ford Health System, Detroit, MI, United States; ⁶Department of Radiology, Henry Ford Health System, Detroit, MI, United States*
- 1723. A Dixon Method for Positive Contrast Imaging of Very Small Superparamagnetic Iron Oxide Nanoparticles in MRI

Dirk Krüger¹, Silvia Lorrio González¹, René M. Botnar¹ ¹Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom

United States; ³Biomedical Engineering, Wayne State University, Detroit, MI, United States

1724. Susceptibility Quantification for Ferritin and Fe₃O₄ Nanoparticles: Observation of Hyperfine Shift in Phase Images and Comparison Between Phase Measurement and CISSCO He Xie¹, Yu-Chung Norman Cheng², Ching-Yi Hsieh², Paul Kokeny³, E.Mark Haacke²
¹Physics and Astronomy, Wayne State University, Detroit, MI, United States; ²Radiology, Wayne State University, Detroit, MI,

- 1725. Ultrashort Echo Time Quantitative Susceptibility Mapping (UTE-QSM) of Cortical Bone Quan He¹, Zhe Liu², Tian Liu², Yi Wang², Jiang Du¹ ¹Radiology, UC, San Diego, San Diego, CA, United States; ²Biomedical Engineering, Cornell University, Ithaca, NY, United States
- 1726. A Fully Flow Compensated Dual Echo Sequence: The Role of Acceleration and Background Gradient Effects on Flow Compensation

Dongmei Wu¹, Sagar Buch², Saifeng Liu², E. Mark Haacke¹, ³ ¹Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China; ²School for Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada; ³Department of Radiology, Wayne State University School of Medicine, Detroit, MI, United States

1727. SWI of the Cervical-Spinal Cord with Respiration Noise Correction Using Navigator Echo Hongpyo Lee¹, Yoonho Nam², Dongyeob Han¹, Sung-Min Gho¹, Dong-Hyun Kim¹
¹Electrical & Electronic Engineering, Yonsei University, Seodaemun-gu, Soeul, Korea; ²Electrical & Computer Engineering, Soeul National University, Gwanak-gu, Soeul, Korea

1728. Optimization of Inter-Echo Variance Channel Combination Technique for Susceptibility Weighted Imaging at 3T and 7T

Zahra Hosseini¹, Junmin Liu², Maria Drangova², ³ ¹Biomedical Engineering Graduate Program, Western University, London, Ontario, Canada; ²Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ³Medical Biophysics, Western University, London, Ontario, Canada

1729. Dipole Filtering, Decomposition and Quantification with 3D Radial Acquisition

Curtis A. Corum¹, Lauri J. Lehto², Djaudat S. Idiyatullin¹, Olli Gröhn², Michael Garwood¹ ¹Center for Magnetic Resonance Research, Radiology, University of Minnesota, Minneapolis, MN, United States; ²Department of Neurobiology, Biomedical Imaging Unit, A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Northern Savonia, Finland

- 1730. Improved Contrast in Multi-Echo Susceptibility-Weighted Imaging by Using a Non-Linear Echo Combination Zhaolin Chen¹, Guillaume Gilbert², Miha Fuderer¹ ¹Clinical Excellence and Research, R&D, Philips Healthcare, Best, Noord-Brabant, Netherlands; ²MR Clinical Science, Philips Healthcare, Montreal, Canada
- 1731. Artefact Removal in High Phase Gradient Regions in Susceptibility Weighted Images. Amanda Ching Lih Ng^l, Shawna Farquharson², Sonal Josan³, Roger J. Ordidge^l ¹Dept of Anatomy and Neuroscience, The University of Melbourne, The University of Melbourne, VIC, Australia; ²Imaging, The Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; ³Siemens Healthcare, Melbourne, VIC, Australia
- 1732. Magnetic Susceptibility (QSM) of Thalamic Sub-Nuclear Groups in Multiple Sclerosis

Ferdinand Schweser¹, ², Devika Rattan¹, Jesper Hagemeier¹, Paul Polak¹, Michael G. Dwyer¹, Christopher R. Magnano¹, Robert Zivadinov¹, ²

¹Buffalo Neuroimaging Analysis Center, Dept. of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY, United States; ²MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States

1733. Magnetic Susceptibility in Gray Matter Is Associated with Age-Related Neuropathology: an *Ex-Vivo* QSM Study in a Community Cohort *Arnold Moya Evia Jr.*¹, *David A. Bennett*², ³, *Julie A. Schneider*², ³, *Aikaterini Kotrotsou*⁴, *Robert J. Dawe*², *Konstantinos Arfanakis*¹, ² ¹Illinois Institute of Technology, Chicago, IL, United States; ²Rush Alzheimer's Disease Center, IL, United States; ³Rush University Medical Center, IL, United States; ⁴MD Anderson Cancer Center, TX, United States

1734. Susceptibility Mapping in Parkinson's Disease Patients at 3T

Johannes Lindemeyer¹, Ana-Maria Oros-Peusquens¹, Kathrin Reetz¹, ², N. Jon Shah¹, ² ¹Institute of Neuroscience and Medicine 4, INM-4, Medical Imaging Physics, Forschungszentrum Jülich GmbH, Jülich, Germany; ²Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany

1735. Quantitative Susceptibility Mapping of the Squirrel Monkey at 3T and 11.7T: Application to a Model of Parkinson's Disease

Mathieu David Santin¹, ², *Alexandra Petiet¹*, ², *Elodie Laffrat¹*, ², *Stéphane Lehéricy¹*, ², *Chantal François*², *Stéphane Hunot*²

¹Centre de NeuroImagerie de Recherche (CENIR), Paris, France; ²Institut du Cerveau et de la Moelle épinière, Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France

1736. Quantitative Susceptibility Mapping (QSM) Indicates Possible Iron Deficiency in the Thalamus and Dentate Nucleus in Restless Legs Syndrome (RLS)

Xu Li¹, ², Hongjun Liu¹, ², Richard P. Allen³, Christopher J. Earley³, Richard A.E. Edden¹, ², Peter B. Barker¹, ², Tiana E. Cruz³, Peter C.M. van Zijl¹, ²

¹F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States; ²Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ³Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States

1737. Measuring Venous Blood Oxygenation Using Quantitative Susceptibility Mapping: A Study Using Acetazolamide Challenge in Patients with Chronic Stenosis of Major Arteries Degiang Qiu¹, Fadi Nahab², Seena Dehkharghani¹

¹Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States; ²Neurology, Emory University, GA, United States

1738. Quantifying Peripheral Vascular Calcifications with Quantitative Susceptibility Mapping Huan Tan¹, Tian Liu², Yi Wang³, Robert R. Edelman⁴, ⁵

¹Surgery, University of Chicago, Chicago, IL, United States; ²MedImageMetric LLC, New York, NY, United States; ³Radiology, Weill Cornell Medical College, New York, NY, United States; ⁴Radiology, NorthShore University HealthSystem, Evanston, IL, United States; ⁵Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States

1739. Can Susceptibility Weighted with Quantitative Phase MR Imaging Be Diagnostic in Differentiation of Haemorrhagic from Calcified Female Pelvic Lesion? - A Preliminary Study sakshi khurana¹, Rakesh Kumar Gupta¹, Mukta Kapila², Swati Mittal², Manavita Mahajan², Ritu Tyagi¹, kirti verma¹ ¹Radiology, fortis memorial research institute, Gurgaon, Haryana, India; ²gynaecology, fortis memorial research institute, Gurgaon, Haryana, India

Traditional Poster Magnetization Transfer & CEST Exhibition Hall Tuesday 13:30-15:30

1740. Optimization of Selective Inversion Recovery Magnetization Transfer Imaging for Clinical Applications Richard D. Dortch¹, ², Ke Li¹, ², Daniel F. Gochberg¹, ², John C. Gore¹, ², Seth A. Smith¹, ² ¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States

1741. B₁-Sensitivity Analysis of QMT

Mathieu Boudreau¹, *Nikola Štikov¹*, *G. Bruce Pike²* ¹McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; ²Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada

- 1742. Magnetization Transfer from Inhomogeneously Broadened Lines (IhMT): Sequence Optimization for Preclinical Investigation at Very High Magnetic Field (11.75T) Valentin H. Prevost¹, Olivier M. Girard¹, Gopal Varma², David C. Alsop², Guillaume Duhamel¹ ¹CRMBM CNRS UMR 7339, Aix-Marseille University, Marseille, France; ²Departement of radiology, BIDMC, Harvard Medical School, Boston, MA, United States
- 1743. Modulation of Inter-Slice Frequency Offsets for Magnetization Transfer Ratio Imaging Sul-Li Lee¹, Seung Hong Choi², Sung-Hong Park¹
 ¹Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; ²Department of Radiology, Seoul National University College of Medicine, Korea
- 1744. Initial Experience Using Magnetization Transfer with Iterative Decomposition of Water and Fat with Echo Asymmetry and Least-Squares Estimation (MT-IDEAL) in the Abdomen.

David ML Lilburn¹, Annette S. Cooper¹, Philip Murphy², Christopher DJ Sinclair³, Scott I. Semple¹, ⁴, Robert L. Janiczek²

¹Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, East Lothian, United Kingdom; ²Experimental Medicine Imaging, GlaxoSmithKline, Uxbridge, Middlesex, United Kingdom; ³Institute of Neurology, University College London, London, United Kingdom; ⁴BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, East Lothian, United Kingdom

- 1745. Multi-Parameter Mapping of post-Mortem Lumbar Spinal Cord Tissue in Multiple Sclerosis Marco Battiston¹, Marios C. Yiannakas¹, Jia Newcombe², Claudia A M Wheeler-Kingshott¹, Rebecca S. Samson¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²NeuroResource Tissue Bank, UCL Institute of Neurology, London, England, United Kingdom
- 1746. Cross-Relaxation Parameter Quantification in Cortical Bone from Repeated Binomial Excitations Khaoula Bouazizi-Verdier¹, Geneviève Guillot¹ ¹IR4M, UMR8081, CNRS, Univ. Paris-Sud, Orsay, France
- **1747.** Assessment of Membrane Fluidity Using Nuclear Overhauser Enhancement Mediated Magnetization Transfer *Xiao-Yong Zhang¹, Jingping Xie¹, Hua Li¹, Junzhong Xu¹, John C. Gore¹, Zhongliang Zu¹* ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- **1748.** Bound Water in Reconstructed Skin Samples: Quantification by NMR Geneviève Guillot¹, Sarah Risquez¹, Chih-Ying Wang¹, Jean-Baptiste Galey², Marion Ghibaudo², Bernard Querleux² ¹CNRS Univ Paris-Sud, IR4M UMR8081, ORSAY, France; ²L'Oreal Research & Innovation, AULNAY-SOUS-BOIS, France

1749. Magnetization Transfer Imaging of Suicidal Patients with Major Depressive Disorder

Ziqi Chen¹, Huawei Zhang¹, Zhiyun Jia¹, ², Jingjie Zhong³, Xiaoqi Huang¹, Mingying Du¹, Lizhou Chen¹, Weihong Kuang⁴, John A. Sweeney³, Qiyong Gong¹

¹Huaxi MR Research Center (HMRRC), Department of Radiology,West China Hospital of Sichuan University, Chengdu, Sichuan, China; ²Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China; ³Department of Neurology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; ⁴Department of Psychiatry, State Key Lab of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; ⁵Departments of Psychiatry and Pediatrics, University of Texas Southwestern, TX, United States

1750. Eliminating MT Contribution in Z-Spectra Using Dual Band Macromolecular Background Suppression (DBMS)

Simon Shah¹, Nicolas Geades¹, Andrew Peters¹, Penny Gowland¹, Olivier Mougin¹ ¹Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

1751. Spiral-CEST Encoding with Spectral and Spatial B0 Correction

Sugil Kim¹,², Jaeseok Park³

¹Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea; ²Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Korea; ³Biomedical Imaging and Engineering Lab., , Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Korea

1752. Retrospective Motion Correction in CEST MRI Data Using Time Domain Analysis

Nirbhay N. Yadav¹, ², Kannie W. Y. Chan¹, ², Monica Pearl¹, Piotr Walczak¹, Mirosław Janowski¹, ³, Peter C. M. van Zijl¹, ², Michael T. McMahon¹, ²

¹The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, United States; ²FM Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States; ³NeuroRepair Department, MMRC, PAS, Warsaw, Poland

- **1753.** A Multi-Parametric Multi-Echo Saturation (MMS) Method Enabling CEST Fingerprinting *Xiaolei Song*¹, ², *Xiaowei He, Jiadi Xu*, ², *Nikita Oskolkov, Nirbhy Yadav*, ², *Peter C.M. van Zijl, Michael T. McMahon* ¹ The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, United States; ²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- 1754. Quantitative CEST (QCEST) Using Ω-plots in the Case of Trains of Gaussian-shaped Saturation Pulses Jan-Eric Meissner¹, ², Moritz Zaiss¹, Eugenia Rerich¹, Peter Bachert¹ ¹Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany; ²Neurooncologic Imaging, Division of Radiology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
- 1755. Quantitative Assessment of Amide Proton Transfer (APT) and Nuclear Overhauser Enhancement (NOE) Imaging with Extrapolated Semi-Solid Magnetization Transfer Reference (EMR) Signals - An Accurate and Straightforward Measurement Approach

Hye-Young Heo¹, Yi Zhang², Shanshan Jiang², Dong-Hoon Lee², Jinyuan Zhou² ¹Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ²Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States

- 1756. Optimal Sampling Schedule for PARACEST Agents and Analysis of Its Performance Li Liang¹, Jing Yuan², Jiadi Xu³, Heather T. Ma¹, ⁴
 ¹Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China; ²Medical physics and research department, Hong Kong Sanatorium & Hospital, Hong Kong; ³F. M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, United States; ⁴Radiology Department, Johns Hopkins University, Baltimore, MD, United States
- 1757. Improved Diagnosis of Tumor Tissues with QUESPOWR MRI Edward A. Randtke¹, Mark D. Pagel¹, Julio Cárdenas-Rodríguez¹ ¹Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- 1758. Quantum Chemical Prediction and Experimental Validation of the Characteristics of DiaCEST MRI Contrast Agents

Luis A. Montano¹, Mark D. Pagel², ³, Julio Cárdenas-Rodríguez² ¹Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States; ²Biomedical Engineering, University of Arizona, Tucson, AZ, United States; ³ Arizona Cancer Center, University of Arizona, Tucson, AZ, United States

1759. Salicylic Acid Based CEST Agents for Assessing Brain Perfusion Territory and Blood-Brain Barrier Permeability

Xiaolei Song¹, ², Piotr Walczak¹, ², Xing Yang, Xiaowei He, ³, Jeff W.M. Bulte, ², Monica Pearl, Peter C.M. van Zijl, ², Martin Pomper, Michael T. McMahon, ², Mirosław Janowski, ⁴

¹ The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University, Baltimore, MD, United States; ²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, China; ⁴NeuroRepair Department, MMRC, PAS, Warsaw, Poland

1760. Iopamidol CEST for PH Mapping on a 7T Scanner: Phantom and Normal Mice Kidneys *In Vivo* Study *Wei Hu¹, Phillip Zhe Sun², Renhua Wu³*

¹the Second Affiliated Hospital of Shantou University Medical College, Shangtou, GuangDong, China; ²Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States; ³Shantou University Medical College, Shantou, Guangdong, China

1761. Topiramate Induced Intracellular Acidification in Brain Tumors: *In-Vivo* Detection Using Chemical Exchange Saturation Transfer Magnetic Resonance Imaging

Kamini Yogesh Marathe¹,², Nevin McVicar¹,², Alex Li², Mojmir Suchy³, Miranda Bellyou², Susan Meakin²,⁴, Robert Bartha¹,²

¹Medical Biophysics, Western University, London, Ontario, Canada; ²Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada; ³Chemistry, Western University, London, Ontario, Canada; ⁴Biochemistry, Western University, London, Ontario, Canada

1762. Sensitivity of CEST MRI for Absolute PH Measurement in Brain Metastases

Kevin Ray¹, James Larkin¹, Yee Kai Tee², ³, Alexandr Khrapitchev¹, Michael Chappell³, Nicola Sibson¹ ¹CRUK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom; ²Department of Mechatronics and Biomedical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia; ³Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom

1763. Quantitative Measurements of Amide Proton Transfer (APT) Signals and Tissue PH in Acute Ischemic Stroke Dong-Hoon Lee¹, Xiaoguang Liu², Kai Zhang¹, Yi Zhang¹, Hye-Young Heo¹, Wenxiao Li¹, Raymond C. Koehler², Jinyuan Zhou¹

¹Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Anesthesiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States

1764. ³¹P MRS and Creatine CEST: A Method to Monitor Creatine Kinase Metabolism in a Perfused Heart Model Kevin D'Aquilla¹, Rong Zhou¹, Hari Hariharan¹, Neil Wilson¹, Ravinder Reddy¹ ¹Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States

1765. Glutamate CEST MRI in MPTP Mouse Model of Parkinson's Disease

Puneet Bagga¹, Rachelle Crescenzi¹, Guruprasad Krishnamoorthy¹, Ravi Prakash Reddy Nanga¹, Sidyarth Garimall¹, Kevin D'Aquilla¹, Damodara Reddy¹, Joel H. Greenberg², John A. Detre², Hari Hariharan¹, Ravinder Reddy¹ ¹Department of Radiology, University of Pennsyvania, Philadelphia, PA, United States; ²Department of Neurology, University of Pennsyvania, Philadelphia, PA, United States

1766. GlucoCEST as Method for Early Detection of Renal Allograft Rejection

Annika Busch¹, Dominik Kentrup², Helga Pawelski², Nirbhay N. Yadav³, ⁴, Guanshu Liu³, ⁴, Peter C.M. van Zijl³, ⁴, Stefan Reuter², Verena Hoerr¹, ⁵

¹Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; ²Department of Medicine D - Experimental Nephrology, University Hospital Muenster, Muenster, Germany; ³Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁴F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, United States; ⁵Institute of Medical Microbiology, Jena University Hospital, Jena, Germany

1767. Dynamic Glucose Enhanced (DGE) MRI for Imaging Brain Cancer

Xiang Xu¹, ², Kannie WY Chan, ¹², Linda Knutsson³, Dmitri Artemov¹, ⁴, Jiadi Xu, ¹², Guanshu Liu, ¹², Yoshi Kato¹, ⁴, Bachchu Lal⁵, ⁶, John Laterra⁵, ⁶, Michael T McMahon, ¹², Peter van Zijl, ¹²

¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, United States; ²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Johns Hopkins Medicine, Baltimore, MD, United States; ³Department of Medical Radiation Physics,, Lund University, Lund, Sweden; ⁴Division of Cancer Imaging Research and JHU In Vivo Cellular Molecular Imaging Center, Johns Hopkins Medicine, MD, United States; ⁵Department of Neurology, Kennedy Krieger Institute, MD, United States; ⁶Department of Neuroscience, Kennedy Krieger Institute, MD, United States

1768. Cardiac CEST Imaging of Diffuse Fibrosis

Scott William Thalman¹, ², Zhengshi Yang¹, Andrea Mattingly¹, Moriel Vandsburger¹, ³ ¹Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States; ²Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States; ³Department of Physiology, University of Kentucky, Lexington, KY, United States

1769. Breath-Hold CEST-MRI of Liver Cirrhosis: A Clinical Feasibility Study

Xin Chen¹, Weibo Chen², ³, Guangbin Wang¹, Jianhua Lu⁴, Jinyuan Zhou⁵, Guang Jia⁴, ⁶, Jianqi Li³ ¹Shangdong Medical Imaging Research Institute, Shangdong University, Jinan, Shandong, China; ²Philips Healthcare, Shanghai, China; ³Shanghai Key Laboratory of Magnetic Resonance and Department of Physics, East China Normal University, Shanghai, China; ⁴Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; ⁵Johns Hopkins University, Baltimore, MD, United States; ⁶Pennington Biomedical Research Center, Baton Rouge, LA, United States

1770. CEST and FLEX MRI for Detection of CNS Graft Rejection

Sujith V. Sajja¹, ², Guanshu Liu¹, ³, Nirbhay Yadav¹, ³, Jiadi Xu³, Antje Arnold¹, ², Anna Jablonska¹, ², Michael McMahon¹, ³, Peter van Zijl¹, ³, Jeff Bulte¹, ², Piotr Walczak¹, ⁴, Miroslaw Janowski¹, ⁵ ¹Dept. of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, United States; ³F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ⁴Department of Radiology, University of Warmia and Mazury, Olsztyn, Poland; ⁵NeuroRepair Department, Polish Academy of Sciences, Warsaw, Poland

- 1771. Effects of Water Proton Concentration and Water T1 Changes on APT and NOE Imaging Signals in Gliomas Dong-Hoon Lee¹, Hye-Young Heo¹, Kai Zhang¹, Yi Zhang¹, Shanshan Jiang¹, Jinyuan Zhou¹
 ¹Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- **1772.** Amide Proton Transfer Imaging in Hemorrhagic Brain Lesions at 3T Sung Soo Ahn¹, Yoon Seong Choi¹, Ha-Kyu Jeong², Jinyuan Zhou³, Yansong Zhao⁴, Seung-Koo Lee¹ ¹Radiology, Yonsei University College of Medicine, Seoul, Korea; ²Philips Korea, Seoul, Korea; ³Radiology, Johns Hopkins University, Baltimore, MD, United States; ⁴Philips Healthcare, Cleveland, OH, United States
- 1773. Isolated Amide Proton CEST Contrast at 7 T Correlates with Contrast-enhanced T₁-weighted Images of Tumor Patients

Johannes Windschuh¹, Steffen Goerke¹, Jan-Eric Meissner¹, Alexander Radbruch², ³, Peter Bachert¹, Moritz Zaiss¹ ¹Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany; ²Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Baden-Württemberg, Germany; ³Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany;

1774. Frequency-Encoded MRI-CEST Agents Based on Paramagnetic Liposomes/RBC Aggregates Giuseppe Ferrauto¹, Enza Di Gregorio¹, Simona Baroni¹, Silvio Aime¹
¹Molecular Biotechnology and Health Science, Molecular Imaging Center-University of Torino (IT), Torino, Italy

Traditional Po	ster	
RF Engineerin	g	
Exhibition Hall	Tuesday 16:00-18:00	
1775. A	A System for in Situ S-Parameter M	Ieasurements of MR Transmit Arrays

Gerd Weidemann¹, Frank Seifert¹, Werner Hoffmann¹, Rainer Seemann¹, Patrick Waxmann¹, Bernd Ittermann¹ ¹Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany

1776. 7T Coil Decoupling in Near-Magnet Power Amplifier

Ashraf Abuelhaija¹, Klaus Solbach²

¹Duisburg-Essen University, Duisburg, Select a state, Germany; ²Duisburg-Essen University, Duisburg, Germany

1777. An Open 4ch. Transmit / 16 Ch. Receive Coil for High Resolution Occipital and Temporal Visual Cortex Imaging at 7T

Shubharthi Sengupta¹, Gregor Adriany², Valentin G. Kemper¹, Jan Zimmermann³, Rainer Goebel¹, Alard Roebroeck¹ ¹Dept. of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands; ²Dept. of Radiology, University of Minnesota, MN, United States; ³New York University, NY, United States

1778. A 32-Channel Intracranial and Extracranial Vascular Array for Three Dimension Arterial Wall MR Imaging at 3T

Xiaoqing Hu¹, Lei Zhang¹, Chao Zou¹, Huabin Zhu², Xiaoliang Zhang³, Yiu-cho Chung¹, Xin Liu¹, Hairong Zheng¹, Ye Li¹

¹Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen, Guangdong, China; ²Suzhou Medcoil Healthcare Co.,Ltd, Suzhou, Jjiangsu, China; ³Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States

1779. Determination of the Optimal Number of Coil Elements: A Semi-Theoretical Approach

*Mark Schuppert*¹, Karl-Friedrich Kreitner, Stefan Fischer¹, Simon Wein¹, Boris Keil², Lawrence L. Wald², ³, Laura M. Schreiber¹, ⁴

¹Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz, Germany; ²A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ³Harvard Medical School, Boston, MA, United States; ⁴Department of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, Wuerzburg, Germany

1780. Design Optimization and Evaluation of a 64-Channel Cardiac Array Coil at 3T

Robin Etzel¹, ², Xueming Cao¹, ³, Choukri Mekkaoui¹, David E. Sosnovik¹, Timothy G. Reese¹, Mark Schuppert⁴, Laura M. Schreiber, ⁴⁵, Martin Fiebich², Lawrence L. Wald¹, Boris Keil¹

 ¹A.A. Martinos Center for Biomedical Imaging, Dept. of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ²Mittelhessen University of Applied Sciences, Institute for Medical Physics and Radiation Protection, Giessen, Germany; ³Medical Physics, Department of Radiology, University Medical Center Freiburg, Freiburg, Germany;
 ⁴Department of Radiology, Johannes Gutenberg University Medical Center, Section of Medical Physics, Mainz, Germany;
 ⁵Comprehensive Heart Failure Center, Department of Cellular and Molecular Imaging, Wuerzburg, Germany

1781. B₁⁺ Homogenization Capabilities at 9.4T from a Simulation Approach

Jörg Felder¹, N. Jon Shah¹,²

¹Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, NRW, Germany; ²Faculty of Medicine, Department of Neurology, JARA, RWTH Aachen University, Aachen, NRW, Germany

1782. Evaluating the SNR Performance of Using Dielectric Pads with Multiple Channel RF Coils at 7T Bei Zhang¹, Zahi A. Fayad¹, Junqian Xu¹, Bernd Stoeckel², Priti Balchandani¹

¹Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, United States; ²Siemens Medical Solution, New York, United States

1783. Transmit Volume Coil-Receive Surface Coil for Proton Operating at 14 Tesla

Masoumeh Dehghani M.¹, Arthur Magill W.², Yves Pilloud¹, Nicolas Kunz², Rolf Gruetter¹, ² ¹Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ²Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland

1784. Design and Development of General Propose Transmit-Receive (TR) Switch for a Linear, Quadrature and Dual Tuned Coils

Bijaya Thapa¹, Joshua Kaggie¹, Nabraj Sapkota¹, Eun Kee Jeong¹, ² ¹Dept. of Physics and Astronomy, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States; ²Dept. of Radiology, Korea University, Seoul, Korea

- 1785. A Low Cost Signal Modulator for a Field Programmable Gate Array Based Parallel Transmit System Benson Yang¹, Clare McElcheran², Fred Tam¹, Simon Graham¹, ² ¹Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; ²Medical Biophysics, The University of Toronto, Toronto, ON, Canada
- 1786. Frequency Translation for ¹H Decoupled Multichannel ¹³C Spectroscopy Stephen E. Ogier¹, Steven M. Wright¹, ² ¹Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States; ²Biomedical Engineering, Texas A&M University, College Station, TX, United States
- 1787. Phase Correction with Asynchronous Digitizers John C. Bosshard¹, Steven M. Wright¹ ¹Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX, United States
- **1788.** A Novel Dsm Based All-Digital IQ Modulator for a Highly Efficient MRI Transmitter *Filiz Ece Sagcan¹, Bulent Sen¹, Aylin Bayram¹* ¹Power Amplifier Technologies, ASELSAN A.S., Ankara, Turkey
- **1789.** Wi-Fi Tuning/detuning Switch for Inductively Coupled Wireless Phased Array Coil for Intraoperative MRI Applications Seunghoon Ha¹, Haoqin Zhu¹, Labros Petropoulos¹

Seunghoon Ha', Haoqin Zhu', Labros Petropoulos' ¹R&D, IMRIS Inc., Minnetonka, MN, United States

- **1790.** Comparisons of RF Signal Tuning and Matching Networks *Sung-Min Sohn¹*, *Lance DelaBarre¹*, *J. Thomas Vaughan¹* ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
- 1791. Cryogenic Receive-Only 7 Tesla Coil for MRI of Hyperpolarized 13C Jarek Wosik¹, ², Krzysztof Nesteruk³, I-Chih Tan⁴, Kuang Qin¹, James A. Bankson⁵ ¹Electrical and Computer Engineering, University of Houston, Houston, TX, United States; ²Texas Center for Superconductivity, University of Houston, Houston, TX, United States; ³Institute of Physics Polish Academy of Sciences, Warsaw, Poland; ⁴Center for Molecular Imaging, The University of Texas Health Science Center, Houston, TX, United States; ⁵Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States
- **1792.** Materials for Printed MRI Surface Coils: Towards Better Image Quality and Coil Flexibility Balthazar Pierre Lechene¹, Anita Flynn¹, Joseph Corea¹, Michael Lustig¹, Ana Claudia Arias¹ ¹Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, United States

1793. A Single Channel Spiral Volume Coil for *In Vivo* Imaging of the Whole Human Brain at 6.5 MT Cristen LaPierre¹, ², Mathieu Sarracanie¹, ², David E J Waddington¹, ³, Matthew S. Rosen¹, ² ¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Department of Physics, Harvard University, Cambridge, MA, United States; ³ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, NSW, Australia

1794. High Spatial Resolution RF Coil for Brain Imaging of Small Monkeys at 11.7 T

Helmar Waiczies¹, Alexandra Petiet², Elodie Laffrat³,⁴, Darius Lysiak¹, Stephane Hunot³,⁴, Thoralf Niendorf⁴, Jan Rieger¹

¹MRI.TOOLS GmbH, Berlin, Germany; ²Center for Neuroimaging Research, Brain and Spine Institute, ICM, Paris, France; ³Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris, Paris, France; ⁴Institut du Cerveau et de la Moelle épinière, ICM, Paris, France

1795. Parallel-Plate Waveguide for Subject-Insensitive RF Transmission Hai Lu¹, Shumin Wang¹

¹Auburn University, Auburn, AL, United States

1796. Improvement of Signal-To-Noise Ratio Using Graphene-Based Surface RF Coils on 3T MRI

Hsuan-Han Chiang¹, Ming-Jye Chen¹, Chien-Cheng Kuo², You-Yin Chen³, Changwei W. Wu⁴, Li-Wei Kuo¹ ¹Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan; ²Graduate Institute of Energy Engineering/Thin Film Technology Center, National Central University, Taoyuan County, Taiwan; ³Department Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan; ⁴Graduate Institute of Biomedical Engineering, National Central University, Taoyuan County, Taiwan

1797. MEMS Reconfigurable Coils

Selaka B. Bulumulla¹, Eric Fiveland¹, Keith Park¹, Joseph Iannotti¹ ¹GE Global Research, Niskayuna, NY, United States

1798. Self-Selecting, Cable-Free MRI RF Coils Oliver Heid¹, Jürgen Heller¹, Yong Wu², Xiaoyu Yang², Hiroyuki Fujita² ¹CT NTF HTC, Siemens AG, Erlangen, Bavaria, Germany; ²Quality Electrodynamics, Mayfield Village, OH, United States

- 1799. B1+, SAR, and Temperature Distributions in the Breast with Different Tissue Ratio: FDTD Simulations and Experimental RF Field and Temperature Measurements at 7T Junghwan Kim^l, ², Narayan Krishnamurthy^l, Yujuan Zhao^l, Tiejun Zhao³, Kyongtae Ty Bae^l, ², Tamer Ibrahim^l, ² ¹Bioengineering, University of Pittsburgh, PA, United States; ²Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ³Siemens Medical Solution USA, Inc, Pittsburgh, PA, United States
- 1800. Numerical Comparison of a Dedicated Paediatric Radiofrequency Array with Existing Adult Coil Designs Gemma R. Cook¹, Martin J. Graves¹, ², Fraser J. Robb³, David J. Lomas¹ ¹Department of Radiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom; ²MRIS, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom; ³GE Healthcare Coils, Aurora, OH, United States
- 1801. 7T Head Coil with Two Independent T/R Channels Zhiyong Zhai¹, Michael Morich¹ ¹Philips Healthcare, Cleveland, OH, United States
- **1802.** Multi-Channel MOSFET Amplifiers for Parallel Excitation in 7T Animal MRI System Yizhe Zhang¹, Yan Liu¹, Bingyao Sun¹, Xiaoliang Zhang², Xiaohua Jiang¹

¹Department of Electrical Engineering, Tsinghua University, Beijing, China; ²Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States

- 1803. Balanced Feed Lines with Bridged Shield Gaps for RF Coil Arrays Roland Müller¹, Mikhail Kozlov¹, Harald E. Möller¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
- 1804. Characterization of B0 and B1 Maps in 3D Printer Materials at 9.4T Hedok Lee¹, ², Andrew Ravin¹ ¹Anesthesiology, State University of New York at Stony Brook, Stony Brook, NY, United States; ²Radiology, State University of New York at Stony Brook, Stony Brook, NY, United States
- 1805. Modular Extensions to MRI Systems Architecture with Example Application of Pulse Sequence Independent Real-Time Scan Plane Control

J. Andrew Derbyshire¹, Peter A. Bandettini¹ ¹ ¹fMRI Core, National Institute of Mental Health, NIH, Bethesda, MD, United States

- **1806.** Impact of Matching Capacitors in SAR Evaluation for a 7T Endo-Rectal Coil Jinfeng Tian¹, Lance Delabarre¹, Greg Metzger¹, J. Thomas Vaughan¹ ¹U. of Minnesota, Minneapolis, MN, United States
- 1807. On the Electrodynamic Constraints and Antenna Array Design for Human *In Vivo* MR Up to 70 Tesla and EPR Up to 3GHz

Lukas Winter¹, *Thoralf Niendorf¹*, ² ¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany; ²Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany

1808. Hybrid Monopole/loop Coil Array for Human Head Parallel MR Imaging at 7T

Xinqiang Yan¹,², Xiaoliang Zhang³, Long Wei², Yuqian Liu², Rong Xue¹ ¹State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ²Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ³Department of Radiology and Biomedical Imaging, University of California San Francisco and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States

- 1809. Geometry Optimization of 7T Dual-Row Transmit Arrays Mikhail Kozlov¹, Roland Müller¹, Harald Möller¹ ¹MPI Leipzig, Leipzig, Saxony, Germany
- 1810. Impact of Different Meander Sizes on the RF Transmit Performance and Decoupling of Micro Strip Line Elements at 7T Stefan H. G. Rietsch¹, ², Harald H. Quick¹, ², Stephan Orzada¹

¹Erwin L. Hahn Institute for MR Imaging, Essen, Germany; ²High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany

1811. 2nd Prototype of an Automatic Tune and Match RF Transceive Coil: Design and Evaluation

magna cum laude

Sung-Min Sohn¹, Lance DelaBarre¹, Anand Gopinath², J. Thomas Vaughan¹, ² ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Department of Electrical and Computer Science Engineering, University of Minnesota, MN, United States 1812. RF Instrumentation for Same-Breath Triple-Nuclear Lung MR Imaging of ¹H and Hyperpolarized ³He and ¹²⁹Xe at 1.5T

Madhwesha Rao¹, Juan Parra-Robles¹, Helen Marshall¹, Neil Stewart¹, Guilhem Collier¹, Jim Wild¹ ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom

- **1813.** Investigation of Flexible Transmit/Receive Coil Concepts on B1+ Performance at 3T *Christoph Leussler¹, Christian Findeklee¹, Peter Vernickel¹, Kay Nehrke¹, Peter Börnert¹* ¹Philips GmbH Innovative Technologies, Research Laboratories, Hamburg, Germany
- 1814. Novel Splittable N-Tx/2N-Rx Transceiver Phased Array to Optimize Both SNR and Transmit Efficiency at 9.4 T Nikolai I. Avdievich¹, Ioannis A. Giapitzakis¹, Anke Henning¹, ² ¹Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland
- 1815. An Interface to Connect a 16-Channel Transmit Array to an 8-Channel Parallel Transmit System Shajan G^l, Jens Hoffmann^l, Klaus Scheffler^l, ², Rolf Pohmann^l ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Baden Wuerttemberg, Germany; ²Department of Biomedical Magnetic Resonance, University Hospital, Tuebingen, Baden Wuerttemberg, Germany
- 1816. An On-Coil Current-Source Amplifier with Integrated Real-Time Optical Monitoring of B1 Amplitude and Phase

Natalia Gudino¹, Qi Duan¹, Jacco A. de Zwart¹, Joe Murphy-Boesch¹, Peter van Gelderen¹, Jeff H. Duyn¹ Advanced MRI section, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States

1817. On-Coil Power Monitor with a High Directivity Coupler Sung-Min Sohn¹, Anand Gopinath², J. Thomas Vaughan¹, ² ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Department of Electrical and Computer Science Engineering, University of Minnesota, Minneapolis, MN, United States

1818. A Digital Power Amplifier for 1.5 T Redi Poni¹, ², Taner Demir¹, ², Ergin Atalar, ² ¹Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey; ²UMRAM, Ankara, Turkey

1819. Optimization of Parallel RF Transmission Enabled by Concurrent Recording of RF and Gradient Fields Mustafa Cavusoglu^l, Benjamin E. Dietrich^l, David O. Brunner^l, Klaas P. Pruessmann^l ¹Biomedical Engineering, ETH Zurich, Zurich, Switzerland

1820. Prediction of RF Preamplifier Noise Temperature Variations in a Magnetic Field

nagna cum laude

Cameron M. Hough¹, Russell L. Lagore², Cecilia Possanzini³, Nicola De Zanche¹ ¹Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ³Philips Healthcare, Best, Netherlands

1821. An Integrated Negative Resistance Current Amplifier to Enhance the Sensitivity of a Weakly Coupled Local Detector

Chunqi Qian¹, Qi Duan¹, Stephen Dodd¹, Alan Koretsky¹, Joseph Murphy-Boesch¹ ¹NIH, Bethesda, MD, United States

- 1822. The RTL-SDR USB Dongle: A Versatile Tool in the RF Lab Roland Müller¹, Torsten Schlumm¹, André Pampel¹, Harald E. Möller¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
- 1823. Converting Digital MRI Receivers Built for 1.5T Into 7T Receivers Using Surface Acoustic Wave Filters Mark Gosselink¹, Andrea Anzellotti², Giel Mens², Marco Boutelje², Bart Voermans², Hans Hoogduin¹, Peter R. Luijten¹, Cecilia Possanzini², Dennis W.J. Klomp¹ ¹University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Netherlands
- 1824. High Performance Probe for In Vivo Overhauser MRI David E J Waddington¹,², Mathieu Sarracanie¹,³, Najat Salameh¹,³, Matthew S. Rosen¹,³
 ¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, Australia; ³Department of Physics, Harvard University, Cambridge, MA, United States
- 1825. Quadrifilar Helical Antenna as a Whole-Body Traveling-Wave RF Coil for 3T and 7T MRI Branislav M. Notaros¹, Milan M. Ilic¹, Alexey A. Tonyushkin², Nada J. Sekeljic¹, Pranav Athalye¹ ¹Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO, United States; ²Radiology Dept., Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- 1826. Feasibility of a New Actuator Type for Magnetic Resonance Elastography Based on Transient Air Pressure Impulses

Jürgen Braun¹, *Sebastian Hirsch²*, *Tassilo Heinze³*, *Ingolf Sack²* ¹Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany; ²Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ³SPL Spindel und Präzisionslager GmbH, Sachsen, Germany

Traditional Poster MR-PET, Gradients & Other Hardware Exhibition Hall Tuesday 16:00-18:00

1827. Incorporation of TOF Information Reduces Artifacts in Simultaneous TOF PET/MR Scanning

Edwin G.W. ter Voert¹, Helen Davison, ¹², Felipe de Galiza Barbosa¹, ³, Martin Huellner¹, ⁴, Patrick Veit-Haibach¹, ³, Gaspar Delso⁵

¹Department of Medical Imaging, Division of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland; ²Department of Medical Physics, Royal United Hospitals Bath NHS Foundation Trust, Bath, Somerset, United Kingdom; ³Department of Diagnostic and Interventional Radiology, University Hospital Zurich, Zurich, Switzerland; ⁴Department of Medical Imaging, Clinic of Neuroradiology, University Hospital Zurich, Switzerland; ⁵GE Healthcare, Waukesha, WI, United States

1828. Integrated PET/MR: Attenuation Correction and Implementation of a 16-Channel RF-Coil for Breast Imaging Mark Oehmigen¹, Maike Lindemann¹, Titus Lanz², Sonja Kinner³, Harald H. Quick¹, ⁴ ¹High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; ²Rapid Biomedical GmbH, Rimpar, Germany; ³Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany; ⁴Erwin L. Hahn Institute for MR Imaging, University Duisburg-Essen, Essen, Germany

1829. Hybrid PEM/MRI, a New Approach for High Resolution Breast Imaging

Farouk Nouizi¹, Jaedu Cho¹, Alex Luk, Edward anashkin², Pavel Stepanov², Val zavarzin², Irving weinberg², Lydia Min-Ying Su¹, Gultekin Gulsen, Orhan Nalcioglu ¹Radiology, University of California Irvine, Irvine, CA, United States; ²Weinberg Medical Physics, LLC, Bethesda, MD, United States

1830. Novel Coil Design for a Simultaneous PET-MR System Saikat Saha¹, Kyle Reiser²

¹GE Healthcare, Waukesha, WI, United States; ²GE Healthcare, WI, United States

- 1831. Investigation of Acoustic Noise Reduction Method for MRI-LINAC Hybrid System Yaohui Wang¹, Feng Liu¹, Ewald Weber¹, Stuart Crozier¹ ¹School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
- **1832.** Novel Approaches in the Coupled Circuit Simulation of Eddy Currents Induced by Cylindrical Gradient Coils *Md. Shahadat Hossain Akram¹*, *Koki Matsuzawa¹*, *Yasuhiko Terada¹*, *Katsumi Kose¹* ¹Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan

1833. A Novel Acoustic Quiet Coil for Neonatal MRI System

magna cum laude

Christopher M. Ireland¹, ², *Randy O. Giaquinto²*, *Jean A. Tkach²*, *Ronald G. Pratt²*, *Charles L. Dumoulin²* ¹Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States; ²Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States

1834. A Straightforward Direct Optimization Method for Designing Biplanar Gradient Coils Using Artificial Bee Colony Algorithm

Yasuhiko Terada¹, Kazunori Ishizawa¹, Katsumi Kose¹ ¹Institue of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan

- 1835. Impact of Gradient Nonlinearity on the Accuracy of NMR Field Camera Readouts Paul Chang¹, ², Martin Eschelbach¹, Roland Syha³, Klaus Scheffler¹, Anke Henning¹, ⁴ ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Graduate School of Neural & Behavioural Sciences, University of Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany; ³Diagnostic and Interventional Radiology, University Hospital Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany; ⁴Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland
- **1836.** Optimization of Matrix Gradient Coil Switching for a Limited Number of Amplifiers Stefan Kroboth¹, Kelvin Layton¹, Feng Jia¹, Sebastian Littin¹, Huijun Yu¹, Maxim Zaitsev¹ ¹Medical Physics, University Medical Center Freiburg, Freiburg, BW, Germany

1837. Comparison of Gradient Induced Heating Around an Active Implantable Medical Device Shogo Horinouchi¹, Etsuko Kumamoto², Kagayaki Kuroda³, ⁴ ¹Graduate School of System Informatics, Kobe University, Kobe, Hyogo, Japan; ²Information Science and Technology Center, Kobe University, Kobe, Japan; ³Graduate School of Engineering, Tokai University, Hiratsuka, Japan; ⁴ Center for Frontier Medical Engineering, Chiba University, Chiba, Japan

1838. Sub-Ppb/K Temperature Drift of NMR Field Probes Using Intrinsic Magnetostatic Compensation Simon Gross¹, Christoph Barmet¹, ², Klaas Paul Pruessmann¹ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Skope Magnetic Resonance Technologies, Zurich, Switzerland

1839. Design of Sample-Immersed Microcoil (SIM) Probes and Their Magnetic Field Monitoring Capabilities ^{immagina} cum laube ^{imagina} cum laube ^{imagina} cum laube

1840. Assessment of the Aging Human Skin with a Unilateral NMR Scanner Elad Bergman¹, Yifat Sarda¹, Noa Ritz², Edmond Sabo², Reuven Bergman², Uri Nevo¹ ¹Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel, Israel; ²Departments of Dermatology and Pathology, Rambam Health Care Campus and The Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel, Israel

1841. A Novel 31-Channel Imaging Grid Coil

Wolfgang Loew¹, Nathan Lamba², Randy Giaquinto¹, Matthew Lanier¹, Lacey Sickinger¹, Brynne Williams¹, Christopher Ireland¹, Yu Li¹, Charles Dumoulin¹ ¹Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; ²Ohio State University, OH, United States

- 1842. Low Eddy Current RF Shield Design for MR System Saikat Saha¹ ¹GE Healthcare, Waukesha, WI, United States
- 1843. Development of a Digital MRI Console Using General Purpose Digital Instruments and Board Computers Makoto Tsuda^l, Daiki Tamada^l, Yasuhiko Terada^l, Katsumi Kose^l ¹University of Tsukuba, Tsukuba, Ibaraki, Japan
- 1844. Optimizing the Current-Mode Class D (CMCD) Amplifier for Decoupling in PTX Arrays Michael Twieg¹, Mark A. Griswold¹, ² ¹Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH, United States; ²Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
- **1845.** Quench Propagation Study for Magnesium Diboride (MgB2) MRI Magnets *Charles Randall Poole¹, Tanvir Baig¹, Robert Deissler¹, Robert W. Brown¹, Michael A. Martens¹* ¹Department of Physics, Case Western Reserve University, Cleveland, OH, United States
- 1846. Bias Field Correction on 7T Using Novel 3D Edge Detector and High-Order Legendre Polynomial Approximation.

Artem Mikheev¹, Henry Rusinek¹ ¹Radiology, NYU Langone Medical Center, New York, NY, United States

1847. Magnetohydrodynamic Design of Radiofrequency Powered Microscopic Endocapsules in 3T MRI

 $\frac{1}{\text{magina cam}} \frac{1}{\text{magina cam}} \frac{1}{\text{laube}} \frac{T. \text{ Stan Gregory}^{l}, \text{ Kevin J. Wu}^{l}, \text{ Jasper Yu}^{l}, \text{ James Brent Box}^{l}, \text{ Rui Cheng}^{l}, \text{ Leidong Mao}^{l}, \text{ Guoyi Tang}^{2}, \text{ Zion Tsz Ho}}{\text{Tse}^{l}}$

¹College of Engineering, The University of Georgia, Athens, GA, United States; ²Advanced Materials Institute, Tsinghua University, Shenzhen, Guangdong, China

Traditional PosterSafety in MRIExhibition HallTuesday 16:00-18:00

1848. Use of a NURBS-Based, Full-Body Anatomy and FEA Model to Evaluate RF-Induced Heating During MR Imaging

Alan Leewood¹, Sharath Gopal¹, Kerim Genc², Steve Cockram³, Philippe Young³, Jeff Crompton⁴, Josh Thomas⁴ ¹MED Institute, Inc., West Lafayette, IN, United States; ²Simpleware Ltd, VA, United States; ³Simpleware Ltd, Devon, United Kingdom; ⁴AltaSim Technologies, LLC, OH, United States

1849. Rapid SAR Assessment of Electrically Thin Implantable Devices Using an Analytical Approach: Proof-Of-Principle for RF Heating of Coronary Stents at 7.0 T Lukas Winter¹, Eva Oberacker¹, Celal Özerdem¹, Yiyi Ji¹, Florian von Knobelsdorff-Brenkenhoff¹, ², Gerd Weidemann³, Frank Seifert³, Thoralf Niendorf¹, ²

¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany; ²Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany; ³Physikalisch Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

1850. On the Subjective Acceptance During Cardiovascular Magnetic Resonance Imaging at 7.0 Tesla

Sabrina Klix¹, Antje Els¹, Katharina Paul¹, Andreas Graessl¹, Celal Oezerdem¹, Oliver Weinberger¹, Lukas Winter¹, Christof Thalhammer¹, Till Huelnhagen¹, Jan Rieger¹, Heidrun Mehling², Jeanette Schulz-Menger², ³, Thoralf Niendorf⁴, ²

¹Berlin Ültrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany; ²) Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center, Berlin, Germany; ³HELIOS Klinikum Berlin-Buch, Dept. of Cardiology and Nephrology, Berlin, Germany

1851. Derived MRI Induced Maximum Torque (ASTM F2213) from Measured MRI Induced Maximum Force (Per ASTM F2052)

Richard Williamson¹, Michael Childers¹, Tushar Dharampal¹, Shiloh Sison¹, Amber Durica¹, Gabriel Mouchawar¹, John Nyenhuis²

¹St. Jude Medical, Sylmar, CA, United States; ²Purdue University, West Lafayette, IN, United States

- 1852. RF Current Measurements in Implanted Wires in Phantoms by Fiber Optic Current Clamps Gerd Weidemann¹, Frank Seifert², Werner Hoffmann², Bernd Ittermann² ¹Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany; ²Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany
- 1853. Quantitative MR System Evaluation Using the KRMP-4 Phantom Comparison with the ACR Phantom Jong-Min Kim¹, Jang-Gyu Cha², Ji-Young Hwang³, Seung-Eun Jung⁴, Hyunn-Kyoon Lim⁵, Do-wan Kim⁶, Kwang-Su Kim⁶, Sung-Jin Kang², Han-Joong Kim¹, Suchit Kumar¹, Junyong Park⁷, Chulhyun Lee⁷, Chang-Hyun Oh¹ ¹Electronic and information engineering, Korea University, Seongbuk-Gu, Seoul, Korea; ²Department of Radiology, Soonchunhyang University Bucheon Hospital, Seoul, Korea; ³Department of Radiology, Ewha Women's University Mokdong Hospital, Seoul, Korea; ⁴Department of Radiology, The Catholic University of Korea St. Mary's Hospital, Seoul, Korea; ⁵Korea Research Institute of Standards and Science, Daejeon, Korea; ⁶Korean Institute of Accreditation of Medical Imaging, Seoul, Korea; ⁷The MRI Team, Korea Basic Science Institute, Chungcheongbuk-do, Korea
- 1854. RF Heating on a Vagus Nerve Stimulation Device During Head Imaging in a 3T Transmit Body Coil Using a Numerical Analysis

*Mélina Bouldi*¹, ², *Olivier David*¹, ³, *Stephan Chabardes*, ³⁴, *Alexandre Krainik*, ²⁴, *Jan M. Warnking*¹, ³ ¹Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, Rhône-Alpes, France; ²U836, Inserm, Grenoble, Rhône-Alpes, France; ³U836, Inserm, Grenoble, Rhône-Alpes, France; ⁴CHU de Grenoble, Rhône-Alpes, France

- 1855. Local SAR Estimation Via Electrical Properties Tomography: Physical Phantom Validations at 7T Xiaotong Zhang¹, Jiaen Liu¹, Pierre-Francois Van de Moortele², Bin He¹, ³ ¹Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ³Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
- 1856. Retrospective Analysis of Data in RF Heating Tests of Small Passive Medical Implants Ting Song¹, Maria Ida Iacono¹, Leonardo M. Angelone¹, Sunder Rajan¹ ¹Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States

1857. Heating of Lead Electrodes Disconnected from Sacral Stimulator During Routine Lumbar and Pelvic MRI at 1.5T with Receive-Only Coil

Pallab K. Bhattacharyya¹, Howard Goldman², Mark J. Lowe¹, Adrienne Quirouet², Stephen E. Jones¹ ¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States; ²Glickman Urological Institute, Cleveland Clinic, Cleveland, OH, United States

- 1858. Quantification of Ultrasonic Motor Behaviour in MRI Peyman Shokrollahi^l, Wendong Wang², Adam C. Waspe³, James M. Drake³, Andrew A. Goldenberg¹ ¹Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada; ²School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China; ³Hospital for Sick Children, Toronto, ON, Canada
- 1859. Optical E-Field Measurements in the MR Environment with High Spatial Resolution Simon Reiβ^l, Andreas Bitzer², Michael Bock^l ¹Radiology - Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Biolab Technology AG, Zürich, Switzerland
- 1860. Correlation of Improved Local SAR Deposition with Reduced Shading Close to Hip Implants Thomas Lottner^l, ², Mathias Nittka^l, Theresa Bachschmidt^l, ³, Heiko Meyer^l, Wolfgang Nitz^l, ² ¹Siemens Healthcare, Erlangen, Germany; ²University of Regensburg, Regensburg, Germany; ³Experimental Physics 5, University of Würzburg, Würzburg, Germany
- 1861. MR Safety Investigation of RF Heating of a Generic Wire-Shaped Device Immersed to a Human Body Simulating Medium at 63.58 MHz (1.5 T MRI-Equivalent) Mahdi Abbasi^l, ², Gregor Schaefers^l, Amin Douiri^l, Daniel Erni² ¹MR:comp GmbH, Gelsenkirchen, NRW, Germany; ²General and Theoretical Electrical Engineering (ATE), University of Duisburg-Essen, Duisburg, NRW, Germany
- 1862. Mathematical Tools to Define SAR Margins for Phased Array Coil *In-Vivo* Applications Given E-Field Uncertainties

Guillaume Ferrand¹, Michel Luong¹, Alexis Amadon², Nicolas Boulant² ¹DSM/IRFU/SACM, CEA-Saclay, Gif-sur-Yvette, France; ²DSV/I2BM/Neurospin, CEA-Saclay, Gif-sur-Yvette, France

- 1863. Effect of Anisotropy on the Accuracy of Quantitative Conductivity Imaging. a Numerical Study Nahla M H Elsaid¹, Adrian I. Nachman², ³, Weijing Ma², Tim P. DeMonte⁴, Michael L G Joy, ¹² ¹IBBME, University of Toronto, Toronto, Ontario, Canada; ²Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada; ³Department of Mathematics, University of Toronto, Toronto, Ontario, Canada; ⁴FieldMetrica Inc., Toronto, Ontario, Canada
- 1864. RF Safety Assessment of Simultaneous EEG-fMRI at 7T MR Özlem Ipek¹, Joao Jorge², ³, Frederic Grouiller⁴, Wietske van der Zwaag¹, Lijing Xin², Rolf Gruetter², ⁵ ¹CIBM-AIT, EPFL, Lausanne, Vaud, Switzerland; ²LIFMET, EPFL, Lausanne, Vaud, Switzerland; ³Bioengineering, University of Lisbon, Lisbon, Portugal; ⁴CIBM, Geneva University Hospital, Geneva, Switzerland; ⁵Radiology, University of Lausanne, Lausanne, Vaud, Switzerland
- **1865.** A Method for the Measurement of the RF Power Radiated by 7T Transmit Coils Gerd Weidemann¹, Frank Seifert¹, Werner Hoffmann¹, Harald Pfeiffer¹, Bernd Ittermann¹ ¹Physikalisch-Technische Bundesanstalt, Braunschweig und Berlin, Germany
- 1866. Ultra High Resolution 3D Gradient Recalled Echo with Reduced FOV Spiral Selective Excitation. Malek I. Makki¹ ¹MRI Research, University Children Hospital Zurich, Zurich, Switzerland

1867. Hearing Loss in Dogs After Routine Neurological MRIs

*Rebecca Krimins*¹, ², *Larry Gainsburg*³, *Amanda Lauer*⁴, *Meiyappan Solaiyappan*², *Dara Kraitchman*¹, ² ¹Center for Image-Guided Animal Therapy, Johns Hopkins University, Baltimore, MD, United States; ²Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ³Mid-Atlantic Veterinary Neurology and Neurosurgery, Catonsville, MD, United States; ⁴Department of Otolaryngology and Center for Hearing and Balance, Johns Hopkins University, Baltimore, MD, United States

1868. Improved MR Thermometry in the Presence of Non-Water Proton Signals

Jacco A. de Zwart¹, Peter van Gelderen¹, Qi Duan¹, Natalia Gudino¹, Cem M. Deniz², Leeor Alon², Jeff H. Duyn¹ ¹Advanced MRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States; ²Dept. of Radiology & Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, United States

1869. Are MR Manufacturer-Reported Specific Absorption Rate Values on Clinical MRI Systems Correct? Youngseob Seo¹, Min-Jae Kang¹ ¹Center for Medical Metrology, Korea Research Institute of Standards and Science, Daejeon, Korea

1870. Spatially Localized Tissue Fingerprinting (STiF) Shivaprasad Ashok Chikop¹, Antharikshanagar Bellappa Sachin Anchan¹, Arush Arun Honnedevasthana¹, Shaikh Imam¹, Sairam Geethanath¹ ¹Medical Imaging Research Center, Dayananda Sagar Institutions, Bangalore, Karnataka, India

1871. Reducing the Peak SAR Surrounding Implanted Lead Tips in 3T MRI Using a High-Dielectric Helmet Former: A Numerical Feasibility Study

Zidan Yu¹, Sherman Xuegang Xin, ¹², Christopher Collins¹ ¹Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, United States; ²Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China

1872. Globally Applicable MR Safety Program for Medical Students

Steffen Sammet¹, ², Christina Louise Sammet³, ⁴ ¹Department of Radiology, University of Chicago Medical Center, Chicago, IL, United States; ²Department of Radiology, The Ohio State University, Columbus, OH, United States; ³Department of Radiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States; ⁴Department of Radiology, Northwestern University, Chicago, IL, United States

- 1873. Faster B1 Field and SAR Estimation in Parallel Transmit Arrays Without Tuning Using Voltage Sources Hongbae Jeong¹, Konstantinos Papoutsis¹, Peter Jezzard¹, Aaron T. Hess² ¹FMRIB Centre, University of Oxford, Oxford, Oxford, Oxfordshire, United Kingdom; ²Department of Cardiovascular Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom
- 1874. MRI in Patients with Cardiac Implantable Electronic Devices, Our Institutional Experience Iva Petkovska^l, Bobby Kalb^l, John Hur^l, Peter Ott², Kusum Lata², Parinita Dherange², Isabel Oliva^l, Shannon Urbina^l, Hina Arif^l, Surya Chundru^l, James Costello^l, Diego Martin^l
 ¹Medical Imaging, University of Arizona, Tucson, AZ, United States; ²Sarver Heart Center, University of Arizona, Tucson, AZ, United States

1875. Is Pacemaker Lead-Tip Heating Greater at 1.5T or 3T? Deborah Anne Langman¹, Eric Aliotta¹, ², Dan Margolis¹, J. Paul Finn¹, ², Daniel B. Ennis¹, ² ¹Radiological Sciences, UCLA, Los Angeles, CA, United States; ²Biomedical Physics IDP, UCLA, Los Angeles, CA, United States
1876. RF Safety Evaluation of a Breast Expander Implant at 3.0T

BuSik Park¹, Amir Razjouyan², Leonardo Angelone², Sunder s. Rajan³ ¹FDA/CBER, Silver Spring, MD, United States; ²FDA/CDRH/OSEL, MD, United States; ³Div. of Biomedical Physics, FDA/CDRH, Silver Spring, MD, United States

Traditional Poster Molecular Imaging Exhibition Hall Wednesday 10:00-12:00

1877. Roemer-Optimal Reconstruction of Hyperpolarized 13C Cardiac Images with an 8 Channel Coil

William Dominguez-Viqueira¹, Benjamin Geraghty², ³, Justin Y.C. Lau², ³, Albert P. Chen⁴, Charles H. Cunningham², ⁵ ¹Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ²Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ³Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ⁴GE Healthcare, Toronto, Ontario, Canada; ⁵Medical Biophysics, University of Toronto, Ontario, Canada

1878. ¹⁹F-Hyperpolarized Structures as Markers for the Improved Detection of Amyloid Plaques

Ute Bommerich¹, ², *Thomas Trantzschel¹*, *Markus Plaumann¹*, *Denise Lego²*, *Gerd Buntkowsky³*, *Grit Sauer³*, *Torsten Gutmann³*, *Joachim Bargon⁴*, *Johannes Bernarding¹* ¹Institute for Biometrics and Medical Informatics, Otto von Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany; ²Special Lab Non-invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Saxony-Anhalt, Germany; ³Eduard-Zintl-Institute for Inorganic Chemistry, Technical University Darmstadt, Hesse, Germany; ⁴Institute for Physical and Theoretical Chemistry, University Bonn, North Rhine-Westphalia, Germany

1879. PHIP Hyperpolarization of Linear and Branched Fluorinated Alkanes as Well as Their Interaction with Cyclodextrins

Markus Plaumann¹, Thomas Trantzschel¹, Jan Wüstemann¹, Denise Lego², Grit Sauer³, Torsten Gutmann³, Joachim Bargon⁴, Gerd Buntkowsky³, Johannes Bernarding¹, Ute Bommerich¹, ² ¹Department for Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany; ²Special Lab Non-Invasive Brain Imaging, Leibniz Institute for Neurobiology, Magdeburg, Saxony-Anhalt, Germany; ³Eduard-Zintl-Institute for Inorganic Chemistry, Technical University Darmstadt, Darmstadt, Hesse, Germany; ⁴Institute of Physical and Theoretical Chemistry, University Bonn, Bonn, North Rhine-Westphalia, Germany

1880. Speeding Up Dynamic Spiral Chemical Shift Imaging with Incoherent Sampling and Low-Rank Matrix Completion: Application in Hyperpolarized ¹³C Metabolic Imaging Stephen DeVience¹, Dirk Mayer¹ ¹Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States

1881. The Effects of Acute and Chronic Up-Regulation of Pyruvate Dehydrogenase on Myocardial Metabolism Lucia F. Giles¹, Vicky Ball¹, Damian J. Tyler¹ ¹Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom

- **1882.** Generation of Hyperpolarized Bicarbonate in Large Concentrations to Image PH Rajat K. Ghosh¹, Mehrdad Pourfathi¹, Stephen J. Kadlecek¹, Rahim R. Rizi¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States
- **1883.** Hyperpolarized [2-¹³C]Dihydroxyacetone: Monitoring Hepatic Gluconeogenesis in Real-Time Karlos X. Moreno¹, Santhosh Satapati¹, Ralph J. DeBerardinis², Shawn C. Burgess¹, Craig R. Malloy¹, Matthew E. Merritt¹

¹Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ²Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, United States

1884. Partial-Volume Correction for Metabolic Imaging with Hyperpolarised [1-13C]Pyruvate

Rolf F. Schulte¹, Martin A. Janich¹, Ulrich Koellisch¹, ², Markus Durst¹, ², Florian Wiesinger¹, Eliane Ferral², Markus Schwaiger², Axel Haase², Marion I. Menzel¹

¹GE Global Research, Munich, Germany; ²Technical University, Munich, Germany

CA, United States; ⁴Chemistry and ChEM-H, Stanford University, CA, United States

1885. Hyperpolarized Ketone Body Metabolism in the In Vivo Rat Heart

Angus Z. Lau¹, ², Jack J. Miller², ³, Damian J. Tyler¹, ² ¹Department of Cardiovascular Medicine, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom; ³Department of Physics, University of Oxford, Oxford, Oxfordshire, United Kingdom

1886. Development of Hyperpolarized 13C-MRS Probes for Oxidative Stress Measurement Arif Wibowo¹, Jae Mo Park, Ralph Hurd², Graham F Sommer³, Chaitan Khosla⁴, Daniel M Spielman ¹arifw@stanford.edu, Stanford, CA, United States; ²GE healthcare, CA, United States; ³Diagnostic Radiology, Stanford University,

1887. Quantitative Analysis for Hyperpolarized ¹³C-Pyruvate Imaging: Comparison of Methods on a Clinical System. Charlie J. Daniels¹, Mary A. McLean², Nicholas McGlashan¹, Martin J. Graves¹, Fraser J. Robb³, David J. Lomas¹, Rolf F. Schulte⁴, Kevin M. Brindle², Ferdia A. Gallagher¹, ² ¹Department of Radiology, University of Cambridge, Cambridge, United Kingdom; ²Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; ³USA Instruments Inc., Aurora, OH, United States; ⁴GE Global Research, Munich, Germany

1888. 31P Dynamic Nuclear Polarization Applied to Phosphonates for MRS/MRI Applications. Roha Afzal¹, ², Gary V. Martinez¹, Robert J. Gillies¹ ¹Cancer Imaging and Metabolism, H.Lee Moffitt Cancer Centre, Tampa, FL, United States; ²Chemical and Biomedical Engineering, University of South Florida, Tampa, FL, United States

1889. Hepatic Metabolism of Hyperpolarized [1-¹³C]Pyruvate in the Zucker Rat Jian-Xiong Wang¹, ², Leila Fidelino³, Karlos Moreno³, A. Dean Sherry³, ⁴, Craig Malloy³, ⁵, Matthew E. Merritt¹, ⁶ 'AIRC, UT Southwestern Medical Center, Dallas, TX, United States; ²Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ³AIRC, UT Southwestern Medical Center, TX, United States; ⁴Chemistry, University of Texas at Dallas, TX, United States; ⁵Internal Medicine, UT Southwestern Medical Center, TX, United States; ⁶Radiology, UT Southwestern Medical Center, Dallas, United States

1890. Low Cell Number Perfusion Bioreactor System for Hyperpolarized MRS in a MRI Setting Lotte Bonde Bertelsen¹, Simon Lauritsen¹, Christoffer Laustsen¹, Preben Daugaard¹, Xiaolu Zhang¹, Hans Stødkilde-Jørgensen¹ ¹The MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus University Hospital, Aarhus, Denmark

- 1891. Investigation of Metabolic Changes in STZ Induced Diabetic Rats with Hyperpolarized [1-13C]Acetate Ulrich Koellisch¹, Christoffer Laustsen², Thomas S. Nørlinger², Concetta V. Gringert³, Marion I. Menzel⁴, Rolf F. Schulte⁴, Axel Haase¹, Hans Stødkilde-Jørgensen²
 ¹Institute of Medical Engineering, Technische Universität München, Munich, Germany; ²MR Research Centre, Aarhus University, Aarhus, Denmark; ³Nuklearmedizinische Klinik und Poliklinik, Technische Universität München, Germany; ⁴GE Global Research, Munich, Germany
- 1892. ¹⁹F-MRI Applications of PERFECTA at 7T: Characterization Studies on Phantoms and on *In Vitro* Fibroblasts and T Cells.

Alfonso Mastropietro¹, Chiara Cordiglieri², Ilaria Tirotta³,⁴, Francesca Baldelli Bombelli³,⁴, Fulvio Baggi², Giuseppe Resnati³,⁴, Pierangelo Metrangolo³,⁴, Maria Grazia Bruzzone⁵, Ileana Zucca¹

¹Scientific Direction Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy; ²Neurology IV Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy; ³Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and, Politecnico di Milano, Milan, Italy; ⁴Fondazione Centro Europeo Nanomedicina, Milan, Italy; ⁵Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy

1893. Chemical Exchange Sensitive Spin-Lock MRI of 3-O-Methyl-D-Glucose Transport in Brain

Hunter Mehrens¹, Tao Jin¹, Seong-Gi Kim¹, ¹Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ²Center for Neuroscience Imaging Research, Institue for Basic Science, SKKU, Suwon, Korea

1894. New PARACEST MRI Contrast Agents Based on the DOTMA Scaffold

Mojmir Suchy¹, Alex X. Li², Robert Bartha², Robert H. E. Hudson¹ ¹Department of Chemistry, University of Western Ontario, London, Ontario, Canada; ²Centre for Functional and Metabolic Mapping, University of Western Ontario, London, Ontario, Canada

1895. Enriching Fluorine Nanoparticles with Saturated Phosphoethanolamines to Improve Dendritic Cell Detection by ¹⁹F Magnetic Resonance In Vivo

Sonia Waiczies¹, Stefano Lepore¹, Min-Chi Ku¹, Helmar Waiczies¹, ², Conrad Martin¹, Susanne Drechsler¹, Karl Sydow³, Margitta Dathe³, Andreas Pohlmann¹, Thoralf Niendorf⁴ ¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine, Berlin, Germany, Germany; ²MRI.Tools

GmbH, Berlin, Germany; ³Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany

1896. Detecting Nanodiamonds with DNP

David E J Waddington¹,², Mathieu Sarracanie¹,³, Huiliang Zhang,³⁴, David Reilly², Ronald L. Walsworth,³⁴, Matthew S. Rosen¹, ³

¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW, Australia; ³Department of Physics, Harvard University, Cambridge, MA, United States; ⁴Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, United States

1897. High Relaxivity MRI Contrast Agents Based on a Closo-Borane Platform Shatadru Chakravarty¹,², Lixin Ma¹, Lalit N. Goswami¹, Satish S. Jalisatgi¹, M. Frederick Hawthorne¹ ¹Radiology, International Institute of Nano and Molecular Medicine-University of Missouri-Columbia, Columbia, MO, United States; ²Radiology, Michigan State University, East Lansing, MI, United States

1898. Vesicles Assembled from New Dendrimeric Amphiphiles and Their Applicative Potential as MRI-Based **Theranostic Nanocarriers**

Miriam Filippi¹, Deyssy Patrucco¹, Jonathan Martinelli², Lorenzo Tei², Mauro Botta², Enzo Terreno¹, ³ ¹Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Center, University of Turin, Turin, To, Italy: ²Department of Sciences and Technological Innovation, University of Eastern Piedmont 'A. Avogadro', Alessandria, Al, Italy; ³Center for Preclinical Imaging, University of Turin, Colleretto Giacosa, To, Italy

1899. Improved Liposomes-Based Ca(II) Responsive MRI Contrast Agents

Francesca Garello¹, Sandip Vibhute², Serhat Gunduz², Nikos K. Logothetis², Goran Angelovski², Enzo Terreno¹ ¹University of Torino, Torino, Italy; ²Max Planck Institute for Biological Cybernetics, TYbingen, Germany

1900. Organic Radical Contrast Agents Based on Polyacetylenes Containing 2,2,6,6-Tetramethylpiperidine 1-Oxyl (TEMPO): Targeted MR /optical Bimodal Imaging of Folate Receptor Expressing HeLa Tumors In Vitro and In Vivo

Lixia Huang¹, Chenggong Yan², Danting Cui², Xiang Liu², Xiaodan Lu², Yichen Yan³, Xiangliang Tan², Jun Xu⁴, Yingjie Mei⁵, Xinwei Lu³, Yikai Xu², Ruiyuan Liu³

¹Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ²Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ³School of

Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; ⁴Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ⁵Philips Healthcare, Guangzhou, Guangdong, China

1901. Detection of Matrix Metalloproteinases Using an "on/off" ¹⁹F MR Probe

Alex John Taylor¹, James Lee Krupa², Huw Williams³, Dorothee P. Auer¹, Simon R. Johnson, Neil R. Thomas², Henryk Michael Faas

¹Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²School of Chemistry, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ³Centre for Biomolecular Sciences, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

1902. Perfluoro-15-Crown-5-Ether-Loaded Hollow Mesoporous Silica Spheres for 19F In Vivo MRI Ina Vernikouskava¹,², Alexander Pochert³, Mika Linden³, Volker Rasche¹, ¹Internal Medicine II, University Hospital of Ulm, Ulm, Baden-Wuerttemberg, Germany; ²Small Animal MRI, University of Ulm,

Ulm, Baden-Wuerttemberg, Germany; ³Inorganic Chemistry II, University of Ulm, Ulm, Baden-Wuerttemberg, Germany

1903. Multifunctional Gd2O3-Loaded Nanoprobe for Targeted Molecular MR Imaging

Xiang Liu¹, Xiaodan Lu¹, Chenggong Yan¹, Danting Cui¹, Yichen Yan², Xinwei Lu², Queenie Chan³, Jun Xu⁴, Yikai Xu¹, Ruivuan Liu²

¹Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ²School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China; ³Philips Healthcare, HongKong, China; ⁴Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

1904. Facilitating the EPR Effect and Improving Tumor Penetration and Nanoparticle Delivery with Ultrafine Iron **Oxide Nanoparticle as Observed Via Its Dual-Contrast Effect** Jing Huang¹,², Liya Wang¹,², Hui Wu¹,², Lily Yang³, Hui Mao¹,²

Laboratory of Functional-Molecular Imaging and Nanomedicine, Emory University School of Medicine, Atlanta, GA, United States; ²Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; ³Surgery, Emory University, Atlanta, GA, United States

1905. Theranostic Prospects of Gadolinium-Based Mesoporous Silica Nanoparticle Probes for Functional MRI Veronika Mamaeva¹, ², Tina Pavlin³, ⁴, Didem Sen Karaman⁵, Diti Desai⁵, Melanie Ostermann¹, Jessica Rosenholm⁵, Emmet McCormack¹, ²

¹Department of Clinical Science, Hematology Section, University of Bergen, Bergen, Norway; ²Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway; ³Department of Biomedicine, Molecular Imaging Center, University of Bergen, Bergen, Norway; ⁴Department of Radiology, Haukeland University Hospital, Bergen, Norway; ⁵Laboratory of Physical Chemistry, Åbo Akademi University, Turku, Finland

- 1906. Brain Redox Imaging Using Nitroxide Contrast Agents in Pentylenetetrazol-Kindled Mice with EPR Imaging Hirotada G. Fujii¹, Miho C. Emoto¹, Mayumi Yamato², Ken-ichi Yamada⁴ ¹Center for Medical Education, Sapporo Medical University, Sapporo, Hokkiado, Japan; ²Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- 1907. A NIR830-Bevacizumab-Conjugated Iron Oxide Nanoparticle Probe for Vascular Endothelial Growth Factor (VGEF) Targeted MRI

Run Lin¹,², Jing Huang¹, Liya Wang¹, Yuancheng Li¹, Prieto Ventura Veronica E¹, Kevin Kim¹, Hui Mao¹ ¹Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; ²Department of Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China

1908. Probing Gq-GPCR Signaling in Rat Primary Motor Cortex with Pharmacogenetic fMRI Manasmita Das¹, Heather K. Decot¹, Yu-Chieh Kao¹, Oyarzabal Esteban¹, Yen-Yu Ian Shih¹ ¹Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

1909. Engineering of a MRI Theranostic Agent for Detection and Treatment of Cerebrovascular Amyloid

Jens T. Rosenberg¹, ², Kristen MJ Ahlschwede³, ⁴, Edward K. Agyare⁵, Geoffery L. Curran⁴, Samuel C. Grant¹, ², Karunya K. Kandimalla³, ⁴

¹National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, United States; ²Chemical & Biomedical Engineering, Florida State University, Tallahassee, FL, United States; ³Pharmaceutics and Brain Barriers Research Center, University of Minnesota, Minneapolis, MN, United States; ⁴Neurology, Neuroscience and Biochemistry/Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, United States; ⁵College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, FL, United States; ⁶L, United States; ⁶L, United States; ⁶College of Pharmacy and Pharmaceutical Science, Florida A&M University, Tallahassee, FL, United States; ⁶L, United

- 1910. An EDB Fibronectin Specific Contrast Agent for Molecular Imaging of Cancer Metastasis Zheng Han¹, Zhuxian Zhou¹, Maneesh Gujrati¹, Zheng-Rong Lu¹ ¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
- 1911. Improving Tumor Targeting and MRI of Pancreatic Cancer Using IGF-1R Targeted "Stealth" Iron Oxide Nanoparticles

Yuancheng Li¹, ², Hongyu Zhou³, Run Lin¹, ², Liya Wang¹, ², Jing Huang¹, ², Hui Wu¹, ², Lily Yang³, Hui Mao¹, ² ¹Laboratory of Functional-Molecular Imaging and Nanomedicine, Emory University School of Medicine, Atlanta, GA, United States; ²Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Surgery, Emory University School of Medicine, Atlanta, School of Medicine, At

1912. Paramagnetic Micelles Targeting VCAM-1 Receptors for Imaging Inflamed Endothelium by MRI Amerigo Pagoto¹, Rachele Stefania², Francesca Garello², Francesca Arena², Giuseppe Digilio³, Silvio Aime², Enzo Terreno²

¹University of Torino, Torino, Italy; ²University of Torino, Italy; ³University of Eastern Piedmont, Italy

1913. Functional Brain Mapping in ADHD Rats Using Manganese-Enhanced MRI

Chieh-Yin Chang¹, Chi-Ru Lai¹, Bor-Show Tzang², Vincent Chin-Hung Chen³, Yeu-Sheng Tyan¹, ⁴, Jun-Cheng Weng¹, ⁴ ¹School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; ²Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Taichung, Taiwan; ³Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan; ⁴Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan

1914. Manganese Accumulations in Brain and Toenails Reflect Different Time Periods of Exposure Chien-Lin Yeh¹, ², Eric Ward¹, Sandy Snyder¹, Frank Rosenthal¹, Ulrike Dydak¹, ² ¹School of Health Sciences, Purdue University, West Lafayette, IN, United States; ²Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States

1915. Adult Neurogenesis and Olfactory Activity Regulate Olfactory Bulb Volume

Nikorn Pothayee¹, Diana Cummings², Timothy Schoenfeld³, Heather Cameron³, Leonardo Belluscio², Alan Koretsky¹ ¹Laboratory of functional and molecular imaging, NINDS, NIH, Bethesda, MD, United States; ²Developmental neural plasticity section, NINDS, NIH, Bethesda, MD, United States; ³Neuroplasticity Section, NIMH, NIH, Bethesda, MD, United States

1916. Distinction Between Pro and Anti-Inflammatory Macrophages Using MRI Relaxometry and Quantitative Susceptibility Mapping

Wassef Khaled¹, Benjamin Leporq¹, Jing Hong Wan¹, Philippe Garteiser¹, Simon Auguste Lambert¹, Nathalie Mignet², Bich-Thuy Doan², Simona Manta², Sophie Lotersztajn¹, Bernard Edgar Van Beers¹ ¹Center of research on inflammation, Paris 7 University; INSERM U1044, Paris, France; ²Chemical, Genetic and Imaging Pharmacology Laboratory; CNRS UMR 8151; INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Chimie-ParisTech, Paris, France 1917. A Novel Assay for the In Vivo Detection of Reactive Oxygen Species Using MRI

Gary Stinnett¹, Kelly Ann Moore¹, Errol Loïc Samuel², Ming Ge³, Brett Graham³, James Tour², Robia G. Pautler¹ ¹Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; ²Department of Chemistry, Rice University, Houston, TX, United States; ³Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States

- 1918. Non-Invasive Analysis of the Degree of Inflammatory Areas by In Vivo Time Course MRI Using Long Circulating Nanoparticles in Myocardial Inflammation Rat Model Hyeyoung Moon¹, Jongeun Kang², Hyunseung Lee¹, Kwan Soo Hong¹, ² ¹Division of MR research, Korea Basic Science Institute, Cheongju, Chungcheongbuk-do, Korea; ²Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Korea
- 1919. Morphological and Quantitative Imaging of Iron Using MP-RAGE and UTE Sequences Wen Hong¹, Qun He², Hongda Shao², Jiang Du² ¹Radiology, China-Japan friendship hospital, Beijing, China; ²Radiology, UC, San Diego, San Diego, CA, United States
- 1920. Characterization of Perfluorocarbon Relaxation Times and Optimization of Fluorine-19 MRI at 3 Tesla Roberto Colotti¹,², Christine Gonzales³, Juerg Schwitter³, Ruud B. van Heeswijk¹,²
 ¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Division of Cardiology and Cardiac MR Center, Department of Internal Medicine, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- 1921. Disentangling Different Gadolinium Concentrations: A Comparison Between High Field and Very Low Field MRI.

Allegra Conti¹, Massimo Caulo¹,², Angelo Galante³, Vittorio Pizzella¹,², Gian Luca Romani¹,², Stefania Della Penna¹,²</sup>

¹Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio Univ. of Chieti and Pescara, Chieti, CH, Italy; ²Institute for Advanced Biomedical Technologies (ITAB), G. D'Annunzio Univ. of Chieti and Pescara, Chieti, CH, Italy; ³MESVA, Department of Life, Health & Environmental Sciences, L'Aquila University, L'Aquila, AQ, Italy

1922. Design of Implantable Alginate MRI PH Sensors for Cell Transplantation

Nikita Oskolkov¹, ², Xiaolei Song¹, ², Kannie W.Y. Chan¹, ², Jeff W.M. Bulte¹, ², Michael T. McMahon¹, ² ¹The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States; ²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

1923. Iron Retention in Nonproliferative Cancer Cells Allows for Tracking by MRI: An *In Vivo* Assay for Studying Cancer Cell Dormancy

Donna H. *Murrell*¹, ², *Fiona Dickson*¹, *Amanda M*. *Hamilton*¹, *Paula J*. *Foster*¹, ² ¹Imaging, Robarts Research Institute, London, Ontario, Canada; ²Medical Biophysics, Western University, London, Ontario, Canada

- 1924. Tracking and Quantification of T-Cells Labelled with Iron Oxide Nanoparticles Using Positive Contrast Jinjin Zhang¹, Sidath C. Kumarapperuma², Katie Hurley³, Hattie L. Ring³, Michael Garwood¹ ¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ²Department of Medicinal Chemistry, University of Minnesota, MN, United States; ³Department of Chemistry, University of Minnesota, MN, United States
- 1925. Labeling of Human Peripheral Blood Mononuclear Cells with a Fluorine-19 Perfluorocarbon Agent Permits Their In Vivo Detection Using Cellular MRI and Allows for Cancer Vaccine Formulation Comparisons Corby Fink¹, ², Jeffrey Gaudet, ²³, Paula Foster, ²³, Gregory Dekaban¹, ² ¹Microbiology and Immunology, Western University, London, Ontario, Canada; ²Robarts Research Institute, London, ON, Canada; ³Medical Biophysics, Western University, London, ON, Canada

1926. MR Molecular Imaging of Homing of Integrin-Linked Kinase-Overexpressing Mesenchymal Stem Cells After Transplantation Via Coronary in Swine Acute Myocardial Infarction Model

Dan Mu¹, Hong Ming Yu², Bin Zhu³, Biao Xu⁴, Wei Bo Chen⁵

¹Drum Tower Hospital, Nanjing, Jiangsu, China; ²Drum Tower Hospital, Jiangsu, China; ³Radiology, Drum Tower Hospital, Nanjing, Jiangsu , China; ⁴cardiology, Drum Tower Hospital, Jiangsu, China; ⁵Philips Healthcare, Shanghai, China

1927. MRI Detection of Brain Metastases Labeled with Iron Oxide Nanoflowers

*Emily Alexandria Waters*¹, *Luke Vistain*², *Liang Mu*³, *Madhavi Puchalapalli*⁴, *Chad Haney*¹, *Basma El Haddad*⁴, *Brandon Parker*³, *Thomas Meade*⁵, *Jennifer Koblinski*⁴ ¹Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, United States; ²Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, United States; ³Northwestern University, IL, United States; ⁴Pathology, Virginia Commonwealth University, Richmond, VA, United States; ⁵Chemistry, Northwestern University, Evanston, IL, United States;

1928. In Vivo Quantification of Human Natural Killer Cells by ¹⁹F MRI

Kai D. Ludwig¹, Myriam Bouchlaka², Jeremy Gordon¹, Christian Capitini², Sean B. Fain¹, ³ ¹Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Pediatrics and Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States; ³Radiology and Biomedical Engineering, University of Wisconsin-Madison, WI, United States

1929. Tracking Iron Labeled Stem Cells in Bone Injury Model Using MRI

May A. Taha¹, Roman Krawetz², Derrick E. Rancourt², John R. Matyas³, Jeff F. Dunn¹ ¹Department of Radiology, Calgary, Alberta, Canada; ²Department of Biochemistry & Molecular Biology, Alberta, Canada; ³Department of Comparative Biology and Experimental Medicine, Faculties of Medicine and Veterinary Medicine, University of Calgary, Alberta, Canada

1930. Comparison of Iron-Related MR Susceptibility and Transverse Relaxation Rates in the P19 Cell Model Linshan Liu^l, ², Neil Gelman^l, ², Rebecca McGirr^l, R. Terry Thompson^l, ², Frank S. Prato^l, ², Lisa Hoffman^l, ², Donna E. Goldhawk^l, ² ¹Imaging program, Lawson Health Research Institute, London, Ontario, Canada; ²Medical Biophysics, Western University, London, Ontario, Canada

1931. Fluorine-19 Labelling of Stromal Vascular Fraction Cells for Clinical Imaging Applications Laura C. Rose¹, Guan Wang¹, Brooke M. Helfer², Charles F. O'Hanlon², Amnon Bar-Shir¹, Dara L. Kraitchman¹, Ricardo L. Rodriguez³, Jeff WM Bulte¹ ¹Johns Hopkins University, Baltimore, MD, United States; ²Research & Development, Celsense Inc, PA, United States; ³CosmeticSurg LLC, Luthersville, MD, United States

1932. RRx-001 Oxidation of Redox Sensitive Protein Thiols in Tumors Measured by Gd-LC7-SH Enhanced MRI in Preclinical Tumor Models

Natarajan Raghunand¹, Jan Scicinski², Bryan Oronsky², Bhumasamudram Jagadish³, Eugene A. Mash³, Ronald L. Korn⁴

¹Cancer Imaging & Metabolism, Moffitt Cancer Center, Tampa, FL, United States; ²RadioRx Pharmaceuticals, Mountain View, CA, United States; ³Dept. of Chemistry & Biochemistry, The University of Arizona, Tucson, AZ, United States; ⁴Imaging Endpoints LLC, Scottsdale, AZ, United States

1933. Non-Invasive Assessment of Hyperthermic Ultrasound Enhanced Tumor Drug Delivery with CE-MRI Nadia Rose Ayat¹, Rebecca Schur¹, Zheng-Rong Lu¹ ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States 1934. Eight Channel Tx/Rx RF Coil Array for ¹H/¹⁹F MR of the Human Knee and Fluorinated Drugs at 7.0 T Yiyi Ji¹, Helmar Waiczies¹, ², Lukas Winter¹, Pavla Neumanova¹, Daniela Hofmann¹, Jan Rieger¹, ², Ralf Mekle³, Sonia Waiczies¹, Thoralf Niendorf¹, ⁴ ¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine, Berlin, Germany; ²MRI.TOOLS GmbH,

Berlin, Germany; ³Medical Physics, Physikalisch-Technische Bundesanstalt, Berlin, Germany; ⁴Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center, Berlin, Germany

1935. Initial Evaluation of an MR-Hyperthermia Activated Thermosensitive Drug Delivery System

Matthew Tarasek¹, Amanda Aleong², ³, Jinzi Zheng², ³, Yannan Dou⁴, Christine Allen³, ⁴, David Jaffray³, ⁴, Tom Foo¹, Desmond T.B. Yeo¹

¹MRI, GE Global Research, Niskayuna, NY, United States; ²Princess Margaret Cancer Centre, Toronto, Canada; ³Techna Institute, University Health Network, Toronto, Canada; ⁴University of Toronto, Toronto, Canada

1936. Functionalized Mesoporous Silica Iron Oxide Nanoparticles for Thermal Therapy and T₁ Contrast

Hattie L. Ring¹, ², Katie R. Hurley², Michael Etheridge³, ⁴, Jinjin Zhang¹, ⁵, Nathan D. Klein², Connie Chung, ³⁴, Qi Shao⁴, John C. Bischof, ³⁴, Christy L. Haynes², Michael Garwood¹, ⁶

¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Chemistry, University of Minnesota, Minneapolis, MN, United States; ³Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States; ⁴Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; ⁵Physics, University of Minnesota, Minneapolis, MN, United States; ⁶Radiology, University of Minnesota, Minneapolis, MN, United States

1937. Quantitative Treatment Response Mapping in Asthma Patients Using ³He Ventilation MRI Felix C. Horn¹, Helen Marshall¹, Richard Kay², Christopher E. Brightling³, Juan Parra-Robles¹, Jim M. Wild¹ ¹Academic Radiology, Sheffield University, Sheffield, South Yorkshire, United Kingdom; ²Novartis, Switzerland; ³University of Leicester, United Kingdom

1938. NanoIron Phantom to Validate In-Vivo Iron Mapping Stephen E. Russek¹, Kathryn E. Keenan¹, Karl Stupic¹, Michael A. Boss¹, Zydrunas Gimbutas¹, Andrew M. Dienstfrey¹, Robert J. Usselman²

¹NIST, Boulder, CO, United States; ²University of Montana, Bozeman, MT, United States

1939. Machine Learning and Computer Vision Based Quantification of Cell Number in MRI-Based Cell Tracking Muhammed Jamal Afridi¹, Matt Latourette², Margaret F. Bennewitz³, Arun Ross¹, Xiaoming Liu¹, Erik M. Shapiro⁶ ¹Department of Computer Science and Engineering, Michigan State University, East Lansing, MI, United States; ²Department of Radiology, Michigan State University, East Lansing, MI, United States; ³Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States

Traditional Poster

MRS Acquisition Methods

Exhibition Hall Wednesday 10:00-12:00

1940. Natural Abundance of Glycogen and Lipids in Human Calf Muscle Measured Before and After Exercise by ¹³C MRS at 7T

Eulalia Serés Roig¹, Rolf Gruetter¹,²

¹Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; ²Department of Radiology, Universities of Lausanne and Geneva, Vaud, Switzerland

1941. Quantum Coherence Spectroscopy to Measure 1D ¹H-[¹³C]-Lipid Signals

Lucas Lindeboom¹,², Robin A. de Graaf³, Christine I. Nabuurs,²⁴, Matthijs KC Hesselink⁴, Joachim E. Wildberger², Patrick Schrauwen¹, Vera B. Schrauwen-Hinderling¹,²

¹Department of Human Biology, Maastricht University Medical Center, Maastricht, Netherlands; ²Department of Radiology, Maastricht University Medical Center, Maastricht, Netherlands; ³Department of Diagnostic Radiology, Magnetic Resonance Research Center, Yale University School of Medicine, New Haven, CT, United States; ⁴Department of Human Movement Sciences, Maastricht University Medical Center, Maastricht, Netherlands

 1942. In Vivo MR Spectroscopy of Human Breast Tissue: Composition of Lipids at Clinical Field Strength (3 T). Amandine COUM¹, ², Lobna OULDAMER³, ⁴, Laurent BARANTIN⁵, Fanny NOURY¹, ², Anne VILDE⁶, Aymeric SAINT- HILAIRE⁶, Philippe BOUGNOUX, ⁴⁷, Giulio GAMBAROTA¹, ²
 ¹LTSI, Université de Rennes 1, Rennes, France; ²INSERM UMR 1099, Rennes, France; ³Department of Gynecology, CHU Tours, Tours, France; ⁴INSERM U1069, Université François-Rabelais, Tours, France; ⁵INSERM U930, Université François-Rabelais, Tours, France; ⁶Department of Radiology, CHU Tours, Tours, France; ⁷Department of Oncology, CHU Tours, Tours, France

- **1943.** A Novel Broadband Coil for Multinuclear Spectroscopy Hai Lu¹, Shumin Wang¹ ¹Auburn University, Auburn, AL, United States
- 1944. The Effect of the Chemical Shift Displacement Artefact on J-Modulation in the STEAM Sequence Carolina Campanha Fernandes¹, Emma Louise Hall², Chen Chen², Peter Gordon Morris², Carlos Garrido Salmon², ³ ¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; ²Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; ³Department of Physics, University of Sao Paulo, Ribeirao Preto, Brazil
- 1945. Influence of Different TE on Reliability of Brain Metabolites Quantification in High Field 1H MRS

Veronika Rackayova¹, Cristina Cudalbu², Lijing Xin¹, Nicolas Kunz³, Jana Starcukova⁴, Zenon Starcuk, Jr.⁴, Rolf Gruetter¹, ²

¹Laboratory of Functional and Metabolic Imaging, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; ²Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; ³Centre d'Imagerie Biomedicale (CIBM-AIT), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; ⁴Institute of Scientific Instruments of the Academy of Sciences of the Czech Republic, Brno, Czech Republic

- 1946. Requirements for Optimal B₀ Shimming for a Spectroscopy Voxel in the Frontal Cortex at Ultra-High Fields Ariane Fillmer¹, Anke Henning, ¹² ¹Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; ²Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- 1947. Long Echo Time In-Vivo Spectroscopy Without J-Modulation Clark Lemke¹, Aaron Hess², Jamie Near³, Stuart Clare¹, Peter Jezzard¹, Uzay Emir¹ ¹FMRIB, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²OCMR, University of Oxford, Oxford, Oxfordshire, United Kingdom; ³Douglas Institute, McGill University, Verdun, Quebec, Canada
- 1948. A Method to Obtain 2D High Resolution MRS Under Inhomogeneous Magnetic Fields Liangjie Lin¹, Zhiliang Wei¹, Jian Yang¹, Yanqin Lin¹, Zhong Chen¹ ¹Electronic Science, Xiamen University, Xiamen, Fujian, China
- **1949.** Quantitation Error in ¹H MRS Caused by B₁ Inhomogeneity and Chemical Shift Displacement at High B₀ Field Hidehiro Watanabe¹, Nobuhiro Takaya¹, Fumiyuki Mitsumori¹ ¹Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
- 1950. Comparison of GABA+ and Macromolecular-Suppressed GABA Measurements Ashley D. Harris¹, ², Nicolaas AJ Puts¹, ², Peter B. Barker¹, ², Richard A. E. Edden¹, ² ¹The Russell H Morgan Department of Radiology and Radiological Sciences, The John Hopkins School of Medicine, Baltimore, MD, United States; ²F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

1951. Measuring Glutathione Using 1H MR Spectroscopy at 3T: MEGA-PRESS Vs. STEAM

Felix Raschke¹, Ralph Noeske², Dorothee P. Auer¹, Dineen Rob¹

¹Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²GE Healthcare, Berlin, Germany MR Application and Workflow Development, Berlin, Germany

1952. Glutathione Cannot Be Quantified Reliably from Short Echo PRESS Spectra

Faezeh Sanaei Nehzad¹, Adriana Anton², Bill Deakin², Stephen Williams¹ ¹Center for Imaging Science, University of Manchester, Manchester, United Kingdom; ²Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom

1953. Measuring GABA Using 1H MR Spectroscopy at 3T: A Comparison of Techniques

Felix Raschke¹, Antonio Napolitano², Ralph Noeske³, Dineen Rob¹, Dorothee P. Auer¹ ¹Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²Enterprise Risk Management, Unity of Imaging Research, Bambino Gesù Children's Hospital, Rome, Italy; ³GE Healthcare, Berlin, Germany MR Application and Workflow Development, Berlin, Germany

1954. Glutathione Measurement Using Short-TE ¹H MRS at 3T: Accuracy and Precision Assessment Lijing Xin¹, ², Rolf Gruetter³, ⁴

¹ Laboratory for Functional and Metabolic Imaging (LIFMET), École polytechnique fédérale de Lausanne, Lausanne, Vaud, Switzerland; ²Department of Psychiatry, Lausanne University Hospital, Lausanne, Vaud, Switzerland; ³Laboratory for Functional and Metabolic Imaging (LIFMET), École polytechnique fédérale de Lausanne, Lausanne, Vaud, Switzerland; ⁴Department of Radiology, University of Lausanne and Geneva, Vaud, Switzerland

1955. 2D Correlated MRS as a Quantitative Method to Asses Liver Fatty Acid Composition of Ob/ob Mouse Dimitri Martel¹, Jean Baptiste Langlois², Denis Friboulet¹, Olivier Beuf¹, Helene Ratiney¹ ¹CREATIS; CNRS UMR 5220; INSERM U1044; Université Lyon 1; INSA Lyon, Villeurbanne, France; ²CERMEP- Imagerie du Vivant, Bron, France

1956. Quantification of Individual and Group Uncertainty of Gamma-Aminobutyric Acid Concentration in Different Brain Regions Using Residual Bootstrap Analysis

Song Chen¹, Meng Chen¹, Congyu Liao¹, Linfei Wen¹, Darong Zhu², Xu Yan³, Keith Heberlein⁴, Jianhui Zhong¹ ¹Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; ²Hangzhou First People's Hospital, Hangzhou, Zhejiang, China; ³MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China; ⁴Siemens Medical Solutions USA, Inc, Malvern, PA, United States

1957. Editing Efficiency for Macromolecule-Suppressed and Unsuppressed J-Edited GABA Spectroscopy Georg Oeltzschner¹, ², Pallab K. Bhattacharyya³, ⁴ ¹Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Düsseldorf, Germany; ²Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; ³Imaging Institute, Cleveland Clinic, Cleveland, OH, United States; ⁴Cleveland Clinic Lerner College of Medicine - CWRU, Cleveland, OH, United States

1958. Resolution-Enhanced MRS of Red Bone Marrow Fat Via Intermolecular Double-Quantum Coherences in Human Knees

Jianfeng Bao¹, ², *Yuchuan Zhuang¹*, *Yanqin Lin²*, *Zhong Chen²*, *Jianhui Zhong¹* ¹University of Rochester, Rochester, NY, United States; ²Xiamen University, Xiamen, Fujian, China

1959. Accelerating NMR Spectroscopy with Low Rank Constraint on Time Domain Signal Xiaobo Qu¹, Maxim Mayzel², Jian-Feng Cai³, Zhong Chen¹, Vladislav Orekhov² ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Swedish NMR Centre, University of Gothenburg, Gothenburg, Sweden; ³Department of Mathematics, University of Iowa, Iowa City, IA, United States

1960. Six Fucose-α(1-2) Sugars and α-Fucose Assigned in Human Brain Using In Vivo L-COSY

Scott Gregory Quadrelli¹, Alexander Lin², Saadallah Ramadan¹, Carolyn Mountford¹, ³ ¹Centre for MR in Health, The University of Newcastle, Callaghan, NSW, Australia; ²Center for Clinical Spectroscopy, Brigham & Women's Hospital - Harvard Medical School, Boston, MA, United States; ³Center for Clinical Spectroscopy, Brigham & Women's Hospital - Harvard Medical School, Boston, NSW, Australia

Traditional PosterMRS Processing & QuantificationExhibition HallWednesday 10:00-12:00

1961. Design of MRI-MRS Fused Phantom for Quantitative Evaluation of Metabolites and Enhanced Quality Assurance Testing

Kyu-Ho Song¹, Sang-Young Kim¹, Do-Wan Lee¹, Jin-Young Jung¹, Hyeon-Man Baek², Bo-Young Choe¹ ¹Department of Biomedical Engineering, Research Institute of Biomedical Engineering, Seoul, Korea; ²Center for Magnetic Resonance Research, Korea Basic Science Institute, Chungbuk, Korea

1962. The Effect of Software Processing Pipelines on 7T MRS Metabolite Quantification

Lotte C. Houtepen¹, Remmelt R. Schür¹, Vincent O. Boer², Bart van de Bank³, Tom Scheenen³, Anouk Marsman⁴, Christiaan H. Vinkers¹, Dennis W.J. Klomp²

¹Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands; ²Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ³Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, Gelderland, Netherlands; ⁴Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States

1963. Magnetic Resonance Spectroscopy Data De-Noising Using Semi-Classical Signal Analysis Approach: Application to *In-Vitro* MRS Data.

Meriem Taous Laleg¹, Zineb Kaisserli¹, Rick Achten², ³, Hacene Serrai², ³ ¹King Abdullah University of Sciences and Engineering, Jeddah, Saudi Arabia; ²University of Gent, Gent, Belgium; ³universitair Ziukenhuis Gent, Gent, Belgium

1964. One-Class Classifier for Accurate Brain Tissue Classification from Noisy 1H-MRS Spectra

Keyvan Ghassemi¹, ², Mohammadreza Khanmohammadi Khorami¹, Hamidreza Saligheh Rad², ³ ¹Chemistry Department, Faculty of Science,, Imam Khomeini International University, Qazvin, Iran; ²Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ³Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

1965. The Influence of Macromolecule Baseline on ¹H Magnetic Resonance Spectroscopic Imaging Reproducibility Rebecca Birch¹, ², Andrew C. Peet², ³, Hamid Dehghani⁴, Martin Wilson², ³ ¹PSIBS Doctoral Training Centre, University of Birmingham, Birmingham, West Midlands, United Kingdom; ²Department of Oncology, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, United Kingdom; ³School of Cancer Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom; ⁴School of Computer Science, University of Birmingham, Birmingham, West Midlands, United Kingdom

1966. Correction for Tissue Fractions in GABA-Edited MRS Ashley D. Harris¹,², Nicolaas AJ Puts¹,², Richard A. E. Edden¹,² ¹The Russell H Morgan Department of Radiology and Radiological Sciences, The John Hopkins School of Medicine, Baltimore, MD, United States; ²F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

1967. MRS Data Quantification Through the KBDM: Reducing the Effect of Noise by Using Multiple Signal Truncations

Danilo Mendes Dias Delfino da Silva¹, Thales Sinelli Lima¹, Alberto Tannús¹, Claudio José Magon¹, Fernando Fernandes Paiva¹

Traditional Poster

¹Department of Physics and Interdisciplinary Science, Sao Carlos Institute of Physics, University of Sao Paulo, Sao Carlos, Sao Paulo, Brazil

1968. A Lorentzian-Function-Sparsity Approach for Fast High-Dimensional Magnetic Resonance Spectroscopy Boyu Jiang¹, Xiaoping Hu², Hao Gao¹, ³

¹School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China; ²Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States; ³Department of Mathematics, Shanghai Jiao Tong University, Shanghai, Shanghai, China

1969. Simple Method for Automatic Frequency and Phase Alignment of In-Vivo MR Spectra

Evita C. Wiegers¹, Bart Philips¹, Hanne M. M. Rooijackers², Alan J. Wright³, Arend Heerschap¹, Marinette van der Graaf¹,⁴

¹Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Internal Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ³Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; ⁴Pediatrics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands

1970. Water Sidebands Removal in Spectral Fitting

Jan Willem van der Veen¹, Stefano Marenco², Jun Shen¹ ¹Magnetic Resonance Spectroscopy Core, NIH, NIMH, Bethesda, MD, United States; ²CTNB, NIH, NIMH, Bethesda, MD, United States

1971. A New Algorithm for the Fusion of MRSI & MRI on the Brain Tumour Diagnosis

Xin Liu¹, Yuqian Li¹, Yiming Pi¹, Sofie Van Cauter², Yi Yao³, ⁴, Jiunjie Wang⁵ ¹School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, China; ²Department of Radiology, University Hospitals Leuven, Belgium; ³School of Communication and Information Engineering, University of Electronic Science and Technology of China, Chengdu, China; ⁴National Key Laboratory of Science and Technology on Communications, China; ⁵Department of Medical Imaging and Radiological Sciences, ChangGung University, Taiwan

1972. Joint Estimation of Spectral Parameters from MR Spectroscopic Imaging Data

Qiang Ning¹, Chao Ma², Zhi-Pei Liang¹, ² ¹Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

- **1973.** Multimodal Post-Processing Software for MRSI Data Evaluation *Michal Považan¹, Bernhard Strasser¹, Gilbert Hangel¹, Stephan Gruber¹, Siegfried Trattnig¹, Wolfgang Bogner¹* ¹MRCE, Department of Biomedical Imaging and Image-guided therapy, Medical University Vienna, Vienna, Austria
- 1974. Test-Retest Quantitation of Absolute Metabolite Concentrations with Partial Volume Correction Using Different Segmentation Methods Ahmad Seif Kanaan¹, ², André Pampel¹, Kirsten Müller-Vahl², Harald E. Möller¹ ¹Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany; ²Department of Psychiatry, Social Psychiatry and Psychotherapy, Medical School of Hannover, Niedersachsen, Germany
- 1975. Absolute Metabolite Quantification of ³¹P MRS Spectra in the Rat Brain *In Vivo* at 17.2 Tesla Using LCModel *Alfredo Liubomir Lopez Kolkovsky¹, Fawzi Boumezbeur¹* ¹Neurospin, I2BM, Commissariat à l'Energie Atomique, Gif-sur-Yvette, Essonne, France
- 1976. Don't Use Relative Cramer Rao Lower Bounds for Elimination of Low Quality Data! Roland Kreis¹, Sreenath Pruthviraj Kyathanahally¹ ¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland

1977. Necessity of Tissue Volume Composition Correction for Internal Referencing Niklaus Zoelch¹, Andreas Hock¹, ², Milan Scheidegger¹, ², Lea Hulka², Boris Quednow², ³, Anke Henning¹, ⁴ ¹Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; ²Department of Psychiatry, Psychotherapy and Psychosomatics Hospital of Psychiatry, University of Zurich, Zurich, Switzerland, ³Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland; ⁴Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

1978. Comparison of Different Methods for Combination of Multichannel Spectroscopy Data

Ioannis Angelos Giapitzakis¹, Anke Henning¹, ² ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland

Traditional Poster MRS Animal Cells Exhibition Hall Wednesday 10:00-12:00

1979. Mapping Stimulus-Evoked Glutamate and Lactate Changes in the Mouse Brain Using Spectroscopic Imaging Aline Seuwen¹, Aileen Schröter¹, Markus Rudin¹, ² ¹Institute for Biomedical Engineering, ETH & University of Zürich, Zürich, Switzerland; ²Institute for Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland

1980. High Glutamine C57BL/6 Mice

Ivan Tkac¹

¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

1981. In Vivo Longitudinal Measurements of Brain Energy Metabolism in Chronic Hepatic Encephalopathy in a Rat Model Using 31P MRS and 1H MRS

Veronika Rackayova¹, Bernard Lanz¹, Corina Berset², Rolf Gruetter¹, ², Valérie A. McLin³, Olivier Braissant⁴, Cristina Cudalbu²

¹Laboratory of Functional and Metabolic Imaging, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; ²Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Vaud, Switzerland; ³Swiss Center for Liver Disease in Children, Department of Pediatrics, University Hospitals Geneva, Geneva, Switzerland; ⁴Service of Biomedicine, University Hospital of Lausanne, Lausanne, Vaud, Switzerland

1982. Influence of Short-Term Intermittent Ethanol Exposure and Abstinence on Cerebral Neurometabolite Concentrations Determined by Ex Vivo 11.7-T Proton Nuclear Magnetic Resonance Spectroscopy Do-Wan Lee¹,², Jung-Whan Min³, Jung-Hoon Lee¹,⁴, Kyu-Ho Song¹, Bo-Young Choe¹ ¹Department of Biomedical Engineering, and Research Institute of Biomedical Engineering. The Catholic University of Korea College of Medicine, Seoul, Korea; ²Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea; ³Department of Radiological Science, The Shingu University College of Korea, Seongnam, Korea; ⁴Department of Radiology, Kyunghee Medical Center, Seoul, Korea

1983. 1H-MRS of Human Pancreas Grafts: Relaxation Times and Metabolite Concentrations Jan Weis¹, Lina Carlbom¹, Lars Johansson¹, Alireza Biglarnia², Olle Korsgren³, Håkan Ahlström¹ ¹Department of Radiology, Oncology and Radiation Science, Uppsala University, Uppsala, Sweden; ²Department of Surgical Sciences, Uppsala University, Uppsala, Sweden; ³Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden

1984. Optimized Protocol and Evaluation of Referencing Methods in Quantitative 1H NMR Lipid Analysis Santosh Kumar Bharti¹, Zaver Bhujwalla² ¹Div. of Cancer Imaging Research, The Russell H. Morgan Dept. of Radiolog and Radiological science, Johns Hopkins University,

School of Medicine, Baltimore, MD, United States; ²Div. of Cancer Imaging Research, The Russell H. Morgan Dept. of Radiolog and Radiological science, Johns Hopkins University, School of Medicine, Baltimore, MD, United States

1985. Action of Antibiotics Characterized and Predicted by NMR Metabolomics

Verena Hoerr¹, ², Gavin E. Duggan³, Lori Zbytnuik⁴, Karen K.H. Poon⁴, Bettina Löffler², Hans J. Vogel³ ¹Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; ²Institute of Medical Microbiology, Jena University Hospital, Jena, Germany; ³Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada; ⁴Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada

1986. Lipid Characterization of Different Organs Using HR-MAS NMR Spinning Speed Variation.

Gaëlle Diserens¹, Christina Precht², Martina Vermathen³, Anna Oevermann⁴, Chris Boesch¹, Peter Vermathen¹ ¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Dept. of Clinical Veterinary Medicine, University Bern, Bern, Switzerland; ³Dept. of Chemistry & Biochemistry, University Bern, Bern, Switzerland; ⁴Dept. of Clinical Research and Veterinary Public Health, University Bern, Bern, Switzerland

1987. Direct Determination of Phosphate Sugars in Biological Material by ¹H High Resolution-Magic Angle Spinning (HR-MAS) NMR Spectroscopy

Gaëlle Diserens¹, Martina Vermathen², Ilche Gjuroski², Sandra Eggimann³, Christina Precht⁴, Chris Boesch¹, Peter Vermathen¹

¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Dept. of Chemistry & Biochemistry, University Bern, Bern, Switzerland; ³University Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland; ⁴Dept. of Clinical Veterinary Medicine, University Bern, Bern, Switzerland

1988. Metabolic Profiling of Milk in Preeclampsia Patients & Healthy Controls: An *In-Vitro* NMR Study Naranamangalam R. Jagannathan¹, Deepti Upadhyay¹, Uma Sharma¹, Kamini Dangat², Anita Kilari², Savita

Mehendale³, *Sanjav Lalwani⁴*, *Sadhana Joshi*

¹Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of Nutritional Medicine, Bharati Vidyapeeth University, Pune, Maharashtra, India; ³Department of Obstetrics and Gynecology, Bharati Vidyapeeth University, Pune, Maharashtra, India; ⁴Department of Pediatrics, Bharati Vidyapeeth University, Pune, Maharashtra, India

1989. Metabolic Perturbations of Rat Spleen Due to Chronic Cold Stress: 1H NMR Based Metabolomic Study SONIA GANDHI¹, HEMANTH KUMAR B S¹, SUNIL KOUNDAL¹, SHUBHRA CHATURVEDI², RAJENDRA P. TRIPATHI¹, SUBASH KHUSHU¹ ¹NMR Research Centre, INMAS, DELHI, India; ²Division and Cyclotron & Radiopharmaceutical Sciences, INMAS, DELHI, India

1990. Proton NMR-Based Metabolomic Profiling in Pulmonary Tuberculosis Patients

Savita Singh¹, Sujeet Mewar², Deepti Upadhyay², Uma Sharma², Anand Jaiswal³, Rohit Sarin³, Naranamangalam R. Jagannathan², H K. Prasad¹

¹Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Department of TB and Respiratory Diseases, National Institute of Tuberculosis and Respiratory Diseases, New Delhi, Delhi, India

1991. Elevated Levels of Acetate in ¹H NMR of Urine Could Have Diagnostic Utility in Pediatric Urinary Tract Infection

Omkar B. Ijare¹, Tedros Bezabeh^{1, 2}, Tom Blydt-Hansen³, Martin Reed⁴, Ian C.P. Smith¹ ¹Chemistry, University of Winnipeg, WB, Canada; ²Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; ³Pediatrics, University of British Columbia, Vancouver, BC, Canada; ⁴Radiology, University of Manitoba, Winnipeg, MB, Canada

1992. Ex Vivo Quality-Related Changes in Fish Muscle and Fish Eggs During Storage by High-Resolution ¹ H Magnetic Resonance Spectroscopy Via Spatial Encoding Intermolecular Single-Quantum Coherence Xiaohong Cui¹, Yali Jin¹, Honghao Cai¹, Yulan Lin¹, Zhong Chen¹

¹Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, Fujian, China

1993. High Resolution Magic Angle Spinning 1H NMR Spectroscopic Investigation of Listeria Brainstem Encephalitis in Small Ruminants: Preliminary Results

Christina Precht¹, Gaëlle Diserens², Martina Vermathen³, Anna Oevermann⁴, Torsten Seuberlich⁴, Josiane Lauper¹, Daniela Gorgas¹, Chris Boesch², Peter Vermathen²

¹Dept. of Clinical Veterinary Medicine, University Bern, Bern, Switzerland; ²Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ³Dept. of Clinical Research and Veterinary Public Health, University Bern, Bern, Switzerland

1994. Metabonomics Study of Urine in Patients with Celiac Disease Using In-Vitro Proton MR Spectroscopy Naranamangalam R. Jagannathan¹, Deepti Upadhyay¹, Uma Sharma¹, Prasenjit Das², Siddharth Dutta Gupta², Govind K. Makharia³
¹Department of NMR and MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Department of Gastroenterology & Human Nutrition, All India

1995. A High-Resolution 2D J-Resolved NMR Method for Intact Biological Samples Yuqing Huang¹, Chunhua Tan¹, Shuhui Cai¹, Zhong Chen¹ ¹Electronic Science, Xiamen University, Xiamen, Fujian, China

Institute of Medical Sciences, New Delhi, Delhi, India

Traditional Poster Non Proton MRI

Exhibition Hall Wednesday 10:00-12:00

1996. B₀ Insensitive Biexponentially Weighted ²³Na Imaging Nadia Benkhedah¹, Armin M. Nagel¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

1997. Assessing Water Influx and Retention in the Brain of AQP4 Knockout Mice by ¹⁷O-MRI

Yifan Zhang¹, Bernadette O. Erokwu², Yuchi Liu¹, George W. Farr³, ⁴, Walter F. Boron⁴, Chris A. Flask⁵, ⁶, Xin Yu, ⁴⁵ ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States; ³Aeromics, LLC, Cleveland, OH, United States; ⁴Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, United States; ⁵Biomedical Engineering and Radiology, Case Western Reserve University, Cleveland, OH, United States; ⁶Pediatrics, Case Western Reserve University, Cleveland, OH, United States;

1998. Sodium (23Na) and UTE MRI for Detection of Nerve Cell Injuries in Concussed Patients: Preliminary Study Yongxian Qian¹, Luke C. Henry²
¹Qian's Lab for MRI, General Labs Cloud LLC, Pittsburgh, PA, United States; ²Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States

- 1999. Prediction of Treatment Response in Pancreatic Cancer Using EPR Oxygen Imaging Shingo Matsumoto¹, ², Keita Saito¹, Jeeva P. Munasinghe³, Nallathamby Devasahayam¹, James B. Mitchell¹, Robert J. Gillies⁴, Murali C. Krishna¹ ¹Radiation Biology Branch, National Cancer Institute, NIH, Bethesda, MD, United States; ²Hokkaido University, Sapporo, Hokkaido, Japan; ³Mouse Imaging Facility, NINDS, NIH, Bethesda, MD, United States; ⁴Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
- **2000.** *In Vivo* Chloride Quantification with Partial Volume Corrected ³⁵Cl-MRI *Sebastian C. Niesporek¹, Aaron S. Kujawa¹, Nadia Benkhedah¹, Armin M. Nagel¹* ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

2001. 3D-DLCS Reconstruction of Asymmetrically Undersampled Radial ²³Na-MRI Nicolas G. R. Behl^l, Christine Gnahm^l, Peter Bachert^l, Armin M. Nagel^l ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Traditional Poster MRS Normal & Ageing Brain Exhibition Hall Wednesday 10:00-12:00

2002. Reduced NAA and Glutamate in Healthy Military Subjects Compared to Civilian Controls H_{ij} M_{ij} M_{ij}

Huijun Liao¹, Kristin Heaton², Praveen Merugumala¹, Jessica Saurman², Xi Long¹, Irina Orlovsky², Sai Merugumala¹, Kelly Rudolph², Nicole Murphy², Benjamin Rowland¹, Alexander P. Lin¹ ¹Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, United States; ²Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, United States

- 2003. Quantitative Evaluation of the First Order Rate Constant of Creatine-Kinase Reaction in Ovine Heart Using Magnetization Transfer ³¹P Magnetic Resonance Spectroscopy (MT-³¹P-MRS) Bijaya Thapa¹, Marjanna Dahl², Deborah Frank², Phillip Burch³, Eun-Kee Jeong¹, ⁴ ¹Dept. of Physics and Astronomy, Utah Center for Advanced Imaging Research., University of Utah, Salt Lake City, UT, United States; ²Dept. of Pediatrics, University of Utah, UT, United States; ³Dept. of Surgery, University of Utah, UT, United States; ⁴Dept. of Radiology, Korea University, Seoul, Korea
- 2004. In Vivo Quadrupolar Splitting of Potassium (³⁹K) MR Spectra in Human Thigh Muscle Manuela B. Rösler¹, Nadia Benkhedah², Armin M. Nagel², Tanja Platt², Peter Bachert², Reiner Umathum² ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

2005. Detection of GABA Concentration in ACC and OCC by MEGA-PRESS

Darong Zhu¹, Song Chen², Xu Yan³, Linfei Wen², Congyu Liao², Meng Chen², Keith Heberlein⁴, Jianhui Zhong² ¹Hangzhou First People's Hospital, Hangzhou, Zhejiang, China; ²Center for Brain Imaging Science and Technology, Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, China; ³MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China; ⁴Siemens Medical Solutions USA, Inc, Malvern, PA, United States

2006. Evaluation of Glutamatergic Metabolism and Its Role in Neurovascular Coupling by Combined Proton Magnetic Resonance Spectroscopy and Pseudo-Continuous Arterial Spin Labeling in Aging Pui Wai Chiu¹, Peiying Liu², Queenie Chan³, Raymond Chuen Chung Chang⁴, Leung Wing Chu³, Hanzhang Lu², Henry Ka Fung Mak¹

¹Diagnostic Radiology, The University of Hong Kong, Hong Kong, Hong Kong; ²Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, United States; ³Philips Healthcare, Hong Kong, Hong Kong; ⁴Laboratory of Neurodegenerative Disease, Department of Anatomy, The University of Hong Kong, Hong Kong, Hong Kong; ⁵Division of Geriatric Medicine, Department of Medicine, Queen Mary Hospital, Hong Kong, Hong Kong

2007. Multi-Voxel Imaging of GABA Temporal Dynamics: A Double-Blind Drug-Challenge Crossover Study at 4 Tesla

John Jensen¹, ², Stephanie Licata¹, ², Lisa Nickerson¹, ², Marisa Silveri¹, ², Carolyn Caine², Kristina Wang², Rosemond Villefuerte², Kevin Hill¹, ², David Olson¹, ²

¹Harvard Medical School, Boston, MA, United States; ²McLean Hospital, Belmont, MA, United States

Traditional Poster

MRS Neurological Diseases

Exhibition Hall Wednesday 10:00-12:00

2008. Decreased Glutamate in the Periaqueductal Gray Associates with Neuropathic Pain Yazhuo Kong¹, Uzay Emir¹, George Tackley¹, Lucy Matthews, Charlotte Stagg¹, Irene Tracey¹, Jacqueline Palace ¹FMRIB Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, Oxfordshire, United Kingdom

2009. Comparison of the Effects of Integrase Inhibitors and Efaverenz on Brain Biochemistry

Praveen Dev Merugumala¹, April Long¹, Huijun Liao¹, Yvonne Robles², Nina Lin³, Alexander P. Lin¹ ¹Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, United States; ²Infectious Disease Clinic, Brigham and Women's Hospital, Boston, MA, United States; ³Infectious Disease Clinical Research Unit, Boston University School of Medicine, Boston, MA, United States

2010. Dynamic Proton MRS Following the Infusion of [U-13C] Glucose to Measure Glutamate Metabolism in Temporal Lobe Epilepsy

Brenda Bartnik-Olson⁷, Daniel Ding², John Howe², Amul Shah², Travis Losey³ ¹Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States; ²School of Medicine, Loma Linda University, Loma Linda, CA, United States; ³Neurology, Loma Linda University Medical Center, Loma Linda, CA, United States

2011. Neurometabolic Changes Observed in the Anterior Cingulate Cortex and the Thalamus in Schizophrenia and in Unipolar Mood Disorder Relative to Healthy Controls at 7T

Reggie Taylor¹,², Betsy Schaefer³, Elizabeth Ösuch²,³, Maria Densmore², Nagalingam Rajakumar³, Jean Theberge¹,², Peter Williamson,²³

¹Medical Biophysics, Western University, London, ON, Canada; ²Imaging, Lawson Health Research Institute, London, ON, Canada; ³Psychiatry, Western University, London, ON, Canada

2012. Proton MRS Shows Cerebral Lipid Accumulation in Chanarin-Dorfman Syndrome

Marinette van der Graaf¹, Marleen CDG Huigen¹, Eva Morava¹, ², A Carin M Dassel³, Maurice AM van Steensel⁴, ⁵, Marieke MB Seyger¹, Ron A. Wevers¹, Michèl A. Willemsen¹ ¹Radboud University Medical Center, Nijmegen, Netherlands; ²Tulane University Medical School, New Orleans, LA, United States; ³Deventer Hospital, Deventer, Netherlands; ⁴Maastricht University Medical Center, Maastricht, Netherlands; ⁵Institute of Medical Biology, Immunos, Singapore

2013. 7T MRS in Patients with 1.5T Normal Medically-Refractory Temporal Lobe Epilepsy Simona Nikolova¹, Jorge Burneo², Robert Bartha³ ¹Robarts Research Institute, London, ON, Canada; ²Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada; ³Medical Biophysics, University of Western Ontario, London, Ontario, Canada

2014. T2 Measurements of Childhood Brain Tumours and Metabolite Concentration Correction Dominic Carlin¹, ², Ben Babourina-Brooks¹, ², Martin Wilson¹, ², Andrew C. Peet¹, ² ¹School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom; ²Birmingham Children's Hospital, Birmingham, United Kingdom

Traditional Poster MRSI

Exhibition Hall Wednesday 10:00-12:00

2015. Comparison of Radially Sampled FbSSFP Sequences for Direct ³¹P MRI Kristian Rink¹, Nadia Benkhedah¹, Moritz C. Berger¹, Peter Bachert¹, Armin M. Nagel¹ ¹German Cancer Research Center (DKFZ), Heidelberg, Germany

2016. Lipid and Macromolecule Suppression by Double Inversion Recovery in Metabolic Mapping of the Brain at 7T Gilbert Hangel¹, Bernhard Strasser², Michal Považan², Stephan Gruber², Marek Chmelik², Siegfried Trattnig², Wolfgang Bogner²

¹MCRE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Vienna, Austria; ²MCRE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Wien, Vienna, Austria

- 2017. High Resolution 1H MRSI Without Lipid Suppression at Short Echo Times Using Variable Density Spirals Ipshita Bhattacharya^l, Mathews Jacob^l ¹The University of Iowa, Iowa City, IA, United States
- 2018. Efficient Spectroscopic Imaging by an Optimized Encoding of Pre-Targeted Brain Main Metabolic Resonances Zhiyong Zhang¹, ², Noam Shemesh¹, ³, Lucio Frydman¹ ¹Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel; ²Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ³Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
- **2019.** Accelerated TE-Averaged Echo-Planar 3D Spectroscopic Imaging: Pilot Validation in Human Brain Zohaib Iqbal¹, Neil E. Wilson¹, Brian L. Burns¹, Margaret A. Keller¹, Michael Albert Thomas¹ ¹University of California - Los Angeles, Los Angeles, CA, United States
- 2020. Semi-Laser 5D Echo-Planar J-Resolved Spectroscopic Imaging: Pilot Validation in Prostate Cancer Zohaib Iqbal¹, Neil E. Wilson¹, Rajakumar Nagarajan¹, Daniel A. Margolis¹, Robert E. Reiter², Steven S. Raman¹, Michael Albert Thomas¹
 ¹Radiological Sciences, University of California - Los Angeles, Los Angeles, CA, United States; ²Urology, University of California -Los Angeles, Los Angeles, CA, United States

Traditional Poster Pre-Clinical fMRI

Exhibition Hall Wednesday 10:00-12:00

2021. Restoring Susceptibility Induced MRI Signal Loss in Rat Deep Brain Structures at 9.4T and Acquiring True Whole Brain Scale FcMRI Network

Rupeng Li¹, Xiping Liu², Jason W. Sidabras I¹, Eric S. Paulson³, Andrzej Jesmanowicz¹, James S. Hyde¹ ¹Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ²Dermatology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States

2022. Regional Alterations Between Different Anaesthesia Protocols Effects on the Mice Brain Using Resting-State fMRI

Tong Wu¹, Joanes Grandjean², Simone C. Bosshard³, Markus Rudin², David Reutens³, Tianzi Jiang¹, ⁴ ¹Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; ²Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ³The Centre for Advanced Imaging, The University of Queensland, Queensland, Australia; ⁴Brainnetome Centre, Institute of Automation, Chinese Academy of Sciences, Beijing, China

2023. The Constituents of Default Mode Network in Rats

Li-Ming Hsu¹, Xia Liang¹, Hong Gu¹, Julia K. Brynildsen¹, Jennifer A. Stark², Kia Jackson³, Allison Hoffman³, Hanbing Lu¹, Elliot A. Stein¹, Yihong Yang¹ ¹Neuroimaging Research Branch, National institute on drug abuse, Baltimore, MD, United States; ²Maryland Neuroimaging Center, University of Maryland, MD, United States; ³Center for Tobacco Products, FDA, MD, United States

2024. Exploration of Functional Organization in Human Cervical Spinal Cord Using Resting State fMRI Xiaojia Liu¹, ², Fuqing Zhou³, Xiang Li³, Jiaolong Cui³, Mengye Lyu¹, ², Adrain Tsang¹, ², Iris Y. Zhou¹, ², Ed X. Wu¹, ², Yong Hu³

¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; ³Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China

2025. Inter-Hemispheric Resting State Functional Connectivity in Anesthesia Induced Unconsciousness Yuncong Ma^l, Christina Hamilton^l, Pablo D. Perez^l, Zhifeng Liang^l, Nanyin Zhang^l

¹Department of Bioengineering, The Pennsylvania State University, State College, PA, United States

- 2026. Changes in Resting State Networks and Biochemistry in a Mouse Model of Inflammatory Pain Robert Becker¹, Anke Tappe-Theodor², Ainhoa Bilbao³, Rainer Spanagel³, Wolfgang Weber-Fahr¹ ¹Research group Translational Imaging, Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, BW, Germany; ²Pharmacological institute, Heidelberg University, Heidelberg, BW, Germany; ³Department of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim / Heidelberg University, Mannheim, BW, Germany
- 2027. The Relationship Between States of Consciousness and Brain Connectivity: A Potential Biomarker for Discriminable States of Consciousness Christina Hamilton¹, Yuncong Ma¹, Pablo Perez¹ ¹Pennsylvania State University, State College, PA, United States
- 2028. Network Modeling of Mouse Brain fMRI Under the Effect of Different Anesthetics Qasim Bukhari¹, Aileen Schröter¹, Markus Rudin¹, ² ¹Institute of Biomedical Engineering, ETH and University of Zürich, Zürich, Switzerland; ²Institute of Pharmacology and Taxicology, University of Zürich, Zürich, Switzerland
- 2029. Contributions of Spiking Activity to the fMRI Response in the Rat Olfactory Bulb Alexander John Poplawsky¹, Mitsuhiro Fukuda¹, Seong-Gi Kim², ³
 ¹Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ²Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, Korea; ³Biomedical Engineering and Biological Sciences, Sungkyunkwan University (SKKU), Suwon, Korea

2030. Near-Physiological Mouse fMRI of Nociception

Henning Matthias Reimann¹, Jaroslav Marek¹, Jan Hentschel¹, Till Huelnhagen¹, Andreas Pohlmann¹, Thoralf Niendorf⁴, ²

¹Berlin Ültrahigh Field Facility (B.U.F.F.), Max Delbrueck Center for Molecular Medicine, Berlin-Buch, Berlin, Germany; ²Experimental and Clinical Research Center, Charite-Universitatsmedizin, Berlin, Germany

- 2031. Determination of Sources for Evoked BOLD Response Under Hyperbaric Oxygen Damon Philip Cardenas¹, ², Eric R. Muir¹, ³, Shiliang Huang³, Timothy Q. Duong¹, ³
 ¹University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ²Biomedical Engineering, University of Texas San Antonio, San Antonio, TX, United States; ³Research Imaging Institute, San Antonio, TX, United States
- 2032. Etomidate: A Novel Anesthetic of Choice for Functional Magnetic Resonance Imaging in Mice Georges Hankov^{*1}, ², Marija M. Petrinovic^{*1}, Aileen Schroeter², Andreas Bruns¹, Markus Rudin², ³, Markus von Kienlin¹, Basil Künnecke¹, Thomas Mueggler⁴ ¹Neuroscience Discovery, F. Hoffmann-La Roche Pharmaceuticals Ltd, Basel, Basel-City, Switzerland; ²Institute for Biomedical Engineering, University of Zurich and ETH, Zurich, Switzerland; ³Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland; ⁴Neuroscience Discovery, F. Hoffmann-La Roche Pharmaceuticals Ltd, Basel, Basel-City, Switzerland
- 2033. MEMRI and BOLD Analyses of the Olfactory Perception System in Response to Odorant Stimuli in Mice Hirotsugu Funatsu¹, Sosuke Yoshinaga¹, Haruna Goto¹, Makoto Hirakane¹, Shigeto Iwamoto¹, Hiroaki Terasawa¹ ¹Department of Structural BioImaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- 2034. Functional MRI of the Main and Accessory Olfactory System in the Whole Rodent Brain

Eric R. Muir¹, Linlin Cong¹, KC Biju², William E. Rogers¹, Robert A. Clark³, Timothy Q. Duong¹ ¹Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, United States; ²Department of Medicine, University of Texas Health Science Center, San Antonio, TX, United States; ³Institute for integration of Medicine & science and South Texas Veterans Health Care System, University of Texas Health Science Center, San Antonio, TX, United States 2035. A Reproducible Experimental Protocol for Longitudinal Rat fMRI Studies: Electrical Mystacial Pad Stimulation Under Isoflurane Anesthesia

Shin-Lei Peng¹, ², Ling-Yi Huang¹, Sheng-Min Huang¹, Yi-Chun Wu³, Hanzhang Lu², Fu-Chan Wei⁴, Chih-Jen Wen⁴, Hui-Yu Cheng⁴, Chih-Hung Lin⁴, Fu-Nien Wang¹ ¹Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; ²Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Molecular Imaging Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; ⁴Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan

- 2036. Mapping the Visual Pathway in the Mouse Brain Using Snapshot fMRI Arun Niranjan¹, Jack A. Wells¹, Mark F. Lythgoe¹ ¹Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom
- 2037. How Specific Is Specific? Stimulus-Evoked fMRI in Rats and Mice Giovanna Diletta Ielacqua¹, Aileen Schroeter¹, Mark Augath¹, Felix Schlegel¹, Markus Rudin¹, ² ¹Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland; ²Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- 2038. Functional Imaging at 14.1T Using High-Resolution Pass Band BSSFP Klaus Scheffler¹, Philipp Ehses¹, Yi He¹, Hellmut Merkle¹, Xin Yu¹ ¹MRC department, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, Tübingen, Germany

2039. T2 Weighted High-Resolution fMRI in Human Visual Cortex at 9.4 T Using 3D-GRASE

Valentin G. Kemper¹, Federico De Martino¹, ², Desmond H. Y. Tse³, ⁴, Benedikt A. Poser¹, Essa Yacoub², Rainer Goebel¹

¹Cognitive Neuroscience FPN, Maastricht University, Maastricht, Limburg, Netherlands; ²Center for Magnetic Resonance Research, CMRR, Radiology, University of Minnesota, Minneapolis, MN, United States; ³Neuropsychology and Psychopharmacology, FPN, Maastricht University, Maastricht, Limburg, Netherlands; ⁴Radiology, University Medical Centre, Maastricht University, Limburg, Netherlands

2040. BOLD-Signal Representation of Incisional and Inflammatory Pain in Rat Brain After Noxious Electrical and Noxious Mechanical Stimulation

Saeedeh Amirmohseni¹, Daniel Segelcke², Esther Pogatzki-Zahn², Cornelius Faber¹ ¹Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; ²Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany

Traditional PosterfMRI MethodsExhibition HallWednesday 10:00-12:00

2041. Identify the "single Unit" of Neurovascular Coupling by Single-Vessel fMRI and Optogenetics

Maosen Wang¹,², Yi He¹, Yaohui Tang¹, Hellmut Merkle³, Xin Yu¹,² ¹Research Group of Translational Neuroimaging and Neural Conteol, High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Graduate School of Neural & Behavioural Sciences International Max Planck Research School, University of Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany; ³Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Str, National Institutes of Health, Bethesda, MD,, United States

2042. Combined Optogenetic fMRI and Optical Ca2+-Recordings for Functional Mapping of Thalamo-Cortical Circuits in Rat

Lydia Wachsmuth¹, Florian Schmid¹, Miriam Schwalm², Albrecht Stroh², Cornelius Faber¹

¹Department of Clinical Radiology, University of Münster, Münster, Germany; ²Institute of Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany

2043. Impact of Anesthesia on Optogenetically Activated Medical Prefrontal Functional Network in Rats

Zhifeng Liang¹,², Glenn D.R. Waston³,⁴, Kevin D. Alloway³,⁴, Gangchea Lee⁵, Thomas Neuberger⁵, Nanyin Zhang,⁴⁵ ¹Dept. of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States; ²Center for Neural Engineering, The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States; ³Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, United States; ⁴Center for Neural Engineering, The Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, United States; ⁵Dept. of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States; ⁵Dept. of

2044. Selective Optogenetic Stimulation of VTA Dopaminergic Neurons Enhances the Neuronal Representation of Sensory Input

Heather K. Decot¹, ², *Wei Gao³*, ⁴, *Joshua H. Jennings¹*, ², *Pranish A. Kantak²*, *Yu-Chieh Jill Kao⁴*, ⁵, *Manasmita Das⁴*, ⁵, *Ilana B. Witten⁶*, *Karl Deisseroth⁷*, *Yen-Yu Ian Shih⁴*, ⁵, *Garret D. Stuber¹*, ² ¹Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ²Departments of Psychiatry & Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ³Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ⁴Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ⁵Department of Neurology, University of North Carolina at Chapel Hill, NC, United States; ⁶Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton, NJ, United States; ⁷Department of Bioengineering, Stanford University, Stanford, CA, United States

2045. Multiband Multiecho 2D-EPI: Maximizing BOLD CNR for fMRI at 3T

E. Daniel P. Gomez¹, Jenni Schulz¹, Rasim Boyacioglu¹, David G. Norris¹, ², Benedikt A. Poser³ ¹Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Gelderland, Netherlands; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; ³Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands

2046. Reduction of Susceptibility Artifacts and Enhancement of BOLD Contrast in Functional MRI Using Multi-Band Multi-Echo GE-EPI

Tae Kim¹, Tiejun Zhao², Yoojin Lee¹, Kyongtae Ty Bae¹ ¹Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ²Siemens Medical Solution USA, Siemens MediCare USA, PA, United States

2047. Whole-Brain, Sub-Second Data Collection for Task-Evoked fMRI Studies Using Simultaneous Multi-Slice/multiband Acquisition

Stephanie McMains¹, R Matthew Hutchison¹, ², Ross W. Mair¹, ³ ¹Center for Brain Science, Harvard University, Cambridge, MA, United States; ²Department of Psychology, Harvard University, Cambridge, MA, United States; ³AA Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States

2048. Evaluation of Multi-Echo Multi-Band EPI with ME-ICA Denoising at 7T

Sascha Brunheim¹, ², Helen C. Lückmann¹, Prantik Kundu³, Rainer Goebel¹, ², Benedikt A. Poser¹ ¹Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands; ²Brain Innovation B.V., Maastricht, Netherlands; ³Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, MD, United States

2049. Comparing Resting State fMRI Cleaning Approaches Using Multi- And Single-Echo Acquisitions in Healthy Controls and Patients with ADHD

*Ottavia Dipasquale*¹, ², *Arjun Sethi*³, *Maria Marcella Laganà*², *Francesca Baglio*², *Prantik Kundu*⁴, *Giuseppe Baselli*¹, *Neil A. Harrison*³, *Mara Cercignani*³

¹Politecnico di Milano, Milan, MI, Italy; ²IRCCS, Don Gnocchi Foundation, Milan, MI, Italy; ³Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; ⁴Section on Advanced Functional Neuroimaging, Brain Imaging Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States 2050. Fast, Focused fMRI at High Spatial Resolution: 3D-EPI-CAIPI with Cylindrical Excitation

Wietske van der Zwaag¹, Mayur Narsude², Marzia Restuccia², Olivier Reynaud¹, ³, Daniel Gallichan¹, Jose P. Marques¹

¹CIBM, EPFL, Lausanne, VD, Switzerland; ²LIFMET, EPFL, Lausanne, VD, Switzerland; ³Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, NYU School of Medicine, New York, NY, United States

2051. Evaluation of 2D Multiband EPI Imaging for High Resolution, Whole Brain fMRI Studies at 3T: Sensitivity and Slice Leakage Artifacts

Nick Todd¹, *Steen Moeller²*, *Edward J. Auerbach²*, *Essa Yacoub²*, *Guillaume Flandin¹*, *Nikolaus Weiskopf¹* ¹Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom; ²Center for Magnetic Resonance Research, University of Minnesota, MN, United States

- 2052. High Temporal Resolution BOLD fMRI Based on Partial Separability Model with L2 Norm Constraint caiyun shi¹,², xiaoyong zhang², ³, guoxi xie², lijuan zhang², chunxiang jiang², xin liu²
 ¹ Shenzhen Key Lab for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, shenzhen, guangdong, China; ²Shenzhen Key Lab for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, shenzhen, guangdong, China; ³Centers for Biomedical Engineering, College of Information Science and Technology, University of Science and Technology of China, Hefei, China
- 2053. Multi-Echo Independent Component Analysis (ME-ICA) of High Frequency Resting-State fMRI Data Valur Olafsson¹, Prantik Kundu², Thomas Liu³ ¹Neuroscience Imaging Center, University of Pittsburgh, Pittsburgh, PA, United States; ²Dept. of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; ³Center for functional MRI, UCSD, La Jolla, CA, United States
- 2054. Simultaneous Multislice Acquisition to Avoid Motion Artifacts in Challenging Patient Populations Andrew S. Nencka¹, Andrew M. Huettner², L. Tugan Muftuler³, Kevin M. Koch¹, Rasmus Birn⁴ ¹Departments of Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ³Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Department of Psychiatry, University of Wisconsin, Madison, WI, United States
- **2055.** Nonlinear Trajectories in Real-Time fMRI Using Target Volumes Bruno Riemenschneider¹, Pierre Levan¹, Marco Reisert¹, Jürgen Hennig¹ ¹University Medical Center Freiburg, Freiburg, Germany
- 2056. The Magnitude Point Spread Function Is an Inadequate Measure of T₂^{*}-Blurring in EPI Laurentius Huber¹, Maria Guidi¹, Jozien Goense², Toralf Mildner¹, Robert Trampel¹, Jessika Schulz¹, Cornelius Eichner¹, Robert Turner¹, Harald E. Möller¹
 ¹Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; ²University of Glasgow, United Kingdom
- 2057. nMapping: High Speed, High SNR fMRI Using Direct Mapping of Functional Networks Eric Wong¹ ¹Radiology/Psychiatry, UC San Diego, La Jolla, CA, United States
- 2058. Assessment of Prospective Motion Correction Using Optical Tracking System for Reduction of Stimulus-Correlated False Positive Activations in High Spatial Resolution Functional Magnetic Resonance Imaging Ikuhiro Kida¹, ², Takashi Ueguchi¹, ², Yuichiro Matsuoka¹, ², Maxim Zaitsev³ ¹Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka, Japan; ²Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; ³University Medical Centre Freiburg, Freiburg, Germany

- 2059. Robust ACS Acquisition for 3D Echo Planar Imaging Dimo Ivanov¹, Markus Barth², Kâmil Uludağ ¹, Benedikt A. Poser¹ ¹Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands; ²University of Queensland, Brisbane, Australia
- 2060. Matched-Filter Acquisition of High-Resolution Single-Shot Spirals Lars Kasper¹,², Maximilian Haeberlin¹, Saskia Bollmann¹, S. Johanna Vannesjo¹, Bertram J. Wilm¹, Benjamin E. Dietrich¹, Simon Gross¹, Klaas E. Stephan², Klaas P. Pruessmann¹ ¹Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; ²Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland;
- 2061. Interactions Between Physiological Noise Correction and GRAPPA Reconstruction in EPI Data R. Allen Waggoner¹, Zhentao Zuo², Yan Zhuo², Topi Tanskanen¹, Kenichi Ueno³, Keiji Tanaka¹, Kang Cheng¹, ³ ¹Laboratory for Cognitive Brain Mapping, RIKEN - Brain Science Institute, Wako-shi, Saitama, Japan; ²State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ³RRC, RIKEN - Brain Science Institute, Wako-shi, Saitama, Japan
- 2062. The Effects of Coil Compression on Simultaneous Multislice and Conventional fMRI Alan Chu^l, Douglas Noll^l ¹Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- **2063. T2 Prepared RUFIS: A New Imaging Paradigm for 3D Whole-Brain, Silent and Distortion-Free BOLD fMRI** Ana Beatriz Solana Sánchez¹, Anne Menini¹, Laura Sacolick¹, Nicolas Hehn¹, Florian Wiesinger¹ ¹GE Global Research, Garching bei Muenchen, Bayern, Germany
- 2064. Poisson-Like Property of Spontaneous Event Trains and Its Relationship to Scale-Free Dynamics Jingyuan Chen¹, Gary Glover¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States
- 2065. Improvement of Task-Based and Resting-State fMRI Using GRAPPA Accelerated EPI with a FLASH Based Reference Scan

Siyuan Liu¹, Lalith Talagala², Souheil Inati³, Yisheng Xu¹, Ho Ming Chow¹, Gang Chen⁴, Allen Braun¹ ¹NIDCD, National Institutes of Health, Bethesda, MD, United States; ²NMRF/NINDS, National Institutes of Health, Bethesda, MD, United States; ³FMRIF/NIMH, National Institutes of Health, Bethesda, MD, United States; ⁴SSCC/NIMH, National Institutes of Health, Bethesda, MD, United States

2066. Novel Heterogeneity Analysis of Resting-State Fluctuations in First-Fit Seizures and New-Onset Epilepsy Lalit Gupta¹, Mariëlle Vlooswijk², Rob P. W. Rouhl², Rick Janssens², Anton de Louw³, Bert Aldenkamp³, Shrutin Ulman¹, René M.H. Besseling⁴, Paul A.M. Hofman², Jacobus F. A. Jansen⁴, Walter H. Backes⁴
¹Philips India Ltd., Bangalore, Karnataka, India; ²Dept of Neurology, Maastricht University Medical Center, Maastricht, Netherlands; ³Epilepsy Center Kempenhaeghe, Heeze, Netherlands; ⁴Department of Radiology, Maastricht University Medical Center, Maastricht, Netherlands

2067. Vascular Autocalibration of fMRI (VasA FMRI) Improves Sensitivity of Population Studies

ismem merit award magna cum laude Samira M. Kazan¹, Siawoosh Mohammadi², Martina F. Callaghan², Guillaume Flandin², Robert Leech³, Aneurin Kennerley⁴, Christian Windischberger⁵, Nikolaus Weiskopf² ¹Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom; ²Wellcome Trust Centre for

Neuroimaging, UCL Institute of Neurology, London, United Kingdom; ³Cognitive, Clinical and Computational Neuroimaging Lab, University of London, Imperial College, London, United Kingdom; ⁴Department of Psychology, University of Sheffield, Sheffield,

Traditional Poster

United Kingdom; 5MR Centre of Excellence, Centre for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria

2068. Improved Retrospective Motion Correction in fMRI Using a Biophysical Model

Tim M. Tierney¹, Louise J. Croft², Maria Centeno¹, Elhum A. Shamshiri¹, Suejen Perani¹, ³, Torsten Baldeweg⁴. Christopher A. Clark¹, David W. Carmichael¹ ¹Developmental Imaging and Biophysics, UCL Institute of Child Health, London, United Kingdom; ²Cognitive Neuroscience and Neuropsychiatry, UCL Institute of Child Health, London, United Kingdom; 3Department of Basic and Clinical Neuroscienc, KCL Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom; ⁴Cognitive Neuroscience and Neuropsychiatry, UCL Institute of Child Health, London, United Kingdom

- 2069. Analysis of Sampling Rate (TR) Dependence of Hurst Exponent of fMRI BOLD Time Series Muhammad Kaleem¹. Dietmar Cordes² ¹Ryerson University, Toronto, Ontario, Canada; ²Lou Ruvo Center for Brain Health, Las Vegas, NV, United States
- 2070. Signal Processing Spreads a Voxel's Temporal Frequency Task-Activated Peak and Induces Spatial **Correlations in Dual-Task Complex-Valued fMRI**

Marv C. Kociuba¹, Daniel B. Rowe¹, ² ¹Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, United States; ²Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States

- 2071. Laminar Time Course Extraction Over Extended Cortical Areas Tim van Mourik¹, Jan PJM van der Eerden¹, David G. Norris¹ ¹Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, Netherlands
- 2072. bOVOC: 200 Hz Balanced One-Voxel-One-Coil MREG at 9.4T Klaus Scheffler¹, Gabriele Lohmann¹, Christian Mirkes¹, Shajan Gunamony¹, Philipp Ehses¹ ¹MRC department, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, Tübingen, Germany

2073. Distortion-Corrected High Resolution Zoomed fMRI at 9.4 T

Jonas Bause¹,², Myung-Ho In³, Philipp Ehses¹,⁴, G. Shajan¹, Oliver Speck³, Rolf Pohmann¹, Klaus Scheffler¹,⁴ ¹High-Field Magnetic Resonance Center, Max Planck Insitute for Biological Cybernetics, Tuebingen, Germany; ²Graduate Training Centre for Neuroscience, University of Tuebingen, Tuebingen, Germany; ³Department for Biomedical Magnetic Resonance, University of Magdeburg, Magdeburg, Germany; ⁴Department of Biomedical Magnetic Resonance, University of Tuebingen, Tuebingen, Germany

2074. Factors Influencing Learning to Self-Regulate Brain Activity Using Real-Time FMRI: Comparison Between ismem merit award magna cum laude

Conscious Strategy and Contingent Feedback *Pradyumna Sepúlveda¹, ², Ranganatha Sitaram³, ⁴, Mohit Rana³, ⁵, Tomás Ossandón⁶, Marcelo Andía¹, ⁷, Cristián Montalba¹, Sergio Uribe¹, ⁷, Pablo Irarrázaval, ¹², Sergio Ruiz, ⁴⁶, Cristián Tejos¹, ²* ¹Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile; ²Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile; ³Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; ⁴Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany; ⁵Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Tübingen, Germany; ⁶Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica de Chile, Santiago, Chile; 7 Radiology Department, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile

2075. Functional Connectivity in Task Switching Paradigm Mitsunobu Kunimi¹, Sachiko Kiyama¹, Toshiharu Nakai¹ ¹National Center for Geriatrics and Gerontology, Obu, Aichi, Japan

summa cum laude

2076. High-Resolution Functional Imaging in the Human Brain Using Passband BSSFP at 9.4T

Klaus Scheffler¹,², Philipp Ehses¹,²

¹Dept. of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany; ²High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany

2077. Automated and Individualized fMRI Processing for Pre-Surgical Mapping: Comparison with MEG and **Cortical Stimulation.**

Tynan Stevens¹, Tim Bardouille², ³, Gerhard Stroink¹, David Clarke¹, ⁴, Ryan D'Arcy⁵, Steven Beyea, ¹² ¹Dalhousie University, Halifax, Nova Scotia, Canada; ²BIOTIC, Halifax, Nova Scotia, Canada; ³IWK Hospital, Halifax, Nova Scotia, Canada; ⁴QEII Health Sciences Centre, Halifax, Nova Scotia, Canada; ⁵Simon Fraser University, Burnaby, British Columbia, Canada

Traditional Poster Functional Connectivity Method & Applications

Wednesday 10:00-12:00 Exhibition Hall

2078. Disrupted Resting State Brain Connectivity in Fetal Complex Congenital Heart Disease

Vincent Kyu Lee^{1, 2}, Mark DeBrunner³, Jennifer A. Johnson³, Jodie Votava-Smith⁴, Vidya Rajagopalan⁵, Rafael Ceschin¹,², Michelle Gruss², Frederick S. Sherman³, Ashok Panigrahy, ¹² ¹Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ²Radiology, Children's Hospital of Pittsburgh, Pittsburgh, PA, United States; ³Cardiology, Children's Hospital of Pittsburgh, PA, United States; ⁴Cardiology, Children's Hospital of Los Angeles, CA, United States; ⁵Children's Hospital of Los Angeles, PA, United States

2079. Investigation of Optimal Echo Time for Resting-State fMRI Acquisition in Newborn Infants Maryam Abaei¹, Eugene P. Duff², Tomoki Arichi¹, ³, Jonathan O'Muircheartaigh¹, ⁴, Emer Hughes¹, Giulio Ferrazzi¹, Steve M. Smith², Serena Counsell¹, A David Edwards¹, ⁵, Daniel Rueckert⁶, Joseph V. Hajnal¹, ⁵ ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom; ³Department of Bioengineering, Imperial College, London, United Kingdom; ⁴Institute of Psychiatry, King's College London, London, United Kingdom; ⁵Division of Imaging Sciences and Biomedical, King's College London, London, United Kingdom; 'Biomedical Image Analysis Group, Department of Computing, Imperial College, London, United Kingdom

2080. Resting State Functional Connectivity Predicts Changes in Interoceptive Awareness Following Mindfulness Training

Maryam Falahpour¹, Lori Haase², Martin P. Paulus², Thomas T. Liu¹ ¹Center for Functional MRI, University of California San Diego, La Jolla, CA, United States; ²Department of Psychiatry, University of California San Diego, La Jolla, CA, United States

- 2081. The Relationship Between Level of Consciousness and Variability of Brain Connectivity Christina Hamilton¹, Yuncong Ma¹, Pablo Perez¹ ¹Pennsylvania State University, State College, PA, United States
- 2082. Modulation of Functional Connectivity During Finger Tapping and Resting State in Patients with MS Xiaopeng Zhou¹, Katherine A. Koenig¹, Erik B. Beall¹, Lael Stone¹, Robert Bermel¹, Michael D. Phillips¹, Mark J. Lowe

¹The Cleveland Clinic, Cleveland, OH, United States

2083. Reduced Brain Functional Network Dynamics in Propofol Sedation Characterized by Modularity and Time **Delayed Network Mutual Information Analysis** Guangyu Chen¹, Xiaolin Liu¹, Anthony G. Hudetz², Shi-Jiang Li¹

¹Biophysics, Medical College of Wisconsin, milwaukee, WI - Wisconsin, United States; ²Department of Anesthesiology, Medical College of Wisconsin, milwaukee, WI - Wisconsin, United States

2084. Increased Variability Across Time Accounts for Reduced Connectivity Within the Default Mode Network in Autism: A Dynamic FcMRI Study

Maryam Falahpour¹, Wesley K. Thompson², Angela E. Abbott³, Mark E. Mulvey³, Michael Datko³, Ralph-Axel Müller³, Thomas T. Liu¹

¹Center for Functional MRI, University of California San Diego, La Jolla, CA, United States; ²Department of Psychiatry, University of California San Diego, La Jolla, CA, United States; ³Brain Development Imaging Lab, Department of Psychology, San Diego State University, CA, United States

2085. Validation of In Vivo Structural Template of Human Brainstem Nuclei by fMRI at 7 Tesla

Marta Bianciardi¹, Nicola Toschi¹, ², Cornelius Eichner¹, Kawin Setsompop¹, Jonathan R. Polimeni¹, Bruce R. Rosen¹, Lawrence L. Wald¹

¹Department of Radiology, A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, United States; ²Medical Physics Section, Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome "Tor Vergata", Rome, Italy

2086. Functional Connectivity Analysis: Performance Comparison of Gradient and Spin Echo EPI Simultaneously Acquired

*Brice Fernandez*¹, *Victor Spoormaker*², *Philipp Sämann*², *Michael Czisch*² ¹Applications & Workflow, GE Healthcare, Munich, Germany; ²Neuroimaging Unit, Max Planck Institute of Psychiatry, Munich, Germany

2089. The Interaction of Physiological Noise Correction with Multi and Single Echo ICA Denoising Jennifer Evans¹, Prantik Kundu², Peter Bandettini¹ ¹NIH, Bethesda, MD, United States; ²Mount Sinai, NY, United States

2090. Neural Activity Associated with Spontaneous Eye Opening and Closure in the Awake Macaque Catie Chang¹, David A. Leopold², Hendrik Mandelkow¹, Marieke L. Schölvinck³, Jeff H. Duyn¹ ¹Advanced MRI Section, Laboratory of Functional and Molecular Imaging, NINDS, NIH, Bethesda, MD, United States; ²Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, United States; ³Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt am Main, Germany

2091. Propofol-Induced Reduction of Functional Connectivity in Large-Scale Brain Networks Defined at Fine Spatial Scales

Xiaolin Liu¹, Kathryn K. Lauer², B. Douglas Ward¹, Jeffrey R. Binder³, Shi-Jiang Li¹, Anthony G. Hudetz² ¹Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ²Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States

2092. Trends, Seasonality, and Persistence of Resting-State fMRI Over 185 Weeks

Ann Sunah Choe¹, ², Craig K. Jones³, ⁴, Suresh E. Joel³, ⁴, John Muschelli⁵, Visar Belegu⁶, ⁷, Martin A. Lindquist⁵, Brian S. Caffo⁵, Peter CM van Zijl³, ⁴, James J. Pekar³, ⁴

¹Radiology and radiological sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³Radiology and radiological sciences, Johns Hopkins School of Medicine, MD, United States; ⁴F. M. Kirby Research Center for Functional Brain Imaging,

^{2087.} Slice-Dynamic Shimming for Simultaneous Brain and Spinal Cord fMRI Christine Law¹, Haisam Islam¹, Gary Glover¹, Sean Mackey¹ ¹Stanford University, Stanford, CA, United States

 ^{2088.} T2*-Weighted Inner-Field-Of-View Echo-Planar Imaging of the Spinal Cord Jürgen Finsterbusch¹,²
 ¹Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Neuroimage Nord, University Medical Centers Hamburg-Kiel-Lübeck, Hamburg-Kiel-Lübeck, Germany

Kennedy Krieger Institute, MD, United States; ⁵Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, MD, United States; ⁶Neurology, Johns Hopkins School of Medicine, MD, United States; ⁷International Center for Spinal Cord Injury, Kennedy Krieger Institute, MD, United States

2093. Magnetic Vestibular Stimulation (MVS) Influences fMRI Resting-State Fluctuations: the Modulation of the Default-Mode Network as an Exemplary Case Rainer Boegle¹,², Thomas Stephan¹,³, Matthias Ertl²,³, Stefan Glasauer¹,⁴, Marianne Dieterich¹,³

¹German Center for Vertigo and Balance Disorders, DSGZ IFB-LMU, Munich, Bavaria, Germany; ²Graduate School of Systemic Neurosciences, LMU, Munich, Bavaria, Germany; ³Department of Neurology, LMU, Munich, Bavaria, Germany; ⁴Center for Sensorimotor Research, LMU, Munich, Bavaria, Germany

2094. Inter-Hemispheric Connectivity (Functional Homotopy) Is Reduced in Pediatric Epileptic Patients with Corpus Callosotomy

Peter S. LaViolette¹, Sean Lew², Scott D. Rand¹, Manoj Raghavan³, Kurt Hecox³, Mohit Maheshwari¹ ¹Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Neurology, Medical College of Wisconsin, Milwaukee, WI, WI, WI, WI, WI, WI, WI,

2095. Functional Relevance of Spatial ICA and K-Means Clustering

Jun Young Jeong¹, Julia Druzbicki², Kun-Han Lu¹, Haiguang Wen¹, Zhongming Liu¹, ³ ¹Electrical and computer engineering, Purdue University, West Lafayette, IN, United States; ²Department of statistics, Purdue University, IN, United States; ³Weldon school of biomedical engineering, Purdue University, IN, United States

- 2096. Analysis of High Frequency Resting State Networks in the Human Brain Cameron William Trapp¹, Kishore Vakamundi², Stefan Posse³
 ¹Physics, UNM, Coralles, NM, United States; ²DEPARTMENT OF PHYSICS AND ASTRONOMY, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM, United States; ³DEPARTMENT OF NEUROLOGY, UNIVERSITY OF NEW MEXICO, NM, United States
- **2097.** Identification of State Transitions and Durations in Resting-State Functional Connectivity Sadia Shakil¹, Chin-Hui Lee¹, Shella Keilholz, ¹² ¹Georgia Institute of Technology, Atlanta, GA, United States; ²Emory University, Atlanta, GA, United States
- 2098. Subcortical Structures in Resting State fMRI: Uncovering Functional Networks Involving Deep-Brain Structures Using Non-Local Mean Denoising at 1.5T' Michaël Bernier¹, Maxime Chamberland¹, Stephen Cunnane², Kevin Whittingstall³ ¹Nuclear medecine and radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada; ²Institut universitaire de gériatrie de Sherbrooke, Université de Sherbrooke, Sherbrooke, QC, Canada; ³Diagnostic radiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- 2099. Spin-Locked Oscillatory Excitation (SLOE): Towards In-Vivo Detection of Oscillating Neuronal Currents Jingwei Sheng¹, Yuhui Chai¹, Bing Wu², Weinan Tang¹, Jia-Hong Gao¹ ¹Center for MRI Research, Peking University, Beijing, China; ²GE Healthcare MR Research China, Beijing, China
- 2100. SEEP Contrast Highlights Different Functional Connectivity Networks Compared to BOLD Resting State fMRI Venkatagiri Krishnamurthy¹, Romeo S. Cabanban², Kaundinya S. Gopinath¹ ¹Dept. of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States; ²Center for Systems Imaging, Emory University, Atlanta, GA, United States
- **2101.** Automated Subject-Specific Seed Optimization Improves Dectection of Resting-State fMRI Connectivity *KISHORE VAKAMUDI*¹, ², *ELENA ACKLEY*², *STEFAN POSSE*, ¹²

¹DEPARTMENT OF PHYSICS AND ASTRONOMY, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM, United States; ²DEPARTMENT OF NEUROLOGY, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NM, United States

2102. Resting State Network Detection with Searchlight on Functional MRI

Shiyang Chen¹, ², Hasan Ertan Cetingul², Xiaoping Hu¹, ³, Mariappan S. Nadar² ¹The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; ²Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, United States; ³Biomedical Imaging Technology Center, Emory University, Atlanta, GA, United States

- 2103. Mapping Effective Connectivity in the Mouse Brain Using Granger Causality Md Taufiq Nasseef¹, ², Adam Liska¹, ², Stefano Panzeri¹, Alessandro Gozzi¹ ¹Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, TN, Italy; ²Center for Mind/Brain Sciences, University of Trento, Rovereto, TN, Italy
- 2104. Retrospective Nonlinear Spin History Motion Artifact Modeling and Correction with SLOMOCO Erik Beall¹, Mark Lowe¹
 ¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States
- 2105. SLOMOCO-Derived Slicewise Head Motion Produces Physiologic Signals and Reveals That Motion Is Hard to Characterize

Erik Beall¹, Mark Lowe¹ ¹Imaging Institute, Cleveland Clinic, Cleveland, OH, United States

Traditional Poster fMRI:Bold Physiology & Multimodal Imaging Exhibition Hall Wednesday 10:00-12:00

2106. Modification of a Standard MR-Compatible EEG Cap for Improved EEG Neurofeedback with Simultaneous fMRI

Vadim Zotev¹, *Ahmad Mayeli¹*, ², *Jerzy Bodurka¹*, ³ ¹Laureate Institute for Brain Research, Tulsa, OK, United States; ²Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, United States; ³College of Engineering, University of Oklahoma, Tulsa, OK, United States

2107. Contribution of a Brain-State Specific Neurophysiological Event to Large-Scale fMRI Signal Fluctuations Xiao Liu¹, Toru Yanagawa², David A. Leopold³, Marieke Schölvinck⁴, Catie Chang¹, Hiroaki Ishida⁵, Naotaka Fujji², Jeff H. Duyn¹

¹AMRI, LFMI, NINDS, NIH, Bethesda, MD, United States; ²BSI, RIKEN, Saitama, Japan; ³Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD, United States; ⁴Ernst Strüngmann Institute for Neuroscience, Frankfurt, Hessen, Germany; ⁵Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan

- 2108. EEG-fMRI Integration for the Study of Physiological Response to Intermittent Photic Stimulation Eleonora Maggioni¹, ², Claudio Zucca¹, Gianluigi Reni¹, Fabio Maria Triulzi³, Anna Maria Bianchi², Filippo Arrigoni¹ ¹Scientific Institute IRCCS E.Medea, Bosisio Parini, LC, Italy; ²Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, MI, Italy; ³Neuroradiology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, MI, Italy
- 2109. Metabolic Basis for the "rest" Condition in FMRI: Comparison of Eyes Open Vs. Closed States Reveals Constancy of Glucose Metabolism Across Networks Garth John Thompson¹, Valentin Riedl², ³, Timo Grimmer, ³⁴, Alexander Drzezga⁵, Peter Herman¹, Fahmeed Hyder¹, ⁶ ¹Diagnostic Radiology, Magnetic Resonance Research Center, Yale University, New Haven, CT, United States; ²Neuroradiology, Nuclear Medicine, Universität München, München, Germany; ³Technische, Universität München - Neuroimaging Center, München,

Germany; ⁴Psychiatry, Universität München, München, Germany; ⁵Nuclear Medicine, Uniklinikum, Koeln, Germany; ⁶Biomedical Engineering, Yale University, New Haven, CT, United States

2110. Simultaneous Acquisition of Structural and Resting State Functional Connectivity Data Using a Volumetric Navigated Diffusion Sequence

Mwape Mofya¹, Alkatafi Ali Alhamud¹, Paul A. Taylor¹, ², André J. W. van der Kouwe³, Ernesta M. Meintjes¹ ¹MRC/UCT Medical Imaging Research Unit, Department of Human Biology, University of Cape Town, Cape Town, South Africa; ²African Institute for Mathematical Sciences (AIMS), South Africa; ³Massachusetts General Hospital, Boston, MA, United States

2111. Local Intrinsic Connectivity Measures Relate to GABA/Glx Levels Katarzyna Bienkowska¹, Valentin Riedl¹ ¹Neuroradiology, Technische Universitat Munchen, Munich, Germany

2112. Mapping Epileptic Networks Using Simultaneous EEG-MRI at Ultra-High Field

Frédéric Grouiller¹, João Jorge², ³, Francesca Pittau⁴, Pascal Martelli¹, Wietske van der Zwaag⁵, Christoph M. Michel⁶, Serge Vulliémoz⁴, Maria Isabel Vargas¹, François Lazeyras¹
 ¹Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland; ²Department of Bioengineering, Institute for Systems and Robotics, University of Lisbon, Lisbon, Portugal; ³Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ⁶Eunctional Brain Mapping Laboratory, University of Geneva, Geneva, Switzerland;

2113. BOLD Correlate of Spontaneous Cortical and Thalamic Slow Oscillations

Florian Schmid¹, Miriam Schwalm², Lydia Wachsmuth¹, Cornelius Faber¹, Albrecht Stroh² ¹Department of Clinical Radiology, University of Münster, Münster, Germany; ²Institute of Microscopic Anatomy and Neurobiology, Johannes Gutenberg-University Mainz, Mainz, Germany

2114. Micro- And Macrovascular Contributions to Layer-Dependent Blood Volume FMRI: A Multi-Modal, Multi-Species Comparison

Laurentius Huber¹, Jozien Goense², Aneurin Kennerley³, Maria Guidi¹, Robert Trampel¹, Robert Turner¹, Harald E. Möller¹

¹Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; ²University of Glasgow, United Kingdom; ³University of Sheffield, United Kingdom

2115. Simultaneous Electroencephalography and Pseudo-Continuous Arterial Spin Labelling Measurements: Feasibility Study

Qingfei Luo¹, Chung-Ki Wong¹, Han Yuan¹, Vadim Zotev¹, Wen-Ming Luh², Jerzy Bodurka¹, ³ ¹Laureate Institute for Brain Research, Tulsa, OK, United States; ²Cornell MRI Facility, Cornell University, Ithaca, NY, United States; ³College of Engineering, Center for Biomedical Engineering, University of Oklahoma, Norman, OK, United States

2116. Differences in the Resting-State fMRI Global Signal Amplitude Between the Eyes Open and Eyes Closed States Are Related to Changes in EEG Vigilance

Chi Wah Wong¹, Thomas Liu²

¹Center for Functional MRI, University of California San Diego, La Jolla, CA, United States; ²Center for Functional MRI, University of California San Diego, La Jolla, CA, United States

2117. Map the Light-Driven fMRI Signal in Combination with In Vivo Recording

Maosen Wang¹, Yi He¹, Yaohui Tang¹, Dávid Zsolt Balla², Chunqi Qian³, Xin Yu¹ ¹Research Group of Translational Neuroimaging and Neural Conteol, High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ³Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Str, National Institutes of Health, Bethesda, MD,, United States **2118.** Investigating the Role of Interictal Activity During a Natural Stimulus Presentation in Children with Epilepsy Elhum A. Shamshiri¹, Maria Centeno¹, Tim Tierney¹, Kelly St Pier², Ronit Pressler², Suejen Perani¹, ³, Helen J. Cross⁴, David W. Carmichael¹

¹Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, United Kingdom; ²Epilepsy Unit, Great Ormond Street Hospital, London, United Kingdom; ³Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology, and neuroscience, London, United Kingdom; ⁴Neurosciences Unit, University College London, London, United Kingdom

2119. On the Feasibility and Specificity of Simultaneous EEG and ASL MRI at 3T

Elise Bannier¹, ², Marsel Mano², ³, Robert Stroemer⁴, Isabelle Corouge², Lorraine Perronnet², ³, Jussi T. Lindgren³, Anatole Lecuyer³, Christian Barillot²

¹Radiology, University Hospital of Rennes, Rennes, France; ²Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, Rennes, France; ³Unité HYBRID INRIA, IRISA UMR CNRS 6074, Rennes, France; ⁴Brainproducts GmbH, Gilching, Germany

2120. Bold Oxygen Level Dependant (BOLD) Quantitative Susceptibility Mapping (QSM) at Different Head Orientations

M Ethan MacDonald¹, ², *Avery Berman*, ²³, *Rebecca J. Williams¹*, ², *Erin L. Mazerolle¹*, ², *G Bruce Pike¹*, ² ¹Radiology and Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; ²Hotchkiss Brain Institute, Foothills Medical Centre, Alberta Health Services, Calgary, Alberta, Canada; ³Biomedical Engineering, McGill University, Montreal, Quebec, Canada

2121. Assessment of the Reproducibility of BOLD Signal-Based Hemodynamic MRI

Toshihiko Aso¹, Hidenao Fukuyama¹ ¹Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan

2122. Brain Atrophy Accounts for Age-Related Differences in Hemodynamic Impulse Response Function from Auditory Cortex

Raphael T. Gerraty¹, David B. Parker², Alayar Kangarlu³, Qolamreza R. Razlighi, ²⁴ ¹Psychology, Columbia University, New York, NY, United States; ²Biomedical Engineering, Columbia University, NY, United States; ³Psychiatry, Columbia University, NY, United States; ⁴Neurology, Columbia University, New York, NY, United States

2123. Hemodynamic Response Pattern Upon Noxious Electrical Stimulation in Rat Models of Pain Saeedeh Amirmohseni¹, Daniel Segelcke², Esther Pogatzki-Zahn², Cornelius Faber¹ ¹Department of Clinical Radiology, University Hospital Muenster, Muenster, Germany; ²Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany

2124. Underestimation of Functional Connectivity with Impaired Cerebrovascular Reserve : A Working Model of Moyamoya Disease

*Tzu-chen Yeh*¹,², *Chou-ming Cheng*³, *Jin-jie Hong*², *Sheng-che Hung*¹, *Muh-Lii Liang*⁴, *Jen-chuen Hsieh*², ³ ¹Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan, Taiwan; ²Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, Taiwan; ³Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Taiwan; ⁴Neurosurgery Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, Taiwan

2125. The Impact of Echo Time on the Calibration Parameter M Hannah Hare¹, Daniel Bulte¹ ¹FMRIB, University of Oxford, Oxford, Oxon, United Kingdom

2126. Age-Related Differences in CBF, CVR, M, OEF and CMRO2 Using MRI QUO2 and Dual-Echo PCASL Isabelle Lajoie¹, Kenneth S. Dyson², Scott Nugent², Felipe D. Tancredi¹, ³, Richard D. Hoge² ¹Centre de recherche de l'IUGM, Université de Montréal, Montreal, Quebec, Canada; ²McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; ³Albert Einstein Jewish Hospital, Brazil

2127. Investigating the Effect of Hyperoxia and Hypercapnia on T2* and S0 Calculated from Multi-Echo BOLD Data at 7T.

Alex A. Bhogal¹, Jeroen C.W. Siero¹, Marielle E. Philippens¹, Esben T. Petersen¹, Martijn Froeling¹, Jeroen Hendrikse¹, Manus J. Donahue², Hans Hoogduin¹ ¹University Medical Center, Utrecht, Netherlands; ²Vanderbilt University School of Medicine, TN, United States

2128. Physiological Modulators of Resting-State MRI Functional Connectivity

Powell Pui Wai Chu¹, ², Ali M. Golestani¹, Jonathan B. Kwinta¹, ², Yasha B. Khatamian¹, Jean J. Chen¹, ² ¹Rotman Research Institute, Baycrest, Toronto, Ontario, Canada; ²Medical Biophysics, University of Toronto, Toronto, Ontario, Canada

2129. Test-Retest Reproducibility of the BOLD Response to a Hypercapnic Challenge

Bryon A. Mueller¹, Nicholas Evanoff², Kara L. Marlatt², Justin R. Geijer³, Kelvin O. Lim¹, Donald R. Dengel² ¹Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States; ²School of Kinesiology, University of Minnesota, Minneapolis, MN, United States; ³Department of Health, Exercise and Rehabilitative Sciences, Winona State University, Winona, MN, United States

2130. The Susceptibility of Dissolved Oxygen

Avery J.L. Berman¹, ², Yuhan Ma¹, Richard D. Hoge¹, ³, G. Bruce Pike, ¹² ¹Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; ²Department of Radiology/Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ³Unité de neuroimagerie fonctionelle, Centre de recherche de l'institut de gériatrie de Montréal, Montreal, Quebec, Canada

- **2131.** A Bayesian Framework for the Estimation of OEF by Calibrated MRI *Michael Germuska¹, Alberto Merola¹, Alan Stone², Kevin Murphy¹, Richard Wise¹* ¹Cardiff University, Cardiff, Wales, United Kingdom; ²Oxford University, Oxfordshire, United Kingdom
- 2132. Linear Dependence of Neuronal Oscillations on Hypercapnia Level: Implications for CO₂ Calibrated fMRI Ian D. Driver¹, Joseph Whittaker¹, Molly G. Bright¹, Suresh D. Muthukumaraswamy¹, ², Kevin Murphy¹ ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; ²Schools of Pharmacy and Psychology, Auckland University, Auckland, New Zealand

2133. Measurement of Oxygen Extraction Fraction (OEF): An Optimised BOLD Signal Model for Use with Hypercapnic and Hyperoxic Calibration Alberto Merola¹, Kevin Murphy¹, Alan J. Stone¹, Michael A. Germuska¹, Valerie E M Griffeth², Nicholas P. Blockley³, Richard B. Buxton³, ⁴, Richard G. Wise¹ ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom; ²Department of Bioengineering and Medical Scientist Training Program, University of California San Diego, La Jolla, CA, United States; ³Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego, La Jolla, CA, United States; ⁴Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, United States

- 2134. Changes in CBF/CMRO₂ Coupling with Graded Visual Stimuli Are Modulated by Baseline Perfusion Joseph Whittaker¹, Ian Driver¹, Molly Bright¹, Kevin Murphy¹ ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, United Kingdom
- 2135. An Optimised Respiratory Paradigm for the Bayesian Estimation of OEF by Calibrated MRI Michael Germuska¹, Alberto Merola¹, Kevin Murphy¹, Richard Wise¹ ¹Cardiff University, Cardiff, Wales, United Kingdom

2136. Investigation of Neurovascular Coupling Within Brain by Simultaneous Recordings of LFP and Fiber-Optic **Hemodynamic Signals**

Wen-Ju Pan¹, Jacob Billings¹, Shella Keilholz¹ ¹Biomedical Engineering, Emory University/ Georgia Institute of Technology, Atlanta, GA, United States

2137. Simultaneous Voxel-Wise Mapping of Oxygen Extraction Fraction, Blood Flow and Cerebral Metabolic Rate of Oxvgen

Yongxia Zhou¹, Zachary B. Rodgers¹, Felix W. Wehrli¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States

2138. Effect of Noise Regression on ASL Based Functional Connectivity Kay Jann¹, Edgar A. Rios Piedra¹, Robert X. Smith¹, Danny JJ Wang² ¹Department of Neurology, University of California Los Angeles, Los Angeles, CA, United States

2139. MR Perfusion Imaging Using High-Temporal-Resolution Resting-State Functional Magnetic Resonance Imaging

Tianyi Qian¹, Yinyan Wang², ³, Tao Jiang², ³ ¹MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ²Beijing Neurosurgical Institute, Beijing, China; ³Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Traditional Poster

Stroke & Neurovascular: Animal Studies

Wednesday 13:30-15:30 **Exhibition Hall**

2140. Time-Dependent Influence of Hypoxic Ischemic Encephalopathy in Cerebral Metabolite Changes in Neonatal

Rats Detected by In Vivo 1H MR Spectroscopy at 9.4 T Do-Wan Lee^{1, 2}, Dong-Cheol Woo², Minyoung Lee^{2, 3}, Chul-Woong Woo², Sang-Tae Kim², Choong Gon Choi⁴, Bo-Young Choe¹, Byong Sop Lee³

¹Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Korea; ²Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea; ³Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ⁴Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

2141. Marked Perturbations in CBF and CO2 Reactivity in Subarachnoid Hemorrhage

Yuhao Sun¹,², Qiang Shen¹, Shiliang Huang¹, Timothy Q. Duong¹ ¹Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ²Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China

- 2142. Chronic Cerebral Hypoperfusion Induces Cerebral Hemodynamics and Angiogenesis Shi Chang-Zheng¹, Jing Zhen², Ruan Yiwen², Huang Li_j⁻an² ¹Jinan University, Guangzhou, Guangdong, China; ²Jinan University, Guangzhou, Guangdong, China
- 2143. Time-To-Peak of T2*-Weighted Signal Change of Oxygen Challenge Improves the Identification of Penumbra in Ischemic Stroke

Qiang Shen¹, Shiliang Huang¹, Timothy Q. Duong¹ ¹Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States

2144. Diffusion-Weighted Spatiotemporal Encoding Schemes in the Assessment of SPIO-Labeled Cell Therapy for **Ischemic Stroke**

Jens T. Rosenberg¹,², Avigdor Leftin³, Eddy Soloman³, Lucio Frydman,¹³, Samuel C. Grant¹,²

¹National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, United States; ²Chemical & Biomedical Engineering, Florida State University, Tallahassee, FL, United States; ³Chemical Physics, Weizmann Institute of Science, Rehovot, Israel

- 2145. Detection of Subtle Hypoxic-Ischemic Injury by Oscillating Gradient Diffusion MRI in Neonatal Mouse Brain Dan Wu¹, Frances J. Northington², Lee J. Martin³, Jiangyang Zhang⁴
 ¹Biomedical Engineering, Johns Hopkins University School of Medicine, BALTIMORE, MD, United States; ²Pediatrics, Johns Hopkins University School of Medicine, MD, United States; ³Neuroscience, Johns Hopkins University School of Medicine, MD, United States; ⁴Radiology, Johns Hopkins University School of Medicine, MD, United States
- 2146. Assessment of Blood Brain Barrier Permeability in the Rat Brain with Ischemic Occlusion Using DSC-MRI Ramesh Paudyal¹, Silun Wang¹, Yonggang Li², Byron D. Ford², Xiaodong Zhang¹ ¹Yerkes Imaging Center, Yerkes Regional Primate Research Center, Emory University, Atlanta, GA, United States; ²Neurobiology, Neurosciences Institute, Morehouse School of Medicine, Atlanta, GA, United States
- 2147. Combine Diffusion Tensor Imaging and RGMa Immunohistochemical Analysis to Evaluate the Crossed Cerebellar Diaschisis in Rats After Middle Cerebral Artery Occlusion Yong Zhang¹, Jiangliang Cheng¹, Yanan Lin¹, Lu Yang¹, Shanshan Zhao¹, Dandan Zheng²
 ¹Dept. of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; ²GE Healthcare, China, Beijing, China
- 2148. The Role of Collateral Circulation in Perfusion and Diffusion MRI After Stroke Yu-Chieh Jill Kao¹, ², Esteban A. Oyarzabal³, Hua Zhang⁴, James E. Faber⁴, Yen-Yu Ian Shih³ ¹Neurology and BRIC, University of North Carolina, Chapel Hill, NC, United States; ²Imaging Research Center, Taipei Medical University, Taipei, Taiwan; ³Neurology and BRIC, University of North Carolina, Chapel Hill, NC, United States; ⁴Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, United States
- 2149. Monitoring Response to Neuregulin-1 in a Rat Model of Stroke Using Perfusion- And Diffusion Weighted MRI Ramesh Paudyal¹, Yonggang Li², Silun Wang¹, Byron D. Ford², Xiaodong Zhang¹ ¹Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; ²Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
- 2150. Absolute T₁ and T₂ Relaxation Times; Proxies for Onset Time and Tissue Status Assessment in Acute Ischaemic Stroke

Harriet J. Rogers¹, Bryony L. McGarry¹, Kimmo T. Jokivarsi², Michael J. Knight¹, Alejandra Sierra Lopez², Olli HJ Gröhn², Risto A. Kauppinen¹ ¹School of Experimental Psychology and CRIC, University of Bristol, Bristol, United Kingdom; ²Department of Neurobiology, University of Eastern Finland, Kuopio, Finland

- 2151. Effect of Motor Cortex Lesions on Brain Connectivity of Rhesus Monkeys Bang-Bon Koo¹, Mary Orczykowski¹, ², Kevin Arndt¹, Yansong Zhao³, Tara Moore¹, Ron J. Killiany¹ ¹Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States; ²Boston University School of Medicine, MA, United States; ³Philips Healthcare, Cleveland, OH, United States
- 2152. Chronic Methylene Blue Treatment Decreases Ischemic Stroke Volume and Improves Functional Behavioral Recovery

Pavel Rodriguez¹, Jiang (John) Zhao¹, ², Timothy Q. Duong¹ ¹Research Imaging Institute, The University of Texas Health Science Center, San Antonio, TX, United States; ²Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, United States

2153. ADC Correlates of CBF and Tissue PO2 in Global Cerebral Ischemia

Yash Vardhan Tiwari¹,², Timothy Duong³

¹Research Imaging Institute, UT Health Science Center , San Antonio, TX, United States; ²Biomedical Engineering, UT, San Antonio, TX, United States; ³Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States

2154. Assessment of Experimental Stroke Lesion Size Using 1T Benchtop MRI

Jed Wingrove^{*1}, Daniel Stcukey^{*1}, Valerie Taylor¹, Thomas Roberts¹, Rajiv Ramasawmy¹, Bernard Siow⁺¹, Mark Lythgoe⁺¹

¹Centre for Advanced Biomedical Imaging, Department of Medicine, University College London, London, United Kingdom

- 2155. Age Dependent Differences in Photothrombotic Ischemic Injury Detected Using Quantitative MR Imaging Ursula Tuor¹, Min Qiao, Manasi Sule, Qinbo Deng, Melissa Morgunov, David Rushforth, Tadeusz Foniok ¹Physiology and Pharmacology, Cl Neurosciences and Radiology, University of Calgary, Calgary, AB, Canada
- 2156. Cerebrovascular Damage After Stroke in Type Two Diabetic Rats Measured by MRI Guangliang Ding¹, Tao Yan¹, Jieli Chen¹, Michael Chopp¹, ², Lian Li¹, Qingjiang Li¹, Chengcheng Cui¹, Ruizhuo Ning¹, Quan Jiang¹ ¹Neurology, Henry Ford Hospital, Detroit, MI, United States; ²Physics, Oakland University, Rochester, MI, United States
- 2157. Development of a Porcine Middle Cerebral Artery Occlusion Stroke Model and Stroke Characterization with Quantitative MRI Techniques.

Shannon P. Holmes¹, Simon R. Platt², Liya Wang³, Vivian Lau², Grace Harrison², Hui Mao³, Franklin West² ¹Veterinary Biosciences & Diagnostic Imaging, University of Georgia, Athens, GA, United States; ²University of Georgia, GA, United States; ³Emory University, GA, United States

- 2158. Assessment of Neuroprotective Effects of Neuregulin-1 on in Acute Stroke Using Diffusion MRI Silun Wang¹, Yonggang Li², Ramesh Paudyal¹, Byron D. Ford², Xiaodong Zhang¹, ³ 'YERKES IMAGING CENTER, Emory University, Atlanta, GA, United States; ²Department of Neurobiology, Morehouse School of Medicine, GA, United States; ³Division of Neuropharmacology and Neurologic Diseases, Emory University, GA, United States
- 2159. Assessment of Pharmacologically Induced Hypothermia in a Rodent Model of Focal Cerebral Ischemia Using Diffusion Tensor Imaging

Silun Wang¹, Xiaohuan Gu², Ramesh Paudyal¹, Shan Ping Yu², Xiaodong Zhang¹, ³ ¹YERKES IMAGING CENTER, Emory University, Atlanta, GA, United States; ²Department of Anesthesiology and Department of Neurology, Emory University School of Medicine, GA, United States; ³Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA, United States

2160. Identification of 4-Vessel Occlusion in Rat Using MR Angiography and ¹H MRS at 14.1T

Mario G. Lepore¹, Corina Berset¹, Rolf Gruetter², ³, Hongxia Lei⁴, ²

¹AIT, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ²Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ³University of Lausanne, Lausanne, Vaud, Switzerland; ⁴ AIT, Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ⁵University of Geneva, Geneva, Switzerland

2161. Absolute and Relative Blood Volume Measurements by Dual T1 and T2 MRI Acquisitions with Single Contrast Agent in Acute Phase of Ischemic Brain

Ji-Yeon Suh¹, Hoesu Jung², Hyung Joon Cho², Young Ro Kim³, Jeong Kon Kim⁴, Gyunggoo Cho¹ ¹Magnetic Resonance Research, Korea Basic Science Institute, Cheongju, Chungbuk, Korea; ²Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science & Technology (UNIST), Ulsan, Korea; ³Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA, United States; ⁴Asan Medical Center University of Ulsan college of Medicine, Seoul, Korea

2162. MRI of a Distal MCAO Ischemic Stroke Lesion Model in Mice

Tom Dresselaers¹, Annelies Quaegebeur², Kristof Govaerts¹, Inmaculada Segura², Robin Lemmens, Peter Carmeliet², Uwe Himmelreich¹

¹Dept. of Imaging and Pathology, KU Leuven, Leuven, Belgium; ²Vesalius Research Center, VIB, Belgium

2163. Characterization of the Ischemic Penumbra Using Diffusion Tensor MR Imaging in a Rat Model of Ischemic Stroke Treated with Neuregulin-1

Silun Wang¹, Yonggang Li², Ramesh Paudyal¹, Byron D. Ford², Xiaodong Zhang¹ ¹YERKES IMAGING CENTER, Emory University, Atlanta, GA, United States; ²Department of Neurobiology, Morehouse School of Medicine, GA, United States

Traditional Poster

Stroke & Neurovascular: Human Studies

Exhibition Hall Wednesday 13:30-15:30

2164. Identifying Infarct Lesion Using Diffusion Kurtosis Model with Multi-Band EPI Sequence in Acute Ischemic Stroke Patients

Huan He¹, Tianyi Qian², Ni Liu¹, Xingli Liu¹, Zhongyan Wang¹, Lu Su¹, Peiyi Gao¹ ¹Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; ²MR Collaborations NE Asia, Siemens Healthcare, Beijing, China

2165. Fast and Robust Lesion Detection and Assessment in Acute Ischaemic Stroke Patients from ADC and Quantitative T2 Mapping

Michael John Knight¹, Bryony McGarry¹, Harriet Rogers¹, Joanne Robson², Rose Bosnell³, Philip Clatworthy¹, Risto Kauppinen¹

¹School of experimental psychology, University of Bristol, Bristol, avon, United Kingdom; ²Southmead Hospital, Bristol, avon, United Kingdom; ³School of clinical sciences, University of bristol, Bristol, avon, United Kingdom

- 2166. Can Diffusion Weighted MR Spectroscopy Be Used in Differentiating Acute MELAS and Acute Stroke? Dandan Zheng¹, Bing Wu¹, Jiangxi Xiao², Zhenghua Liu², Zhenyu Zhou¹ ¹GE Healthcare China, Beijing, China; ²Radiology Department, Peking University First Hospital, Beijing, China
- 2167. Optimal T1-Weighted MR Plaque Imaging for Cervical Carotid Artery Stenosis in Predicting Development of Microembolic Signals During Carotid Dissection in Endarterectomy. *Yuiko Sato¹, Kuniaki Ogasawara¹, Shinsuke Narumi², Makoto Sasaki³, Ayumi Saito², Takamasa Namba¹, Masakazu Kobayasi¹, Kenji Yoshida¹, Yasuo Terayama², Akira Ogawa¹
 ¹Department of Neurosurgery, Iwate Medical Univercity, Morioka, Iwate, Japan; ²Department of Neurology and Gerontology, Iwate Medical Univercity, Morioka, Iwate, Japan; ³Division of Ultra-High Field MRI and Department of Radiology, Iwate Medical Univercity, Mrioka, Iwate, Japan*
- 2168. Regional Quantifying Normal-Appearing White Matter Perfusion in Mild to Moderate Hypertension Using 3D Pseudo-Continous Arterial Spin Labeling Ting Wang¹, Yanhua Li², Xinhong Guo², Diandian Huang¹, Lin Ma¹, Xin Lou¹ ¹Department of Radiology, Chinese PLA General Hospital, Beijing, China; ²Department of Cardiology, Chinese PLA General Hospital, Beijing, China
- 2169. Small Network Properity Changes in MCI with Lacunar Infraction Wu Wenbo¹, Yin Zhenyu¹, Zhang Xin², Zhou Fei², Liu Renyuan¹, Wang Huiting², Zhu Bin², Zhang Bing², Xu Yun¹ ¹Neurology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; ²Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu, China

2170. Validity of Three Dimensional Pseudo-Continuous Arterial Spin Labeling in Leptomeaningeal Collaterals Assessment for Patients with Unilateral Middle Cerebral Artery Stenosis

Jinhao Lyu¹, Ning Ma², Zhongrong Miao², Lin Ma¹, Xin Lou¹ ¹Department of Radiology, Chinese PLA General Hospital, Beijing, China; ²Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

2171. Interstudy and Intraobserver Reproducibility of High-Resolution MRI in Evaluating Basilar Atherosclerotic Plaque at 3Tesla

Luguang Chen¹, Xia Tian¹, Qi Liu¹, Chao Ma¹, Qian Zhan¹, Xuefeng Zhang¹, Yuanliang Jiang¹, Jianping Lu¹ ¹Department of Radiology, Changhai Hospital of Shanghai, The Second Military Medical University, Shanghai, China

2172. Plaque Characteristics, Burden and Distribution Assessment with High-Resolution Intracranial Vessel Wall Imaging at 3 Tesla MRI

Nikki Dieleman¹, Wenjie Yang², Jill Abrigo³, Ka Lok Lee³, Chiu Wing Chu³, Anja G. van der Kolk¹, Jeroen C.W. Siero¹, Ka Sing Wong², Jeroen Hendrikse¹, Xiang Yan Chen²

¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong, China; ³Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Shatin, Hong Kong, China

- 2173. Prevalence of Cerebrovascular Reserve Impairment in Patients with Severe Intracranial Arterial Stenosis Alexandre Krainik¹, Olivier Heck², Arnaud Attyé², Naila Boudiaf³, Florence Tahon², Kamel Boubagra², Johan Pietras², Olivier Detante² ¹Neuroradiology and MRI, University hospital of Grenoble, Grenoble, France; ²University hospital of Grenoble, France; ³LPNC, France
- 2174. Reduced Visual Cortex Perfusion Without Volume Loss in Mild to Moderate Hypertension Diandian Huang¹, Xin Lou¹, Lin Ma¹, Zhengyu Zhou² ¹radiology, Chinese PLA General Hospital, Beijing, China; ²MR Research Center, GE Health care, Beijing, China
- 2175. Cerebral Hemodynamics After Reduction of Blood Pressure in Hypertension Measured with 3D PCASL Xin Lou^l, Ning Ma², Yanhua Li³, Diandian Huang¹, Ting Wang¹, Zhenyu Zhou⁴, Bing Wu⁴, Lin Ma¹ ¹Department of Radiology, Chinese PLA General Hospital, Beijing, China; ²Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China; ³Department of Cardiology, Chinese PLA General Hospital, Beijing, China; ⁴MR Research Center, GE Healthcare, Beijing, China
- **2176.** Quantifying the Effects of Lesions with the Tractography-Based Lesion Assessment Standard (TractLAS) *Christopher J. Steele¹, Leonie Lampe¹, Alexander Schaefer¹, ², Alfred Anwander¹, Bernhard Sehm¹, Arno Villringer¹* ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany; ²Department of Electrical and Computer Engineering, Clinical Imaging Research Centre & Singapore Insitu, Singapore
- 2177. Identification of Neurovascular Changes in Cerebral Amyloid Angiopathy by Modeling Subject-Specific Hemodynamic Response Functions Rebecca J. Williams¹, ², Bradley Goodyear¹, ², Stefano Peca³, Cheryl R. McCreary¹, ², Richard Frayne¹, ². Eric E.

*Smith*¹, ², *G Bruce Pike*¹, ² ¹Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ²Seaman Family MR Research Centre, Alberta Health Services, Calgary, Alberta, Canada; ³Tom Baker Cancer Centre, University of Calgary, Calgary, Alberta, Canada

2178. Identifying Perfusion Deficits with Simultaneous Multi Slice Acceleration EPI Technique: A Non-Invasive Method

Tianyi Qian¹, Zhigang Qi², Mo Zhang², Kun Zhou³, Kuncheng Li²
¹MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ²Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China; ³Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China

2179. Quantitative Evaluation of Collateral Perfusion Using Multi-Delay 3D PCASL in Patients with Middle Cerebral Artery Stenosis

Xin Lou¹, Ning Ma², Jinghao Lyv¹, Yang Xu¹, Zhenyu Zhou³, Bing Wu³, Lin Ma¹ ¹Department of Radiology, Chinese PLA General Hospital, Beijing, China; ²Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Beijing, China; ³MR Research Center, GE Healthcare, Beijing, China

- 2180. Monitoring PH and Energy Metabolim in Subacute Stroke Using ³¹P and ¹H MRSI Ulrich Pilatus¹, Johann-Philipp Zöllner², Elke Hattingen¹, Oliver Singer² ¹Neuroradiology, Goethe-University Frankfurt, Frankfurt, Germany; ²Neurology, Goethe-University Frankfurt, Germany
- 2181. Assessments of Oxygen Extraction Fraction in Canines with Internal Carotid Arteries Ligated on Both Sides Peng Wu¹, Feiyan Chang², Sheng Xie², Hua Guo¹ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Department of Radiology, China–Japan Friendship Hospital, Beijing, China
- 2182. Utility of Bi- And Stretched-Exponential Diffusion-Weighted MR Imaging Models Using High B-Values in Assessment of Stroke Shiteng Suo¹, Zengai Chen¹, Jianrong Xu¹ ¹Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, China
- 2183. Prediction of the Onset Day Using by T2*-Weighted Magnetic Resonance Imaging in Patients with Subarachnoid Hemorrhage

Takashi Inoue¹, Miki Fujimura², Kuniyasu Niizuma², Teiji Tominaga² ¹Neurosurgery, Sendai Medical Center, Sendai, Miyagi, Japan; ²Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan

2184. DKI Manifestation in Patients with Acute Ischemic Stroke *Gang Guo¹, Liuhong Zhu¹* ¹Radiology, Xiamen Second Hospital, Xiamen, Fujian, China

2185. The Influence of Clinical Confounders on Imaging Biomarkers of Lesion Age in Acute Stroke

Vince I. Madai¹, Carla N. Wood¹, Ivana Galinovic¹, Ulrike Grittner¹, Gajanan S. Revankar¹, Steve Z. Martin¹, Olivier Zaro Weber², Walter Möller-Hartmann³, Federico C. von Samson-Himmelstjerna¹, ⁴, Wolf-Dieter Heiss², Martin Ebinger⁵, Jochen B. Fiebach¹, Jan Sobesky¹ ¹Center for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany; ²Max Planck Institute for Metabolism Research, Cologne, Germany; ³Department of Radiology, Ludmillenstift Meppen, Meppen, Germany; ⁴Fraunhofer MEVIS, Bremen,

Germany; ⁵Centre for Stroke Research Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany

- **2186.** Quantification of the Local Dynamic of the Cerebrovascular Autoregulation Marco Piccirelli¹, Bas van Niftrik², Oliver Bozinov², Athina Pangalu¹, Antonios Valavanis¹, Luca Regli², Jorn Fierstra² ¹Neuroradiology University Hospital, Zurich, ZH, Switzerland; ²Neurosurgery University Hospital, Zurich, ZH, Switzerland
- 2187. Comparison of PWI, DWI, and Clinical Outcome for Suspected Stroke Neil Chatterjee¹, Shyam Prabhakaran², Sameer Ansari¹, Timiothy Carroll¹ ¹Radiology, Northwestern University, Chicago, IL, United States; ²Neurology, Northwestern University, Chicago, IL, United States

Traditional Poster

2188. Susceptibility-Weighted Imaging of Acute Ischemic Stroke: Quantification of Hypoperfusion Hung-Wen Kao¹, ², Yu-Chuan Chang³, Ching-Po Lin², ⁴, Chien-Yuan Eddy Lin⁵, ⁶

¹Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; ²Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; ³Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ⁴Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; ⁵GE Healthcare, Taipei, Taiwan; ⁶GE Healthcare China, Beijing, China

2189. Longitudinal Quantitative MRI Provides Quality Assurance Measures in Patients with Ischemic Stroke Treated with Autologous Bone Marrow Derived Mononuclear Cells.

Muhammad E. Haque¹, Khader M. Hasan², Benjamin A. Schatz³, Sarah M. Lund³, Farhaan S. Vahidy⁴, Sean I. Savitz⁴ ¹Neurology, Unversity of Texas Health Science Center at Houston, Houston, TX, United States; ²Diagnostic and Interventional Imaging, Unversity of Texas Health Science Center at Houston, TX, United States; ³Unversity of Texas Health Science Center at Houston, TX, United States; ⁴Neurology, Unversity of Texas Health Science Center at Houston, TX, United States

2190. Amide Proton Transfer in Detecting Intracerebral Hemorrhage

Xiaoyue Ma¹, Panli Zuo², Benjamin Schmitt³, Dapeng Shi⁴, Jinyuan Zhou⁵, Meiyun Wang⁴ ¹Radiology, Zhengzhou University People_i⁻ s Hospital & Henan Provincial People_i⁻ s Hospital, Zhengzhou, Henan, China; ²Siemens Healthcare, MR Collaboration NE Asia, Beijing, China; ³Siemens Ltd Australia, Healthcare Sector, Macquarie Park, Australia; ⁴Radiology, Henan Provincial People_i⁻ s Hospital, Zhengzhou, Henan, China; ⁵Radiology, John Hopkins University, Baltimore, United States

2191. Characteristics of the Carotid Atherosclerotic Plaque Classified by NIHSS in Ischemic Stroke Xiao Gao¹, Shengzhang Ji¹, Jinyu Song¹, Xihai Zhao², Haiman Bian¹, Yu Zhang³, Yingyin Feng¹, Shengli Chen¹ ¹The 4th center hospital of TianJin, TianJin, China; ²Tsinghua University School of Medicine, Beijing, China; ³Philips Healthcare, Beijing, China

2192. An Automated Post-Processing Pipeline for the Separation of Intracranial and Extracranial Vessels in 7T TOF-

Zihao Zhang¹, ², Dehe Weng³, Jing An³, Zhentao Zuo¹, Bo Wang¹, Qingle Kong¹, Ning Wei¹, ², Yan Zhuo¹, Xiaohong Joe Zhou⁴, Rong Xue¹

¹State Key Lab of Brain and Cognitive Science, Beijing MR Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ²Graduate School, University of Chinese Academy of Sciences, Beijing, China; ³Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong, China; ⁴Dept. of Radiology, Center for MR Research, University of Illinois, Chicago, IL, United States

2193. Semi-Automated Visualization and Segmentation of Cerebral Veins from QSM

ismem merit award magna cum laude

Suheyla Cetin¹, Berkin Bilgic², Audrey Peiwen Fan³, Kawin Setsompop², Gozde Unal¹ ¹Faculty of Natural Sciences and Engineering, Sabanci University, Istanbul, Turkey; ²Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³Department of Radiology, Stanford University, CA, United States

2194. EPT - Measurement of Brain Conductivity for Non-Oncologic Applications *Monika Huhndorf¹*, *Christian Stehning²*, *Axel Rohr¹*, *Michael Helle²*, *Thomas Stehle²*, *Ulrich Katscher²*, *Olav Jansen¹* ¹Clinic for Radiology and Neuroradiology, Kiel, Germany; ²Philips Research Europe, Hamburg, Germany

2195. Measuring the Timing Information of Blood Flow in Acute Stroke with the "Background Noise" of BOLD Signal

Tianyi Qian¹, Zhongyan Wang², Peiyi Gao² ¹MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ²Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Traditional Poster Mechanisms of Neural Degeneration & Damage Exhibition Hall Wednesday 13:30-15:30

2196. High-Resolution Neurite Orientation Dispersion and Density Imaging in the Substantia Nigra of De Novo Parkinson Disease

Koji Kamagata¹, Masaaki Hori¹, Akira Nishikori², Kohei Tsuruta², Ayami Okuzumi³, Taku Hatano³, Kouhei Kamiya⁴, Nobutaka Hattori³, Shigeki Aoki¹

¹Department of Radiology, Juntendo University, Tokyo, Bunkyo-ku, Japan; ²Department of Radiological Sciences, Tokyo Metropolitan University, Tokyo, Hachioji-shi, Japan; ³Department of Neurology, Juntendo University, Tokyo, Bunkyo-ku, Japan; ⁴Department of Radiology, the University of Tokyo, Tokyo, Bunkyo-ku, Japan

2197. Brain Iron Accumulation in Wilson Disease: A Pilot 7T MR-Histopathology Correlation Study

Petr Dusek¹, ², Erik Bahn³, Tomasz Litwin⁴, Christiane Wegner³, Vince Istvan Madai⁵, Matthias Dieringer⁶, ⁷, Till Huelnhagen⁶, Michael Knauth¹, Thoralf Niendorf⁶, ⁷, Jan Sobesky⁵, ⁷, Anna Czlonkowska⁴, ⁸, Wolfgang Brueck³, Friedemann Paul⁹, Susanne A. Schneider¹⁰, Jens Wuerfel¹, ⁹

¹Institute of Neuroradiology, University Medicine Goettingen, Goettingen, Germany; ²Department of Neurology and Center of Clinical Neuroscience, 1st Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic; ³Institute of Neuropathology, University Medicine Goettingen, Goettingen, Germany; ⁴2nd Department of Neurology, Institute Psychiatry and Neurology, Warsaw, Poland; ⁵Department of Neurology and Center for Stroke Research Berlin (CSB), Charité-Universitaetsmedizin, Berlin, Germany; ⁶Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany; ⁷Experimental and Clinical Research Center (ECRC), Charité-Universitaetsmedizin and Max Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany; ⁸Department of Experimental and Clinical Pharmacology, Medical University, Warsaw, Poland; ⁹NeuroCure Clinical Research Center, Charité-Universitaetsmedizin, Berlin, Germany; ¹⁰Neurology Department, University of Kiel, Kiel, Germany

2198. Diffusion Kurtosis Imaging Detects Microstructural Alterations in Brain of α-Synuclein Overexpressing Transgenic Mouse Model of Parkinson's Disease: A Pilot Study

Peter Latta¹, Amit Khairnar¹, Eva Drazanova², Jana Kucerova¹, Anas Arab¹, Birgit Hutter-Paier³, Daniel Havas³, Manfred Windisch⁴, Zenon Starcuk Jr.², Boguslaw Tomanek¹, ⁵, Irena Rektorova¹ ¹Central European Institute of Technology, Masaryk University, Brno, Czech Republic; ²Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, Brno, Czech Republic; ³QPS Austria GmbH, Graz, Austria; ⁴NeuroScios GmbH, Graz, Austria; ⁵University of Alberta, Edmonton, Alberta, Canada

2199. Application of GluCEST MRI in Detection of Epileptogenic Foci in Temporal Lobe Epilepsy

Ravi Prakash Reddy Nanga¹, Kathryn A. Davis², Sandhitsu Das³, Stephanie H. Chen², Peter Hadar², Timothy H. Lucas⁴, Brian Litt², John A. Detre², Hari Hariharan¹, Mark A. Elliott¹, Ravinder Reddy¹ ¹Radiology, University of Pennsylvania Health Systems, Philadelphia, PA, United States; ²Neurology, University of Pennsylvania, Philadelphia, PA, United States; ³Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA, United States; ⁴Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States

2200. Reduced Neurite Density in Pre-Manifest Huntington's Disease Population Detected by NODDI

Jiaying Zhang¹, Rachael I. Scahill², Alexandra Durr³, Blair Leavitt⁴, Raymund Roos⁵, Sarah J. Tabrizi², Hui Zhang¹ ¹Department of Computer Science and Centre for Medical Image Computing, UCL, London, United Kingdom; ²Institute of Neurology, UCL, London, United Kingdom; ³Department of Genetics and Cytogenetics, INSERM UMR S679, APHP Hôpital de la Salpêtrière, Paris, France; ⁴Department of Medical Genetics, University of British Columbia, British Columbia, Canada; ⁵Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands

2201. The Abnormality of Functional Connectivity in Parkinson's in Dopaminergic Regions

Yue Xing¹, Stefan Schwarz¹, Nin Bajaj², Penny Gowland³, Dorothee Auer¹

¹Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²Division of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, Nottinghamshire, United Kingdom; ³Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

2202. Diffusion Changes in the Medulla Oblongata in Parkinson Disease

Nadya Pyatigorskaya¹, ², *Romain Valabregue*, ¹³, *Cyril Poupon*⁴, *Marie Vidailhet*, ³⁵, *Stephane Lehericy*¹, ² ¹Centre de NeuroImagerie de Recherche – CENIR, Institut du Cerveau et de la Moelle épinière – ICM, Paris, France; ²Department of Neuroradiology, Hôpital Pitie-Salpetriere, Paris, France; ³Université Pierre et Marie Curie and Inserm UMR-S1127; CNRS, UMR 7225, Institut du Cerveau et de la Moelle épinière – ICM, Paris, France; ⁴NeuroSpin, CEA, Saclay, France; ⁵Federation de Neurologie, Hôpital Pitie-Salpetriere, Paris, France

2203. Odor-Related Functional Deficits in the Primary Olfactory Cortex in Early-Stage Parkinson's Disease

Jianli Wang¹, Thyagarajan Subramanian², ³, Zachary Mosher¹, Jeffrey Vesek¹, Qing X. Yang¹, ⁴ ¹Radiology, Penn State College of Medicine, Hershey, PA, United States; ²Neurology, Penn State College of Medicine, Hershey, PA, United States; ³Neural & Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States; ⁴Neurosurgery, Penn State College of Medicine, Hershey, PA, United States

2204. Abnormalities in the Visual System of Streptozotocin-Induced Type 1 Diabetic Rats-A Diffusion Tensor Imaging Study

Lifeng Gao¹, Mingming Huang², Fuchun Lin¹, Hao Lei¹

¹State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China; ²Department of Radiology Affiliated Hospital of Guiyang Medical University, Guiyang, Guizhou, China

2205. Diffusion MRI of the Spinal Cord Allows *In Vivo* Early Detection and Monitoring of GM and WM Degeneration in a Murine ALS Model

Ileana Zucca¹, Matteo Figini¹, Alessandro Scotti¹, Stefania Marcuzzo², Silvia Bonanno², Victoria Moreno Manzano³, José Manuel Garcia Verdugo⁴, Pia Bernasconi², Renato Mantegazza², Maria Grazia Bruzzone⁵ ¹Scientific Direction, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; ²Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; ³Neuronal and Tissue Regeneration laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain; ⁴Unidad de Neurobiología comparada, Universidad de Valencia, Valencia, Spain; ⁵Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy

2206. Imaging Dopamine Autoreceptor Activity Using Functional MRI as a Novel Technique in Parkinson; S Disease Chiao-Chi V. Chen¹, Yi-Hua Hsu¹, Chien-Yuan E. Lin², ³, Chen Chang¹ ¹Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; ²GE Healthcare, Taipei, Taiwan; ³MR Advanced Application and Research Center, GE Healthcare, China

2207. Microstructural Changes of Short Association Fibers in Parkinson's Disease and Normal Aging Assessed by Diffusion Tensor Imaging.

Jan Sedlacik¹, Jan-Rüdiger Schüre¹, ², Kai Boelmans³, Jens Fiehler¹ ¹University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Technical University of Ilmenau, Thüringen, Germany; ³University Hospital of Würzburg, Bayern, Germany

2208. Pathological Differences in Neuromyelitis Optica Reflected Differently by Two Myelin Water Imaging Techniques

Shannon Kolind¹, Praveena Manogaran¹, Irene Vavasour², Bretta Russell-Schulz², Katrina McMullen¹, Jing Zhang², Cornelia Laule, ²³, Alexander MacKay², ⁴, Alexander Rauscher², David Li², Anthony Traboulsee¹ ¹Medicine, University of British Columbia, Vancouver, BC, Canada; ²Radiology, University of British Columbia, Vancouver, BC, Canada; ³Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada; ⁴Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada

2209. MRS of Basal-Ganglia in Parkinson's Disease Reveals Higher GABA Levels

Shalmali Dharmadhikari¹, ², Ruoyun Ma¹, ², Chien- Lin Yeh¹, ², Sandy Snyder¹, S E. Zauber³, Ulrike Dydak¹, ² ¹School of Health Sciences, Purdue University, W Lafayette, IN, United States; ²Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States; ³Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States 2210. Comparative Study of Anatomical Connectivity of Prelemniscal Radiations in Healthy Subjects and Parkinson's Disease Patients

Maria Guadalupe García-Gomar¹, Francisco Velasco², Luis Concha¹ ¹Universidad Nacional Autonoma de Mexico, Santiago de Queretaro, Queretaro, Mexico; ²Hospital General de Mexico, Distrito Federal, Mexico

2211. High Resolution MR Elastography Reveals Retrograde Thalamic Tissue Degradation in Neuromyelitis Optica Kaspar-Josche Streitberger¹, ², Andreas Fehlner¹, Friedemann Paul³, ⁴, Jens Würfel, ³⁵, Jing Guo¹, Jürgen Braun⁶, Ingolf Sack¹

¹Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ²Department of Neurology with experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ³NeuroCure Clinical Research Center, Charité -Universitätsmedizin Berlin, Berlin, Germany; ⁴Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ⁵Institute of Neuroradiology, Universitätsmedizin Göttingen, Göttingen, Germany; ⁶Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany

2212. Maximizing Tissue Contrast for MRI Evaluation of Parkinson's Disease

Silvia Mangia¹, Philip Burton¹, Igor Nestrail¹, Mikko Nissi¹, ², Alejandra Sierra³, Karin Shmueli⁴, Michael Howell⁵, Paul Tuite⁵, Shalom Michaeli¹

¹CMRR, University of Minnesota, Minneapolis, MN, United States; ²University of Oulu, Oulu, Finland; ³A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland; ⁴University College London, London, United Kingdom; ⁵Department of Neurology, University of Minnesota, Minneapolis, MN, United States

2213. Decreased Apparent Fibre Density in the Optic Pathways Correlates with Glaucoma Disease Severity

David Raffelt¹, Farnoosh Sadeghian¹, Heather Connor², Alan Connelly¹, ³ ¹Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; ²Department of Optometry, Deakin University, Melbourne, VIC, Australia; ³The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia

2214. Whole-Brain Metabolic Profiling of Patients with Parkinson's Disease Using High-Resolution MR Spectroscopic Imaging

*Mohammad Sabati, PhD¹, Sasha Raju, MBBS*² ¹Radiology, University of Miami, Miami, FL, United States; ²Public Health Program, University of Miami, Miami, FL, United States

Traditional Poster

Alzheimer's Disease

Exhibition Hall Wednesday 13:30-15:30

2215. Gadolinium-Enhanced Magnetic Susceptibility Contrast Is Reduced in the Corpus Callosum of a Mouse Model of Tauopathy

James O'Callaghan¹, Holly Holmes¹, Nicholas Powell¹, Ozama Ismail¹, Niall Colgan¹, Jack Wells¹, Bernard Siow¹, Michael O'Neill², Emily Collins³, Karin Shmueli⁴, Mark Lythgoe¹

¹Centre for Advanced Biomedical Imaging, University College London, London, Greater London, United Kingdom; ²Eli Lilly & Co. Ltd, Windlesham, Surrey, United Kingdom; ³Eli Lilly and Company, Indianapolis, United States; ⁴Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom

ISMRM MERIT AWARD

2216. Longitudinal Whole-Brain Atrophy Measurement in a Mouse Model of Tauopathy Using the Generalised Boundary Shift Integral

Nick M. Powell¹, ², Da Ma¹, ², Ferran Prados¹, Marc Modat¹, Jorge Cardoso¹, Holly E. Holmes², Ozama Ismail², Niall Colgan², Michael O'Neill³, Emily Collins⁴, Mark F. Lythgoe², Sebastien Ourselin¹

¹Centre for Medical Image Computing, University College London, London, England, United Kingdom; ²Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ³Eli Lilly & Co. Ltd, Windlesham, Surrey, United Kingdom; ⁴Eli Lilly and Company, Indianapolis, IN, United States

2217. Quantitative Magnetization Transfer Characteristics of White Matter Tracts Correlates with DTI Indices in Predicting the Conversion from Mild Cognitive Impairment to Alzheimer's Disease

Elena Makovac¹, Barbara Spano¹, Giovanni Giulietti¹, Laura Serra¹, Carlo Caltagirone², ³, Marco Bozzali¹, Mara Cercignani¹, ⁴

¹Neuroimaging laboratory, IRCCS Santa Lucia Foundation, Roma, Italy, Italy; ²Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Roma, Italy, Italy; ³Department of Neuroscience, University of Rome 'Tor Vergata', Roma, Italy, Italy; ⁴Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, Sussex, United Kingdom

2218. Divergent Episodic Memory Networks Among APOE Alleles in Cognitively Normal Elderly

Hao Shu¹, ², Yongmei Shi¹, Gang Chen², Zan Wang¹, Duan Liu¹, Chunxian Yue¹, B.Douglas Ward², Wenjun Li², Zhan Xu², Guangyu Chen², Qihao Guo³, Jun Xu⁴, Shi-Jiang Li², Zhijun Zhang¹ ¹Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University,

¹Department of Neurology, Affiliated ZhongDa Hospital, Neuropsychiatric Institute and Medical School of Southeast University, Nanjing, Jiangsu, China; ²Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ³Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; ⁴Department of Neurology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China

2219. Evaluation of Two Susceptibility-Weighted Sequences for Detection of Cerebral Microbleeds

*Cheryl R. McCreary*¹, ², *M Louis Lauzon*¹, ², *Saima Batool*¹, ², *Eric E. Smith*¹, ², *Richard Frayne*¹, ² ¹Radiology and Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ²Seaman Family MR Centre, Foothills Medical Centre, Calgary, Alberta, Canada

2220. Brain Plasticity in Mild Alzheimer's Disease. Effects of a Computer-Based Cognitive Training on Functional Connectivity

Francesco Barban¹, Laura Serra, Roberta Perri², Roberta Annicchiarico², Giovanni Augusto Carlesimo², ³, Matteo Mancini⁴, Fulvia Adriano², Claudia Ricci², Maria Giovanna Lombardi², Mara Cercignani⁵, Lucia Fadda², ³, Carlo Caltagirone², ³, Marco Bozzali

¹Clinical and Behavioral Neurology Laboratory; Neuroimaging Laboratory, IRCCS S Lucia Foundation, Rome, Italy; ²Clinical and Behavioral Neurology Laboratory, IRCCS S Lucia Foundation, Rome, Italy; ³Department of Neuroscience, University of Rome "Tor Vergata", Rome, Italy; ⁴Department of Engineering, University of Rome "Roma Tre", Rome, Italy; ⁵Brighton & Sussex Medical School, Clinical Imaging Sciences Centre, University of Sussex, Brighton, Sussex, United Kingdom

2221. A Multi-Scale MRI Approach to Investigate Novel Drug Treatment Strategies in Mouse Models of Alzheimer's Disease

Holly Elizabeth Holmes¹, Niall Colgan¹, Ozama Ismail¹, Da Ma,², Jack Wells¹, Nicholas Powell¹,², James O'Callaghan¹, Ian Harrison¹, Manuel Jorge Cardoso², Marc Modat, Elizabeth MC Fisher³, Sebastian Ourselin², Michael O'Neill⁴, Emily Catherine Collins⁵, Mark F. Lythgoe

¹Centre for Advanced Biomedical Imaging, University College London, London, Greater London, United Kingdom; ²Centre for Medical Image Computing, University College London, London, Greater London, United Kingdom; ³Department of Neurodegenerative Diseases, University College London, London, Greater London, United Kingdom; ⁴Eli Lilly & Co. Ltd, Windlesham, Surrey, United Kingdom; ⁵Eli Lilly & Company, Indianapolis, United States

2222. For Measuring Hippocampal Atrophy Rates the Boundary Shift Integral Algorithm Is Substantially More Accurate Than FreeSurfer, Manual, AdaBoost and FSL/First

Keith S. Cover¹, Ronald A. van Schijndel¹, Adriaan Versteeg¹, Kelvin K. Leung², Emma R. Mulder¹, Remko A. de Jong¹, Peter J. Visser¹, Alberto Redolfi³, Jerome Revillard⁴, Baptiste Grenier⁴, David Manset⁴, Soheil Damangir⁵, Hugo Vrenken¹, Bob W. van Dijk¹, Nick C. Fox², Giovanni Frisoni³, Frederik Barkhof⁴ ¹VU University Medical Center, Amsterdam, North Holland, Netherlands; ²University College London, London, United Kingdom; ³IRCCS San Giovanni di Dio Fatebenefratelli, Italy; ⁴MAAT, Archamps, France; ⁵Karolinska Institutet, Sweden

2223. Statistical Phase Noise Elimination for Amyloid Plaque Detection

Tetsuya Yoneda¹, Koji Hashimoto¹, Akihiko Kuniyasu², Toshinori Hirai¹, Mika Kitajima¹, Mamoru Hashimoto¹, Nan Kurehana¹, Michiya Iwata¹, Motohira Mio³, Sosuke Yoshinaga¹, Hiroaki Terasawa¹, Manabu Ikeda¹, Yasuyuki Yamashita¹

¹Kumamoto University, Kumamoto, Japan; ²Sojo University, Kumamoto, Japan; ³Fukuoka University Chikushi Hospital, Fukuoka, Japan

2224. Ex-Vivo Brain MR Morphometric-Pathologic Investigation in a Community Cohort of Older Adults.

Junxiao Yu¹, Aikaterini Kotrotsou¹, Arnold M. Evia¹, Julie A. Schneider², Sue E. Leurgans², David A. Bennett², Konstantinos Arfanakis¹

¹Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States; ²Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States

2225. Is the Superficial White Matter Important in Alzheimer's Disease?

Owen R. Phillips¹, ², Shantanu H. Joshi³, Fabrizio Piras⁴, Maria D. Orfei⁴, Mariangela Iorio⁴, Katherine L. Narr³, David W. Shattuck³, Carlo Caltagirone¹, ², Gianfranco Spalletta⁴, Margherita Di Paola¹, ⁵ ¹Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, roma, Lazio, Italy; ²Neuroscience, University of Rome "Tor Vergata", Rome, Roma, Italy; ³Neurology, Ahmanson Lovelace Brain Mapping Center, Los Angeles, CA, United States; ⁴Neuropsychiatry Laboratory, Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Rome, Roma, Italy; ⁵Human Studies, LUMSA University, Rome, Italy

2226. Nano-Antioxidants Improve Axonal Transport Deficits in a Mouse Model of Alzheimer's Disease Kelly Ann Moore¹, Errol Loïc Samuel², James Tour², Robia G. Pautler¹

¹Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States; ²Department of Chemistry, Rice University, Houston, TX, United States

2227. Comparison of Relaxation, Magnetization Transfer, and Diffusion Tensor Measurements in the Hippocampal Formation Between APP, PS1, and Control Mice

Sheryl L. Herrera¹, Heather Whittaker², Shenghua Zhu³, Vanessa L. Palmer⁴, Richard Buist⁵, Xin-Min Li⁶, Jonathan D. Thiessen⁷, ⁸, Melanie Martin⁹, ¹⁰

¹Physics & Astronomy, University of Mantioba, Winnipeg, Manitoba, Canada; ²Biopsychology program, University of Winnipeg, Winnipeg, Manitoba, Canada; ³Pharmacology & Therapeutics, University of Mantioba, Winnipeg, Manitoba, Canada; ⁴Biomedical Engineering, University of Mantioba, Winnipeg, Manitoba, Canada; ⁵Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ⁶Psychiatry, University of Alberta, Edmonton, Alberta, Canada; ⁷Imaging Program, Lawson Health Research Institute, London, Ontario, Canada; ⁸Medical Biophysics, Western University, London, Ontario, Canada; ⁹Physics, University of Winnipeg, Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada

2228. Improved Correlation of Iron to R2 and R2* in Alzheimer's Disease-Affected White Matter

*Christos Michaelides*¹, David J. Lythgoe¹, Harold G. Parkes², Claire Troakes³, Istvan Bodi⁴, Tina Geraki⁵, Amy H. Herlihy⁶, Po-Wah So¹

¹IOPPN, King's College London, London, United Kingdom; ²CR-UK Clinical MR Research Group, Institute of Cancer Research, Sutton, London, United Kingdom; ³MRC London Neurodegenerative Diseases Brain Bank, Department of Clinical Neuroscience, IOPPN, King's College London, London, United Kingdom; ⁴Clinical Neuropathology & London Neurodegenerative Diseases Brain Bank, King's College London, London, United Kingdom; ⁵Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, United Kingdom; ⁶Agilent Technologies, Yarnton, Oxfordshire, United Kingdom

2229. Inter and Intra Network Connectivity Predicts the Evolution of MCI Over Time and the Conversion from MCI to AD

Elena Makovac¹, Laura Serra¹, Chiara Mastropasqua¹, Mario Torso¹, Barbara Spano¹, Giovanni Giulietti¹, Carlo Caltagirone², ³, Mara Cercignani¹, ⁴, Marco Bozzali¹

¹Neuroimaging laboratory, IRCCS Santa Lucia Foundation, Rome, Italy, Italy; ²Department of Clinical and Behavioural Neurology, IRCCS Santa Lucia Foundation, Roma, Italy, Italy; ³Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy, Italy; ⁴Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, Sussex, United Kingdom

2230. The Background Brain Network Plays a Compensatory Role in Patients with Amnestic Mild Cognitive Impairment

Wutao Lou¹, Lin Shi², Defeng Wang¹, Winnie CW Chu¹, Vincent CT Mok², Sheung-Tak Cheng³, ⁴, Linda CW Lam⁵ ¹Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ²Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ³Department of Psychological

Studies, Hong Kong Institute of Education, Shatin, Hong Kong; ⁴Center for Psychosocial Health and Aging, Hong Kong Institute of Education, Shatin, Hong Kong; ⁵Department of Psychiatry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

2231. Simultaneous ASL/FDG-PET Imaging of Frontotemporal Dementia

Jing Zhang¹,², Elizabeth Finger¹,², Udunna Anazodo,²³, Julia MacKinley², John Butler², Frank Prato,²³, Keith St Lawrence,

¹Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada; ²Lawson Health Research Institute, London, Ontario, Canada; ³Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada

2232. Whole-Brain Correlation Between Microstructural Alterations and Cognitive Performance of Alzheimer **Disease Studied by Diffusion Kurtosis Imaging**

Hongyan Ni¹, Lixiang Yuan², Yuanyuan Chen³, Man Sun², Jianzhong Yin¹, Xu Yan⁴ ¹Tianjin First Central Hospital, Tianjin, China; ²First Central Clinical College, Tianjin Medical University, Tianjin, China; ³Tianjin University, Tianjin, China; ⁴MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China

2233. Effect of Antiepileptic Treatment on Hippocampal Activity in Alzheimer's Disease Measured by ASL Weiying Dai¹, David C. Alsop¹, Daniel Z. Press²

¹Radiology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States; ²Neurology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States

2234. Tensor-Based Morphometry Reveals Structural Differences Between Down Syndrome and Alzheimer's Disease **Mouse Model Brains**

Nick M. Powell¹, ², Holly E. Holmes², Da Ma¹, ², Marc Modat¹, Jorge Cardoso¹, Frances K. Wiseman³, Victor LJ *Tybulewicz*⁴, *Elizabeth MC Fisher*³, *Mark F. Lythgoe*², *Sebastien Ourselin*¹

¹Centre for Medical Image Computing, University College London, London, England, United Kingdom; ²Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ³Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom; ⁴MRC National Institute for Medical Research, London, United Kingdom

Traditional Poster Brain Tumour Spectroscopy Exhibition Hall Wednesday 13:30-15:30

2235. Intracellular PH Measured by ³¹P MR-Spectroscopy Predicts Site of Progression in Recurrent Glioblastoma Under Antiangiogenic Therapy with Bevacizumab.

Katharina Johanna Wenger¹, Oliver Bähr¹, Elke Hattingen², Ulrich Pilatus² ¹Neurooncology, Goethe-University Frankfurt, Frankfurt, Hessen, Germany; ²Neuroradiology, Goethe-University Frankfurt, Frankfurt, Hessen, Germany

2236. The Improved Detection of 2-Hydroxyglutarate in Gliomas at 7 T Using High-Bandwidth Adiabatic Refocusing Pulses

Uzay E. Emir¹, Sarah Larkin², Nick de Pennington², Natalie Voets¹, Puneet Plaha³, Richard Stacey³, James Mccullagh⁴, Stuart Clare¹, Peter Jezzard¹, Christopher Schofield⁴, Olaf Ansorge², Tom Cadoux-Hudson³ ¹FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom; ³Department of Neurosurgery, John Radcliffe Hospital, Oxford University Hospitals NHS Trust, Oxford, Oxfordshire, United Kingdom; ⁴Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom

2237. Characterizing Regional Heterogeneity of Glioblastoma: Regions Representing Metabolic Aggression in Enhancing and Non-Enhancing Components

Natalie Rosella Boonzaier¹, ², Timothy J. Larkin, ²³, Sarah Leir³, Laila A. Mohsen⁴, Adam Young³, Victoria C. Lupson², Stephen J. Price,²

¹Department of Clinical Neurosciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ²Wolfson Brain Imaging Centre, Addenbrooke's Hospital, Cambridge, Cambridgeshire, United Kingdom; ³Division of Neurosurgery, University of Cambridge, Cambridge, Cambridge, United Kingdom; ⁴Department of Radiology, University of Cambridge, Cambridge, United Kingdom

2238. Longitudinal MRS Imaging of 2-Hydroxyglutarate in Brain Tumors In Vivo

Sandeep Ganji¹, Zhongxu An¹, Dianne Mendelsohn¹, Marco Pinho¹, Edward Pan¹, Kevin Choe¹, Elizabeth Maher¹, Changho Choi¹

¹University of Texas Southwestern Medical Center, Dallas, TX, United States

2239. Volumetric MRSI as a Tool to Guide and Monitor Radiotherapy Treatment in Patients with Glioma Anouk Marsman¹, Sulaiman Sheriff², Doris D. Lin¹, Andrew A. Maudsley², Lawrence Kleinberg³, Peter B. Barker¹ ¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, United States;

³Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States

2240. Pilocytic Astrocytoma: NAA Is Not NAA

Benita Tamrazi¹, Ashok Panigrahy², Stefan Bluml¹, ³ ¹Children's Hospital Los Angeles/USC, Los Angeles, CA, United States; ²Children's Hospital of Pittsburgh, Pittsburgh, PA, United States; ³Rudi Schulte Research Institute, Santa Barbara, CA, United States

2241. Molecular Subgroups of Medulloblastoma Identification by MR Spectroscopy

¹Children's Hospital Los Angeles/USC, Los Angeles, CA, United States; ²Rudi Schulte Research Institute, Santa Barbara, CA, United States; ³Children's Hospital Los Angeles and Saban Research Institute, Los Angeles, CA, United States; ⁴Department of Pediatrics, Keck School of Medicine, University of Southern California, CA, United States; ⁵Children's Hospital of Pittsburgh, PA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, University of Southern California, CA, United States; ⁶Department of Preventive Medicine, Keck School of Medicine, K

2242. Early Tumor Response to Radiochemotherapy Using 1D PRESS and 2D Correlated Spectroscopy

Xi Long¹,², Daniel Ramirez-Gordillo¹, Huijun Liao¹, Ben Rowland¹, Jong-Woo Lee³, Nils Arvold⁴, Patrick Wen⁴, Srinivasan Mukundan¹, Raymond Huang¹, Alexander P. Lin¹

¹Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, United States; ²Radiology Department, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China; ³Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States; ⁴Division of Neuro-Oncology, Brigham and Women's Hospital, Boston, MA, United States

2243. MRS Changes in Diffuse Intrinsic Pontine Gliomas Correlate with Survival

*Stefan Blumi*¹, ², *Ashok Panigrahy*³ ¹Children's Hospital Los Angeles/USC, Los Angeles, CA, United States; ²Rudi Schulte Research Institute, Santa Barbara, CA, United States; ³Children's Hospital of Pittsburgh/UPMC, Pittsburgh, PA, United States

2244. Glycine Is a Potential Biomarker for Malignant Transformation in Brain Tumors

Changho Choi¹, Sandeep Ganji¹, Zhongxu An¹, Dianne Mendelsohn¹, Marco Pinho¹, Edward Pan¹, Kevin Choe¹, Elizabeth Maher¹

¹University of Texas Southwestern Medical Center, Dallas, TX, United States

2245. Evaluating Brain Metabolites in Patients with Glioma Using Short and Long TE MRSI at 3T and 7T Yan Li¹, Marisa Lafontaine¹, Susan Chang², Sarah J. Nelson¹, ³ ¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; ²Department of

¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; ²Department of Neurological Surgery, University of California, San Francisco, CA, United States; ³Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States

2246. Molecular MRI Differentiation Between Primary Central Nervous System Lymphoma (PCNSL) and High-Grade Glioma (HGG) Using Endogenous Protein-Based Amide Proton Transfer (APT) Signals Shanshan Jiang¹, ², Hao Yu¹, Xianlong Wang¹, Shilong Lu¹, Yi Zhang², Doon-Hoon Lee², Hye-Young Heo², Jinyuan Zhou², Zhibo Wen¹

Traditional PosterBrain Tumour Multiparametic AssessmentExhibition HallWednesday 13:30-15:30

2247. Dual-Modality Evaluation of Tumour Vasculature, Morphology and Metabolism Via Dynamic Susceptibility Contrast MRI and FluoroEthyl Choline-PET Using Simultaneous PET/MR

Maria Liljeroth¹, Kjell Erlandsson¹, Francesco Fraioli¹, David Thomas², Enrico De Vita³, Brian Hutton¹, Anna Barnes⁴, Simon Arridge⁵, Sebastien Ourselin⁶, David Atkinson⁷

¹Institute of Nuclear Medicine, Metabolism & Experimental Therapeutics, London, United Kingdom; ²Institute of Neurology, Faculty of Brain Sciences, Brain Repair & Rehabilitation, London, United Kingdom; ³National Hospital for Neurology and Neurosurgery, Lysholm Department of Neuroradiology, London, United Kingdom; ⁴Institute of Nuclear Medicine, Clinical Physics, London, United Kingdom; ⁵Faculty of Engineering Science, Dept of Computer Science, London, United Kingdom; ⁶Dept of Med Phys & Biomedical Eng, London, United Kingdom; ⁷Faculty of Medical Sciences, Div of Medicine, London, United Kingdom

2248. Prediction of Progression Free Survival at 6 Months in High Grade Gliomas Using Pre-Chemoradiotherapy

Lawrence Kenning¹, Martin Lowry¹, Martin Pickles¹, Chris Rowland-Hill², Shailendra Achawal², Chittoor Rajaraman², Lindsay Turnbull¹

¹Centre for MR Investigations, Hull York Medical School at University of Hull, Hull, United Kingdom; ²Hull and East Yorkshire Hospitals NHS Trust, United Kingdom

2249. Validation of the RANO Criteria for Quantifying Therapeutic Response of Human Brain Tumors Using Computer Assisted Medical Diagnosis (CAMD) Technology Simon Salinas¹, Steve Lau², Kate Drummond³, Christen Barras², Pramit Phal¹, ², Patricia Desmond¹, ², Bradford

Simon Salinas¹, Steve Lau², Kate Drummond³, Christen Barras², Pramit Phal¹, ², Patricia Desmond¹, ², Bradford Moffat¹

¹The University of Melbourne, Melbourne, Victoria, Australia; ²Radiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; ³Neurosurgery, The University of Melbourne, Melbourne, Victoria, Australia

2250. Novel Method for Automatic Segmentation of Infiltrative Glioblastoma

Kelvin Wong¹,², Stephen Wong¹,²

¹Department of Systems Medicine and Bioengineering, Houston Methodist Research Institute, Houston, TX, United States; ²Department of Radiology, Weill Cornell Medical College, New York, NY, United States

2251. Characterising the Transition Zone from Tumor to Normal Brain in Glioblastomas Using Multimodal MRI Sarah A. Leir¹, Timothy J. Larkin¹, ², Natalie R. Boonzaier, ²³, Victoria Lupson⁴, Laila A. Mohsen⁵, Adam Young⁶, Stephen J. Price³, ⁶

¹Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, Cambridgeshire, United Kingdom; ²Wolfson Brain Imaging Centre, Addenbrooke's Hospital, Cambridge, Cambridgeshire, United Kingdom; ³Department of Clinical Neurosciences, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ⁴Wolfson Brain Imaging Centre, Addenbrooke's Hospital, Cambridge, Cambridgeshire, United Kingdom; ⁵University Department of Radiology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ⁶Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, Cambridgeshire, United Kingdom

2252. Metabolic Activity of the Invasive Microenvironment of Glioblastomas Determines Time to Progression: A Multimodal MR Study

Stephen J. Price¹, ², Adam MH Young¹, William J. Scotton¹, Natalie R. Boonzaier¹, Victoria C. Lupson², Mary A. McLean³, Timothy J. Larkin¹, ²

¹Academic Neurosurgery Division, Dept. Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; ²Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom; ³Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridge, United Kingdom

2253. Tumour Relapse Prediction Using Multi-Parametric MR Data Recorded During Follow-Up of GBM Patients Adrian Ion-Margineanu¹, ², Sofie Van Cauter³, Diana M. Sima¹, ², Frederik Maes, ²⁴, Stefaan W. Van Gool⁵, Stefaan Sunaert³, Uwe Himmelreich⁶, Sabine Van Huffel¹, ² ¹STADIUS, KU Leuven - ESAT, Leuven, Belgium; Belgium; ²iMinds Medical IT, Leuven, Belgium; ³Department of Radiology, University Hospitals of Leuven, Leuven, Belgium; ⁴PSI, KU Leuven - ESAT, Belgium; ⁵Department of Pedriatic Neuro-oncology, University Hospitals of Leuven, Belgium; ⁶Department of Imaging and Pathology - Biomedical MRI/ MoSAIC, KU Leuven, Belgium

2254. Quantitative Brain Tumor Mapping Using Magnetic Resonance Fingerprinting

Chaitra Badve¹, Matthew Rogers², Alice Yu², Dan Ma³, Shivani Pahwa⁴, Andrew Sloan⁵, Jeffrey Sunshine¹, ⁴, Vikas Gulani¹, ⁴, Mark Griswold³, ⁴

¹Radiology, University Hospitals, Cleveland, OH, United States; ²School of Medicine, Case Western Reserve University, Cleveland, OH, United States; ³Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ⁴Radiology, Case Western Reserve University, Cleveland, OH, United States; ⁵Neurosurgery, University Hospitals, Cleveland, OH, United States;

2255. MR-PET Based Diagnosis of Gliomas – a Prospective Comparison of 3D MRSI and ¹⁸FET PET

Jörg Mauler¹, Karl-Josef Langen¹, Andrew A. Maudsley², Omid Nikoubashman³, Christian Filss¹, Gabriele Stoffels¹, N. Jon Shah¹

¹Institute of Neuroscience and Medicine, Forschungszentrum Jülich, Jülich, Germany; ²Miller School of Medicine, University of Miami, FL, United States; ³Department of Neuroradiology, RWTH Aachen University, Germany

- **2256.** Tumor Classification and Prediction Using Robust Multivariate Clustering of Multiparametric MRI *Alexis Arnaud*¹, ², *Florence Forbes*¹, ², *Nicolas Coquery*³, ⁴, *Emmanuel L. Barbier*³, ⁴, *Benjamin Lemasson*³, ⁴ ¹INRIA, Grenoble, -, France; ²LJK, University Grenoble Alpes, Grenoble, -, France; ³U836, INSERM, Grenoble, -, France; ⁴GIN, University Grenoble Alpes, Grenoble, -, France
- 2257. Advanced MR Image Biomarkers and Updated Genomic Biomarkers for Brain Gliomas: Technical Point and Clinical Application

Kyung Mi Lee¹, Eui Jong Kim¹, Ji Hye Jang¹, Woo Suk Choi¹ ¹Kyung Hee University Hospital, Seoul, Korea

Traditional Poster Brain Tumour Diffusion

Exhibition Hall Wednesday 13:30-15:30

2258. Characterising Patterns of Tumour Invasion in Glioblastoma

Timothy J. Larkin¹, Natalie R. Boonzaier¹, Laila A. Mohsen², Stephen J. Price¹ ¹Division of Neurosurgery, University of Cambridge, Cambridge, United Kingdom; ²Department of Radiology, University of Cambridge, United Kingdom

2259. Differentiating Tumor Progression from Pseudo-Progression in Patients with Glioblastomas Using DTI and DSC-MRI

Sumei Wang¹, Maria Martinez-Lage², Yu Sakai¹, Sanjeev Chawla³, Sungheon G. Kim³, Michelle Alonso-Basanta⁴, Robert A. Lustig⁴, Steven Brem⁵, Suyash Mohan¹, Ronald L. Wolf⁴, Arati Desai⁶, Harish Poptani¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States; ³Radiology, New York University School of Medicine, New York, NY, United States; ⁴Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States; ⁵Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States; ⁶Hematology-Oncology, University of Pennsylvania, Philadelphia, PA, United States

- 2260. IVIM-MRI Reproducibility for Functional Parametric Mapping of Treatment Response in High-Grade Glioma Jack T. Skinner¹, ², Paul L. Moots³, Adrienne N. Dula¹, ², C Chad Quarles¹, ² ¹Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; ²Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; ³Neurology, Vanderbilt University Medical Center, Nashville, TN, United States
- 2261. Differentiation of High-Grade Astrocytomas from Solitary Brain Metastases: Comparing Diffusion Kurtosis Imaging and Diffusion Tensor Imaging

Yan Tan¹, Hui Zhang², Xiao-chun Wang², Jiang-bo Qin², Xiao-feng Wu², Lei Zhang², Le Wang² ¹Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan, Shanxi, China; ²Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, Shanxi, China

2262. Computer Aided Radiological Diagnostics: Random Forest Classification of Glioma Tumor Progression Using Image Texture Parameters Derived from ADC-Maps.

Johannes Slotboom¹, Nuno Pedrosa de Barros¹, Stefan Bauer², Urspeter Knecht¹, Nicole Porz³, Philippe Schucht³, Pica Pica⁴, Andreas Raabe³, Roland Wiest⁵, Beate Sick⁶

¹DRNN, Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland; ²Institute of Surgical Technology and Biomechanics, University Bern, Bern, Switzerland; ³DKNS-Neurosurgery, University Hospital Bern, Bern, Switzerland; ⁴DOLS-Radiooncology, University Hospital Bern, Bern, Switzerland; ⁵1DRNN, Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Bern, Switzerland; ⁶Division of Biostatistics, ISPM, University Zürich, Zürich, Switzerland

2263. Comparison of Introvoxel Incoherent Motion Diffusion-Weighted MR Imaging and Arterial Spin Labeling MR Imaging in Gliomas

Yuankai Lin¹, Jianrui yuan Li², Zhiqiang Zhang³, Qiang Xu², Zongjun Zhang³ ¹Department of Medical Imaging,, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China; ²Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University,, Nanjing, Jiangsu, China; ³Department of Medical Imaging,, Jinling Hospital, Medical School of Nanjing University,, Nanjing, Jiangsu, China

2264. Diffusion Tensor Imaging and Pathologic Correlates of Meningiomas

Sumei Wang¹, Sungheon G. Kim², Maria Martinez-Lage³, Edward B. Lee³, Laurie A. Loevner¹, Harish Poptani¹, John YK Lee⁴, Suyash Mohan¹

¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Radiology, New York University School of Medicine, New York, NY, United States; ³Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, United States; ⁴Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States

2265. Neurite Density and Diffusion Kurtosis Characterization of Brain Tumors with Accelerated DSI

Ek T. Tan¹, Robert J. Young², Xiaofeng Liu¹, Marcel Prastawa¹, Kyung K. Peck², ³, Jennifer B. Rubel², Jonathan I. Sperl⁴, Luca Marinelli¹

¹GE Global Research, Niskayuna, NY, United States; ²Radiology, MSKCC, New York, NY, United States; ³Medical Physics, MSKCC, New York, NY, United States; ⁴GE Global Research, Garching, Munich, Germany

2266. Cranio-Spinal Radiation Produces Long Term Compromise of White Matter Tracts in Childhood Brain Tumour Survivors.

Logan Richard¹, ², Eric Bouffet¹, ², Suzanne Laughlin¹, Normand Laperriere³, Kamila Szulc¹, Douglas Strother⁴, Juliette Hukin⁵, Christopher Fryer⁵, Dina McConnell⁵, Fang Liu¹, Jovanka Skocic¹, Alexandra Mogadam¹, Donald Mabbott¹, ²

¹The Hospital for Sick Children, Toronto, Ontario, Canada; ²University of Toronto, Toronto, Ontario, Canada; ³Princess Margaret Hospital, Toronto, Ontario, Canada; ⁴University of Calgary, Calgary, Alberta, Canada; ⁵British Columbia Children's Hospital, Vancouver, British Columbia, Canada

2267. An Analysis of Variability in Diffusion Tractography of Language Fascicles

Kesshi Marin Jordan¹, Eduardo Caverzasi², ³, Valentina Panara¹, ⁴, Bagrat Amirbekian¹, Anisha Keshavan¹, Nico Papinutto², ⁵, Mitchel Berger⁶, Roland Henry²

¹Bioengineering, University of California San Francisco & Berkeley, San Francisco, CA, United States; ²Neurology, University of California San Francisco, San Francisco, CA, United States; ³University of Toronto, Toronto, Canada; ⁴Institute of Advanced Biomedical Technologies, University "G. D'Annunzio", Chieti, Italy; ⁵Bioengineering, University of California San Francisco & Berkeley, CA, United States; ⁶Neurosurgery, University of California San Francisco, San Francisco, United States

Traditional Poster Brain Tumour Perfusion & DCE Exhibition Hall Wednesday 13:30-15:30

2268. in a Rat Model of Cerebral Tumor, Exudate Flux Is Controlled by Peritumoral Compression

James R. Ewing¹, Stephen L. Brown², Madhava P. Aryal¹, Kelly Ann Keenan³, Rasha M. Elmghirbi⁴, Swayamprav Panda¹, Hassan Bagher-Ebadian¹, Tavarekere N. Nagaraja³ ¹Neurology, Henry Ford Health System, Detroit, MI, United States; ²Radiation Oncology, Henry Ford Health System, Detroit, MI,

United States; ³Anesthesiology, Henry Ford Health System, Detroit, MI, United States; ⁴Physics, Oakland University, Rochester, MI, United States

2269. Study of Contrast-Enhanced T1-W MRI Markers of Cerebral Radiation Necrosis Manifested in Head-And-Neck Cancers, Primary, and Metastatic Brain Tumors: Preliminary Findings

Prateek Prasanna¹, Pallavi Tiwari¹, Archana Siddalingappa², Leo Wolansky², Lisa Rogers², Tai-Chung Lam³, Victoria To⁴, Anant Madabhushi¹

¹Case Western Reserve University, Cleveland, OH, United States; ²University Hospitals, Cleveland, OH, United States; ³Tuen Mun Hospital, Hong Kong, China; ⁴Tuen Mun Hospital, Hong Kong, China

2270. DCE-MRI Reveals Increased Peritumoral Fluid Flow in Brain Metastases After SRS

Tord Hompland¹, Catherine Coolens¹, Brandon Driscoll¹, Warren Foltz¹, Cynthia Menard¹, David A. Jaffray¹, ², Caroline Chung¹

¹Princess Margaret Cancer Centre, Toronto, Ontario, Canada; ²TECHNA Institute/University Health Network, ontario, Canada

2271. Glioma Grading Using Standardized RCBV Depends on Tumor Type

Mona M. Al-Gizawiy¹, Melissa A. Prah¹, Wade M. Mueller², Kathleen M. Schmainda¹, ³ ¹Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Neurosurgery, Medical College of Wisconsin, WI, United States; ³Biophysics, Medical College of Wisconsin, WI, United States

2272. Design of a 3D-Phantom to Evaluate Optimized Imaging Parameters for Time-Of-Flight Angiography in Mouse Glioblastoma Models

Carly Warren¹, Michael Bock¹, Jochen Leupold¹, Wilfried Reichardt, ¹² ¹Department of Radiology Medical Physics, Universitiy Medical Center Freiburg, Freiburg, Germany; ²German Cancer Consortium (DKTK), German Cancer Center (DKFZ), Heidelberg, Germany

2273. Minimum Sample Size Requirements for RCBV Measures in Patient Glioblastoma Trials

Melissa A. Prah¹, Steven M. Stufflebeam², Eric S. Paulson¹, ³, Jayashree Kalpathy-Cramer², Elizabeth R. Gerstner⁴, Tracy T. Batchelor⁴, Daniel P. Barboriak⁵, Bruce Rosen², Kathleen M. Schmainda¹, ⁶ ¹Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Radiology, Massachusetts General Hospital, Charlestown, MA. United States; ³Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Massachusetts

MA, United States; ³Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Massachusetts General Hospital, Boston, MA, United States; ⁵Radiology, Duke University Medical Center, Durham, NC, United States; ⁶Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States

2274. Pretreatment Dynamic Contrast-Enhanced MR Imaging in Glioblastoma : Correlation Study with Genetic Profiles

Yoon Seong Choi¹, Tyler Hyungtaek Rim², Mina Park¹, Ho-Joon Lee¹, Sung Soo Ahn¹, Jinna Kim¹, Seung-Koo Lee¹ ¹department of radiology, Yonsei university college of medicine, Seoul, Korea; ²department of ophthalmology, Yonsei university college of medicine, Seoul, Korea 2275. Understanding the Mechanism of Contrast Enhancement in Brain Tumors and Infections Through Dynamic Contrast Enhanced MRI

Mudit Gupta¹, Prativa Sahoo², Ritu Tyagi¹, Rana Patir³, Sandeep Vaishya⁴, Neeraj Prakash⁴, Indrajit Saha², Rakesh Kumar Gupta¹

¹Radiology, Fortis Institute, Gurgaon, Haryana, India; ²Philips Healthcare, Gurgaon, India; ³Neurosurgery, Fortis Institute, Gurgaon, India; ⁴Pathology, Fortis Institute, Gurgaon, India

- 2276. Discrepancy Between Arterial Spin Labeling Images and Contrast-Enhanced Images of Brain Tumors Takashi Abe¹, Saho Irahara, Yoichi Otomi, Yuuki Obama, Moriaki Yamanaka, Seiji Iwamoto, Sonoka Hisaoka, Mungunkhuyag Majigsuren, Delgerdalai Khashbat, Mungunbagana Ganbold, Masafumi Harada ¹Institute of Health Biosciences The Tokushima University Graduate School, Tokushima, Japan
- 2277. The Complementary Value of Arterial Spin Labeling Next to Contrast-Enhanced MRI in the Diagnosis of Brain Tumor Invasion in Mouse Models

House Amiri¹,², Anna C. Navis³, Tom Peeters¹, William P. Leenders³, Arend Heerschap¹ ¹Department of Radiology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ³Department of Pathology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ³Department of Pathology, Radboud

2278. Diagnostic Performance of Dynamic Susceptibility Contrast Perfusion in Glioma Grading: Comparison of Cerebral Blood Volume Among Different Analysis Software

Kohsuke Kudo¹, Ikuko Uwano², Toshinori Hirai³, Hideo Nakamura⁴, Noriyuki Fujima¹, Fumio Yamashita², Jonathan Goodwin², Satomi Higuchi², Makoto Sasaki²

¹Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan; ²Ultra-High Field MRI, Iwate Medical University, Morioka, Japan; ³Radiology, Kumamoto University, Kumamoto, Japan; ⁴Neurosurgery, Kumamoto University, Kumamoto, Japan

Traditional Poster

Brain Tumours & fMRI

Exhibition Hall Wednesday 13:30-15:30

2279. Dynamic Functional Connectivity of Motor Network in Patients with Brain Tumor

Chen Niu¹, Pan Lin², Ming Zhang¹, XiaoLong Peng³, MaoDe Wang¹, Wei Wang¹, Wenfei Li¹, Xin Liu², Rana Netra¹ ¹The First Affiliated Hospital of Medical College, Xi'an Jiaotong university, Xi'an, Shaanxi, China; ²Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ³Institute of Biomedical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China

2280. Atlas Based Seed Analysis of Resting State fMRI for Pre-Surgical Brain Mapping

*Madalina E. Tivarus*¹, ², *Alexander Teghipco*², *Daniel Cole*³, *Michael Utz*¹, *Ali Hussain*¹ ¹Department of Imaging Sciences, University of Rochester, Rochester, NY, United States; ²Rochester Center for Brain Imaging, University of Rochester, ROY, United States; ³Department of Psychology, Emory University, GA, United States

2281. Resting State Functional Connectivity of the Hippocampus in Patients Receiving Radiation Therapy for Extra-Axial Tumors

Marc C. Mabray¹, Igor J. Barani², Suresh E. Joel³, Rakesh Mullick³, Soonmee Cha¹ ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Radiation Oncology, University of California San Francisco, San Francisco, CA, United States; ³General Electric Global Research, Bangalore, Karnataka, India

2282. Functional Connectivity Changes in the Presence of Brain Tumors Noora Pauliina Tuovinen¹, Francesco de Pasquale¹, Umberto Sabatini¹ ¹Radiology, Santa Lucia Foundation, Rome, Lazio, Italy

Traditional Pos	ster
Novel Brain &	Eye

Exhibition Hall Wednesday 13:30-15:30

- 2283. Optimization of Sample Preparation for MRI of Formaldehyde-Fixed Brains Yann Leprince¹, ², Benoît Schmitt¹, Élodie Chaillou³, Christophe Destrieux⁴, Laurent Barantin⁴, Alexandre Vignaud¹, Denis Rivière¹, Cyril Poupon¹ ¹NeuroSpin, CEA, Saclay, France; ²Université Paris-Sud, Orsay, France; ³INRA, Tours, France; ⁴Université François-Rabelais, Tours, France
- 2284. Morphological and Microstructural Changes in the Eye and the Brain in an Experimental Glaucoma Model Induced by Crosslinking Hydrogel Injection

Induced by Crossinking Hydroget Injection Leon C. Ho¹,², Ian P. Conner³,⁴, Xiao-Ling Yang¹,³, Yolandi van der Merwe, ¹⁴, Yu Yu⁵, Christopher K. Leung⁶,⁷, Ian A. Sigal³,⁴, Ed X. Wu², Seong-Gi Kim¹,⁸, Gadi Wollstein³, Joel S. Schuman³,⁴, Kevin C. Chan¹,³ ¹Neuroimaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; ³Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ⁴Department of Biomedical Engineering, Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; ⁶University Eye Center, Hong Kong Eye Hospital, Hong Kong, China; ⁷Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China; ⁸Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea

- 2285. Retinal-Choroidal Blood Flow Decreases with Age: An MRI Study Oscar San Emeterio Nateras¹,², Joseph M. Harrison³, Eric R. Muir,²³, Yi Zhang², Qi Peng,²⁴, Steven Chalfin³, Juan E. Gutierrez⁵, Daniel A. Johnson³, Jeffrey W. Kiel³, Timothy Q. Duong,²³
 ¹Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States; ²Research Imaging Institute, San Antonio, TX, United States; ³Ophthalmology, University of Health Science Center at San Antonio, TX, United States; ⁴Radiology, Albert Einstein College of Medicine, and Montefiore Medical Center, Bronx, NY, United States; ⁵Radiology, University of Health Science Center at San Antonio, TX, United States
- 2286. Sources and Mitigation of Physiological Noise in Brainstem fMRI Studied at High Resolution Laetitia Maëlle Vionnet¹, Lars Kasper¹, ², Michael Wyss¹, Mike Bruegger¹, ³, Klaas Paul Pruessmann¹ ¹Institute for Biomedical Engineering, ETH and University Zurich, Zurich, Switzerland; ²Translational Neuromodeling Unit, ETH and University Zurich, Zurich, Switzerland; ³Center of Dental Medicine, University of Zurich, Zurich, Switzerland

2287. Automated Vessel Segmentation from Quantitative Susceptibility Maps at 7 Tesla

Pierre-Louis Bazin¹, Audrey Fan², Gabriela Mianowska³, Agnieska Olbrich³, Andreas Schäfer¹, Arno Villringer¹, Claudine Gauthier⁴

¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ²Stanford University, CA, United States; ³AGH University of Science and Technology, Cracow, Poland; ⁴Concordia University, Montréal, Québec, Canada

2288. Effectively Improving Accuracy and Reliability in Intracranial Volume Change for MR Intracranial Pressure Measurement

*Yi-Hsin Tsai*¹, *Hung-Chieh Chen*², *Hsin Tung*³, *Da-Chuan Cheng*⁴, *Clayton Chi-Chang Chen*², *Jyh-Wen Chai*¹, ², *Hsiao-Wen Chung*⁵, *Wu-Chung Shen*⁶

¹College of Medicine, China Medical University, Taichung, Taiwan; ²Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan; ³Neurological Institute, Taichung Veterans General Hospital, Taiwan, Taiwan; ⁴Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan; ⁵Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; ⁶College of Health Care, China Medical University, Taichung, Taiwan

Traditional Poster		
Head	& Neck	& Beyond

Wednesday 13:30-15:30 **Exhibition Hall**

2289. Slab-Wise Pulse Design Enhances the Performance of Dual Source Parallel RF Transmission at 3T Xiaoping Wu¹, Dingxin Wang¹, ², Jinfeng Tian¹, Sebastian Schmitter¹, Vibhas Deshpande³, Tommy Vaughan¹, Kamil Ugurbil¹, Pierre-Francois Van de Moortele¹ ¹CMRR, Radiology, University of Minnesota, Minneapolis, MN, United States; ²Siemens Medical Solutions USA, Inc., Minneapolis, MN, United States; ³Siemens Medical Solutions USA, Inc., Austin, TX, United States

2290. Sound Synchronization and Motion Compensated Reconstruction for Speech Cine MRI. Pierre-André Vuissoz¹,², Freddy Odille, ¹², Yves Laprie³,⁴, Emmanuel Vincent³, ⁵, Jacques Felblinger⁶, ⁷ ¹Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France; ²U947, INSERM, Nancy, France; ³LORIA, Université de Lorraine, Nancy, France; ⁴LORIA, CNRS, Nancy, France; ⁵LORIA, INRIA, Nancy, France; ⁶University Hospital Nancy, Nancy, France; ⁷CIC-IT 1433, INSERM, Nancy, France

2291. Diffusion Tensor Imaging of the Auditory Nerve in Patients with Long-Term Single-Sided Deafness

Sioerd B. Vos^{1, 2}, Wieke Haakma^{3, 4}, Huib Versnel¹, Martiin Froeling³, Lucienne Speleman¹, Pieter Dik⁵, Max A. Viergever², Alexander Leemans², Wilko Grolman¹

¹Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, Netherlands; ²Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ³Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Department of Forensic Medicine & Comparative Medicine Lab, Aarhus University, Denmark; ⁵Department of Pediatric Urology, University Children's Hospital UMC Utrecht, Utrecht, Netherlands

2292. Size of Vestibular Endolymph in Patients with Isolated Lateral Semicircular Canal Dysplasia

Shinji Naganawa¹, Hisashi Kawai¹, Michihiko Sone², Mitsuru Ikeda³ Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; ²Department of Otorhinolaryngology, Nagoya University Graduate School of Medicine, Nagoya, Japan; ³Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan

2293. MR Elastography of Skull Base Tumors

John Huston III¹, Arvin Arani¹, Nikoo Fattahi¹, Kevin J. Glaser¹, David S. Lake¹, Armando Manduca¹, Joshua D. Hughes², Jamie J. Van Gompel², Richard L. Ehman¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Neurosurgery, Mayo Clinic, Rochester, MN, United States

2294. The Merged Images with Different Central Frequencies Can Reduce Banding Artifact of 3D-SSFP MR Cisternography

Koji Maisumoto¹,², Hajime Yokota³,⁴, Hiroki Mukai⁴, Ken Motoori⁴, Toshiaki Miyachi², Yoshitada Masuda¹, Takashi Uno^4

¹Department of Radiology, Chiba University Hospital, Chiba, Japan; ²Division of Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; ³Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan; ⁴Diagnostic Radiology and Radiation Oncology, Chiba University, Chiba, Japan

2295. T1p Weighted Imaging in Middle Ear Cholesteatoma

Koji Yamashita¹, Akio Hiwatashi¹, Osamu Togao¹, Kazufumi Kikuchi¹, Tomoyuki Okuaki², Nozomu Matsumoto³, Koji Kobavashi⁴, Hiroshi Honda¹

¹Clinical Radiology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan; ²Philips Electronics Japan, Tokyo, Japan; ³Otorhinolaryngology, Kyushu University, Fukuoka, Japan; ⁴Medical Technology, Kyushu University hospital, Fukuoka, Japan

2296. Surgical Validation of Extracranial Facial Nerve Magnetic Resonance Tractography

Arnaud ATTYE¹,², Alexandre KARKAS³, Irene TROPRES⁴, Laurent LAMALLE⁴, Felix RENARD⁵, Georges BETTEGA⁶, Christian RIGHINI³, Alexandre KRAINIK⁵

¹Neuroradiology, Grenoble University Hospital, Grenoble, Rhône Alpes, France; ²UMS IRMaGe, Grenoble, Rhône Alpes, France; ³Otolaryngology, Grenoble University Hospital, Rhône Alpes, France; ⁴UMS IRMaGe, Rhône Alpes, France; ⁵Neuroradiology, Grenoble University Hospital, Rhône Alpes, France; ⁶Maxillofacial Surgery, Grenoble University Hosp

2297. A Study of MS Based on a Fusion Quantitative Analysis Model of DTI Heather Ting Ma¹, ², Pengfei Yang¹, Chenfei Ye¹, Jun Wu³, Xuhui Chen³, Jinbo Ma¹ ¹Department of Electronic and Information Engineering, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China; ²Radiology Department, Johns Hopkins University, Baltimore, MD, United States; ³Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China

- 2298. A Noise Suppression Approach in the Quantitative Analysis of DCE Images Renjie He¹, Yao Ding², Clifton Fuller², Qi Liu¹, Weiguo Zhang³ ¹United Imaging Healthcare America, Houston, TX, United States; ²MDACC, TX, United States; ³United Imaging Healthcare, Shanghai, China
- 2299. Application of Two-Compartmental Pharmacokinetic Analysis with and Without Vascular Term for Differentiating Benign and Malignant Spinal Tumors Measured by DCE-MRI Ning Lang¹, Hon J. Yu², Huishu Yuan¹, Min-Ying Su² ¹Department of Radiology, Peking University Third Hospital, Beijing, China; ²Tu&Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, United States
- 2300. Accurate Classification of Parotid Tumors Based on Histogram Analysis of ADC-Maps

Sanam Assili¹,², Anahita Fathi Kazerooni¹,³, Mahnaz Nabil¹,⁴, Leila Agha Ghazvini⁵, Mojtaba Safari¹, Hamidreza Saligheh Rad¹

¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; ³Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ⁴Department of Statistics, Tarbiat Modares University, Tehran, Iran; ⁵Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ⁶Department of Statistics, Tehran, Iran

- **2301.** Clinical Evaluation of ZTE Skull Segmentation Gaspar Delso¹, Mohammad Mehdi Khalighi¹, Florian Wiesinger², Patrick Veit-Haibach³ ¹GE Healthcare, Waukesha, WI, United States; ²GE Global Research, Germany; ³University Hospital of Zurich, Switzerland
- 2302. K-T BLAST/k-T FOCUSS in Real Time Imaging of the Soft Palate During Speech Marzena Wylezinska¹, Andreia Freitas, ¹², Malcolm Birch¹, Marc Miquel¹, ²
 ¹Clinical Physics, Barts Health NHS Trust, London, United Kingdom; ²William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- **2303.** Frequency-Dependent Neural Activity in Patients with Unilateral Vascular Pulsatile Tinnitus Han Lv¹, Zhenchang Wang¹, Zhaohui Liu², Fei Yan², Pengfei Zhao¹, Ting Li² ¹Beijing Friendship Hospital, Beijing, China; ²Beijing Tongren Hospital, Beijing, China
- 2304. Extra-Ocular Muscle Fat Fraction in Thyroid Eye Disease Tilak Das¹, Andrew J. Patterson¹, Paul Meyer², Rachna Murthy², Martin J. Graves¹ ¹Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; ²Dept of Ophthalmology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- **2305.** Accelerated Multi-Shot Diffusion Imaging in Optic Nerve Jr-yuan George Chiou¹, Bruno Madore¹, Stephan E. Maier¹

¹Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States

2306. Measurement of the Vitreous Humour Deformation and Strain with Tagged MR Imaging

Ming Li¹,², Paul Gamlin³, Mark S. Bolding⁴,⁵, Ronald J. Beyers¹, Nouha Salibi, ¹⁶, Xiaoxia Zhang¹,², Thomas S. Denney Jr.¹,²

¹Auburn University MRI Research Center, Auburn University, Auburn, AL, United States; ²Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ³Department of Ophthalmology, University of Alabama at Birmingham, Birmingham, AL, United States; ⁴Departments of Radiology, Vision Sciences, and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States; ⁵Civitan Functional Neuroimaging Laboratory, University of Alabama at Birmingham, Birmingham, AL, United States; ⁶MR R&D, Siemens Healthcare, Malvern, PA, United States

- 2307. The Effects of Dorzolamide on Retinal and Choroidal Blood Flow in a Mouse Glaucoma Model Saurav B. Chandra¹, Kaiwalya S. Deo¹, Eric R. Muir¹, Jeffrey W. Kiel², Timothy Q. Duong¹ ¹Research Imaging Institute, UT Health Sc. Center, San Antonio, San Antonio, TX, United States; ²Ophthalmology, UT Health Sc. Center, San Antonio, San Antonio, TX, United States
- 2308. High Resolution DWI for Orbital Tumors: 3D Turbo Field Echo with Diffusion-Sensitized Driven-Equilibrium (DSDE-TFE) Preparation Technique

Akio Hiwatashi¹, Osamu Togao¹, Koji Yamashita¹, Kazufumi Kikuchi¹, Makoto Obara², Hiroshi Honda¹ ¹Radiology, Kyushu University, Fukuoka, Japan; ²Philips Electronics Japan, Tokyo, Japan

2309. Reduced Field-Of-View Imaging with 3D Variable Flip Angle Fast Spin Echo-Feasibility in MRI of Orbits Suchandrima Banerjee¹, Misung Han², Weitian Chen¹, Christopher P. Hess², Roland Krug², Ajit Shankaranarayanan¹, Yuval Zur³
¹Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States; ²Radiology and Biomedical Imaging, University

'Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States; 'Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ³GE Healthcare, Tirat Carmel, Israel

- 2310. T1-W SE-PROPELLER to Overcome Motion and Flow Artifacts in Head and Neck Imaging Taihra Zadi¹, Mika Vogel², Magnus Mårtensson³, Piotr A. Wielopolski¹, Aad van der Lugt¹ ¹Department of Radiology, Erasmus University Medical Center, Rotterdam, Zuid-Holland, Netherlands; ²Healthcare Systems, General Electric Healthcare, Hoevelaken, Gelderland, Netherlands; ³Applications and Workflow, General Electric Healthcare, Stockholm, Södermanland, Sweden
- **2311.** Metal Artifact Reduction Using MAVRIC in the Presence of Common Orthodontic Appliances *Jeff A. Kohlmeier¹, Heidi A. Edmonson², Joel P. Felmlee², David W. Stanley³, Fred J. Regennitter¹, John E. Volz¹* ¹Department of Orthodontics, Mayo Clinic, Rochester, MN, United States; ²Department of Radiology, Mayo Clinic, Rochester, MN, United States; ³GE Healthcare, Rochester, MN, United States

2312. Alterations in Cortical Sensorimotor Connectivity Following Complete Cervical Spinal Cord Injury: Evidence from Resting-State fMRI Akinwunmi Oni-Orisan¹, Mayank Kaushal², Wenjun Li¹, B. Doug Ward¹, Aditya Vedantam³, Benjamin Kalinosky², Dana Seslija¹, Matthew Budde¹, Brian Schmit², Shi-Jiang Li¹, Muqeet Vaishnavi¹, Shekar Kurpad¹ ¹Medical College of Wisconsin, Milwaukee, WI, United States; ²Marquette University, Milwaukee, WI, United States; ³Baylor College of Medicine, Houston, TX, United States

2313. Short-Term Reproducibility of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion Parameters in Normal Head and Neck Tissues: Comparisons of 4b Values, 4b Values with Cardiac Gating, and 17 B Values KOUNG MI KANG¹, Seung Hong Choi¹ ¹Radiology, Seoul National Univ. Hospital, Seoul, Korea

2314. MiR-155 Ablation Protects Spinal Cord (SC) from Damage in a Mouse Model of Ischemic SC Injury

Anna Bratasz¹, Esmerina Tili², ³, Xiaomei Meng², Jean-Jacques Michaille⁴, ⁵, Lamia Bouhliqah⁶, Phillip G. Popovich⁷, Cynthia Mcallister⁸, D Michele Basso⁹, José J. Otero¹⁰, Claudia Kirsch¹¹, Richard Burry¹², Kimerly A. Powell¹, Peter Mohler¹³, Carlo M. Croce⁴, Hamdy Awad²

¹Small Animal Imaging Core, The Ohio State University, Columbus, OH, United States; ²Department of Anesthesiology, The Ohio State University, OH, United States; ³Department of Molecular Virology, The Ohio State University, OH, United States; ⁴Department of Molecular Virology, The Ohio State University, OH, United States; ⁵Université de Bourgogne, Dijon, France; ⁶Department of ENT, The Ohio State University, OH, United States; ⁷Department of Neuroscience, The Ohio State University, OH, United States; ⁸Nationwide Children Hospital, OH, United States; ⁹School of Health and Rehabilitation Sciences, The Ohio State University, OH, United States; ¹⁰Department of Pathology, The Ohio State University, OH, United States; ¹¹Department of Radiology, The Ohio State University, OH, United States; ¹²Department of Neuroscience, The Ohio State University, OH, United States; ¹³Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, OH, United States

2315. Assessment of Cervical Spinal Cord Injuries with Readout-Segmented Multi-Shot (RESOLVE) Diffusion Tensor Imaging and Fiber Tractography

Chen-Te Wu¹, Cheng-Chih Liao², Chung-Lin Yang², Jiun-Jie Wang³, Ching-Po Lin⁴, Shih-Tseng Li² ¹Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan; ²Departments of Neurosurgery, Chang Gung Memorial Hospital & Chang Gung University, Taiwan; ³Department of Medical Imaging and Radiological Science, Chang Gung University, Taiwan; ⁴Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan

2316. Injury Alters the Intrinsic Functional Connectivity Network in Spinal Cord of Monkeys

Li Min Chen¹, ², *Arabinda Mishra¹*, ², *Feng Wang¹*, ², *Pai-Feng Yang¹*, ², *John C. Gore¹*, ² ¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States

2317. Robust Diffusion-Prepared Neurography of the Complete Brachial Plexus Facilitated by an Optimized Shimming Strategy.

Jos Oudeman¹, Bram F. Coolen¹, Camiel Verhamme², Mario Maas¹, Andrew Webb³, Gustav J. Strijkers⁴, Aart J. Nederveen¹

 ¹Radiology, Academic Medical Center, Amsterdam, Noord-Holland, Netherlands; ²Neurology, Academic Medical Center, Amsterdam, Noord-Holland, Netherlands; ³Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands;
 ⁴Biomechanical engineering and physics, Academic Medical Center, Amsterdam, Noord-Holland, Netherlands

2318. Reproducibility of Resting State Spinal Cord Networks at 7 Tesla

*Robert L. Barry*¹, ², *Baxter P. Rogers*¹, ², *Seth A. Smith*¹, ², *John C. Gore*¹, ² ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States

2319. Endothelial Nitric-Oxide Synthase Overexpression Rescues Cerebral Blood Flow and Cerebrovascular Reactivity in Diabetic Brain

Saurav B. Chandra¹, Sumathy Mohan², Preethi Janardhanan², Kaiwalya S. Deo¹, Eric R. Muir¹, Timothy Q. Duong¹ ¹Research Imaging Institute, UT Health Science Center, San Antonio, TX, United States; ²Pathology, UT Health Sc. Center, San Antonio, TX, United States

2320. Measuring Brain Lactate with ¹H-MRS During Hypoglycemia in Humans; Preliminary Results Evita C. Wiegene¹ Hanna M.M. Popiigekers² Coost I. Tack² Arend Heerschap¹ Bastiagn F. de Galan² Marin.

Evita C. Wiegers¹, Hanne M.M. Rooijackers², Cees J. Tack², Arend Heerschap¹, Bastiaan E. de Galan², Marinette van der Graaf¹, ³

¹Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Internal Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ³Pediatrics, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands

2321. Diffusion Tensor Imaging Analysis of Presbycusis Using Voxel-Based Method Fei Gao¹, Guangbin Wang¹, Bin Zhao¹, Wen Ma², Muwei Li³, Fuxin Ren¹, Bo Liu¹, Weibo Chen⁴ ¹Shandong Medical Imaging Research Institute, Shandong University, Jinan, China; ²The Central Hospital of Jinan City, Shandong University, Jinan, China; ³College of Electronics and Information Engineering, Sichuan University, Chengdu, China; ⁴Philips Healthcare, Shanghai, China

Traditional Poster Perfusion & Permeability Exhibition Hall Wednesday 13:30-15:30

2322. Absolute CBV and AIF from Global Recirculation Approach Jeiran Jahani¹, Timothy M. Shepherd¹, Glyn Johnson¹, Valerij G. Kiselev², Dmitry S. Novikov¹ ¹Department of Radiology, New York University School of Medicine, New York City, NY, United States; ²Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany

- 2323. Measurement of Local Cerebral Hematocrit with MRI Fernando Calamante¹, André Ahlgren², Matthias J.P. van Osch³, Linda Knutsson² ¹The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia; ²Department of Medical Radiation Physics, Lund University, Lund, Sweden; ³Department of Radiology, C.J. Gorter Center for high field MRI, Netherlands
- 2324. Reconstructing the One-Compartment Tracer-Kinetic Field with Diffusion and Convection Steven Sourbron¹ ¹University of Leeds, Leeds, UK, United Kingdom
- 2325. Arterial Spin Labeling Improvement by Incorporating Local Similarity with Anatomic Images Li Zhao¹, Weiying Dai¹, David Alsop¹ ¹Radiology, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States

2326. On the Use of DSC-MRI for Measuring Vascular Permeability Jack T. Skinner^l, ², Paul L. Moots³, C Chad Quarles^l, ² ¹Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; ²Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; ³Neurology, Vanderbilt University Medical Center, Nashville, TN, United States

- 2327. A Simplified Spin and Gradient Echo (SAGE) Approach for Brain Tumor Perfusion Imaging Ashley M. Stokes¹, C. Chad Quarles¹ ¹Institute of Imaging Science, Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States
- 2328. Cell Size Imaging

Natenael B. Semmineh¹, Ashley M. Stokes¹, John C. Gore¹, C Chad Quarles¹ ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States

- 2329. Comparative Assessment of SAGE and GRE DSC Perfusion: Initial Assessment in a Stroke Cohort Shalini A. Amukotuwa¹, ², Fernando Calamante², Roland Bammer¹ ¹Department of Radiology, Stanford University, Stanford, CA, United States; ²The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- 2330. Improving Look & Locker Readout for PCASL Using a Variable Flip Angle Sweep Marco Castellaro¹, Alessandra Bertoldo¹, Denis Peruzzo², Filippo Arrigoni³, Matthias Van Osch⁴ ¹Department of Information Engineering, University of Padova, Padova, Italy: ²Department of Neuroimaging, Research institute IRCCS "E. Medea", Bosisio Parini, Lecco, Italy: ³Department of Neuroimaging, Research institute IRCCS "E. Medea", Bosisio Parini, Lecco, Italy: ⁴C.J. Gorter Center for High Field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands

- 2331. Effect of Labelling Plane Angulation on PCASL Labelling Efficiency Does It Really Matter? Magdalena Sokolska^l, Xavier Golay^l, David Thomas^l ¹UCL Institute of Neurology, London, United Kingdom
- 2332. Time-Resolved Artery-Selective Angiography Based on Super-Selective Arterial Spin Labeling Thomas Lindner¹, Ulf Jensen-Kondering¹, Olav Jansen¹, Matthias JP van Osch², Michael Helle³ ¹Department of Radiology and Neuroradiology, UKSH, Kiel, Germany; ²Department of Radiology, LUMC, C. J. Gorter Center for High Field MRI, Leiden, Netherlands; ³Philips Research, Hamburg, Germany

2333. The Many Advantages of Arterial Spin Labeling with Long Label Duration

*R. Marc Lebel*¹, ², *Ajit Shankaranarayanan*³, *Eric E. Smith*⁴, *Cheryl McCreary*², *Richard Frayne*², *Weiying Dai*⁵, *David C. Alsop*⁵

¹GE Healthcare, Calgary, Alberta, Canada; ²Radiology, University of Calgary, Calgary, Alberta, Canada; ³GE Healthcare, Menlo Park, CA, United States; ⁴Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; ⁵Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

- 2334. Inflow Velocity Density Mapping Using Fourier Analysis of Velocity Selective ASL Images Tianrui Luo¹, Luis Hernandez-Garcia² ¹University of Michigan, Ann Arbor, MI, United States; ²FMRI Laboratory, University of Michigan, Ann Arbor, MI, United States
- 2335. Conversion of the Arterial Input Function Using Accelerated Dual-Contrast EPIK: A Multi-Modality MR-PET Study

Liliana Lourenco Caldeira¹, Seong Dae Yun¹, Nuno André da Silva¹, Christian Filss¹, N. Jon Shah¹, ² ¹Institute of Neuroscience and Medicine (4), Forschungszentrum Juelich, Jülich, Germany; ²RWTH Aachen University, Faculty of Medicine, Department of Neurology, JARA, Aachen, Germany

2336. Robust Inter-Pulse Phase Correction for Brain Perfusion Imaging at Very High Field Using Pseudo-Continuous Arterial Spin Labeling (PCASL)

Lydiane Hirschler¹, ², *Clément Stéphan Debacker¹*, ², *Jérôme Voiron*², *Jan Warnking¹*, ³, *Emmanuel Luc Barbier¹*, ³ ¹Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France; ²Bruker Biospin, Ettlingen, Germany; ³Inserm, U836, Grenoble, France

- 2337. Arterial Input Partial Volume Artifacts Correction Applied for a T1-Weighted 3D Gradient Echo Sequence Stefan Hindel¹, Nico Verbeek², Anika Sauerbrey¹, Lutz Lüdemann¹ ¹Strahlenklinik und Poliklinik, Universitätsklinikum Essen, Essen, North Rhine-Westphalia, Germany; ²Heinrich-Heine-Universität Düsseldorf, Düsseldorf, North Rhine-Westphalia, Germany
- 2338. Statistical Mapping of Cerebral Blood Flow Territories Using Multi-Phase Pseudo-Continuous Arterial Spin Labeling Wen-Chau Wu¹,²

¹National Taiwan University, Taipei, Taiwan; ²Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan

2339. Fully Bayesian Multi-Model Inference for Parameter Estimation in DCE-MRI Tammo Rukat¹, Stefan A. Reinsberg¹ ¹Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada magna cum laude

2340. A Modified Deconvolution Method to Quantify Brain Tumour Haemodynamic Parameters in the Presence of Contrast Agent Extravasation.

Thaís Roque¹, Amit Mehndiratta², Lawrence Kenning³, Martin Lowry³, Michael Chappell¹ ¹Institute of Biomedical Engineering IBME, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India; ³Centre for MR investigations CMRI, University of Hull, Hull, United Kingdom

- 2341. In Vitro and In Vivo Measurement of Pseudo Continuous Arterial Spin Labeling Efficiency Adam Michael Bush¹, Gregory Lee², Matt Borzage¹, Vincent Schmithorst², Scott Holland², John Wood¹ ¹Children's Hospital Los Angeles USC, Los Angeles, CA, United States; ²Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- 2342. Experimental Assessment of PCASL Labeling Efficiency in the Peripheral Vasculature Erin K. Englund¹, Zachary B. Rodgers², Thomas F. Floyd³, Felix W. Wehrli² ¹Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; ³Department of Anesthesiology, Stony Brook University, Stony Brook, NY, United States
- 2343. Improving the Reproducibility of Labeling-Efficiency Measurements *In Vivo* in Pseudo-Continuous Arterial Spin Labeling

Kathrin Lorenz¹, ², *Toralf Mildner¹*, *Torsten Schlumm¹*, *Harald E. Möller¹*, ² ¹Max Planck Institute for Human Cognitive & Brain Sciences, Leipzig, Germany; ²Faculty of Physics and Earth Sciences, University of Leipzig, Saxony, Germany

2344. Optimization of Phase-Contrast MRI for the Quantification of Whole-Brain Cerebral Blood Flow

Shin-Lei Peng^{1, 2}, *Pan Su*^{1, 3}, *Fu-Nien Wang*², *Yan Cao*⁴, *Rong Zhang*⁵, *Hanzhang Lu*^{1, 3}, *Peiying Liu*¹ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; ³Biomedical Engineering Graduate Program, UT Southwestern Medical Center, TX, United States; ⁴Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, United States; ⁵Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, United States;

2345. Optimal Sampling Design in Quantitative DCE MRI Ina Nora Kompan¹, ², Matthias Guenther¹, ² ¹Fraunhofer MEVIS, Bremen, Germany; ²mediri GmbH, Heidelberg, Baden-Württemberg, Germany

Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel

- 2346. Caipirinha Acceleration for Intracranial 3D DCE MRI: Determination of the Optimal Sampling Pattern Michael Ingrisch¹, Michael Peller¹, Birgit Ertl-Wagner, Maximilian F. Reiser, Olaf Dietrich¹ ¹Josef-Lissner-Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital, München, Germany
- 2347. The Effect of Dynamic Contrast Enhanced Acquisition Duration on Estimated Pharmacokinetic Parameters: Study of Simulated and Real Data *Moran Artzi¹*, ², *Gilad Liberman¹*, ³, *Guy Nadav¹*, ⁴, *Deborah T. Blumenthal⁵*, *Orna Aizenstein¹*, *Dafna Ben Bashat¹*, ⁶ ¹Functional Brain Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ²Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ³Department of Chemical Physics, Weizmann Institute, Rehovot, Israel; ⁴Functional Brain Center, Tel Aviv University, Tel Aviv, Israel; ⁵Neuro-Oncology Service, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁶Sackler Faculty of Medicine and
- **2348.** Correcting for Bolus Delay and Dispersion in the AIF Using a Constrained Local AIF (LAIF) Model Chong Duan¹, Jesper F. Kallehauge², Carlos J. Perez-Torres³, Kari Tanderup⁴, ⁵, Larry Bretthorst³, Joseph JH Ackerman¹, ³, Joel R. Garbow³

¹Chemistry, Washington University, Saint Louis, MO, United States; ²Medical Physics, Aarhus University, Aarhus, Denmark; ³Radiology, Washington University, Saint Louis, MO, United States; ⁴Radiation Oncology, Washington University, Saint Louis, MO, United States; ⁵Oncology, Aarhus University, Aarhus, Denmark

2349. Validation of Random Vessel-Encoded Arterial Spin Labeling as Territorial Perfusion Imaging by Comparison to Conventional VEASL

Yi Dang¹, Jia Guo², Jue Zhang³, ⁴, Eric Che Wong⁵ ¹Magnetic Resonance Imaging Research Center,Institution of Psychology, Chinese Academy of Sciences, Beijing, China; ²Department of Bioengineering, University of California San Diego, CA, United States; ³Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; ⁴College of Enigneering, Peking University, Beijing, China; ⁵Department of Radiology and Psychiatry, University of California San Diego, CA, United States

2350. Scan-Rescan Variability in DCE-MRI Comparing Signal Difference and Concentration-Based Methods Edward Ashton¹, Jill Fredrickson²

¹VirtualScopics, Inc., Rochester, NY, United States; ²Genentech, Inc., South San Francisco, CA, United States

2351. Feasibility of Free-Breathing DCE-MRI: Phantom Studies to Compare VIBE, Radial-VIBE, and CAIPIRINHA-VIBE

Chang Kyung Lee¹, Bohyun Kim¹, Nieun Seo¹, Jeong Kon Kim¹, In Seong Kim², Berthold Kiefer³, Kyung Won Kim¹ ¹Radiology, Seoul Asan Medical Center, Seoul, Korea; ²Siemens Healthcare, Seoul, Korea; ³Siemens Healthcare, Erlangen, Germany

2352. Comparison of 3 and 7 Tesla Arterial Spin Labelling Techniques for Simultaneous Functional Perfusion and BOLD MRI Studies

2353. Application of Multi-TI Arterial Spin-Labeling MRI in Brain Tumors: Comparison with Dynamic Susceptibility Contrast

Shuang Yang¹, Tianyi Qian², Jianwei Xiang³, Yingchao Liu⁴, Peng Zhao⁴, Josef Pfeuffer⁵, Guangbin Wang¹, Bin Zhao¹ ¹Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China; ²MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ³Shandong Medical Imaging Research Institute, Taishan Medical University, Jinan, Shandong, China; ⁴Neurosurgery, Shandong provincial Hospital Affiliated to Shandong University, Shandong, China; ⁵Application Development, Siemens Healthcare, Erlangen, Germany

- 2354. Quantifying Cerebral Blood Flow: A Comparison of Two Non-Invasive Perfusion Imaging Techniques Gena Matta¹, ², Andrew D. Robertson¹, Sandra E. Black¹, ³, Bradley J. MacIntosh¹, ³
 ¹Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Ontario, Canada; ²University of Waterloo, Waterloo, Ontario, Canada; ³University of Toronto, Toronto, Ontario, Canada
- 2355. Comparison of PASL, PCASL and Background Suppressed 3D PCASL in a Clinical Population Sudipto Dolui¹,², Marta Vidorreta¹, Ze Wang³,⁴, David A. Wolk¹, John A. Detre¹,²
 ¹Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; ²Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; ³Hangzhou Normal University, Hangzhou, Zhejiang, China; ⁴Department of Psychiatry and Radiology, University of Pennsylvania, PA, United States

2356. An Outlier Rejection Algorithm for ASL Time Series : Validation with ADNI Control Data Sudipto Dolui¹,², Ze Wang³,⁴, David A. Wolk¹, John A. Detre¹,² ¹Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States; ²Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States; ³Hangzhou Normal University, Hangzhou, Zhejiang, China; ⁴Department of Psychiatry and Radiology, University of Pennsylvania, PA, United States

- 2357. The Impact of Blood Bolus Dispersion on Myocardial Arterial Spin Labeling Karsten Sommer¹, ², Dominik Bernat¹, Regine Schmidt¹, Laura M. Schreiber¹ ¹Department of Radiology, Johannes Gutenberg University Medical Center, Mainz, Rhineland-Palatinate, Germany; ²Max Planck Graduate Center with the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
- **2358.** Three-Dimentional Stereotactic Surface Projections Applied to Arterial Spin Labeling in a Clinical Population Jalal B. Andre¹, Greg Wilson¹, Yoshimi Anzai¹, Mahmud Mossa-Basha¹, Michael N. Hoff¹, Satoshi Minoshima¹ ¹Radiology, University of Washington, Seattle, WA, United States
- **2359.** Application of Pseudo-Continuous Arterial Spin Labeling for Quantification of Hepatic Perfusion *Mike-Ely Cohen¹*, ², *Isabelle Lajoie²*, *Kenneth Dyson²*, *Olivier Lucidarme³*, ⁴, *Richard D. Hoge²*, ⁵, *Frédérique Frouin⁴*, ⁶ ¹Laboratoire d'imagerie biomedicale, Sorbonne Université Univ Paris 06, Inserm, CNRS, Paris, France; ²Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, Quebec, Canada; ³Service de Radiologie Polyvalente Diagnostique et Oncologique, CHU Pitié-Salpêtrière, AP-HP, Paris, France; ⁴Laboratoire d'imagerie biomedicale, Sorbonne Université Univ Paris 06, Inserm, CNRS,, Paris, France; ⁵McConnell Brain Imaging Centre, Montreal Neurological Institute - McGill University, Quebec, Canada; ⁶ CEA/I2BM/SHFJ, IMIV, Orsay, France
- 2360. Feasibility of Renal Perfusion Imaging Using Velocity Selective ASL Marijn van Stralen¹, Margreet F. Sanders², Hanke J. Schalkx³, Maurice A. van den Bosch³, Clemens Bos¹, Peter J. Blankestijn², Tim Leiner³, Esben Thade Petersen³
 ¹Image Sciences Institute, UMC Utrecht, Utrecht, Netherlands; ²Dept of Nephrology, UMC Utrecht, Utrecht, Netherlands; ³Dept of Radiology, UMC Utrecht, Utrecht, Netherlands
- 2361. Whole Brain Measurement of Dynamics of Arterial Spin Labeling Using Multi-Band Look-Locker Technique in Hypertension Yoojin Lee¹, Tae Kim¹

¹Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States

2362. Dual Temporal Resolution DCE-MRI Reveals Increased Blood-Brain Barrier Leakage in Cerebral Small Vessel Disease

Sau May Wong¹, Eleana Zhang², Harm J. van de Haar¹, Julie E.A. Staals², Cécile R.L.P.N. Jeukens¹, Paul A.M. Hofman¹, Robert J. van Oostenbrugge², Jacobus F.A. Jansen¹, Walter H. Backes¹ ¹Radiology, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ²Neurology, Maastricht University Medical Center, Maastricht, Limburg, Netherlands

- **2363.** Effect of Ketamine and Isoflurane Anesthesia on Regional Cerebral Blood Flow of Macaque Monkeys *Chun-Xia Li¹*, Doty Kempf¹, Leonard Howell¹, Xiaodong Zhang¹ ¹Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
- 2364. Effect of Long-Duration Isoflurane Administration on Regional Cerebral Blood Flow Chun-Xia Li¹, Sudeep Patel¹, Xiaodong Zhang¹ ¹Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States

2365. MRI Based Quantification of Cortical Responses to Exercise

Andrew P. Hale¹, Charlotte E. Buchanan¹, Johannes van Lieshout², Penny A. Gowland¹, Paul L. Greenhaff³, Sue T. Francis¹

¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom; ²School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom; ³Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom **2366.** Cerebral Blood Flow and Metabolism in Patients with Sickle Cell Disease *Adam Bush¹*, *Matthew Borzage¹*, *Thomas Coates¹*, *John Wood¹* ¹Children's Hospital Los Angeles USC, Los Angeles, CA, United States

2367. Evaluation of Random Vessel-Encoded ASL in Both Healthy Subjects and Stroke Patients

Lirong Yan¹, Songlin Liu¹, Jia Guo², David S. Liebeskind¹, Jeffrey L. Saver¹, Noriko Salamon³, Neal Yao¹, Sunil Sheth¹, Conrad Liang¹, Eric C. Wong², Danny JJ Wang¹ ¹Neurology, UCLA, Los Angeles, CA, United States; ²UCSD, San Diego, CA, United States; ³Radiology, UCLA, Los Angeles, CA,

'Neurology, UCLA, Los Angeles, CA, United States; ²UCSD, San Diego, CA, United States; ³Radiology, UCLA, Los Angeles, CA, United States

2368. Diagnosis of Schizophrenia Using CBF Measures as a Classification Feature – a FBIRN Phase 3 Multisite ASL Study at 3T

David Shin¹, Burak Ozyurt¹, Jerod Rasmussen², Juan Bustillo³, Theodorus Van Erp², Jatin Vaidya⁴, Daniel Mathalon⁵, Bryon Mueller⁶, James Voyvodic⁷, Douglas Greve⁸, Judith Ford⁵, Gary Glover⁹, Gregory Brown¹, Steven Potkin², Thomas Liu¹

¹University of California, San Diego, La Jolla, CA, United States; ²University of California, Irvine, Irvine, CA, United States; ³University of New Mexico, Albuquerque, NM, United States; ⁴University of Iowa, Iowa City, IA, United States; ⁵University of California, San Francisco, San Francisco, CA, United States; ⁶University of Minnesota, Twin Cities, Minneapolis, MN, United States; ⁷Duke University, Durham, NC, United States; ⁸Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; ⁹Stanford University, Stanford, CA, United States

2369. Non-Contrast Indirect MRI Quantification of Portal Hypertension Severity

Daniel Aguirre-Reyes¹, ², Juan P. Arab³, Marco Arrese³, Rodrigo Tejos³, Pablo Irarrazaval¹, Cristian Tejos¹, Sergio Uribe⁴, Marcelo E. Andia⁴

¹Biomedical Imaging Center - Electrical Engineering Department, Pontificia Universidad Catolica de Chile, Santiago, Region Metropolitana, Chile; ²Computational Sciences and Electronic Department, Universidad Tecnica Particular de Loja, Loja, Ecuador; ³Gastroenterology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; ⁴Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile;

Traditional Poster

ismen Merit Award

Pulse Sequences - SpectroscopyExhibition HallWednesday 16:00-18:00

2370. Ultra-High Resolution 3D ¹H-MRSI of the Brain: Subspace-Based Data Acquisitions and Processing

Fan Lam⁷, Bryan Clifford¹, Chao Ma², Curtis L. Johnson², Zhi-Pei Liang¹ ¹Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

2371. Acceleration of Chemical-Shift Imaging by Applying True 3D Compressed Sensing

*Jian-Xiong Wang*¹, ², *Matthew E. Merritt*⁷, ², *A Dean Sherry*¹, ², *Craig R. Malloy*¹, ² ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States

2372. Fast Sodium MRI of the Human Brain Using a Balanced Steady-State Free Precession Sequence Ruomin Hu¹, Simon Konstandin², Lothar R. Schad¹ ¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Baden-Württemberg, Germany; ²MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany

2373. SPatiotemporal ENcoded Spectroscopic Imaging (SPENSI) a New Approach for Multi & Single Scan Spectral Imaging

Amir Seginer¹, Rita Schmidt¹, Lucio Frydman¹ ¹Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel

2374. Model-Based Reconstruction of Hyperpolarized [1-¹³C]-Pyruvate

James Bankson¹, Christopher Walker¹, Wolfgang Stefan¹, David Fuentes², Matthew Merritt³, Yunyun Chen⁴, Craig Mallov³, Dean Sherrv³, Stephen Lai⁴, John Hazle¹ ¹Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, United States; ²UT MD Anderson Cancer Center, Department of Imaging Physics, Houston, TX, United States; ³Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ⁴Department of Head & Neck Surgery, UT MD Anderson Cancer Center, Houston, TX, United States

2375. Efficient Detection of Bound Potassium and Sodium Using TOTPPI Pulse Sequence

Victor D. Schepkin¹, Boris M. Odintsov², Ilva Litvak¹, Peter L. Gor'kov¹, William W. Brev¹, Andreas Neubauer³, Thomas F. Budinger⁴

¹NHMFL/FSU, Tallahassee, FL, United States; ²UIUC, IL, United States; ³Heidelberg University, Germany; ⁴LBNL/UCB, CA, United States

Traditional Poster B1 Imaging **Exhibition Hall** Wednesday 16:00-18:00

2376. Transmit Field Estimation from K-Space Data

Yu Ding¹, Jinghua Wang²

¹Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States; ²Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH, United States

- 2377. Slice Profile Corrections in the XFL (Magnetization-Prepared Turbo-FLASH) B1-Mapping Sequence Alexis Amadon¹, Franck Mauconduit², Alexandre Vignaud³, Nicolas Boulant³ ¹I2BM / NeuroSpin / UNIRS, CEA, Gif-sur-Yvette, France, France; ²Siemens Healthcare, Saint-Denis, France, France; ³I2BM / NeuroSpin / UNIRS, CEA, Gif-sur-Yvette, France, France
- 2378. Fast 3D Algorithm for Coil Localization as an Aid in Estimation of B1 Distribution Parnian Zarghamravanbakhsh¹, John M. Pauly¹, Greig Scott¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States

2379. In Vivo Comparison of B1 Mapping Techniques for Hip Joint Imaging at 7 Tesla

Oliver Kraff⁴, Andrea Lazik¹,², Daniel Brenner³, Desmond H.Y. Tse⁴, ⁵, Qi Duan⁶, Soeren Johst¹, Harald H. Quick¹, ⁷, Mark E. Ladd¹,⁸

¹Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany; ²Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Germany; ³German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ⁴Neuropsychology and Psychopharmacology, Maastricht University, Netherlands; ⁵Radiology, Maastricht University MC, Netherlands; ⁶Adv. MRI Section, LFMI, NINDS, National Institutes of Health, MD, United States; ⁷Highfield and Hybrid MR Imaging, University Hospital Essen, Germany; ⁸Medical Physics in Radiology, German Cancer Research Center (DKFZ), Germany

summa cum laude

2380. Optimal Flip Angle and Signal Shaping for Single-Shot Volumetric DREAM B₁ Mapping Rüdiger Stirnberg¹, Daniel Brenner¹, Tony Stöcker¹,² ¹German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ²Department of Physics and Astronomy, University of Bonn, Bonn, Germany

2381. Robust Implementation of 3D Bloch Siegert B1 Mapping Andreas Lesch¹, Andreas Petrovic¹, Rudolf Stollberger ¹Department for Medical Engineering, Graz University of Technology, Graz, Styria, Austria

2382. Fast Low-Angle B1 Mapping

Caroline Le Ster¹,², Giulio Gambarota¹, Eric Brillet³, Olivier Beuf⁴, Hervé Saint-Jalmes¹,⁵

¹INSERM UMR 1099, Université de Rennes 1, Rennes, France; ²Siemens Healthcare, Saint-Denis, France; ³Department of Imaging, Rennes University Hospital, Rennes, France; ⁴Université de Lyon, CREATIS, CNRS UMR 5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Villeurbanne, France; ⁵Centre Eugène Marquis, CRLCC, Rennes, France

- 2383. Spin Echo B1+ Mapping in High Susceptibility Tissues Eamon Doyle¹, ², Jonothan Chia³, Krishna Nayak, ¹⁴, John C. Wood, ¹² ¹Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; ²Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Electrical Engineering, University of Southern California, Los Angeles, CA, United States
- 2384. Comparing Bloch-Siegert B1+ Mapping Using Single Channel and Channel Combination Tx Methods Mohammad Mehdi Khalighi¹, Gaohong Wu², Qin Liu²
 ¹Applied Science Lab, GE Healthcare, Menlo Park, CA, United States; ²MR Engineering, GE Healthcare, Waukesha, WI, United States
- 2385. Characterizing In Vivo B1 Maps at 7T Using the Kolmogorov-Smirnov Test Douglas A C Kelley¹ ¹Neuro Apps and Workflow, GE Healthcare, San Francisco, CA, United States
- **2386.** B1 Mapping of the Breast with a Reference Tissue Method *Federico D. Pineda¹*, *Milica Medved¹*, *Xiaobing Fan¹*, *Gregory Karczmar¹* ¹Radiology, The University of Chicago, Chicago, IL, United States

Traditional Poster RF Pulse Design

Exhibition Hall Wednesday 16:00-18:00

2387. 2-Spoke Placement Optimization Under Explicit SAR and Power Constraints in Parallel Transmission at Ultra-High Field
High Field

Laura Dupas¹, Aurélien Massire¹, Alexis Amadon¹, Alexandre Vignaud¹, Nicolas Boulant¹ ¹NeuroSpin, CEA, Saclay, Ile de France, France

- 2388. Does the Best Distance Beween 2 Spokes Match the Inverse RF Wavelength ? Alexis Amadon¹, Laura Dupas², Alexandre Vignaud², Nicolas Boulant² ¹I2BM / NeuroSpin / UNIRS, CEA, Gif-sur-Yvette, France, France; ²I2BM / NeuroSpin / UNIRS, CEA, Gif-sur-Yvette, France, France
- 2389. Off-Resonance Compensated Velocity Selective RF Pulse Design for Reducing Signal Dropout in Vessel Wall Imaging

Yunduo Li¹, Shuo Chen¹, Zechen Zhou¹, Rui Li¹, Chun Yuan¹, ² ¹Center for Biomedical Imaging Research, Beijing, China; ²Department of Radiology, University of Washington, Seattle, WA, United States

- 2390. Parallel 2D Excitation of Thin Limited Slice Profiles Denis Kokorin¹, Jürgen Hennig¹, Maxim Zaitsev¹ ¹Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
- **2391.** Hybrids of Static and Dynamic RF Shimming for Body Imaging at 7T Martina Flöser¹, ², Andreas Bitz¹, Sören Jost², Stephan Orzada², Marcel Gratz², Oliver Kraff², Mark Ladd¹, ²

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany

- 2392. Influence of 2-Spoke Pulses K-Space Placement in Different Optimization Strategies and Cost Functions Laura Dupas¹, Alexis Amadon¹, Aurélien Massire¹, Alexandre Vignaud¹, Nicolas Boulant¹ ¹NeuroSpin, CEA, Saclay, Ile de France, France
- **2393.** Slice-Selective Adiabatic T2 Preparation Using a Modified STABLE Pulse Hadrien Dyvorne¹, Priti Balchandani¹ ¹Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- 2394. Multiband Arbitrary-Phase SLR RF Pulse with Generalized Flip Angle Via Convex Optimization Hong Shang¹,², Peder E.Z. Larson¹,², Adam B. Kerr³, Galen Reed⁴, Adam Elkhaled¹,², Jeremy W. Gordon¹, Cornelius von Morze¹, Michael Lustig⁵, Daniel B. Vigneron¹
 ¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²UCSF-UC Berkeley Graduate Program in Bioengineering, San Francisco/Berkeley, CA, United States; ³Electrical Engineering, Stanford University, Stanford, CA, United States; ⁴HeartVista, Menlo Park, CA, United States; ⁵Electrical Engineering and Computer Science, UC Berkeley, Berkeley, CA, United States
- 2395. Design and Optimization of Fast Imaging Pulse Sequences Using Optimal Control Theory. Oleksandr Khegai¹, Jiun-Jie Wang², Steffen J. Glaser³, Florian Wiesinger⁴ ¹Healthy Aging Research Center, Chang Gung University, Taipei, Taiwan; ²Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taipei, Taiwan; ³Department of Chemistry, Technische Universität München, Munich, Germany; ⁴Diagnostics and Biomedical Technologies Lab, GE Global Research Europe, Munich, Germany
- 2396. Fully-Refocused SPatio-Temporal ENcoding (SPEN) MRSI Using Fourier-Encoding Polychromatic Spectral Pulses

Zhiyong Zhang^l, ², *Lucio Frydman^l* ¹Chemical Physics Department, Weizmann Institute of Science, Rehovot, Israel; ²Department of Electronic Science, Xiamen University, Xiamen, Fujian, China

- 2397. SAR Reduced Excitation by Joint Design of RF Pulse and Slice Selective Gradient Shape Christoph Stefan Aigner¹, Christian Clason², Armin Rund³, Rudolf Stollberger¹ ¹Institute of Medical Engineering, Graz University of Technology, Graz, Austria; ²Faculty of Mathematics, University of Duisburg-Essen, Essen, Germany; ³Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
- 2398. Optimized Amplitude Modulated Multi-Band RF Pulses Shaihan J. Malik¹, ², Anthony N. Price², Joseph V. Hajnal¹, ² ¹Division of Imaging Sciences and Biomedical Engineering, Kings College London, London, United Kingdom; ²Centre for the Developing Brain, Kings College London, London, United Kingdom
- 2399. SLR Pulse Implementation in Multi-Slice 2D FLASH Pulse Sequence for 3T MRI and Beyond A Alhamud¹, Jay Moore², Neal Derman¹, Ernesta Meintjes¹, Marcin Jankiewicz¹ ¹Human Biology,MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, Western Cape, South Africa; ²Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- 2400. Rapid 3D-FFE MR Image Acquisition Using Aliased K-Space Acquisitions Indrajit Saha¹, Rakesh Kumar Gupta² ¹Philips Healthcare, Philips India Ltd, Gurgaon, Haryana, India; ²fortis memorial research institute, Gurgaon, India

2401.	1. Contrast Variation in UTE Imaging with Very Short RF Pulse Duration		
	Chanhee Lee ¹ , Soon Ho Yoon ² , Jin Mo Goo ² , Jang-Yeon Park ¹		
	¹ Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, Gyeonggi, Korea;		
	² Radiology, Seoul National University College of Medicine, Seoul, Korea		

2402. Steady-State Imaging with 3D Inner Volume Excitation Hao Sun¹, Jeffrey A. Fessler¹, Douglas C. Noll², Jon-Fredrik Nielsen² ¹Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States; ²Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States

Traditional P	'oster			
Multi-Band MRI				
Exhibition Hall	Wednesday 16:00-18:00			
2403. ISMRM MERIT AWARD IMAGINA CUIM LAUDE	Multiband Imaging Method for Metal Artifact Correction with 3D Multi-Spectral Imaging JaeJin Cho ¹ , Dongchan Kim ¹ , Hyunseok Seo ¹ , HyunWook Park ¹ ¹ Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Chungcheong, Korea			
2404.	A Multi-Band Spatial Spectral Selective Excitation RF Design Yajun Ma ¹ , Bing Wu ² , Wentao Liu ¹ , Weinan Tang ¹ , Jia-Hong Gao ¹ ¹ Center for MRI, Peking University, Beijing, China; ² GE Healthcare MR Research China, Beijing, China			
2405.	caipirinha Using the RF Pulse Modulation with Random Phase for Multiband Imaging Changheun Oh ¹ , Dongchan Kim ¹ , HyunWook Park ¹ ¹ Korea advanced institute of science and technology, Daejeon, Korea			
2406.	Pre-Scan with Half-Sized Phase Encoding Blips Reducing Ghost and Slice Leakage Artifacts in Dual-Band EPI <i>Hiroshi Toyoda¹, Naoya Yuzuriha², Sosuke Yoshinaga², Hiroaki Terasawa²</i> ¹ Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Osaka,			

Japan; ²Department of Structural BioImaging, Kumamoto University Graduate school of Pharmaceutical Sciences, Kumamoto, Japan

- 2407. Hadamard and Sensitivity Encoding (H-SENSE) for Simultaneous Multi-Slice MR Imaging Jong-Min Kim¹, Junyong Park², Chulhyun Lee², Chang-Hyun Oh¹ ¹Electronic and information engineering, Korea University, Seongbuk-Gu, Seoul, Korea; ²The MRI Team, Korea Basic Science Institute, Chungchungbuk-Do, Korea
- **2408.** A GRAPPA Reconstruction for Simultaneous Multi-Slice Radial Acquisition Weiran Deng¹, Kyoko Fujimoto¹, V. Andrew Stenger¹ ¹University of Hawaii JABSOM, Honolulu, HI, United States
- **2409.** Ghost-Correcting SENSE Reconstruction for Multi-Band EPI Franciszek Hennel¹, Aline Seuwen¹, Constantin von Deuster¹, Klaas P. Pruessmann¹ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
- 2410. 2D-SENSE-GRAPPA for Fast, Ghosting-Robust Reconstruction of In-Plane and Slice Accelerated Blipped-CAIPI-EPI

Peter Jan Koopmans¹, Benedikt A. Poser², Felix A. Breuer³ ¹FMRIB Centre, University of Oxford, Oxford, United Kingdom; ²Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ³Research Center Magnetic Resonance Bavaria, Wurzburg, Germany

2411. Multi-Band PROPELLER Imaging with Auto-Calibration

Mengye Lyu¹, ², *Yilong Liu¹*, ², *Victor B. Xie¹*, ², *ErPeng Dai³*, *Hua Guo³*, *Ed X. Wu¹*, ² ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, HKSAR, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, HKSAR, China; ³Center for Biomedical Imaging Research, Tsinghua University, Beijing, China

2412. Dynamic Compressed Sensing for Multiband MRI

Huisu Yoon¹, Dong-wook Lee¹, Juyoung Lee¹, Seung Hong Choi², Sung-Hong Park¹, Jong Chul Ye¹ ¹Dept. of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; ²Dept. of Radiology, Seoul National University College of Medicine, Seoul, Korea

Traditional Poster	
Parallel Imaging	
Exhibition Hall	Wednesday 16:00-18:00

2413. Iterative GRAPPA Using Wiener Filter Wan Kim¹, Yihang Zhou¹ ¹The State University of New York at Buffalo, Buffalo, NY, United States

- 2414. Single-Slab 3D TSE with CAIPIRINHA Acquisition Mode Zhang Qiong¹, Sun Zhi guo¹, Liu Wei¹ ¹Siemens, ShenZhen, GuangDong, China
- 2415. Fast G-Factor Estimation in Multi-Band Acquisition Based on Sum of Inverse Distance Model Mengye Lyu¹, ², Victor B. Xie¹, ², Patrick P. Gao¹, ², Yilong Liu¹, ², Ed X. Wu¹, ² ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- **2416.** Dual Asymmetric Echo Steady State Imaging with CAIPIRINHA Acquisition Mode *Zhang Qiong¹, Sun Zhi guo¹* ¹Siemens, Shen Zhen, Guang Dong, China
- 2417. Automatic Coil Compression for Parallel MRI Based on Noise Variance Estimation Allan Raventos¹, Tao Zhang¹, John M. Pauly¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States
- 2418. Parallel MRI Reconstruction by Direct Convex Optimization *Cishen Zhang¹*, *Ifat-Al Baqee¹* ¹Swinburne University of Technology, Hawthorn, Victoria, Australia
- 2419. Effects of Motion on Coupling of Coil Elements and Parallel Imaging Reconstruction at 3T and 7T *Qiyuan Tian¹*, Enhao Gong¹, Christoph W.U. Leuze², John Pauly¹, Jennifer McNab² ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States
- **2420.** Investigation of GRAPPA G-Factor Dependence on Calibration Scan Phase Errors and SNR S. L. Talagala¹, J. E. Sarlls¹, S. J. Inati²

¹NMRF/NINDS, National Institutes of Health, Bethesda, MD, United States; ²FMRIF/NIMH, National Institutes of Health, Bethesda, MD, United States

- 2421. Parallel Magnetic Resonance Imaging Via Dictionary Learning Shanshan Wang¹, ², Xi Peng¹, Jianbo Liu¹, Yuanyuan Liu¹, Pei Dong², Dong Liang¹ ¹Paul C. Lauterbur Research Centre for Biomedical Imaging, Chinese Academy of Sciences, Shenzhen, GuangDong, China; ²School of Information Technologies, University of Sydney, Sydney, New South Wales, Australia
- **2422.** Smallest Singular Value: A Metric for Assessing K-Space Sampling Patterns Andrew T. Curtis¹, Christopher K. Anand¹ ¹Computing and Software, McMaster University, Hamilton, Ontario, Canada
- 2423. STEP: Self-Supporting Tailored K-Space Estimation for Parallel Imaging Reconstruction Zechen Zhou¹, Jinnan Wang², ³, Niranjan Balu³, Rui Li¹, Chun Yuan¹, ³ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Philips Research North America, Briarcliff Manor, NY, United States; ³Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States
- 2424. Highly Accelerated 3D Parallel Imaging with Transitional Auto-Calibration (3D-PITA) Ren He^l, Jingyuan Lyu^l, Leslie Ying²
 ¹Department of Electrical Engineering, University at Buffalo, Buffalo, NY, United States; ²Department of Electrical Engineering, Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
- 2425. Generalized Direct Virtual Coil (DVC) with SPIRiT Kernel for Arbitrary Sampling Pattern *Yuxin Hu¹*, *Tao Zhang²*, *Kui Ying³*, *John M. Pauly²* ¹Biomedical Engineering, Tsinghua University, Beijing, China; ²Electrical Engineering, Stanford University, CA, United States; ³Engineering Physics, Tsinghua University, China
- **2426.** Considerations for Parallel Imaging When Using High Permittivity Pads in the Thighs at 3 T Wyger Brink¹, Maarten J. Versluis¹, ², Johannes M. Peeters², Peter Börnert¹, ², Andrew Webb¹ ¹Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Philips Healthcare, Best, Netherlands
- 2427. Anatomically Constrained Magnetic Resonance Inverse Imaging for Human Brain Kevin Wen-Kai Tsai¹, ², Fa-Hsuan Lin³ ¹Department of Biomedical Engineering and Computational Science, Aalto University School of Science, Espoo, Finland; ²Brain Research Unit (BRU), Low Temperature Laboratory, Aalto University School of Science, Espoo, Finland; ³Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- **2428.** Sensitivity Improvement Under Parallel Detection in CW-EPR Imaging *Ayano Enomoto¹*, *Hiroshi Hirata¹* ¹Division of Bioengineering and Bioinformatics, Hokkaido University, Sapporo, Hokkaido, Japan
- 2429. COMPASS Guiding Reconstruction with Parallel MRI Signal Structure *Yudong Zhu^l* ¹Zhu Consulting, Scarsdale, NY, United States
- **2430.** AC-LORAKS: Autocalibrated Low-Rank Modeling of Local K-Space Neighborhoods Justin P. Haldar¹

¹Electrical Engineering, University of Southern California, Los Angeles, CA, United States

- 2431. KerNL: Parallel Imaging Reconstruction Using Kernel-Based NonLinear Method Jingyuan Lyu^l, Yihang Zhou^l, Ukash Nakarmi^l, Chao Shi^l, Leslie Ying, ¹² ¹Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
- 2432. A Theory for Sampling in K-Space Parallel Imaging as Approximation in a Reproducing Kernel Hilbert Space Vivek Athalye¹, Michael Lustig¹, Martin Uecker¹ ¹Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States
- 2433. Clinical Feasibility of Accelerated TOF MR Angiography with Sparse Undersampling and Iterative Reconstruction: Comparison with Conventional Parallel Imaging Takayuki YAMAMOTO¹, Koji FUJIMOTO¹, Tomohisa OKADA¹, Yasutaka FUSHIMI¹, Akira YAMAMOTO¹, Aurelien F. STALDER², Yutaka NATSUAKI³, Michaela SCHMIDT², Kaori TOGASHI¹
 ¹Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ²Siemens Healthcare, Erlangen, Germany; ³Siemens Medical Solutions USA, Inc, PA, United States
- 2434. Ultra Short Echotime MRI to Locate Foreign Objects: Initial Phantom Results Karl-Heinz Herrmann¹, Anusch Mheryan, Martin Stenzel, Hans-Joachim Mentzel, Ulf Teichgräber, Jürgen R. Reichenbach¹ ¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
- 2435. SNR-Efficient Anisotropic 3D Ultra-Short Echo Time Sequence for Sodium MRI with Retrospective Gating Simon Konstandin¹, Matthias Günther¹, ²
 ¹MR-Imaging and Spectroscopy, Faculty 01 (Physics/Electrical Engineering), University of Bremen, Bremen, Germany; ²Fraunhofer MEVIS, Bremen, Germany
- 2436. T₂-Selective Excitation with UTE Imaging for Bone Imaging Ethan M. Johnson¹, Urvi Vyas², Kim Butts Pauly², John M. Pauly¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States
- 2437. Anisotropic Field-Of-View Support for Golden Angle Radial Imaging Ziyue Wu^l, Krishna S. Nayak^l ¹University of Southern California, Los Angeles, CA, United States
- 2438. Gradient-Modulated PETRA Naoharu Kobayashi¹, Luning Wang¹, Michael Garwood¹ ¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- 2439. Segmented Golden Ratio Radial Reordering for Dynamic Cardiac MRI with Variable Temporal Resolution Fei Han¹, Ziwu Zhou¹, Stanislas Rapacchi¹, Paul Finn¹, Peng Hu¹ ¹Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States

- 2440. 3D Through Time GRAPPA for Dynamic Distributed Spirals Dallas C. Turley¹, Jim Pipe¹ ¹Imaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
- 2441. CODEC: Covariance-Driven Parallel Imaging for NonCartesian Sampling Trajectories James G. Pipe¹ ¹Imaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
- 2442. Rapid 3D Spoiled Steady-State Imaging with Yarn-Ball Acquisition Robert W. Stobbe¹, Christian Beaulieu¹ ¹University of Alberta, Edmonton, Alberta, Canada
- 2443. Density-Adapted Spiral MRI Sequence for ²³Na Imaging Maria Engel¹, Nadia Benkhedah¹, Armin M. Nagel¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- 2444. A Spiral Spin-Echo Sequence for Fast T2-Weighted Imaging with Improved Contrast Zhiqiang Li^l, Dinghui Wang^l, John P. Karis², James G. Pipe^l ¹Imaging Research, Barrow Neurological Institute, Phoenix, AZ, United States; ²Neuroradiology, Barrow Neurological Institute, Phoenix, AZ, United States
- 2445. Analytic Form 3D Radial Sampling Strategy for Maintaing the Uniformity of K-Space Coverage with Increasing Interleaves

Jinil Park¹, Tae-Hoon Shin², Jang-Yeon Park¹ ¹Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, Gyungki-do, Korea; ²Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States

- 2446. In-Vivo Brain Fast Rosette Spectroscopic Imaging (RSI) with Reduced Gradient Demands/improved Patient Comfort and a Processing Pipeline with Automated LCModel Quantification, for All Acquired Voxels Claudiu Schirda¹, Tiejun Zhao², Ovidiu Andronesi³, James Mountz¹, Fernando Boada¹, Hoby Hetherington¹ ¹Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; ²Siemens Medical Solutions, Pittsburgh, PA, United States; ³Radiology, Massachusetts General Hospital, Boston, MA, United States
- 2447. Single-Shot Spiral Imaging Using the Gradient Impulse Response for Trajectory Prediction

Signe Johanna Vannesjo⁹, Nadine N. Graedel², Lars Kasper¹, Simon Gross¹, Christoph Barmet¹, ³, Klaas P. Pruessmann¹

¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²FMRIB Centre, University of Oxford, Oxford, United Kingdom; ³Skope Magnetic Resonance Technologies, Zurich, Switzerland

2448. Dynamic Volumetric MRI Using Golden-Angle Variable Density Spiral Acquisition with Sparse Parallel Imaging Reconstruction

Lyu Li¹, Xiaodong Ma¹, Pascal Spincemaille², Yi Wang², ³, Huijun Chen¹, Hua Guo¹ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Radiology, Weill Cornell Medical College, NY, United States; ³Biomedical Engineering, Cornell University, NY, United States

2449. L1-ESPIRiT Reconstruction for Accelerating 3D UTE and Denoising

ISMRM MERIT AWARD magna cum laude

> *Wenwen Jiang¹*, *Frank Ong²*, *Roland Henry³*, *Michael Lustig²*, *Peder E.Z. Larson³* ¹Bioengineering, UC Berkeley/UCSF, Berkeley, CA - California, United States; ²EECS, UC Berkeley, Berkeley, CA, United States; ³Radiology and Biomedical Imaging, UCSF, San Francisco, CA - California, United States

2450. Proton-Constrained CMRO₂ Quantification with Direct ¹⁷O-MRI at 3 Tesla

Dmitry Kurzhunov¹, Robert Borowiak, ¹², Philipp Wagner¹, Marco Reisert¹, Michael Bock¹ ¹Department of Radiology · Medical Physics, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany; ²German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ),, Heidelberg, Baden-Württemberg, Germany

2451. Comparison of Pre-Reconstruction Interpolation Methods for Rapid Compressed Sensing Reconstruction of Non-Cartesian k-Space

KC Erb¹, *Ganesh Adluru¹*, *Srikant Kamesh Iyer¹*, *Devavrat Likhite¹*, *John A. Roberts¹*, *Edward DiBella¹* ¹UCAIR, University of Utah, Salt Lake City, UT, United States

2452. Density Compensation for Iterative Reconstruction from Under-Sampled Radial Data

Boris Mailhe^I, Qiu Wang¹, Robert Grimm², Marcel Dominik Nickel², Kai Tobias Block³, Hersh Chandarana³, Mariappan S. Nadar¹

¹Imaging and Computer Vision, Siemens Corporation, Corporate Technology, Princeton, NJ, United States; ²MR Application & Workflow Development, Siemens Healthcare, Erlangen, Germany; ³Department of Radiology, New York University School of Medicine, New York, NY, United States

Traditional Poster Encoding & Reconstruction

Exhibition Hall Wednesday 16:00-18:00

2453. CAIPIRINHA Acceleration Enables Rapid High-Spatial-Resolution Isotropic 3D SPACE of the Knee: Comparison with Conventional SPACE and 2D TSE

Esther Raithel¹, Gaurav Thawait², Shivani Ahlawat², Shadpour Demehri², Zhang Qiong³, Jan Fritz² ¹Siemens AG, Healthcare Sector, Erlangen, Bavaria, Germany; ²Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, MD, United States; ³Siemens AG, Guang Dong, China

2454. Rapid Fast Field-Cycling MRI Using Keyhole Imaging

Peter James Ross¹, David J. Lurie¹ ¹Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, Aberdeen City, United Kingdom

- 2455. Robust and Automatic Polarity Determination for Phase-Sensitive Inversion Recovery (PSIR) Imaging Deqing Chen¹, Weiguo Zhang¹ ¹Shanghai United Imaging Healthcare Co. Ltd., Shanghai, China
- **2456.** An Integrated Approach of Interactive Land-Marking and Auto Coil Detection Jia Guo¹, Yongchuan Lai¹, Xiaocheng Wei¹, Nan Cao¹, Bing Wu¹ ¹GE Healthcare, Beijing, China
- 2457. Acquisition and Reconstruction Effects on Image Quality in Variable-Density Sparse MRI Dimitris Mitsouras¹, Onur Afacan², Robert V. Mulkern³, Dana H. Brooks⁴ ¹Radiology, BWH/Harvard Medical School, Boston, MA, United States; ²Children's Hospital Boston, MA, United States; ³Childrens' Hospital Boston, MA, United States; ⁴Northeastern University, Boston, MA, United States

2458. Optimal Spread Spectrum for Enhanced Multi-Receive Compressed Sensing MRI

ismen merit award magna cum laude Sulaiman A. Al Hasani¹, Gary F. Egan², Jingxin Zhang³ ¹Electrical and Computer Systems Engineering, Monash University, clayton, VIC, Australia; ²Monash Biomedical Imaging, Monash University, VIC, Australia; ³School of Software and Electrical Engineering, Swinburne University of Technology, VIC, Australia

- **2459.** Image Reconstruction of Under-Sampled Signal at Equal Interval Using Quadratic Phase Scrambling Satoshi Ito¹, Shungo Yasaka¹, Yoshifumi Yamada¹ ¹Utsunomiya University, Utsunomiya, Tochigi, Japan
- 2460. Improved Partial Fourier Reconstruction Using Two Reverse Polarity Echoes in a Single GRE Acquisition Ehsan Hamtaei¹, ², Saifeng Liu³, Yongquan Ye², Dongmei Wu⁴, E. Mark Haacke¹, ²
 ¹MR Innovations Inc., Detroit, MI, United States; ²Radiology, Wayne State University, Detroit, MI, United States; ³MRI Institute of Biomedical Research, Ontario, Canada; ⁴East China Normal University, Shanghai, China

2461. Non-Linear TRASE

Somaie Salajeghe¹, Paul Babyn², Jonathan C. Sharp³, Gordon E. Sarty¹ ¹Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada; ²Medical Imaging, University of Saskatchewan, Saskatoon, SK, Canada; ³Department of Oncology, University of Alberta, Edmonton, AB, Canada

2462. Enhanced FRONSAC Encoding with Compressed Sensing

Haifeng Wang¹, R. Todd Constable¹, Gigi Galiana¹ ¹Yale University, New Haven, CT, United States

- 2463. Improved Scan Efficiency of 3D Fast Spin Echo with Subspace-Constrained Reconstruction Jonathan I. Tamir¹, Weitian Chen², Peng Lai², Martin Uecker¹, Michael Lustig¹ ¹Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; ²Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States
- 2464. In-Vivo High Resolution Imaging of Fine-Scale Anatomical Structures at 3T with Simultaneous Bias/Variance Reduction

Aymeric Stamm¹, Onur Afacan, Benoit Scherrer, Jolene M. Singh¹, Simon K. Warfield¹ ¹Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States

2465. rOi-Space: Accelerated Imaging of Sub-Volumes Using ROI Focused O-Space Emre Kopanoglu¹, Haifeng Wang¹, Yuqing Wan¹, Dana C. Peters¹, Gigi Galiana¹, Robert Todd Constable¹ ¹Diagnostic Radiology, Yale University, New Haven, CT, United States

2466. Scan Time Reduction for Non-CPMG 3D FSE Imaging Based on Phase Cycling

Weitian Chen¹, Rob Peters², Suchandrima Banerjee¹, Misung Han³, Roland Krug³, Garry Gold⁴, Yuval Zur⁵ ¹Global Applied Science laboratory, General Electric, Menlo Park, CA - California, United States; ²Global Applied Science laboratory, General Electric, Waukesha, WI, United States; ³Department of Radiology and Biomedical Imaging, UCSF, San Francisco, CA - California, United States; ⁴Radiology, Stanford University, Palo Alto, CA - California, United States; ⁵Healthcare Magnetic Resonance, General Electric, Haifa, Israel

2467. Accelerating MRI by Quadratic Phase Encoding Lin Chen¹, Congbo Cai², Shuhui Cai¹, Zhong Chen¹ ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Department of Communication Engineering, Xiamen University, Xiamen, Fujian, China

2468. High-Resolution fMRI Using Accelerated EPIK for Enhanced Characterisation of Functional Areas at 3T Seong Dae Yun¹, N. Jon Shah¹, ²

¹Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Juelich, Juelich, Germany; ²Faculty of Medicine, Department of Neurology, JARA, RWTH Aachen University, Aachen, Germany

2469. Simultaneous Imaging of Myelin and Iron Using Ultrashort Echo Time (UTE) MRI

Vipul R. Sheth¹, Jacopo Annese¹, Hongda Shao¹, Qun He¹, Jody Corey-Bloom², Graeme M. Bydder¹, Jiang Du¹ Radiology, University of California, San Diego, CA, United States; ²Neurosciences, University of California, San Diego, CA, United States

2470. Spatial Localization of Relaxation Dispersion by Field-Cycling with One-Dimensional Projection Kerrin J. Pine¹, Gareth R. Davies¹, David J. Lurie^{*} ¹Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, Scotland, United Kingdom

Traditional Poster Image Processing and Analysis Exhibition Hall Wednesday 16:00-18:00

2471. Multivariate Asymmetry Analysis (MVAA): Applications in Temporal Lobe Epilepsy Diego Cantor-Rivera¹, Terry M. Peters², Ali R. Khan² ¹Biomedical Engineering Graduate Program, Western University, London, ON, Canada; ²Medical Biophysics, Western University, London, ON, Canada

2472. Polyhedral Phantom Framework with Analytical Fourier Transform with Intensity Gradients Shuo Han¹, Daniel A. Herzka¹

¹Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, United States

2473. A Hybrid Approach to Intensity Normalization of Brain MRI Based on Gaussian Mixture Model and Histogram Matching

Xiaofei Sun¹, Lin Shi², ³, Yishan Luo¹, Winnie CW Chu¹, Defeng Wang¹, ⁴ ¹Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ²Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ³Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; ⁴Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

2474. Concentration Maps Improve Detection of Gray Matter Alteration in Cerebellum and Deep Gray Matter Structures

Guillaume Bonnier¹,², Jean-Philippe Thiran², Gunnar Krueger¹,², Tobias Kober¹,², Bénédicte Mortamet¹,², Cristina

Granziera^{1,3}, Alexis Roche^{1,2} ¹Siemens ACIT – CHUV Radiology, Siemens Healthcare IM BM PI & Department of Radiology CHUV, Lausanne, Vaud, Switzerland; ²LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ³Department of Clinical Neurosciences, Laboratoire de recherche en neuroimagerie and Neuroimmunology Unit, Lausanne, Vaud, Switzerland

2475. Iterative Residual Based Deconvolution Partial Volume Correction for Brain PET- MRI

Chenguang Peng¹, Huayu Zhang¹, Jinchao Wu¹, Xingfeng Shao¹, ², Yingmao Chen³, Quanzheng Li⁴, Georges El Fakhr⁴, Kui Ying¹

¹Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering, Beijing, China; ²Department of Bioengineering, UCLA, CA, United States; ³Department of Nuclear Medicine, The general hospital of Chinese People's Liberation, Beijing, China, Beijing, China; ⁴Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Harvard Medical School, Boston, United States

2476. Processing Induced Spatial Correlations Are Quantified with a Temporal Frequency Representation in **Complex-Valued fMRI**

Mary C. Kociuba¹, Daniel B. Rowe¹,²

¹Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, WI, United States; ²Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
2477. Influence of Anisotropic Blood Vessels Modeling in the EEG/MEG Forward Problem Using MRI.

Ernesto Cuartas- M^l , Angel Torrado- C^2 , ³, Juan A Hernandez- T^2 , ³, José Ángel Pineda⁴, Eva Manzanedo- S^2 , German Castellanos- D^l

¹Universidad Nacional de Colombia, Manizales, Caldas, Colombia; ²Medical Image Analysis and Biometry Lab, Rey Juan Carlos University, Madrid, Spain; ³Madrid-MIT M+Vision Consortium, Madrid, Spain; ⁴Centre for Biomedical Technology-U.P.M, Pozuelo de Alarcón, Spain

- 2478. Partial Volume Correction Based on Spatial Variant Point Spread Function for Simultaneous PET-MR Imaging *Chenguang Peng¹, Jinchao Wu¹, Xingfeng Shao¹, ², Yingmao Chen³, Quanzheng Li⁴, Georges El Fakhr⁴, Kui Ying¹ ¹Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering, Beijing, China; ²Department of Bioengineering, UCLA, , CA, United States; ³Department of Nuclear Medicine, The general hospital of Chinese People's Liberation, Beijing, China; ⁴Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Harvard Medical School, Boston, United States*
- 2479. Weighted Echo Sharing Technique (WEST) for Highly Undersampled Multi-Echo T2(*) Weigthed Data in Cartesian Domain

Taejoon Eo¹, Jinseong Jang¹, Dosik Hwang¹ ¹Yonsei University, Seoul, Korea

- 2480. Rapid Segmentation of the Cervical Spinal Cord on 3D MRI Data with Cord Image Analyzer (Cordial): Application to Three-Year Follow-Up Data of MS Patients with a Progressive Disease Course Michael Amann¹, Simon Pezold², Yvonne Naegelin³, Ketut Fundana², Michaela Andelova³, Katrin Weier³, Christoph Stippich, Ludwig Kappos³, Philippe Cattin², Till Sprenger¹
 ¹Neurology/Neuroradiology, University Hospital Basel, Basel, BS, Switzerland; ²Medical Image Analysis Center (MIAC), University of Basel, Basel, BS, Switzerland; ³Neurology, University Hospital Basel, Basel, BS, Switzerland
- 2481. Abnormal Brain Anatomy Can Introduce Considerable Bias to Studies Relying on FIRST an Improved Segmentation Pipeline

Xiang Feng¹, Andreas Deistung¹, Jesper Hagemeier², Michael Dwyer², Robert Zivadinov², ³, Juergen R. Reichenbach¹, Ferdinand Schweser², ³

¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; ²Buffalo Neuroimaging Analysis Center, Dept. of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States; ³MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States

- 2482. Semi-Automatic Prostate Segmentation Via a Hidden Markov Model with Anatomical and Textural Priors Christian Scharfenberger¹, Dorothy Lui¹, Farzad Khalvati², Alexander Wong¹, Masoom Haider², ³ ¹Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada; ²Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ³Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- 2483. Magnetic Resonance Neurography (MRN) of Brachial Plexus at 1.5 T: Comparative Evaluation of 3D SHINKEI Versus DWIBS, Our Initial Experience

Prashant Nair¹, Rajagopal K. V⁷, Rolla Narayana², Indrajit Saha³, Satish M¹ ¹KMCH Hospital, Manipal University, Manipal, India; ²Philips Healthcare, Philips India Ltd, Bangalore, India; ³Philips Healthcare, Philips India Ltd, Gurgaon, Haryana, India 10 (

1.4.

Novel Compu	oster Iting Frameworks
Exhibition Hall	Wednesday 16:00-18:00
2484. magna cum laude	A Hardware-Independent Environment for MR Acquisition and Simulation Kelvin Layton ¹ , Stefan Kroboth ¹ , Jochen Leupold ¹ , Huijun Yu ¹ , Feng Jia ¹ , Sebastian Littin ¹ , Tony Stöcker ² , Maxim Zaitsev ¹ ¹ Medical Physics, University Medical Center Freiburg, Freiburg, BW, Germany; ² German Center for Neurodegenerative Diseases, Bonn, NRW, Germany
2485.	Sub-Second Compressed Sensing Reconstruction for Large Array Data Using GPUs <i>Ching-Hua Chang¹, Jim Ji¹</i> ¹ Texas A&M University, College Station, TX, United States
2486.	Berkeley Advanced Reconstruction Toolbox Martin Uecker ¹ , Frank Ong ¹ , Jonathan I. Tamir ¹ , Dara Bahri ¹ , Patrick Virtue ¹ , Joseph Y. Cheng ² , Tao Zhang ² , Michael Lustig ¹ ¹ Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; ² Department of Radiology, Stanford University, Stanford, United States
2487.	Customized CPU Accelerated CS-Based MRI Reconstruction Platform <i>Kyunghyun Sung</i> ¹ , ² , <i>Di Wu</i> ³ , <i>Fei Han</i> ¹ , ² , <i>Ziwu Zhou</i> ¹ , ² , <i>Peng Hu</i> ¹ , ² , <i>Holden Wu</i> ¹ , ² , <i>Alex Bui</i> ¹ , ² , <i>Jason Cong</i> ³ ¹ Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States; ² Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States; ³ Computer Science, University of California, Los Angeles, Los Angeles, CA, United States
2488.	Faster-Than-Acquisition 4D Sparse Reconstruction for Cartesian 2D SENSE-Type Acquisition Eric A. Borisch ¹ , Joshua D. Trzasko ¹ , Adam T. Froemming ² , Roger C. Grimm ¹ , Akira Kawashima ² , Armando Manduca ¹ , Phillip M. Young ² , Stephen J. Riederer ¹ ¹ Mayo Clinic, Rochester, MN, United States; ² Radiology, Mayo Clinic, Rochester, MN, United States
2489. ISMRM MERIT AWARD Magua cum Laude	A Low-Cost Flexible Non-Linear Parallelized MR Image Reconstruction System <i>Fei Han¹, Ziwu Zhou¹, Kyunghyun Sung¹, J Paul Finn¹, Peng Hu¹</i> ¹ Radiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States

Traditional Poster Image Quality Assessment

Exhibition Hall	Wednesday 16:00-18:00
2490	Standardization and Automatization of Quality Assurance in Structural and Dynamic MRI

- **2490.** Standardization and Automatization of Quality Assurance in Structural and Dynamic MRI. *Robin Antony Birkeland Bugge¹, Atle Bjørnerud¹, Wibeke Nordhøy¹, Øystein Bech Gadmar¹* ¹Intervention Center, Oslo University Hospital, Oslo, Norway
- 2491. Exploring Quality Metrics for MRI Imaging: Comparing Multiple Reconstructions and Measuring Instrument Calibration Using Low Cost Phantoms Brian Hanna¹, Naoharu Kobayashi¹, Djaudat Idiyatullin¹, Curtis Andrew Corum¹, Brad Weegman¹, Jinjin Zhang¹, Michael Garwood¹ ¹Radiology, University of Minnesota, Minneapolis, MN, United States

2492. Extending BrainWeb for Evaluating Methods of Brain Volume Change: Simulation of Central and Peripheral **Brain Atrophy**

Kunio Nakamura¹, Vladimir S. Fonov¹, Nicolas Guizard¹, Sridar Naravanan¹, Douglas L. Arnold¹, D. Louis Collins¹ ¹Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada

2493. A New Approach for Automatic Image Quality Assessment

Thomas Küstner¹,², Parnia Bahar², Christian Würslin¹, Sergios Gatidis¹, Petros Martirosian³, Nina Schwenzer¹. Holger Schmidt¹, Bin Yang²

¹Department of Radiology, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany; ²Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany; ³Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany

2494. A Generalized Method for Automated Quality Assessment in Brain MRI Bénédicte Maréchal¹,², Stephan Kannengiesser³, Kaely Thostenson⁴, Peter Kollasch⁵, Pavel Falkovskyi¹,², Jean-Philippe Thiran², Reto Meuli⁶, Matt A. Bernstein⁴, Gunnar Krueger¹,²</sup> Siemens ACIT - CHUV Radiology, Siemens Healthcare IM BM PI & Department of Radiology CHUV, Lausanne, Switzerland; ²LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ³Siemens Healthcare, Erlangen, Germany; ⁴Department of Radiology, Mayo Clinic, Rochester, MN, United States; ⁵Siemens Healthcare, MN, United States; ⁶CHUV Radiology, Lausanne, Switzerland

- 2495. Semi-Automatic Quantification of Long-Term Stability and Image Quality of a Parallel Transmit System at 7T Marcel Gratz¹,², Maximilian Völker², Sören Johst², Mark E. Ladd²,³, Harald H. Quick¹,² ¹High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany; ³Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
- 2496. Comparison of BRISQUE and SSIM as Image Quality Assessment (IQA) on MR Optic Nerve Images. Li Sze Chow¹, Raveendran Paramesran¹, Martvn Palev² ¹Electrical Engineering, University of Malaya, Kuala Lumpur, Wilayah Persekutuan, Malaysia; ²Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
- 2497. Radiological and Quantitative Assessment of Compressed Sensing Reconstruction of Undersampled 3D Brain Images

Ian Marshall¹, Gabriel Rilling¹, Yuehui Tao², Chaoran Du¹, Samarth Varma¹, Dominic Job¹, Andrew Farrall¹, Mike Davies¹

¹University of Edinburgh, Edinburgh, United Kingdom; ²University of Oxford, Oxford, United Kingdom

2498. How to Improve the Accuracy of Total Water Content Measured Using T₂ Relaxation Sandra M. Mevers¹, Shannon H. Kolind², Alex L. MacKav¹, ³

¹Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; ²Medicine, University of British Columbia, Vancouver, BC, Canada; ³Radiology, University of British Columbia, Vancouver, BC, Canada

Traditional Poster

Dictionary-Based Reconstruction

Exhibition Hall Wednesday 16:00-18:00

2499. Efficient Dictionary Design for MR Fingerprinting Using Tree-Structured Vector Quantization Zhitao Li¹, Benjamin Paul Berman², Diego R. Martin³, Maria I. Altbach³, Ali Bilgin¹, ⁺

¹Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; ²Applied Mathematics, University of Arizona, Tucson, AZ, United States; ³Department of Medical Imaging, University of Arizona, Tucson, AZ, United States; ⁴Biomedical Engineering, University of Arizona, Tucson, AZ, United States

2500. Fast Reconstruction of Highly-Undersampled Dynamic MRI Using Random Sampling and Manifold Interpolation

Kanwal K. Bhatia¹, Anthony N. Price², ³, Joseph V. Hajnal², ³, Daniel Rueckert¹ ¹Biomedical Image Analysis Group, Imperial College London, London, United Kingdom; ²Centre for the Developing Brain, Kings College London, London, United Kingdom; ³Biomedical Engineering Department, Kings College London, London, United Kingdom

2501. Fast Dictionary Learning-Based Compresssed Sensing MRI with Patch Clustering

Zhifang Zhan¹, Yunsong Liu¹, Jian-Feng Cai², Di Guo³, Jing Ye¹, Zhong Chen¹, Xiaobo Qu¹ ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Department of Mathematics, University of Iowa, Iowa City, IA, United States; ³School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, Fujian, China

- **2502.** Dictionary Learning for Compressive T2 Mapping with Non-Cartesian Trajectories and Parallel Imaging *Benjamin Paul Berman¹, Mahesh Bharath Keerthivasan², Zhitao Li², Diego R. Martin³, Maria I. Altbach³, Ali Bilgin², ⁴ ¹Program in Applied Mathematics, University of Arizona, Tucson, AZ, United States; ²Electrical & Computer Engineering, University of Arizona, Tucson, AZ, United States; ³Medical Imaging, University of Arizona, Tucson, AZ, United States; ⁴Biomedical Engineering, University of Arizona, Tucson, AZ, United States*
- 2503. Sparsity-Promoting Orthogonal Dictionary Updating for Highly Undersampled MRI Reconstruction Jinhong Huang¹,², Xiaohui Liu¹, Wufan Chen¹, Yanqiu Feng¹ ¹Guangdong Provincial Key Laborary of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; ²School of Mathemtics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi, China

2504. Accelerating MR Parameter Mapping Using Manifold Recovery

Radiology, Medical College of Wisconsin, Milwaukee, WI, United States

Chao Shi¹, Yihang Zhou¹, Yanhua Wang¹, Dong Liang², Xiaojuan Li³, Leslie Ying¹, ⁴ ¹Electrical Engineering, University at Buffalo, SUNY, Buffalo, NY, United States; ²Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Shenzhen, Guangdong, China; ³Department of Radiology and Biomedical Imaging, University of California at San Francisco, San Francisco, CA, United States; ⁴Biomedical Engineering, University at Buffalo, SUNY, Buffalo, NY, United States

Traditional Poster Imaging Near Metal Exhibition Hall Wednesday 16:00-18:00

2505. Reduced FOV Imaging Near Metal Using 2D Multispectral Imaging and Very Selective Outer Volume
 Suppression
 Valentina Taviani¹, Daniel Litwiller², Kevin M. Koch³, Brian A. Hargreaves¹
 ¹Radiology, Stanford University, Stanford, CA, United States; ²GE Healthcare, Rochester, MN, United States; ³Biophysics and

- **2506.** Compressed Sensing Accelerated Broadband 3D Phase Encoded Turbo Spin-Echo Imaging for Geometrically Undistorted Imaging in the Presence of Field Inhomogeneities Jetse van Gorp¹, Chris Bakker¹, ², Job Bouwman¹, Jouke Smink³, Frank Zijlstra¹, Peter Seevinck¹ ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands.
- 2507. Imaging of the Spine with Metal Implants Using High-Bandwidth RF Pulses from a Local Tx/Rx Coil Theresa Bachschmidt¹,², Johanna Schöpfer³, Stephan Biber², Peter Jakob¹, Mathias Nittka² ¹Department of Experimental Physics 5, University of Würzburg, Würzburg, Germany; ²Magnetic Resonance, Siemens AG, Erlangen, Germany; ³Corporate Technology, Siemens AG, Erlangen, Germany

- **2508.** Automatic Detection of Metal Implant Location in Hexagonally Sampled MAVRIC-SL Bragi Sveinsson¹, Valentina Taviani¹, Garry Gold¹, Brian Hargreaves¹ ¹Radiology, Stanford University, Stanford, CA, United States
- **2509.** Initial Experience with Artefact Reduction Sequences and MR Conditional Cochlear Implants Jonathan Paul Ashmore¹, Mathias Nittka², Lyndall Blakeway³, Steve Connor¹, ³, Geoff Charles-Edwards³ ¹Neuroradiology, King's College Hospital NHS Foundation Trust, London, United Kingdom; ²Siemens Healthcare, Erlangen, Germany; ³Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom
- **2510.** Metal Artifact Correction Using Sensitivity Information Dongchan Kim¹, JaeJin Cho¹, Kinam Kwon¹, HyunWook Park¹ ¹Electrical engineering, KAIST, Daejeon, Yuseong-Gu, Korea
- 2511. Metal Implant-Induced Spectral Range Optimization Using Rapid 3D-MSI Calibration Scans Kevin M. Koch¹ ¹Biophysics and Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
- **2512.** Evaluation of T2-Weighted WARP Sequences in Patients with Spinal Prosthesis shun qi¹, Ying Liu, Langlang Gao, Panli Zuo², Mathias Nittka³, Hong Yin ¹ Xijing Hospital, Fourth Military Medical University, xian, shaanxi, China; ²Siemens Healthcare, MR Collaborations NE Asia, shaanxi, China; ³Siemens Healthcare, Germany, Germany
- **2513.** An Improved Complex Image Combination Algorithm for SEMAC Daehyun Yoon¹, Brian A. Hargreaves¹ ¹Radiology, Stanford University, Palo Alto, CA, United States
- **2514.** Phase Unwrapping Near Metal Implants with Prior Knowledge of the Implant Geometry Laura J. King¹, Philip J. Bones¹, Rick P. Millane¹ ¹Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand
- 2515. Numerical RF Pulse Optimization to Reduce Peak B1 for Multi-Spectral Imaging Around Metal Implants Andrew M. Huettner¹, Andrew S. Nencka¹, L.Tugan Muftuler², Kevin M. Koch³ ¹Biophysics, The Medical College of Wisconsin, Milwaukee, WI, United States; ²Neurosurgery, The Medical College of Wisconsin, Milwaukee, WI, United States; ³Biophysics and Radiology, The Medical College of Wisconsin, Milwaukee, WI, United States
- 2516. Fluid-Sensitive Metal Artifact Reduction Using a 3D-Composite Fast Steady State Free Precession (COFIsp) Sequence

Xeni Deligianni¹, ², Thomas Egelhof², Thorsten Wischer², Reinhard Elke², Oliver Bieri³ ¹Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, NA, Switzerland; ²Merian Iselin Klinik, Basel, NA, Switzerland; ³Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, NA, Switzerland

Traditional PosterElastographyExhibition HallWednesday 16:00-18:00

2517. Estimation of Abdominal Aortic Aneurysm Stiffness Using MR Elastography: Is Stiffness Superior to Diameter? Shantanu Warhadpande¹, William Kenyhercz², Priyanka Illapani², Brian Raterman³, Joshua Dowell³, Michael Go³, Patrick Vaccaro³, Jean Starr³, Richard White³, Arunark Kolipaka³ ¹The Ohio State University College of Medicine, Columbus, OH, United States; ²The Ohio State University, Columbus, OH, United States; ³The Ohio State University Wexner Medical Center, OH, United States ISMRM MERIT AWARD magna cum laude

- **2518.** Theoretical Performance and Sampling Limits in Steady-State Magnetic Resonance Elastography Joshua Trzasko¹, Kevin Glaser¹, Arvin Arani¹, Armando Manduca¹, David Lake¹, Phillip Rossman¹, Shivaram Poigai Arunachalam¹, Kiaran McGee¹, Richard Ehman¹, Philip Araoz¹ ¹Mayo Clinic, Rochester, MN, United States
- **2519.** Consistent SNR Measures for Magnetic Resonance Elastography Armando Manduca¹, David S. Lake¹, Khang T. Huynh¹, Rehman S. Eon¹, Elizabeth M. Annoni¹, Richard L. Ehman¹ ¹Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States

2520. Mechanical Properties and Force Output of Quadriceps Muscle Following Eccentric Exercise

P Kennedy¹, L MacGregor², E Barnhill¹, A Cooper¹, L Hiscox¹, C Brown³, J Braun⁴, I Sack⁴, E van Beek¹, A Hunter², CL Johnson⁵, N Roberts¹

¹Clinical Research Imaging Centre (CRIC), University of Edinburgh, Edinburgh, United Kingdom; ²School of Sport, University of Stirling, Stirling, United Kingdom; ³The Mentholatum Company Ltd., Glasgow, United Kingdom; ⁴Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ⁵Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

- **2521.** *In Vivo* Waveguide Elastography of White Matter Tracts in the Full Human Brain *Anthony Joseph Romano¹, Jing Guo², Michael Scheel², Sebastian Hirsch², Juergen Braun³, Ingolf Sack²* ¹Physcial Acoustics, Naval Research Laboratory, Washington, DC, United States; ²Radiology, Charite-Universitatsmedizin, Berlin, Germany; ³Medical Informatics, Charite-Universitatsmedizin, Berlin, Germany
- **2522.** Fast 2D Hepatic MR Elastography for Free-Breathing and Short Breath Hold Applications *Kevin Glaser^l*, Jun Chen^l, Richard Ehman^l ¹Radiology, Mayo Clinic, Rochester, MN, United States
- 2523. Combining Conjugate and Non-Conjugate Wave Data for Faster Elastography *Roger Grimm¹*, *Eric Stinson¹*, *Richard Ehman¹* ¹Mayo Clinic, Rochester, MN, United States
- 2524. Three Dimensional Three Parameter Direct Inversion MR Elastography of Incompressible Transverse Isotropic Media: Application to In Vivo Soleus Muscle Jing Guo¹, Sebastian Hirsch¹, Jürgen Braun², Ingolf Sack¹ ¹Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ²Department of Medical Informatics, Charité -Universitätsmedizin Berlin, Berlin, Germany
- 2525. The Accuracy of Multi-Slice Multi-Frequency MR Elastography in a Brain Stiffness Mimicking Phantom Arvin Arani¹, Ondrej Slezak¹, Nikoo Fattahi¹, Kevin J. Glaser¹, Joel Felmlee¹, Armando Manduca², Clifford R. Jack¹, Richard L. Ehman¹, John Huston III¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States

2526. Observation of Functional Magnetic Resonance Elastography (FMRE) in Mouse Brain

Samuel Patz¹,², Katharina Schregel³, Iga Muradyan¹,², Angelos Kyriazis¹,², Jens Wuerfel³,⁴, Srini Mukundan¹,², Ralph Sinkus⁵

¹Brigham & Women's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Institute of Neuroradiology, University Medicine Goettingen, Goettingen, Germany; ⁴NeuroCure, Charité University Medicine, Berlin, Germany; ⁵Imaging Sciences & Biomedical Engineering, Kings College, London, United Kingdom

2527. A Small Animal MR Elastography Setup to Study Skeletal Muscle Damage and the Etiology of Pressure Ulcers and Related Deep Tissue Injury.

Jules Nelissen¹, ², Larry de Graaf¹, Tom Schreurs¹, ², Willeke Traa³, Kevin Moerman⁴, Cees Oomens⁵, Aart Nederveen⁴, Klaas Nicolay¹, Gustav Strijkers¹, ²

¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands; ³Soft Tissue Biomechanics and Engineering, , Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ⁴Department of Radiology, Academic Medical Center, Amsterdam, Netherlands; ⁵Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands;

2528. A Retrofit Technology for MR Elastography

Tomokazu Numano¹, Yoshihiko Kawabata², Kazuyuki Mizuhara³, Toshikatsu Washio⁴, Junichi Hata⁵, Kazuhiro Homma⁴

¹Radiological Sciences, Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan; ²Takashima Seisakusho Co., Ltd., Tokyo, Japan;
 ³Tokyo Denki University, Tokyo, Japan; ⁴National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan;
 ⁵Graduate School of Medicine Keio University, Tokyo, Japan

2529. Validation of Waveguide Magnetic Resonance Elastography Using Finite Element Model Simulation

*Ria Mazumder*¹, ², *Renee Miller*³, *Haodan Jiang*⁴, *Bradley D. Clymer*⁷, *Richard D. White*², ⁵, *Alistair Young*³, *Anthony Romano*⁶, *Arunark Kolipaka*², ⁵

¹Department of Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States; ²Department of Radiology, The Ohio State University College of Medicine, Columbus, OH, United States; ³Department of Anatomy with Radiology, The University of Auckland, New Zealand; ⁴Department of Research and Development, Ohio Supercomputer Center, OH, United States; ⁵Department of Internal Medicine-Division of Cardiology, The Ohio State University College of Medicine, OH, United States; ⁶Naval Research Laboratory, DC, United States

2530. Finger Tapping Experiment Observed by Brain Magnetic Resonance Elastography

Ondrej Holub¹, Simon Lambert², Katharina Schregel³, Lynne Bilston⁴, Samuel Patz⁵, ⁶, Ralph Sinkus¹ ¹Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ³University Medicine Goettingen, Institute of Neuroradiology, Goettingen, Germany; ⁴University of New South Wales, Neuroscience Research Australia, Sydney, New South Wales, Australia; ⁵Brigham and Women's Hospital, Radiology, Boston, MA, United States; ⁶Harvard Medical School, Radiology, Boston, MA, United States

Traditional Poster Mapping Magnetism using Magnetoencephalography Exhibition Hall Wednesday 16:00-18:00

2531. Mapping Magnetisation Using a Magnetoencephalography System *Richard Bowtell¹*, *Mobeen Ali¹*, *Jason Medica¹*, *Ingrid Vella¹*, *Mattthew Brookes¹* ¹School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom

Traditional PosterMulti-Scale MotionExhibition HallWednesday 16:00-18:00

2532. Introducing Prior Knowledge Through the Non-Local Means Filter in Model-Based Reconstructions Improves ASL Perfusion Imaging

Samuel Fielden¹, Li Zhao¹, Max Wintermark², Craig Meyer¹, ³ ¹Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ²Radiology, Stanford University, Palo Alto, CA, United States; ³Radiology, University of Virginia, Charlottesville, VA, United States

2533. Non-Contrast Enhanced 4D Artery-Selective MR Angiography Using Spatially Selective Saturation Thomas Lindner¹, Ulf Jensen-Kondering¹, Fritz Wodarg¹, Olav Jansen¹, Michael Helle² ¹Department of Radiology and Neuroradiology, UKSH, Kiel, Germany; ²Philips Research, Hamburg, Germany

- 2534. Systematic Evaluation of Region-Wise IVASO Reproducibility at Multiple Blood Water Nulling Times Swati Rane¹, Pratik Talati², Manus Donahue³, ⁴, Stephan Heckers²
 ¹Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Psychiatry, Vanderbilt University, Nashville, TN, United States; ³Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Neurology, Vanderbilt University, Nashville, TN, United States
- **2535.** Evaluation of GLACIER Sampling for 3D DCE-MRI Yinghua Zhu¹, Yi Guo¹, Sajan Goud Lingala¹, R. Marc Lebel², Meng Law¹, Krishna Nayak¹ ¹University of Southern California, Los Angeles, CA, United States; ²GE Healthcare, Calgary, Canada
- 2536. A Novel Sequence to Improve Signal to Noise in DCE Measurements Jason Kraig Mendes¹, Scott McNally², Dennis L. Parker¹ ¹Radiology, University of Utah, Salt Lake City, UT, United States; ²Clinical Radiology, University of Utah, Salt Lake City, UT, United States
- 2537. In Vivo Rapid 3D Microscopic DTI Combining Super Resolution Reconstruction and Reverse Gradient Correction Method

*Ulysse Gimenez*¹, *Antoine Triquet*¹, *Hana Lahrech*¹ ¹Clinatec, CEA, Grenoble, Rhones-Alpes, France

2538. Image Reconstruction for Accelerated Diffusion Tensor Imaging Using Joint Low-Rank and Sparsity Constraints

Sen Ma¹, Xiaodong Ma², Hua Guo² ¹Department of Electronic Engineering, Tsinghua University, Beijing, China; ²Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China

2539. Fast, Whole Brain Radial Diffusion Spectrum Imaging (RDSI) Via Simultaneous Multi Slice Excitation Steven Baete¹, ², Tiejun Zhao³, Fernando Emilio Boada¹, ²
¹Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ²Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, United States; ³Siemens Healthcare, Siemens Medical Solutions USA, Inc., New York, NY, United States

2540. Body DWI Using NCPMG FSE

Eric Kenneth Gibbons¹, Shreyas Vasanawala², John Mark Pauly³, Adam Bruce Kerr³ ¹Department of Bioengineering, Stanford University, Stanford, CA, United States; ²Department of Radiology, CA, United States; ³Department of Electrical Engineering, Stanford University, CA, United States

2541. TOF-MRA Reconstruction from Undersampled Data: Comparison of Three Different Regularization Methods Akira Yamamoto¹, Koji Fujimoto¹, Yasutaka Fushimi¹, Tomohisa Okada¹, Kei Sano², Toshiyuki Tanaka², Kaori Togashi¹

¹Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan;
²Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan

2542. A Simple and Practical Method to Optimize Regularization Parameters in Compressed Sensing Reconstruction of Time-Of-Flight (TOF) MR Angiography

Koji Fujimoto¹, Takayuki Yamamoto¹, Thai Akasaka¹, Tomohisa Okada¹, Yasutaka Fushimi¹, Akira Yamamoto¹, Toshiyuki Tanaka², Kei Sano², Masayuki Ohzeki², Kaori Togashi¹ ¹Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; ²Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan 2543. Comparison of 2D Versus 3D Sparse Priors in Compressed Sensing Reconstruction of Time-Of-Flight (TOF) MR Angiography

Thai Akasaka¹, Koji Fujimoto¹, Takayuki Yamamoto¹, Tomohisa Okada¹, Yasutaka Fushimi¹, Akira Yamamoto¹, Toshiyuki Tanaka², Kei Sano², Masayuki Ohzeki², Kaori Togashi¹ ¹Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; ²Kyoto University Graduate School of Informatics, Kyoto, Japan

- 2544. Optimization of Flow-Compensation Gradients in SWI and TOF Scans for Acoustic Noise Reduction in MRI David Manuel Grodzki¹, Aurelien F. Stalder¹, Yutaka Natsuaki², Julie Roesch³, Bjoern Heismann¹, ⁴
 ¹Magnetic Resonance, Siemens Healthcare, Erlangen, Bavaria, Germany; ²Siemens Healthcare USA, Los Angeles, CA, United States;
 ³Neuroradiology, University of Erlangen, Erlangen, Bavaria, Germany; ⁴Friedrich-Alexander-University of Erlangen-Nuremberg, Pattern Recognition Lab, Germany
- 2545. Simultaneous Assessment of Respiration and Heart Beat on CSF and Blood Oscillations in Near Real-Time Imaging

Joel Daouk¹, Roger Bouzerar¹, ², Olivier Baledent¹, ² ¹BioFlow Image, University of Picardie Jules Verne, Amiens, Picardie, France; ²Medical Image Processing, CHU Amiens, Picardie, France

2546. A Preliminary Study of Self-Gated Rat Cardiac Imaging by Using Wideband MRI Technique *Yi-Hang Tung¹, Yun-An Huang², Edzer L. Wu², Wan-Ting Zhao², Tzi-Dar Chiueh², Jyh-Horng Chen²* ¹National Taiwan University, Taipei, Taiwan, Taiwan; ²National Taiwan University, Taiwan, Taiwan

Traditional Poster Motion Correction Head Exhibition Hall Wednesday 16:00-18:00

2547. First Experiences with a Time of Flight (ToF) Camera for Marker-Less Motion Tracking Within a 7 Tesla MR Scanner

Thomas Siegert¹, Enrico Reimer¹, Roland Müller¹, Robert Turner¹, Harald Möller¹, Jessica Schulz¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany

- 2548. In Vivo 7T MR Imaging Triggered by Phase Information Obtained from Video Signals of the Human Skin Nicolai Spicher¹, Markus Kukuk¹, Mark E. Ladd², ³, Stefan Maderwald² ¹University of Applied Sciences and Arts Dortmund, Dortmund, Germany; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; ³Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
- 2549. Assessment of Marker Fixation in Prospective Motion Correction Using a Multiple Marker Approach. Benjamin Knowles¹, Thomas Lange¹, Aditya Singh², Michael Herbst², Maxim Zaitsev¹
 ¹Medical Physics, University Medical Centre Freiburg, Freiburg, Germany; ²John A Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
- **2550.** The Necessity of Coil Sensitivity and Gradient Non-Linearity Distortion Corrections in Prospective Motion Correction Uten Yarach¹, Daniel Stucht¹, Frank Godenschweger¹, Oliver Speck¹

¹Department of Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Sachsen-Anhalt, Germany

2551. Contribution of FOV Updating and Reacquisition to Estimates of Cortical Surface Measures in PROMO MPRAGE

Joelle E. Sarlls¹, Francois Lalonde², Dan Rettmann³, Ajit Shankaranarayanan⁴, Vinai Roopchansingh⁵, S. Lalith Talagala¹

¹NMRF/NINDS, National Institutes of Health, Bethesda, MD, United States; ²NIMH, National Institutes of Health, Bethesda, MD, United States; ³GE Healthcare, Rochester, NY, United States; ⁴GE Healthcare, Menlo Park, CA, United States; ⁵FMIRF/NIMH, National Institutes of Health, Bethesda, MD, United States

2552. Real-Time Dynamic Prediction of Motion During Prospective Motion Correction Helps Reduce Errors Caused by Fast Motions and Delayed Motion Measurements

Burak Erem¹, ², Onur Afacan¹, ², Ali Gholipour¹, ², Simon K. Warfield¹, ² ¹Department of Radiology, Boston Children's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States

- 2553. Comparing 1.5T Vs. 7T Phase Contrast MRI for Measuring Brain Tissue Pulsation Nils Noorman¹, Fredy Visser¹, ², Peter R. Luijten¹, Jaco J.M. Zwanenburg¹ ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Netherlands
- 2554. Inter-Scan Motion Artefacts in Quantitative R1 Mapping Require Correction of Coil Sensitivity Profiles Daniel Papp¹, Martina F. Callaghan¹, Craig Buckley², Heiko Meyer³, Nikolaus Weiskopf⁴ ¹Wellcome Trust Centre For Neuroimaging, UCL Institute of Neurology, London, United Kingdom; ²SIEMENS PLC (Healthcare Division), United Kingdom; ³SIEMENS Healthcare AG, Germany
- 2555. Prospective Motion Correction (PROMO) Enabled MP2RAGE for Multi-Contrast High-Resolution Brain Imaging

Alexandru V. Avram¹, Joelle E. Sarlls², Cibu P. Thomas¹, ³, Vinai Roopchansingh⁴, Dan Rettmann⁵, Ajit Shankaranarayanan⁶, Peter J. Basser¹

¹Section on Tissue Biophysics and Biomimetics, NICHD, National Institutes of Health, Bethesda, MD, United States; ²NINDS, National Institutes of Health, Bethesda, MD, United States; ³The Henry Jackson Foundation, Bethes, MD, United States; ⁴NIMH/Functional MRI Facility, National Institutes of Health, Bethesda, MD, United States; ⁵ASL, GE Healthcare, Rochester, MN, United States; ⁶ASL, GE Healthcare, Menlo Park, CA, United States

2556. Retrospective Rigid Motion Correction of Undersampled MRI Data

Alexander Loktyushin¹, Maryna Babayeva², ³, Daniel Gallichan⁴, Gunnar Krueger², ³, Klaus Scheffler⁵, ⁶, Tobias Kober², ³

¹Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany; ²Siemens ACIT - CHUV Radiology, Siemens Healthcare IM BM PI, & Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland; ³LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ⁴CIBM, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ⁵High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ⁶Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany

2557. Parallel Imaging for Motion Correction in Neonatal Brain MR Reconstruction

*Lucilio Cordero-Grande*¹, ², *Emer Hughes*¹, ², *Rui Pedro A. G. Teixeira*¹, ², *Joseph V. Hajnal*¹, ² ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom

2558. The Correction of Motion-Induced Coil Sensitivity Miscalibration in Parallel Imaging with Prospective Motion Correction

Uten Yarach¹, Daniel Stucht¹, Frank Godenschweger¹, Oliver Speck¹ ¹Department of Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Sachsen-Anhalt, Germany

2559. Using Brain Imaging Data to Detect and Correct Non-Rigid Sensor Motion in Prospective Motion Correction *Paul Wighton¹*, ², *Matthew Dylan Tisdall¹*, ², *Erez Nevo³*, *André Dylan van der Kouwe¹* ¹Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Robin Medical, Baltimore, MD, United States

2560. Prospective Motion Correction of DW 3D-MS EPI Using Collapsed FatNav (CFatNav)

ismem merit award magna cum laude Mathias Engström¹, ², Enrico Avventi¹, ², Magnus Mårtensson², ³, Ola Norbeck¹, Stefan Skare¹, ² ¹Dept. of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; ²Dept. of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; ³EMEA Research and Collaboration, GE Applied Science Laboratory, GE Healthcare, Stockholm, Sweden

- 2561. Effect of Hand Feedback Visualization on Head Motion During fMRI of Neuropsychological Testing Mahta Karimpoor¹, ², Zahra Faraji-Dana¹, ², Simon James Graham¹, ² ¹Physical Scienses, Sunnybrook Research Institute, Toronto, Ontario, Canada; ²Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- **2562.** An Automatic EEG-Assisted Retrospective Motion Correction for fMRI (AE-REMCOR) *Chung-Ki Wong¹, Vadim Zotev¹, Han Yuan¹, Masaya Misaki¹, Raquel Phillips¹, Qingfei Luo¹, Jerzy Bodurka¹, ² ¹Laureate Institute for Brain Research, Tulsa, OK, United States; ²College of Engineering, University of Oklahoma, Norman, OK, United States*
- 2563. Six-Degree of Freedom Retrospective Motion Correction Using Spherical Navigator Echoes (SNAV) Patricia Johnson¹, ², Junmin Liu³, Trevor Wade³, Maria Drangova, ²³ ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Dept. of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; ³Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada

2564. Motion Correction for Variable Density Spiral MRI Using Sampling Overlap as Inherent Navigators

Yilong Liu¹, ², *Xiaodong Ma*², *Hua Guo*², *Ed X. Wu*¹, ³ ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China; ²Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China

Traditional Poster Motion Correction - Body Exhibition Hall Wednesday 16:00-18:00

- 2565. 2D Diaphragm Navigation with Rapid Gradient Echo Images: Validation at 3T and Application at 7T Aaron T. Hess¹, Andre JW van der Kouwe², ³, Matthew Dylan Tisdall², Stefan Neubauer¹, Matthew D. Robson¹ ¹Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, Ox, United Kingdom; ²Radiology, Harvard Medical School, Boston, MA, United States; ³Martinos Center, Massachusetts General Hospital, Boston, MA, United States
- 2566. Comparison of Breath-Holding and Respiratory Gating T2* Mapping in the Heart and Liver for Thalassemia Major Patients

Xiaodong Chen¹,², Zuoquan Zhang³, Qihua Yang¹, Zebin Luo², Ziliang Cheng¹, Jiaji Mao¹, Queenie Chan⁴, Hua Guo⁵, Biling Liang¹

¹Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China; ²Affiliated hospital of Guangdong Medical College, Zhanjiang, Guangdong, China; ³The Fifth Affiliated Hospital of Sun Yat-Sen University, Guangdong, China; ⁴Philips Healthcare, Hong Kong, China; ⁵Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China

- 2567. Continuous Adaptive Sampling of K-Space from Real-Time Physiologic Feedback in MRI Francisco Contijoch¹, Yuchi Han¹, Michael Hansen², Peter Kellman², Gene Gualtieri³, Mark A. Elliott¹, Sebastian Berisha¹, James J. Pilla¹, Robert C. Gorman¹, Walter RT Witschey¹
 ¹University of Pennsylvania, Philadelphia, PA, United States; ²National Institute of Health, Bethesda, MD, United States; ³Drexel University, Philadelphia, PA, United States
- 2568. Using Optical Flow to Estimate Displacement Between 3D Navigators in Coronary Angiography Nicholas Dwork¹, Daniel O'Connor², Nii Okai Addy¹, Reeve Ingle¹, John Pauly¹, Dwight Nishimura¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Mathematics, University of California, Los Angeles, CA, United States
- 2569. Estimating 3D Deformable Motion from a Series of Fast 2D MRI Images with CLARET Jason Brown¹, Cihat Eldeniz¹, Wolfgang Rehwald², Brian Dale³, Hongyu An¹, David Lalush¹ ¹Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States; ²Siemens Healthcare, Malvern, PA, United States; ³Siemens Healthcare, Cary, NC, United States
- **2570. 3D FFE PROPELLER Free-Breathing Abdominal Imaging** *Yuchou Chang¹, Dallas C. Turley¹, James G. Pipe¹* ¹Imaging Research, Barrow Neurological Institute, Phoenix, AZ, United States
- 2571. 3D T2w-MRI Using a Magnetization-Prepared Golden Angle Radial Sequence with Motion-Corrected ESPIRiT Reconstruction

Isabel Dregely¹, Fei Han¹, Ziwu Zhou¹, Kyung Sung¹, Peng Hu¹, Holden H. Wu¹ Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States

- **2572. 3D Free-Breathing Abdominal MRI Using Robust Navigator Processing with Coil Clustering** *Tao Zhang¹*, ², *Joseph Y. Cheng¹*, ², *Yuxin Chen²*, *John M. Pauly²*, *Shreyas S. Vasanawala¹* ¹Radiology, Stanford University, Stanford, CA, United States; ²Electrical Engineering, Stanford University, Stanford, CA, United States
- **2573.** Interleaved Versus Grouped Viewsharing in 3D DCE-DIXON of the Abdomen: Sensitivity to Motion Artifacts *Christine Nabuurs¹, Gabriele Beck¹, Silke Hey¹, Marko Ivancevic²* ¹Clinical Excellence, Philips Healthcare, Best, NB, Netherlands; ²Clinical Science, Philips Healthcare, Best, NB, Netherlands
- 2574. Dynamic Reacquisition for Respiratory Gated, Constant TR 2D Multi-Slice MRI Paul Kinchesh¹, Philip D. Allen¹, John S. Beech¹, Emmanouil Fokas¹, Stuart Gilchrist¹, Veerle Kersemans¹, Ruth Muschel¹, Sean C. Smart¹ ¹Department of Oncology, University of Oxford, Oxford, United Kingdom
- 2575. Flow Artifact Suppression in Subtractionless First-Pass Peripheral Angiography Based on Vessel Tree Segmentation

Holger Eggers¹, Rafael Wiemker¹, Peter Börnert¹, Tim Leiner² ¹Philips Research, Hamburg, Germany; ²Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands

2576. Quantification of Fetal Motion Tracked with Volumetric Navigator MRI Acquisitions

Patrick McDaniel¹, Borjan Gagoski², M. Dylan Tisdall³, ⁴, André J. W. van der Kouwe³, ⁴, P. Ellen Grant², ⁴, Lawrence Wald³, ⁴, Elfar Adalsteinsson¹, ⁵ ¹Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA,

372

United States; ³Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ⁴Radiology, Massachusetts General Hopsital, Boston, MA, United States; ⁵Health Sciences and Technology, Harvard-MIT, Cambridge, MA, United States

- 2577. Motion Detection and Correction Using Non-Marker-Attached Optical System During MRI Scanning Jin Liu^l, Huijun Chen², Zechen Zhou², Jinnan Wang³, Chun Yuan¹ ¹University of Washington, Seattle, WA, United States; ²Tsinghua University, Beijing, China; ³Philips Research North America, NY, United States
- 2578. In-Vivo MR-Derived Non-Rigid Motion Correction of Simultaneously Acquired PET

Thomas Küstner¹,², Christian Würslin¹, Sergios Gatidis¹, Petros Martirosian³, Nina Schwenzer¹, Bin Yang², Holger Schmidt¹

¹Department of Radiology, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany; ²Institute of Signal Processing and System Theory, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany; ³Diagnostic and Interventional Radiology, University Hospital of Tübingen, Tübingen, Baden-Württemberg, Germany

2579. Motion Compensation (MoCo) for Simultaneous PET/MR Based on Strongly Undersampled Radial MR Data - A Simulation Study

Christopher M. Rank¹, Thorsten Heußer¹, Marcus Brehm¹, Marc Kachelrieß¹ ¹Division of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany

Traditional Poster

New Insights & Innovations in Cardiovascular MRI

Exhibition Hall Thursday 10:30-12:30

2580. A Novel Framework for Unified Analysis of *In-Vivo* and *Ex-Vivo* Cardiac Data Using an *In-Vivo* MRI-Derived 3D Printed Model: Application to Cardiac MRI

Sébastien Roujol¹, Cory Tschabrunn¹, Tamer A. Basha¹, Kraig V. Kissinger¹, Warren J. Manning¹, ², Mark E. Josephson¹, Elad Anter¹, Reza Nezafat¹

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

2581. Biomimetic Phantom for Cardiac Diffusion Magnetic Resonance Imaging

Irvin Teh¹, Penny L. Hubbard Cristinacce², ³, Feng-Lei Zhou², ⁴, Geoffrey JM Parker², ³, Jürgen E. Schneider¹ ¹Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ²Centre for Imaging Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, United Kingdom; ³Biomedical Imaging Institute, The University of Manchester, Manchester, United Kingdom; ⁴The School of Materials, The University of Manchester, Manchester, United Kingdom

- **2582.** Influence of Metformin and Insulin on Myocardial Substrate Selection by 13C MRS *Cyonna Holmes¹, Sarah Brant¹, LaShondra Powell¹, Michael Erik Jessen¹, Matthias Peltz¹* ¹Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
- **2583.** Cardiac Activity Detection with the Noise Variance of a Receive Coil *Robin Navest¹, Cornelis van den Berg¹, Alexander Raaijmakers¹, Peter Luijten¹, Jan Lagendijk¹, Anna Andreychenko¹* ¹Imaging Division, UMC Utrecht, Utrecht, Netherlands
- 2584. Comparison of High Resolution LGE and High Resolution Electro-Anatomical Mapping for Imaging of the Ventricular Arrhythmia Substrate in a Swine Model of Ventricular Tachycardia Sébastien Roujol¹, Tamer A. Basha¹, Cory Tschabrunn¹, Kraig V. Kissinger¹, Warren J. Manning¹, ², Mark E. Josephson¹, Elad Anter¹, Reza Nezafat¹
 ¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States;

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

2585. High Resolution In Vivo Cardiac MRI of Zebrafish with an Integrated Coil Flow Cell Design

Gavin D. Merrifield¹, Lindsay Gallagher¹, James Mullin¹, Carl S. Tucker², Maurits A. Jansen², ³, William M. Holmes¹, Martin A. Denvir²

¹Glasgow Experimental MRI Centre, University of Glasgow, Glasgow, United Kingdom; ²University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Midlothian, United Kingdom; ³Edinburgh Preclinical Imaging, University of Edinburgh, Edinburgh, Midlothian, United Kingdom

2586. A Pilot Study of Early Cognitive and Brain Imaging Changes Associated with Risk Factors for Cardiovascular Disease

Victoria X. Wang¹, Cheuk Tang², Maryann McLaughlin³, Edmund Wong¹, Johnny C. Ng¹, Lazar Fleysher¹, Fayad A. Zahi⁴, Maceda Cynara, Heather N. Beebe, Joseph Friedman

¹Radiology, Mount Sinai School of Medicine, New York, NY, United States; ²Radiology & Psychiatry, Mount Sinai School of Medicine, New York, NY, United States; ³Cardiology & Medicine, Mount Sinai School of Medicine, New York, NY, United States; ⁴Radiology & Cardiology, Mount Sinai School of Medicine, New York, NY, United States

2587. Quantitative Myocardial T1 and T2 Mapping in a Swine Model of Ventricular Tachycardia

Sébastien Roujol¹, Tamer A. Basha¹, Cory Tschabrunn¹, Kraig V. Kissinger¹, Warren J. Manning¹, ², Mark E. Josephson¹, Elad Anter¹, Reza Nezafat¹

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

2588. fMRI Study of the Hemodynamics of Calf Muscle During Exercise in Peripheral Arterial Disease

Zhijun Li¹, Matthew Muller², Jianli Wang¹, Christopher Sica¹, Liang Han¹, Prasanna Karunanayaka¹, Jeffrey Vesek¹, Qing X. Yang¹, ³, Lawrence Sinoway²

2589. Self-Navigated 100µs Echo Time 3D Radial Whole-Heart Coronary Magnetic Resonance Angiography: A Feasibility Study.

Simone Coppo⁷, Jean Delacoste¹, Gabriele Bonanno¹, Davide Piccini¹, ², Matthias Stuber¹ ¹Department of Radiology, University Hospital (CHUV), University of Lausanne (UNIL), Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ²Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland

2590. In Vivo Cardiac DTI on a Widely-Available Clinical Scanner

Christopher Nguyen¹, Zhaoyang Fan¹, Xiaoming Bi², Debiao Li¹ ¹Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States; ²Siemens Healthcare, Los Angeles, CA, United States

2591. In-Vivo Free-Breathing DTI & IVIM of the Whole Human Heart Using a Real-Time Slice-Followed SE-EPI Navigator-Based Sequence: A Reproducibility Study in Healthy Volunteers.

Kévin Moulin¹,², Pierre Croisille¹,³, Thorsten Feiweier⁴, Benedicte M.A. Delattre¹, Hongjiang Wei¹, Benjamin Robert², Olivier Beuf⁴, Magalie Viallon¹,³

¹CREATIS; CNRS (UMR 5220); INSERM (U1044); INSA Lyon; Université de Lyon, Lyon, France; ²Siemens Healthcare France, Saint-Denis, France; ³Department of Radiology, Centre Hospitalier Universitaire de Saint-Etienne, Université Jean-Monnet, France; ⁴Healthcare, Siemens AG, Erlangen, Germany

2592. Diffusion Tensor MRI of Hearts with Chronic Infarct in Multiple Mechanical States

Maelene Lohezic¹, Remi Peyronnet², Craig A. Lygate, Debra McAndrew, Irvin Teh¹, Peter Kohl², ³, Jurgen E. Schneider¹

¹BMRU, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; ²National Heart and Lung Institute, Imperial College London, London, United Kingdom; ³Department of Computer Science, University of Oxford, Oxford, United Kingdom

- 2593. Investigating the Hemodynamics of Calf Muscle During Exercise Using Independent Component Analysis (ICA) *Zhijun Li^l*, Prasanna Karunanayaka^l, Matthew Muller², Lawrence Sinoway², Qing X. Yang¹, ³ ¹Center for NMR Research, Department of Radiology, College of Medicine, The Pennsylvania State University, Hershey, PA, United States; ²Heart and Vascular Institute, College of Medicine, The Pennsylvania State University, PA, United States; ³Department of Neurosurgery, College of Medicine, The Pennsylvania State University, PA, United States
- **2594.** Optimized Free-Breathing Inner-Volume Black-Blood (FB-IV-BB) Cine FSE of the Descending Aorta *Jyh-Miin Lin¹*, *Chengcheng Zhu²*, *Hsiao-Wen Chung³*, *Martin Graves⁴*, *Andrew Patterson⁴* ¹Department of Radiolgoy, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ²Department of Radiology, UCSF School of Medicine, San Francisco, CA, United States; ³Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan; ⁴Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- **2595.** Towards a Subject-Specific Calibration of a Systole Model for CMR Undergoing Heart Rate Variations *Pierre-André Vuissoz¹*, ², *Christophe Meyer¹*, ², *Jacques Felblinger³*, ⁴, *Laurent Bonnemains¹*, ² ¹Imagerie Adaptative Diagnostique et Interventionnelle, Université de Lorraine, Nancy, France; ²U947, INSERM, Nancy, France; ³CIC-IT 1433, INSERM, Nancy, France; ⁴University Hospital Nancy, Nancy, France
- 2596. R Wave Peak Detection Using Wavelet Decomposition and Multi-Level Thresholding for ECGs Acquired in MR Scanner

Manivannan Jayapalan¹, Bhargav Bhatt², Vijikumar N³ ¹MR PSD & Applications, GE Healthcare, Bangalore, Karnataka, India; ²MR Systems, GE Healthcare, Bangalore, Karnataka, India; ³MR Applications, GE Healthcare, Bangalore, Karnataka, India

Traditional Poster Cardiovascular MR - Tissue Characterization Exhibition Hall Thursday 10:30-12:30

2597. Distribution and Significance of Myocardial Hyperintensity on T2-Weighted MRI of Hypertrophic Cardiomyopathy

Yasuo Amano¹, Kumiko Mine¹, Fumi Yamada¹, Shinichiro Kumita¹ ¹Radiology, Nippon Medical School, Tokyo, Japan

2598. Combination of T2-Magnetization Preparation and Slice Interleaved Inversion Recovery for Improved Motion Correction of Myocardial Extra-Cellular Volume Mapping Using Spoiled Gradient Echo Imaging Sébastien Roujol¹, Tamer A. Basha¹, Jihye Jang¹, Kraig V. Kissinger¹, Beth Goddu¹, Sophie Berg¹, Warren J. Manning¹, ², Reza Nezafat¹

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

2599. High Spatial Resolution Myocardial T₂^{*} Mapping at 7.0 T Reveals Differences Between Healthy Volunteers and Patients with Hypertrophic Cardiomyopathy

Till Huelnhagen¹, Fabian Hezel¹, Andreas Pohlmann¹, Andreas Graessl¹, Jan Rieger², Darius Lysiak², Christof Thalhammer¹, Peter Kellman³, Marcel Prothmann⁴, Jeanette Schulz-Menger⁴, ⁵, Thoralf Niendorf⁴, ⁵ ¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany; ²MRI.TOOLS GmbH, Berlin, Germany; ³National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ⁴Dept. of Cardiology and Nephrology, HELIOS Klinikum Berlin-Buch, Berlin, Germany; ⁵Experimental and Clinical Research Center, a joint cooperation between the Charite Medical Faculty and the Max-Delbrueck Center, Berlin, Germany

2600. Improved Accuracy of T1 Mapping Reconstruction Using a Novel Bloch Equation-Based Fitting with Graphic "magna cum laube" Processing Unit Implementation

Sébastien Roujol¹, Tamer A. Basha¹, Jihye Jang¹, Sophie Berg¹, Warren J. Manning¹, ², Reza Nezafat¹
 ¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States;
 ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

2601. Multimodality Cardiac Magnetic Resonance Imaging to Assess Large Intramural Lesions of a New Irrigated Needle Catheter on Sheep Infarct Model

Julie Magat¹, Benjamin Berte¹, Hubert Cochet¹, Jérôme Naulin¹, Daniele Ghidoli², Pierre Jais¹, Stephen Henry Gilbert³, Olivier Bernus¹, Bruno Quesson¹ ¹IHU-LIRYC U1045, University of Bordeaux, Pessac, France; ²Biosense Webster, R&D, Diamond Bar, CA, United States;

¹HU-LIRYC U1045, University of Bordeaux, Pessac, France; ⁻Biosense Webster, R&D, Diamond Bar, CA, United States; ³Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany

2602. MRI Visible Bioscaffold for Stem Cell-Mediated Repair and Improved Cardiac Function

Laurence H. Jackson¹, Thomas Roberts¹, Valerie Taylor¹, Josef Habib², Daniel J. Stuckey¹, Mark F. Lythgoe¹ ¹Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ²Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health, Kings College London, London, United Kingdom

2603. In Vivo Assessment of Free Radicals in a Mouse Model for Diabetic Cardiomyopathy

Rheal A. Towner¹, Nataliya Smith¹, Jorge Carrizales¹, Debra Sauners¹, Robert Silasi-Mansat², Florea Lupu², Marilyn Ehrenshaft³, Ronald P. Mason³

¹Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States; ²Cardiovascular Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States; ³NIEHS, NC, United States

2604. Free-Breathing Multi-Slice Myocardial T2 Mapping

Tamer Basha¹, Sébastien Roujol¹, Reza Nezafat¹ ¹Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, MA, United States

2605. Cardiovascular Magnetic Resonance T2-STIR Imaging Is Unable to Discriminate Between Intramyocardial Haemorrhage and Microvascular Obstruction

Esben Søvsø Szocska Hansen¹, ², Steen Fjord Pedersen³, Steen Bønnelykke Pedersen⁴, Uffe Kjærgaard¹, Nikolaj Hjort Schmidt⁵, Hans Erik Bøtker⁶, Won Yong Kim¹, ⁶

¹The MR Research Centre, Aarhus University, Skejby, Aarhus, Denmark; ²Danish Diabetes Academy, Odense, Denmark; ³Dept. of Cardiothoracic and Vascular Surgery T, Aarhus University Hospital Skejby, Skejby, Aarhus N, Denmark; ⁴Dept. of Department of Endocrinology and Internal Medicine, Aarhus University Hospital THG, Skejby, Aarhus, Denmark; ⁵Department of Clinical Medicine - Comparative Medicine Laboratory, Aarhus University, Skejby, Aarhus, Denmark; ⁶Dept. of Cardiology, Aarhus University Hospital Skejby, Skejby, Aarhus, Denmark

- 2606. Measurement of Quantitative Myocardial Blood Volume and Water Exchange Using Ferumoxytol Neil Chatterjee¹, Octavia Bane², Bruce Spottiswoode³, James Carr⁴, Timothy Carroll⁴ ¹Biomedical Engineering, Northwestern University, Chicago, IL, United States; ²Mount Sinai, NY, United States; ³Siemens Healthcare, Chicago, IL, United States; ⁴Radiology, Northwestern University, IL, United States
- 2607. In-Vivo Right-Ventricular Myocardial T1 Mapping at 3.0 Tesla Nadja M. Meßner^l, Lothar R. Schad^l, Frank G. Zöllner^l ¹Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- **2608.** First and Second Order Motion Compensated Spin-Echo Diffusion Tensor Imaging of the Human Heart *Christian Torben Stoeck*¹, ², *Constantin von Deuster*¹, ², *Martin Genet*¹, *David Atkinson*³, *Sebastian Kozerke*¹, ² ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ³Centre for Medical Imaging, University College London, London, United Kingdom

2609. Comparison of High Resolution T₂^{*} Mapping and Quantitative Susceptibility Mapping to Investigate Myocardial Microstructure in the Ex Vivo Rodent Heart Eva Peper¹, Till Huelnhagen¹, Andreas Pohlmann¹, Min-Chi Ku¹, Thoralf Niendorf¹, ²

¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine, Berlin, Germany; ²Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max Delbrück Center, Berlin, Germany

2610. Monitoring the Resorption of Myocardial Infarct in the Presence and Absence of Coronary Microemboli Using **MRI and Microscopy**

Maythem Saeed¹, Loi Do¹, Roland Krug¹, Steven W. Hetts¹, Mark W. Wilson¹ ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Ca, United States

- 2611. High Resolution 2D ECG-Segmented Slice Interleaved T₁ Mapping (STONE) with Reduced Partial Voluming Jihye Jang^{1, 2}, Tamer Basha¹, Sophie Berg¹, Cory Tschabrunn¹, Elad Anter¹, Sébastien Roujol¹, Reza Nezafat¹ Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Computer Aided Medical Procedures, Technische Universität München, Munich, Bayern, Germany
- 2612. Verification of the Intra-Voxel Incoherent Motion (IVIM) Model in the Porcine Heart

Regenerative Medicine, Zurich, Switzerland

Constantin von Deuster¹, ², Christian T. Stoeck, ¹², Lukas Wissmann², Georg Spinner², Thea Fleischmann³, ⁴, Maximilian Y. Emmert⁴, ⁵, Nikola Cesarovic⁴, Sebastian Kozerke, ¹² ¹Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ³Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland; ⁴Department of Surgical Research, University Hospital Zurich, Zurich, Switzerland; ⁵Swiss Center of

2613. Characterization of Chronic Myocardial Infarctions in Patients with Contrast-Free T1 Maps at 3T

Avinash Kali¹, ², Eui-Young Choi³, Behzad Sharif⁴, Young Jin Kim³, Xiaoming Bi⁴, Bruce Spottiswoode⁵, Ivan Cokic¹, Hsin-Jung Yang¹,², Mourad Tighiouart⁶, Debiao Li¹, Daniel S. Berman¹,⁷, Byoung Wook Choi³, Hyuk-Jae Chang³, Rohan Dharmakumar¹,²

¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Department of Bioengineering, University of California, Los Angeles, CA, United States; ³Yonsei University College of Medicine, Seoul, Korea; ⁴Siemens Healthcare, Los Angeles, CA, United States; ⁵Siemens Healthcare, Chicago, IL, United States; ⁶Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States; 7Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; 8Department of Medicine, University of California, Los Angeles, CA, United States

- 2614. 3D Dynamic T1 Mapping of the Myocardium Using a Time-Varying Subspace Anthony G. Christodoulou⁷, Zhi-Pei Liang¹ ¹Beckman Institute and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- 2615. Highly Accelerated Free-Breathing Whole Heart T1/T2/Proton Density Mapping Jing Liu¹, David Saloner¹.² ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Radiology Service, VA Medical Center, San Francisco, CA, United States
- 2616. Noncontrast T1 Mapping Is Independently Associated with Myocardial Fat in Healthy African Americans Chia-Ying Liu¹, David A. Bluemke¹, Gary Gerstenblith², Stefan L. Zimmerman², Ji Li², Hong Zhu², Shenghan Lai², Hong Lai^{*}

¹Radiology and Imaging Sciences, NIH, Bethesda, MD, United States; ²Johns Hopkins School of Medicine, MD, United States

- **2617.** Effect of Blood T1 Value on Extracellular Volume Fraction in Dilated Cardiomyopathy with Septal Scarring *Yasuo Amano¹, Masaki Tachi¹, Keisuke Inui², Fumi Yamada¹, Makoto Obara³, Shogo Imai¹, Shinichiro Kumita¹* ¹Radiology, Nippon Medical School, Tokyo, Japan; ²Cardiology, Nippon Medical School, Tokyo, Japan; ³Philips Asia Pacific, Tokyo, Japan
- 2618. Effects of Supplemental Oxygen on Cardiovascular Relaxation Parameter Mapping (T1, T2 and T2*) James W. Goldfarb¹, ², Kathleen Gliganic¹, Nathaniel Reichek¹, ² ¹Research and Education, Saint Francis Hospital, Roslyn, NY, United States; ²Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
- 2619. KWIC-Filtered Cardiac T₂ Mapping for Improved Precision and Faster Acquisition Emeline Lugand¹, ², Jérôme Yerly¹, ², Hélène Feliciano¹, ², Jérôme Chaptinel¹, ², Matthias Stuber¹, ², Ruud B. van Heeswijk¹, ² ¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- 2620. Non-Contrast Characterization of Interstitial Cardiac Remodeling in Chronic Kidney Disease Patients Tori A. Stromp¹, Steve W. Leung², ³, Vincent L. Sorrell², ³, Moriel H. Vandsburger, ¹² ¹Department of Physiology, University of Kentucky, Lexington, KY, United States; ²Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States; ³Gill Heart Institute, University of Kentucky, Lexington, KY, United States
- **2621.** Myocardial Tissue Characterization from Cine BSSFP Signal Waveforms and Longitudinal Shortening Identifies Edematous and Fibrotic Myocardium in Agreement with Gadolinium Enhanced Imaging Richard Dylan Lawless¹, Steve Leung¹, ², Tori Stromp¹, Katherine Thompson³, Vincent Sorrell¹, ², Moriel Vandsburger¹, ⁴

¹Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, United States; ²Gill Heart Institute, University of Kentucky, KY, United States; ³Department of Statics, University of Kentucky, KY, United States; ⁴Department of Physiology, University of Kentucky, KY, United States

2622. Myocardial T₁ Mapping Comparing SMART₁Map and MOLLI: Clinical Experience at 3T

Erik P. Skulborstad¹, Zachary S. Borden¹, Karl K. Vigen¹, Glenn S. Slavin², Kang Wang³, Mark L. Schiebler¹, Scott K. Nagle¹, Scott B. Reeder¹, ⁴, Thomas M. Grist¹, ⁴, Christopher J. Francois¹ ¹Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²GE Healthcare, Bethesda, MD, United States; ³Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ⁴Department of Medical Physics, University of Wisconsin-Madison, MJ, United States

2623. Myocardium and Blood T1 Measurement Using SMART1 Map in Healthy Volunteers at 1.5T

Pauline Ferry^{1, 2}, Glenn S. Slavin³, Anne Menini⁴, Anja Brau⁵, Damien Mandry¹, ⁶, Laurent Bonnemains¹, ⁶, Jacques Felblinger¹, ⁷, Marine Beaumont⁸, ⁹

¹IADI, Université de Lorraine, Nancy, France; ²U947, INSERM, Nancy, France; ³GE Healthcare, Bethesda, MD, United States; ⁴GE Global Research, Munich, Germany; ⁵GE Healthcare, Munich, Germany; ⁶University Hospital, Nancy, France; ⁷CIC-IT 1433, INSERM, Nancy, France; ⁸CIC-IT, University Hospital, Nancy, France; ⁹CIC-IT 1433, INSERM, Nancy, France;

2624. Bloch Equation Simulation with Slice Profile Correction (BLESSPC) T1 Estimation- Enabling Accurate and Precise Myocardial T1 Mapping at 3.0T Using the FLASH-Readout Based MOLLI Sequence *Jiaxin Shao¹*, *Stanislas Rapacchi¹*, *Kim-Lien Nguyen¹*, ², *Peng Hu¹*, ³

¹Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States; ²Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of Calif, Los Angeles, CA, United States; ³Biomedical Physics Inter-Departmental Graduate Program, University of California, Los Angeles, CA, United States

2625. Free-Breathing Multi-Slice Myocardial T1 Mapping Using Inversion Recovery Slice Interleaved Spoiled Gradient Echo Imaging

Sébastien Roujol¹, Jihye Jang¹, ², Tamer A. Basha¹, Sebastian Weingärtner¹, ³, Sophie Berg¹, Reza Nezafat¹ ¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Computer Aided Medical Procedures, Technische Universität München, Munich, Germany; ³Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany

2626. Motion Corrected Model-Based Acceleration of Parameter Mapping (MOCO-MAP) for Improved Late Gd Enhancement Imaging in Cardiac MRI

Tobias Wech¹, Felix Rützel¹, ², Johannes Tran-Gia¹, Andreas Schindele³, Theresa Reiter⁴, Thorsten Klink¹, Michael Braun¹, ², Alfio Borzi³, Walter H. Kullmann², Thorsten A. Bley¹, Herbert Köstler¹ ¹Department of Diagnostic and Interventional Radiology, University of Wuerzburg, Würzburg, Germany; ²Institute of Medical Engineering, University of Applied Sciences Würzburg-Schweinfurt, Schweinfurt, Germany; ³Institute of Mathematics, University of Wuerzburg, Würzburg, Germany; ⁴Department of Internal Medicine I, University of Wuerzburg, Germany

- 2627. Rapid Automatic Segmentation of Enhanced Tissue in LGE MRI of Long-Standing Persistent Atrial Fibrillation Archontis Giannakidis¹, ², Shouvik Haldar¹, Eva Nyktari¹, Jennifer Keegan¹, ², Irina Suman Horduna¹, Dudley J. Pennell¹, ², Raad Mohiaddin¹, ², Tom Wong¹, David N. Firmin¹, ² ¹NIHR Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom; ²National Heart Lung Institute, Imperial College London, London, United Kingdom
- 2628. Evaluation of Late Gadolinium Enhancement in Non-Ischemic Cardiomyopathy at 3T Using Motion Corrected Free Breathing Single Shot SSFP

Ian Gavin Murphy¹, Oisin Flanagan¹, Marcos J. Botelho¹, Jeremy Collins¹, Bruce J. Spottiswoode², Maria J. Carr², Michael Markl², Robert R. Edelman³, James C. Carr¹

¹Cardiovascular Imaging, Feinberg School of Medicine, Northwestern Memorial Hospital, CHICAGO, IL, United States; ²Cardiovascular Imaging, Northwestern University, CHICAGO, IL, United States; ³Cardiovascular Imaging, Northshore Hospital, Evanston, IL, United States

2629. A Reference Dataset of *In-Vivo* Human Left-Ventricular Fiber Architecture in Systole and Diastole Constantin von Deuster¹, ², Christian T. Stoeck, ¹², Martin Genet², Nicolas Toussaint³, David Atkinson⁴, Sebastian Kozerke, ¹²

¹Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ³Dept of Med Phys & Biomedical Eng, University College London, London, United Kingdom; ⁴Centre for Medical Imaging, University College London, London, United Kingdom

2630. The Left Ventricular Global Function Index by Cardiac Magnetic Resonance Is More Strongly Negatively Affected by Myocardial Iron Overload Than the Global Systolic Function

Antonella Meloni¹, Vincenzo Positano¹, Antonino Vallone², Paolo Preziosi³, Maria Chiara Resta⁴, Gennaro Restaino⁵, Maria Giovanna Neri¹, Roberta Renni⁶, Monica Benni⁷, Petra Keilberg¹, Cristina Salvatori⁸, Alessia Pepe¹ ¹CMR Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; ²Istituto di Radiologia, Az. Osp. "Garibaldi" Presidio Ospedaliero Nesima, Catania, Italy; ³U.O.C. Diagnostica per Immagini e Interventistica, Policlinico "Casilino", Roma, Italy; ⁴Struttura Complessa di Radiologia, OSP. SS. Annunziata ASL Taranto, Taranto, Italy; ⁵Dipartimento di Radiologia, Università Cattolica del Sacro Cuore, Campobasso, Italy; ⁶Day Hospital, Ospedale Civile "F. Ferrari", Casarano (LE), Italy; ⁷Servizio di Immunoematologia e Centro Trasfusionale, Policlinico S. Orsola "L. e A. Seragnoli", Bologna, Italy; ⁸Unità Operativa Sistemi Informatici, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy

2631. Prospective Changes of Cardiac and Hepatic Iron and Cardiac Function in Low and Intermediate-1 Risk MDS Patients

Antonella Meloni¹, Michele Rizzo², Giovanni Carulli³, Esther Natalie Oliva⁴, Francesco Arcioni⁵, Sergio Storti⁶, Maria Giovanna Neri¹, Stefania Renne⁷, Emanuele Grassedonio⁸, Gennaro Restaino⁹, Vincenzo Positano¹, Alessia Pepe¹ ¹CMR Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; ²Reparto di Ematologia, Azienda Sanitaria Provinciale Caltanissetta - Ospedale "Sant'Elia, Caltanisetta, Italy; ³Dip. di Oncologia, dei Trapianti e delle Nuove Tecnologie in Medicina – Divisione di Ematologia, Facoltà di Medicina e chirurgia – Università degli Studi di Pisa, Pisa, Italy; ⁴Hematology Unit, A.O. Bianchi-Melacrino-Morelli, Reggio Calabria, Italy; ⁵Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Perugia, Perugia, Italy; ⁶UOC di Onco-Ematologia, Università Cattolica del Sacro Cuore, Campobasso, Italy; ⁷Struttura Complessa di Cardioradiologia-UTIC, P.O. "Giovanni Paolo II", Lamezia Terme, Italy; ⁸Dipartimento di Radiologia, Policlinico "Paolo Giaccone", Palermo, Italy; ⁹Dipartimento di Radiologia, Università Cattolica del Sacro Cuore, Campobasso, Italy

- 2632. Estimation of Error Maps for Evaluating Precision of Myocardial T2* Mapping Techniques Christopher M. Sandino¹, ², Peter Kellman², Michael S. Hansen², Andrew E. Arai², Hui Xue² ¹Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ²Lab of Cardiac Energetics, National Heart, Lung, and Blood Institute, Bethesda, MD, United States
- 2633. Improved 2D Slice-Interleaved Flow-Independent Black Blood Cardiac Imaging Using Ferumoxytol Junfei Lu¹, J Paul Finn², ³, Peng Hu², ³ ¹Department of Bioengineering, UCLA, Los Angeles, CA, United States; ²Department of Radiological Sciences, UCLA, Los Angeles, CA, United States; ³Biomedical Physics Inter-Departmental Graduate Program, UCLA, Los Angeles, CA, United States
- **2634.** Preliminary Rat Myocardial Tissue Characterisation at 4.7T Matthew Firth¹, Marco Mingarelli¹, Hugh Seton¹, Dana Dawson¹ ¹University of Aberdeen, Aberdeen, United Kingdom
- 2635. Enhancing Referenceless Phase Sensitive Reconstruction Using Geometry Based B0 Simulation Jinnan Wang¹, Rene Bastkowski², Jeffrey H. Maki³, Chun Yuan³, Peter Boernert⁴ ¹Philips Reserach North America, Seattle, WA, United States; ²Philips Reserach Europe, Hamburg, Germany; ³University of Washington, Seattle, WA, United States; ⁴Philips Research Europe, Hamburg, Germany
- 2636. Can Quantitative Texture Analysis on Cardiac Magnetic Resonance Differentiate Hypertrophic Cardiomyopathy Patients at High Risk of Sudden Cardiac Death and Candidates for Implantable Cardioverter-Defibrillator Placement from Those at Low Risk?

Rebecca E. Thornhill¹, ², Julie Robillard³, ⁴, Michael Gollob⁵, Carole Dennie^{1, 6}, Alexander Dick⁷, ⁸, Edith Kolozsi⁷, Elena Pena^{1, 6}

¹Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada; ²Radiology, University of Ottawa, Ottawa, ON, Canada; ³Radiology, Montreal Heart Institute, Montreal, PQ, Canada; ⁴Radiologie, Université de Montréal, Montreal, PQ, Canada; ⁵Electrophysiology, Peter Munk Cardiac Centre, Toronto, ON, Canada; ⁶Radiology, University of Ottawa, Ottawa, ON, Canada; ⁷Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada; ⁸Medicine, University of Ottawa, Ottawa, ON, Canada

2637. Visualization of Cryoballoon Ablation Lesions with 3D LGE Cardiac MR of the Left Atrium

Joseph S. Soltys¹, Ibrahim M. Saeed², Sanjaya Gupta², Piero Ghedin³, Anja C.S. Brau³, James A. Case¹, Timothy M. Bateman¹,²

¹Cardiovascular Imaging Technologies, Kansas City, MO, United States; ²Saint Luke's Mid America Heart and Vascular Institute, Kansas City, MO, United States; ³Global Research Center, GE Healthcare, Munich, Germany

2638. Eliminating the Impact of Myocardial Lipid Content on Myocardial T1 Mapping Using a Spectrally-Selective Inversion Pulse

Maryam Nezafat¹, ², Sébastien Roujol², Jihye Jang², Tamer Basha², René M. Botnar¹ ¹King's College London, London, UK, United Kingdom; ²Beth Israel Deacons Medical Center and Harvard Medical School, Boston, MA, United States

2639. In Vivo Spin Echo EPI Cardiac Diffusion Tensor MRI Using Ultrahigh Gradient Amplitudes Eric Aliotta¹, ², Stanislas Rapacchi¹, Peng Hu¹, Daniel Ennis¹, ²
¹Radiological Sciences, UCLA, Los Angeles, CA, United States; ²Biomedical Physics IDP, UCLA, Los Angeles, CA, United States 2640. Whole-Heart Free-Breathing Phase-Sensitive Inversion-Recovery Late Gadolinium Enhancement Imaging with High Isotropic Spatial Resolution Using Respiratory Self-Navigation: A First Patient Study

Davide Piccini¹, ², Simone Coppo², Giulia Ginami², Gabriele Bonanno², Tobias Rutz³, Gabriella Vincenti³, Juerg Schwitter³, Matthias Stuber²

¹Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ²Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Division of Cardiology and Cardiac MR Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland

2641. Diagnostic Performance of Native T1 Maps at 3T for Characterizing Chronic Myocardial Infarctions Avinash Kali^l, ², Ivan Cokic^l, Hsin-Jung Yang^l, ², Richard L Q Tang^l, Behzad Sharif^l, Rohan Dharmakumar^l, ³ ¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Department of Bioengineering, University of California, Los Angeles, CA, United States; ³Department of Medicine, University of California, Los Angeles, CA, United States

2642. Ferroportin Regulates Cardiac Iron Homeostasis

Jack Miller¹, ², Samira Lakhal-Littleton¹, Magda Wolna¹, Carolyn Carr¹, Ana Santos³, Rebeca Diaz³, Daniel Biggs³, Ben Davies³, Vicky Ball¹, Peter Robbins¹, Damian Tyler¹ ¹Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom; ²Department of Physics, University of Oxford, Oxford, United Kingdom; ³Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom

2643. Comparison of MOLLI and AIR Cardiac T1 Mapping Pulse Sequences in a Clinical Population of Cardiomyopathies

Sean Robison¹, Daniel Kim², Kyungpyo Hong², Emma Hornsey¹, Piyush Srivastava³, ⁴, Gerard Smith¹, Leighton Kearney³, Ruth P. Lim¹, ⁴

¹Department of Radiology, Austin Health, Melbourne, Victoria, Australia; ²UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ³Department of Cardiology, Austin Health, Melbourne, Victoria, Australia; ⁴The University of Melbourne, Melbourne, Victoria, Australia

- **2644.** Assessing Myocardial Infarct Using T_{1p} and Late Gadolinium Enhancement *In Vivo* Elias Ylä-Herttuala¹, Svetlana Laidinen¹, Maarit Pulkkinen¹, Hanne Hakkarainen¹, Timo Liimatainen¹ ¹Biomedical Imaging Unit, University of Eastern Finland, A. I. Virtanen instute, Kuopio, Finland
- 2645. Right Ventricular Myocardial T1 Quantification by Free-Breathing Fat-Water Separated Dark Blood Saturation-Recovery Imaging (SASHA)

Peter David Gatehouse¹, Peter Kellman², EeLing Heng¹, Michael Gatzoulis³, James C. Moon⁴, Sonya Babu-Narayan¹, David N. Firmin³

¹Royal Brompton Hospital, London, UK, United Kingdom; ²National Institutes of Health, Bethesda, DC, United States; ³Royal Brompton Hospital, UK, United Kingdom; ⁴The Heart Hospital, University College Hospitals London, London, UK, United Kingdom

- 2646. Utility of Multi-Slice T1 Mapping by Using Slice Interleaved T1 (STONE) Sequence for the Detection of Diffuse Myocardial Fibrosis in Patients with Hypertrophic Cardiomyopathy
 Shingo Kato¹, Roujol Sébastien¹, Jihye Jang¹, Basha Tamer¹, Berg Sophie¹, Kissinger Kraig¹, Goddu Beth¹, Evan Appelbaum¹, Martin Maron², Warren J. Manning³, Nezafat Reza³
 ¹Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States; ²Division of Cardiology, Tufts Medical Center, Boston, MA, United States; ³Department of Medicine and Radiology, Beth Israel Deaconess Medical Center, Boston, MA, United States
- 2647. Evaluation of Myocardial Viability in Recent, Sub-Acute and Chronic Myocardial Infarction Using 3.0T CMR Quantitative T1, T2 Mapping and Multi-B DWI Combined with LGE Mingxi Liu¹, Wanshi Zhang², Ziheng Zhang³, Limin Meng², Jie Liu¹, Wanfeng Gong² ¹The Fourth Military Medical Unviersity, Xi'an, Shannxi, China; ²Air Force General Hospital, Beijing, China; ³GE Healthcare China, Beijing, China

- 2648. High Resolution Multi-Slice Myocardial T₂ Mapping with Improved Scan Time Efficiency Jihye Jang^l, ², Cory Tschabrunn¹, Elad Anter¹, Tamer Basha¹, Reza Nezafat¹ ¹Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Computer Aided Medical Procedures, Technische Universität München, Munich, Bayern, Germany
- 2649. Enhanced Glucose Oxidation Has No Effect on Hypertrophic Progression in the Abdominal Aortic Banding Model of Left Ventricular Hypertrophy

Lucia F. Giles¹, Vicky Ball¹, Carolyn A. Carr², Anne-Marie L. Seymour³, Lydia Le Page¹, Lucy Ambrose¹, Damian J. Tyler¹

¹Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Department of Physiology, Anatomy and Genetics, , University of Oxford, Oxford, Oxfordshire, United Kingdom; ³Department of Biological Sciences, University of Hull, Hull, United Kingdom

2650. Noninvasive Three-Dimensional Mapping of Endothelial Dysfunction in Cardiac Ischemia by Dynamic Contrast Enhanced Magnetic Resonance Imaging Using Albumin-Based Contrast Agent

Katrien Vandoorne¹, Moriel H. Vandsburger², Yue Han¹, Igor Jacobs¹, Hagit Dafni³, Klaas Nicolay¹, Gustav J. Strijkers, ¹⁴

¹Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Department of Physiology, University of Kentucky, KY, United States; ³Weizmann Institute of Science, Israel; ⁴Academic Medical Center, Amsterdam, Netherlands

Traditional PosterVessel WallExhibition HallThursday 10:30-12:30

- **2651.** Imaging of Abdominal Aortic Aneurysm Morphology and Inflammation Using 3D Isotropic Black Blood MRI Chengcheng Zhu^l, Henrik Haraldsson^l, Sinyeob Ahn², Jing Liu^l, Michael Hope^l, David Saloner^l ¹Radiology, UCSF, San Francisco, Califronia, United States; ²Siemens Healthcare, CA, United States
- 2652. Assessment of Calcification Size and Juxtaluminal Status Using Gray-Blood 3D Vessel Wall MRI Niranjan Balu¹, Jie Sun¹, Jin Liu², Shuo Chen³, Huijun Chen³, Chun Yuan¹ ¹Radiology, University of Washington, Seattle, WA, United States; ²Bioengineering, University of Washington, Seattle, WA, United States; ³CBIR, Tsinghua University, Beijing, China
- 2653. Three-Dimensional Multi-Contrast Assessment of the Aortic Wall at 3 Tesla Iulius Dragonu^l,², Thomas Wehrum², Christoph Strecker², Benjamin R. Knowles^l, Jürgen Hennig^l, Andreas Harloff² ¹Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Neurology, University Medical Center Freiburg, Freiburg, Germany
- 2654. 3D Large Coverage Atherosclerotic Plaque Assessment with Single Scan (APASS): Preliminary Application in Carotid Artery and Femoral Artery Shuo Chen¹, Zechen Zhou¹, Huijun Chen¹, Bida Zhang², Rui Li¹, Jinnan Wang³, ⁴, Chun Yuan¹, ³, Xihai Zhao¹ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Healthcare Department, Philips Research China, Shanghai, China; ³Department of radiology, University of Washington, Seattle, United States; ⁴Philips Research North America, Briarcliff Manor, NY, United States

2655. Optimizing T1w-SPACE for Intracranial Arterial Imaging Lei Zhang¹, Jaeseok Park², Jun Wu³, Xin Liu¹, Yiu-Cho Chung¹ ¹Paul C. Lauterbur Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academic of Sciences, Shenzhen, Guangdong, China; ²department of brain and cognitive engineering, Korea university, Seoul, Korea; ³Neurology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China

- 2656. Large Coverage 3D Combined Angiography and Plaque Risk Identification (3D-CAPRI) Haining Liu^l, Niranjan Balu², Jinnan Wang³, Chun Yuan¹, ⁴
 ¹Bioengineering Department, University of Washington, Seattle, WA, United States; ²Radiology Department, University of Washington, Seattle, WA, United States; ³Philips Research North America, NY, United States; ⁴Bioengineering Department, Tsinghua University, Beijing, China
- 2657. Carotid Pulse Wave Velocity Measurements Using Accelerated High Temporal Resolution MRI
 Abdallah G. Motaal¹, ², *Wouter WV Potters¹*, *Huiming Dong²*, *Luc M. J. Florack³*, *Klaas Nicolay²*, *Aart J. Nederveen¹*,
 Gustav J. Strijkers², ⁴, *Bram F. Coolen¹* ¹Department of Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Department of Biomedical Engineering, Eindhoven
 University of Technology, Eindhoven, Netherlands; ³Mathematics and Computer Science, Eindhoven University of Technology,
 Eindhoven, North Brabant, Netherlands; ⁴Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam,
 Netherlands
- 2658. In Vivo Quantification and Correlation of Intracranial Aneurysm Wall Thickness and Wall Shear Stress Roos Blankena¹, ², Rachel Kleinloog¹, Pim van Ooij³, Bon Verweij¹, Bennie ten Haken², Jaco Zwanenburg⁴ ¹Neurology and Neurosurgery, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, Netherlands; ²Technical Medicine, University of Twente, Enschede, Overijssel, Netherlands; ³Biomedical Engineering & Physics, Academic Medical Center, Amsterdam, Noord-Holland, Netherlands; ⁴Radiology, University Medical Center Utrecht, Utrecht, Netherlands
- 2659. Ultra-High Field MRI of Aortic Plaques in a Rabbit Model: Initial Experience and Comparison Between 1.5T, 3T and 7T

Claudia Calcagno¹, Martin J. Willemink², Bei Zhang¹, Hadrien Dyvorne¹, Philip M. Robson¹, Olivier Lairez¹, Bram F. Coolen³, Gustav J. Strijkers⁴, Tim Leiner², Venkatesh Mani¹, Willem JM Mulder¹, ³, Zahi A. Fayad¹ ¹Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; ²Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands, Netherlands; ³Department of Radiology, Academic Medical Center, Amsterdam, The Netherlands, Netherlands; ⁴Department of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, The Netherlands, Netherlands

2660. Feasibility and Signal Analysis of DANTE-TSE with Variable Flip Angles for Intracranial Vessel Wall Imaging at 7 Tesla

Olivia Viessmann¹, Linging Li¹, Peter Jezzard¹

¹Nuffield Department of Clinical Neurosciences, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain, Oxford, United Kingdom

2661. Quantitative MR Imaging of Ex Vivo Intracranial Atherosclerotic Plaques at 7.0 Tesla

A.A. Harteveld¹, *N.P. Denswil²*, *J.C.W. Siero¹*, *J.J.M. Zwanenburg¹*, ³, *A. Vink⁴*, *W.G.M. Spliet⁴*, *P.R. Luijten¹*, *M.J. Daemen²*, *J. Hendrikse¹*, *A.G. van der Kolk¹* ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Pathology, Academic Medical

Center, Amsterdam, Netherlands; ³Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands

Traditional Poster CE & Non-CE MRA Exhibition Hall Thursday 10:30-12:30

- 2662. Comparison of DANTE- And IMSDE-Based Methods for Subtractive NCE-MRA of the Central Thoracic Vein Andrew N. Priest¹, Kristian H. Mortensen¹, David J. Lomas¹ ¹Department of Radiology, Addenbrooke's Hospital and Cambridge University, Cambridge, United Kingdom
- **2663. ZTE for Whole Heart Imaging Initial Results, Limitations and Challenges at 1.5T** *Peter Börnert*¹, ², *Jan Groen*³, *Christian Stehning*¹, *Jouke Smink*³, *Kay Nehrke*¹

¹Philips Research, Hamburg, Germany; ²Radiology, LUMC, Leiden, Netherlands; ³Philips Healthcare, Best, Netherlands

- 2664. Atlas-Based 3D-Affine Self-Navigated Whole-Heart Coronary MRA: Initial Experience in Patients Gabriele Bonanno¹, Davide Piccini, ¹², Bénédicte Marechal², ³, Cristophe Sierro⁴, Juerg Schwitter⁵, Matthias Stuber¹ ¹Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging, Lausanne, Switzerland; ²Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ³Radiology, CHUV -LTS5 - Ecole polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ⁴Division of Cardiology and Cardiac MR Center, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ⁵Division of Cardiology and Cardiac MR Center, University Hospital (CHUV) and University of Lausanne (UNIL), Switzerland
- 2665. Diagnostic Value of 3.0T Non-Contrast Enhanced Magnetic Resonance Angiography for Lower Extremity Arterial Stenosis

Yunlong Song¹, Dongmei Wang², Guangnan Quan³, Lizhi Xie³ ¹Department of CT & MRI, Air Force General Hospital, Beijing, China; ²Department of CT & MRI, Air Force General Hospital, Beijing, China; ³GE Healthcare China, Beijing, China

- 2666. High-Resolution Coronary MR Angiography with Outer Volume Suppression/T₂ Preparation Nii Okai Addy¹, Jieying Luo¹, Bob S. Hu², Dwight G. Nishimura¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Cardiovascular Disease, Palo Alto Medical Foundation, Palo Alto, CA, United States
- 2667. Non-Contrast-Enhanced Magnetic Resonance Venography Using DANTE and MSDE Preparations Guoxi Xie¹, Xiaoyong Zhang¹, ², Caiyun Shi¹, Xin Liu¹, Debiao Li³, Zhaoyang Fan³ ¹Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; ²University of Science and Technology of China, Hefei, Anhui, China; ³Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States
- 2668. A Comparative Study of Contrast-Enhanced and Unenhanced MR Pulmonary Angiography in the Diagnosis of Pulmonary Embolism Sishu Yuan¹, Liming Xia¹

¹Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology., Wuhan, Hubei, China

- 2669. Acceleration-Selective Magnetic Resonance Angiography Kalina V. Jordanova¹, Taehoon Shin², Adam B. Kerr¹, Dwight G. Nishimura¹ ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
- 2670. Optimized and Accelerated Non-Contrast-Enhanced MRA of the Lower Extremities Using IMSDE Prepared BSSFP Acquisition

Li Jiang¹, Andy Jiang¹, Zhigang Wu¹, Allan Jin¹, Stephon Xu¹, Feng Huang¹ ¹Philips Healthcare (Suzhou), Suzhou, Jiangsu, China

- 2671. Accuracy of Lumen Measurement Using Non-Contrast SNAP MRA Haining Liu¹, Niranjan Balu², Jinnan Wang³, Jie Sun², Chun Yuan⁴, ⁵ ¹University of Washington, Seattle, WA, United States; ²Radiology Department, University of Washington, Seattle, WA, United States; ³Philips Research North America, NY, United States; ⁴Bioengineering Department, University of Washington, Seattle, WA, United States; ⁵Bioengineering Department, Tsinghua University, Beijing, China
- **2672.** Cerebral Angiography and Vessel Wall in Progressive Hypertension Yunxia Li¹, ², Qiang Shen¹, Shiliang Huang¹, Wei Li¹, Eric R. Muir¹, Justin Alexander Long¹, Timothy Q. Duong¹

¹Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ²Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China

2673. Thin-Slice Acquisition Using Saturation Spin Labeling (TASSL) MRA

Robert R. Edelman¹, ², Shivraman Giri³, Ian Murphy², Ioannis Koktzoglou¹, ⁴ ¹Radiology, NorthShore University HealthSystem, Evanston, IL, United States; ²Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; ³Siemens Healthcare, Chicago, IL, United States; ⁴Radiology, Pritzker School of Medicine, University of Chicago, Chicago, IL, United States

2674. QISS UTE: Quiescent-Inflow Single-Shot MRA of the Peripheral Arteries Using an Ultra-Short Echo Time Readout

Robert R. Edelman¹, ², *Shivraman Giri³, Ian Murphy², Kieran O'Brien⁴, Matthew D. Robson⁵, Ioannis Koktzoglou¹*, ⁶ ¹Radiology, NorthShore University HealthSystem, Evanston, IL, United States; ²Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; ³Siemens Healthcare, Chicago, IL, United States; ⁴Siemens Healthcare, Switzerland; ⁵Department of Cardiovascular Medicine, Oxford University, Oxford, United Kingdom; ⁶Radiology, Pritzker School of Medicine, University of Chicago, IL, United States

2675. Target Volume Coronary MRA Revisited: Usefulness of Non-Rigid Reregistration of Multi-Frame 3D MRA Acquisitions at 3T

Masaki Ishida¹, Ryohei Nakayama¹, Shinichi Takase¹, Katsuhiro Inoue¹, Yoshitaka Goto¹, Yasutaka Ichikawa¹, Motonori Nagata¹, Kakuya Kitagawa¹, Hajime Sakuma¹ ¹Radiology, Mie University Hospital, Tsu, Mie, Japan

2676. Peripheral MR Angiography Using Fourier Velocity Encoding and Dynamic Reconstruction Dongchan Kim^l, Changheun Oh^l, Hyunseok Seo^l, HyunWook Park^l ¹Electrical engineering, KAIST, Daejeon, Yuseong-Gu, Korea

2677. Respiratory Self-Navigated Inversion Recovery GRE Whole-Heart Coronary MR Imaging Using an Intravascular Contrast Agent in a Pediatric Population

Davide Piccini¹, ², Gary R. McNeal³, W. James Parks⁴, ⁵, Michael O. Zenge⁶, Tim C. Slesnick⁴, ⁵ ¹Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland; ²Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Customer Solutions Group, Siemens Medical Solutions USA, Inc, Malvern, PA, United States; ⁴Department of Pediatrics, Emory University, Atlanta, GA, United States; ⁵Children's Healthcare of Atlanta, Atlanta, GA, United States; ⁶MR Product Innovation and Definition, Siemens AG, Healthcare Sector, Erlangen, Germany

2678. Clinical Performance of a Spatiotemporally Accelerated Motion-Corrected Pediatric 3D Free-Breathing Time-Resolved Contrast-Enhanced MR Angiography

Tao Zhang¹, ², Ufra Yousaf¹, Albert Hsiao³, Joseph Y. Cheng¹, ², Marcus Alley¹, Michael Lustig, ²⁴, John M. Pauly², Shreyas S. Vasanawala¹

¹Radiology, Stanford University, Stanford, CA, United States; ²Electrical Engineering, Stanford University, Stanford, CA, United States; ³Radiology, UC San Diego, San Diego, CA, United States; ⁴Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA, United States

- 2679. R₁- ΔR₂- ΔR₂* Combined MR Angiogram with Dual Contrast SPION Hoesu Jung¹, Sohyun Han¹, Seokha Jin¹, Dongkyu Lee¹, Hyungjoon Cho¹ ¹Department of Biomedical Engineering, UNIST (Ulsan National Institute of Science & Technology), Ulsan, Gyeongsangnam-do, Korea
- **2680.** Contrast Enhanced Self-Gated Coronary Angiography at 7 Tesla Using Ultra-Short Echo Time Imaging Naoharu Kobayashi¹, Jianing Pang², Steen Moeller¹, Pierre-Francois van de Moortele¹, Sebastian Schmitter¹, Kamil Ugurbil¹, Debiao Li², Michael Garwood¹, Gregory J. Metzger¹

Traditional Poster

¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ²Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States

2681. Intraindividual Comparison of Different Contrast Agent Application Schemes and Their Influence on Concentration, Signal and Bolus Geometry

Harald Kramer¹, ², Gregor Jost³, Hubertus Pietsch³, Maximilian F. Reiser¹ ¹Department of Clinical Radiology, University of Munich, Munich, Bavaria, Germany; ²Department of Radiology, University of Wisconsin - Madison, Madison, WI, United States; ³MR and CT Contrast Media Research, Bayer Healthcare, Berlin, Germany

2682. Combined Acquisition of Low-Dose Time-Resolved and Single-Phase High-Resolution Contrast-Enhanced MRA in the Evaluation of Spinal Vascular Diseases Bum-soo Kim^l, Jieun Back^l, Song Lee^l, Jinhee Jang^l, Hyun Seok Choi^l, So-Lyung Jung^l, Kook-Jin Ahn^l ¹Department of Radiology, Seoul St.Mary's Hospital, The Catholic University of Korea, Seoul, Korea

Traditional Poster

Cardiac Perfusion & Function Exhibition Hall Thursday 10:30-12:30

> 2683. Improved Visualization of Myocardial Perfusion Defects Using Ungated Continuously-Sampled Radial First-Pass MRI with Comparison to ECG-Gated Imaging Behzad Sharif¹, Reza Arsanjani¹, Rohan Dharmakumar¹, Noel Bairey Merz¹, Daniel S. Berman¹, Debiao Li¹ ¹Biomedical Imaging Research Institute, Dept. of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States

- 2684. Motion Compensated Free Breathing Myocardial Perfusion MRI Using Iterative Non Local Shrinkage Yasir Q. Mohsin¹, Sajan Goud Lingala², Edward DiBella³, Mathews Jacob¹ ¹Electrical Engineering, University of Iowa, Iowa city, IA, United States; ²Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ³Department of Radiology, University of Utah, S.L.City,UT, United States
- 2685. Rapid Ungated Myocardial Perfusion MRI with an Undersampled Radial CAIPI Acquisition and a Compressed Sensing Reconstruction

Ganesh Adluru¹, Liyong Chen², Eugene Kholmovski¹, John Roberts¹, Edward V.R. DiBella¹ ¹Radiology, University of Utah, Salt Lake City, UT, United States; ²Advanced MRI Technologies, CA, United States

2686. Restating MS-CAIPIRINHA as an In-Plane Acceleration Problem: an Efficient Method for Integrating High Coverage Cardiac Perfusion MRI Into Clinical Workflow Daniel Stäb¹,², Peter Speier³, Theresa Reiter⁴, Thorsten Klink², Henning Neubauer², Thorsten A. Bley², Tobias Wech², Andreas Max Weng², Herbert Köstler²
¹The Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; ²Institute of Radiology,

University of Würzburg, Würzburg, Bavaria, Germany; ³Siemens AG Healthcare Sector, Erlangen, Bavaria, Germany; ⁴Department of Internal Medicine I, University of Würzburg, Würzburg, Bavaria, Germany

2687. Quantitative First-Pass Perfusion with Whole-Ventricle Coverage Using 3D Through-Time Spiral GRAPPA Johannes Tran-Gia^l, ², Jesse Hamilton², David Lohr^l, Kestutis Barkauskas², Andreas M. Weng^l, Herbert Köstler^l, Nicole Seiberlich²
¹Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany; ²Biomedical Engineering,

¹Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany; ²Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States

2688. Estimation of Coil Sensitivities in Myocardial First-Pass Perfusion Imaging Using a Model-Based T1 Mapping Technique

Johannes Tran-Gia¹, David Lohr¹, Andreas M. Weng¹, Christian O. Ritter, ¹², Thorsten A. Bley¹, Herbert Köstler¹ ¹Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany; ²Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany

2689. Fast Multicoil Total Variation Reconstruction of Cardiac Perfusion Images

Srikant Kamesh Iyer¹, ², Tolga Tasdizen², Ganesh Adluru³, Edward DiBella³ ¹Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, United States; ²Scientific Computational Institute, University of Utah, Salt Lake City, UT, United States; ³UCAIR/Radiology, University of Utah, Salt Lake City, UT, United States

2690. A Look-Locker Acquisition Scheme for Quantitative Myocardial Perfusion Imaging by Arterial Spin Labelling in Humans at 3 T

Graeme A. Keith¹, Christopher T. Rodgers¹, Michael A. Chappell², Matthew D. Robson¹ ¹Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, Oxford, Stord, University of Stord, Oxford, Oxfor

2691. Reducing Saturation Effects in the AIF Determination of Quantitative First-Pass Perfusion Imaging Using a Model-Based Reconstruction

Johannes Tran-Gia¹, David Lohr¹, Andreas M. Weng¹, Christian O. Ritter¹, ², Thorsten A. Bley¹, Herbert Köstler¹ ¹Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany; ²Department of Diagnostic and Interventional Radiology, University Medical Center Göttingen, Göttingen, Germany

2692. Atherosclerotic Plaques Affect Resting Myocardial Blood Flow Quantification Using Contrast-Enhanced Magnetic Resonance Perfusion Imaging

Karsten Sommer¹, ², Dominik Bernat¹, Regine Schmidt¹, Laura M. Schreiber¹ ¹Department of Radiology, Johannes Gutenberg University Medical Center, Mainz, Rhineland-Palatinate, Germany; ²Max Planck Graduate Center with the Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany

2693. MRI Perfusion Discriminates Stunned Myocardium Adjacent to Focal Infarct from Microemblized Infarcted Myocardium

Maythem Saeed¹, Loi Do¹, Steven W. Hetts¹, Mark W. Wilson¹ ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Ca, United States

2694. The Influence of Contrast Agent Bolus Dispersion in Contrast-Enhanced Myocardial Perfusion MRI: A Computational Fluid Dynamics Simulation Study on Influencing Factors and Different Methods of Quantitative Analysis

Regine Schmidt¹, Dirk Graafen¹, Karsten Sommer¹, Hanns-Christian Breit¹, Laura Maria Schreiber¹, ² ¹Section of Medical Physics, Department of Radiology, Johannes Gutenberg University Medical Center, Mainz, Germany; ²Department of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), Wuerzburg, Germany

2695. Evaluation of Cardiac Stress Perfusion and Functional MRI Biomarkers in Healthy Nonhuman Primates: Reproducibility and Repeatability Study

Sarayu Parimal¹,², Smita Sampath¹,², Michael Klimas², Dai Feng³, Richard Baumgartner³, Elaine Manigbas⁴, Willy GSell⁴, Jeffrey L. Evelhoch², Chin Chih-Liang¹,²

¹Imaging, MSD, Singapore; ²Imaging, Merck & Co. Inc., WestPoint, Philadelphia, United States; ³Biometric Research, Biostatistics and Research Decision Sciences, Merck & Co. Inc., Rahway, NJ, United States; ⁴MRI department, Maccine Pte Ltd, Singapore

2696. New Method to Validate In Vivo 2D Displacements from Spiral Cine DENSE at 3T

Gregory J. Wehner¹, Jonathan D. Suever², Christopher M. Haggerty², Linyuan Jing², David K. Powell¹, Sean M. Hamlet³, Jonathan D. Grabau², Dimitri Mojsejenko², Xiaodong Zhong⁴, Frederick H. Epstein⁵, Brandon K. Fornwalt¹,

¹Biomedical Engineering, University of Kentucky, Lexington, KY, United States; ²Pediatrics, University of Kentucky, Lexington, KY, United States; ³Electrical Engineering, University of Kentucky, Lexington, KY, United States; ⁴MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, United States; ⁵Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ⁶Physiology and Medicine, University of Kentucky, Lexington, KY, United States

2697. Real-Time Imaging of the Heart and Aorta at 7.0 T Using a 16 Channel Bow Tie Antenna Transceiver Array Celal Oezerdem¹, Lukas Winter¹, Andreas Graessl¹, Katharina Paul¹, Antje Els¹, Dirk Voit², Jens Frahm², ³, Thoralf Niendorf¹, ⁴

¹Berlin Ültra-High Field Facility (B.U.F.F.), MDC, Berlin, Germany; ²Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany; ³DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany; ⁴Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max Delbrueck Center, Berlin, Germany

2698. Sub-Millimeter In-Plane Spatial Resolution CINE Imaging of the Heart at 7.0 T Using a 16 Channel Bow Tie Antenna Transceiver Coil Array

Celal Oezerdem¹, Lukas Winter¹, Andreas Graessl¹, Katharina Paul¹, Antje Els¹, Thoralf Niendorf¹, ² ¹Berlin Ultra-High Field Facility (B.U.F.F.), MDC, Berlin, Germany; ²Experimental and Clinical Research Center, a joint cooperation between Charité Medical Faculty and the Max Delbrueck Center, Berlin, Germany

- **2699.** Free-Breathing Cardiac Cine MRI Using the Diminishing Variance Algorithm *R Reeve Ingle¹, Kenneth O. Johnson¹, Galen D. Reed¹, Juan M. Santos¹, William R. Overall¹, Bob S. Hu¹, ² ¹HeartVista, Inc., Menlo Park, CA, United States; ²Cardiology, Palo Alto Medical Foundation, Palo Alto, CA, United States*
- 2700. Evaluate Radial and Longitudinal Myocardial Motion Velocity in Left and Right Ventricles for Repaired Tetralogy of Fallot Patients by Phase-Contrast MRI Meng-Chu Chang¹, Ming-Ting Wu², Marius Menza³, Mao-Yuan Su⁴, Hung-Chieh Huang², Hsu-Hsia Peng⁵ ¹Interdisciplinary Program of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan; ²Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; ³Medical Physics, Department of Radiology, University Hospital Freiburg, Freiburg, Germany; ⁴Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan; ⁵Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- 2701. Evaluate Myocardial Dyssynchrony Index in Left Ventricle for Marfan Syndrome Patients by Using Phase-Contrast Magnetic Resonance Imaging

*Tzu-Yu chou*¹,²</sup>, *Hsin-Hui Chiu*³, *Wen-Yih Isaac Tseng*⁴, *Marius Menza*⁵, *Hsu-Hsia Peng*² ¹Institute of Biomedical Engineering, National Taiwan University, taipei, taiwan, Taiwan; ²Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; ³Department of Pediatrics, Taipei Medical University Hospital, Taipei, Taiwan, Taiwan; ⁴Center for Optoelectronic Biomedicine, College of Medicine, National Taiwan University, Taiwan; ⁵Medical Physics, Department of Radiology, University Hospital Freiburg, Freiburg, Germany

- **2702.** A New Self-Gating Method for Cardiac-MRI Using Phase Information Hyunseok Seo¹, Dongchan Kim¹, HyunWook Park¹ ¹Electrical Engineering, KAIST, Daejeon, Korea
- 2703. Assessment of Left Ventricular Abnormal Twist in Repaired Tetralogy of Fallot Patients Using Phase-Contrast MRI

Meng-Chu Chang¹, Ming-Ting Wu², Marius Menza³, Mao-Yuan Su⁴, Hung-Chieh Huang², Hsu-Hsia Peng⁵ ¹Interdisciplinary Program of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan; ²Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; ³Medical Physics, Department of Radiology, University Hospital Freiburg, Freiburg, Germany; ⁴Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan; ⁵Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan

2704. Clinical Impact of Left Ventricular Eccentricity Index Using Cardiac Cine MRI for Assessment of Right Ventricular Hemodynamics in Adult Congenital Heart Disease Yuzo Yamasaki¹, Michinobu Nagao², Masato Yonezawa¹, Satoshi Kawanami², Takeshi Kamitani¹, Torahiko Yamanouchi¹, Kenichiro Yamamura³, Ichiro Sakamoto⁴, Hidetake Yabuuchi⁵, Hiroshi Honda¹

Yamanouchi', Kenichiro Yamamura', Ichiro Sakamoto', Hidetake Yabuuchi', Hiroshi Honda' ¹Clinical Radiology, Kyushu University, Fukuoka, Japan; ²Molecular Imaging & Diagnosis, Kyushu University, Fukuoka, Japan; ³Pediatrics, Kyushu University, Fukuoka, Japan; ⁴Cardiovascular Medicine, Kyushu University, Fukuoka, Japan; ⁵Health Sciences, Kyushu University, Fukuoka, Japan

- 2705. Comparison of Right Ventricular Volume Measurements Obtained Using Transaxial and Short-Axis Slices Acquired by Cardiac MRI in Patients with Chronic Thromboembolic Pulmonary Hypertension *Rieko Ishimura¹, Kenich Yokoyama¹, Toshiya Kariyasu¹, Shigehide Kuhara², Toshiaki Nitatori¹* ¹department of radiology, Kyorin University, Mitaka, Tokyo, Japan; ²Toshiba medical systems, Otawara, Tochigi, Japan
- 2706. Quantitative Assessment of Left Ventricular Tissue Relaxometry and Dynamics in Human Heart Transplant Recipients in a Gold Standard Comparison: A Preliminary Study

Helene Feliciano¹,², Ruud B. van Heeswijk¹,², Davide Piccini³,⁴, Pierre Monney⁵,⁶, Juerg Schwitter⁵,⁶, Roger Hullin⁵, Matthias Stuber¹,²

¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ⁴Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ⁵Division of Cardiology, Department of Internal Medicine, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland; ⁶Cardiac MR Center (CRMC), University Hospital of Lausanne (CHUV), Lausanne, Switzerland

- **2707.** Intravoxel Incoherent Motion and Arterial Spin Labeling MRI of Isolated Perfused Hearts Osama Abdullah¹, Arnold David Gomez¹, Samer Merchant¹, Michael Heidinger², Steven Poelzing², Edward W. Hsu¹ ¹Bioengineering, University of Utah, Salt Lake City, UT, United States; ²Cardiac Research and Training Institute, University of Utah, UT, United States
- 2708. Comparison of First-Pass MRI and Arterial Spin Labeling for Quantification of Myocardial Perfusion in Mice Nivedita K. Naresh¹, Xiao Chen¹, Yikui Tian², Eric M. Moran¹, Brent A. French¹, Frederick H. Epstein¹, ³ ¹Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ²Surgery, University of Virginia Health System, Charlottesville, VA, United States; ³Radiology, University of Virginia, VA, United States
- 2709. Alterations of Left Atrial Function and Substrate After Myocardial Infarction in Relation to Vulnerability for Atrial Fibrillation: A Chronic Porcine Model

Dana C. Peters¹, Stephanie L. Thorn², Alda Bregast², Edgar J. Diaz¹, Mitchel R. Stacy², Christi Hawley², Albert J. Sinuas²

¹Radiology, Yale School of Medicine, New Haven, CT, United States; ²Cardiology, Yale School of Medicine, New Haven, CT, United States

2710. Noninvasive Detection of Congestive Heart Failure in Postinfarction Rats

ismem merit award magna cum laude *Emil Knut Stenersen Espe¹*, ², *Jan Magnus Aronsen*¹, ³, *Kristine Skårdal*¹, ², *Lili Zhang*¹, ², *Ivar Sjaastad*¹, ² ¹Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; ²KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway; ³Bjørknes College, Oslo, Norway

2711. Transplantation of Integrin-Linked Kinase-Overexpressing Mesenchymal Stem Cells Via Coronary Improves the Myocardial Repairing in Swine Model of Acute Myocardial Infarction

Dan Mu^1 , Wei Bo Chen², Bin Zhu³, Biao Xu⁴

¹Drum Tower Hospital, Nanjing, Jiangsu, China; ²Philips Healthcare, Shanghai, China; ³Radiology, Drum Tower Hospital, Nanjing, Jiangsu, China; ⁴Cardiology, Drum Tower Hospital, Nanjing, Jiangsu, China

2712. Development of Real-Time Magnetic Resonance Imaging of Mouse Hearts at 9.4 Tesla – Simulations and First Applications

Tobias Wech¹, Nicole Seiberlich², Andreas Schindele³, Michael L. Gyngell⁴, Valentina Davidoiu⁵, Alfio Borzi³, Herbert Köstler¹, Jürgen E. Schneider⁶

¹Department of Diagnostic and Interventional Radiology, University of Wuerzburg, Würzburg, Germany; ²Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ³Institute of Mathematics, University of Wuerzburg, Würzburg, Germany; ⁴Perspectum Diagnostics Ltd, Oxford, United Kingdom; ⁵Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; ⁶Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom 2713. Assessing Diastolic Function in Mouse Hearts: High-Temporal Resolution CINE MRI Vs. Ultrasound Thomas A. Roberts¹, Anthony N. Price², Anna L. David³, Valerie Taylor¹, Daniel J. Stuckey*¹, Mark F. Lythgoe*¹ ¹Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, United Kingdom; ²Division of Imaging Sciences and Biomedical Engineering, London, United Kingdom; ³Institute for Women's Health, University College London, London, United Kingdom

I l'authonai i ustei	
Let It Flow	
Exhibition Hall	Thursday 10:30-12:30

2714. Quantification of Flow Rates in Short Vessel Segments from Arterial Spin Labeling Dynamic Angiography Flora A. Kennedy McConnell¹, Thomas W. Okell², Michael A. Chappell¹, Stephen J. Payne¹
¹Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom

2715. Assessment of Blood Flow Velocity and Pulsatility in Cerebral Perforating Arteries with 7T Phase Contrast

ismem merit award magna cum laude

Lennart J. Geurts¹, Willem H. Bouvy², Hugo J. Kuijf³, Peter R. Luijten¹, L. Jaap Kappelle², Geert Jan Biessels², Jaco J.M. Zwanenburg¹

¹Radiology, UMC Utrecht, Utrecht, Netherlands; ²Neurology, UMC Utrecht, Utrecht, Netherlands; ³Imaging Sciences Institute, UMC Utrecht, Utrecht, Netherlands

2716. Volumetric Quantification of Localized Normalized Helicity in Patients with Bicuspid Valve and Aortic Dilation Julio Garcia¹, Michael Markl¹, Jeremy Collins¹, James Carr¹, Alex J Barker¹ Radiology, Northwestern University, Chicago, IL, United States

2717. Contribution of Early and Late Filling Vortex Rings to Normal Left Ventricular Flow: Quantitative 4D Flow MRI Analysis Using 3D Vortex Cores Combined with Particle Tracing Mohammed S.M. Elbaz¹, Patrick J.H. de Koning¹, Jos J.M. Westenberg¹, Emmeline E. Calkoen², Boudewijn P.F. Lelieveldt¹, ³, Arno A.W. Roest², Rob R.J. van der Geest¹ ¹Division of Image Processing, Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Paediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands

2718. Scan-Rescan Reproducibility of Flow and Pressure Difference Using 4D Flow MRI in Pulmonary Artery Ke Ma^l, Zechen Zhou^l, Aiqi Sun^l, Shuo Chen^l, Rui Li^l ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, TsingHua university, Beijing, China

- 2719. One Step Toward Automating Vessel Detection and Labeling in the Neck for Flow Quantification Ying Wang¹, ², Jing Jiang¹, ³, Paul Kokeny¹, Yi Zhong⁴, E. Mark Haacke¹, ⁴
 ¹Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States; ²College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning, China; ³Department of Radiology, Wayne State University, Detroit, MI, United States; ⁴MR Innovations, Inc., Detroit, MI, United States
- 2720. Computational Fluid Dynamics Simulations Guided by Fourier Velocity Encoded MRI Vinicius Rispoli¹, Jon-Fredrik Nielsen², Krishna Nayak³, Joao Luiz Carvalho¹ ¹University of Brasilia, Brasilia, DF, Brazil; ²University of Michigan, Ann Arbor, MI, United States; ³University of Southern California, Los Angeles, CA, United States

- 2721. Use of 4D Flow MRI to Investigate If Aortic Tissue Resection Without an Open Distal and Hemi-Arch Procedure Addresses All Regions Suspected for Progression of Bicuspid Aortopathy Alex J. Barker¹, Pim van Ooij¹, David Guzzardi², S. Chris Malaisrie³, Patrick M. McCarthy³, James Carr¹, Jeremy Collins¹, Michael Markl¹, ⁴, Paul W. M. Fedak², ³ ¹Radiology, Northwestern University, Chicago, IL, United States; ²Department of Cardiac Sciences, University of Calgary, Calgary, AB, Canada; ³Division of Surgery-Cardiac Surgery, Northwestern University, Chicago, IL, United States; ⁴Biomedical Engineering, Northwestern University, Chicago, IL, United States
- **2722.** Analyzing Myocardial Torsion Based on Tissue Phase Mapping MRI *Teodora Chitiboi*¹, ², *Susanne Schnell*², *Jeremy Collins*², *James Carr*², *Horst Hahn*¹, *Michael Markl*² ¹Fraunhofer MEVIS, Bremen, Germany; ²Radiology, Northwestern University, Chicago, IL, United States

2723. PRESSURE GRADIENT PREDICTION in AORTIC COARCTATION USING a COMPUTATIONAL-FLUID-DYNAMICS MODEL: Validation Against Invasive Pressure Catheterization at Rest and Pharmacological Stress

Julio Sotelo¹,², Israel Valverde³,⁴, Philipp Beerbaum⁵, Heynric B. Grotenhuis⁶, Gerald Greil⁷, Tobias Schaeffter⁷, Reza Razavi⁷, Daniel E. Hurtado², Sergio Uribe¹,⁸, C. Alberto Figueroa⁷,⁹

¹Biomedical Imaging Center, Electrical Engineering Department, Pontificia Universidad Catolica de Chile, Santiago, RM, Chile; ²Structural and Geotechnical Engineering Departement, Pontificia Universidad Catolica de Chile, Santiago, RM, Chile; ³Pediatric Cardiology Unit, Hospital Virgen del Rocio, Seville, Spain; ⁴Cardiovascular Pathology Unit, Institute of Biomedicine of Seville (IBIS), Seville, Spain; ⁵Hannover Medical University, Hannover, Niedersachsen, Germany; ⁶Child Cardiology Department, Leiden University, Leiden, Netherlands; ⁷Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ⁸Radiology Department, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile; ⁹Department of Surgery and Biomedical Engineering, University of Michigan, MI, United States

2724. Intra-Scan and Inter-Scan Reproducibility and Variability of Left Ventricular 4D Flow Kinetic Energy Values in Healthy Volunteers.

Victoria Stoll¹, Aaron Hess¹, Malenka Bissell, Jonatan Eriksson², Petter Dyverfeldt², Andrew Lewis, Tino Ebbers², Saul Myerson, Carl-Johan Carlhäll², Stefen Neubauer

¹Division of Cardiovascular Medicine, OCMR, Oxford, United Kingdom; ²Division of Cardiovascular Medicine and Center for Medical Imaging Science and Visualization (CMIV), Linköping University, Linköping, Sweden

2725. 4D Flow MRI: Analysis of Aortic Hemodynamics After Valve-Sparing Aortic Root Replacement with an Anatomically Shaped Sinus Prosthesis

Thekla Oechtering¹, Julian Haegele¹, Peter Hunold¹, Michael Scharfschwerdt², Markus Huellebrand³, Hans-Hinrich Sievers², Jörg Barkhausen¹, Alex Frydrychowicz¹

¹Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany; ²Department of Cardiac and Cardiothoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany; ³Fraunhofer MEVIS, Bremen, Germany

2726. Application of Full Turbulent Tensor in Estimation of MR-Based Relative Pressure

Sarah Kefayati¹, Henrik Haraldsson², Belén Casas Garcia³, Jonas Lantz³, Tino Ebbers³, David Saloner² ¹University of California, San Francisco, San Francisco, CA, United States; ²University of California, San Francisco, CA, United States; ³Linköping University, Sweden

- 2727. Radial Tissue Phase Mapping Is More Robust Against In-Flow Effects Than Cartesian Tissue Phase Mapping Jan Paul¹, Peter Bernhardt¹, Heiko Neumann², Volker Rasche¹
 ¹Internal Medicine II, University Hospital Ulm, Ulm, Germany; ²Institute of Neural Information Processing, University of Ulm, Ulm, Germany
- 2728. Inter-Study Reproducibility of Interleaved Spiral Phase Velocity Mapping of Renal Artery Blood Flow Velocity Jennifer Keegan¹, Hitesh Patel¹, Robin Simpson², Raad Mohiaddin¹, ³, David Firmin¹, ³ ¹Royal Brompton Hospital, London, United Kingdom; ²University of Freiburg, Freiburg, Germany; ³Imperial College, London, United Kingdom

- 2729. Investigation of Spatial Flow Profile Pattern in Branch Pulmonary Arteries After Repaired Tetralogy of Fallot Pei-Hsin Wu^l, Hsiao-Wen Chung^l, Cheng-Chieh Cheng^l, Ming-Ting Wu², Cheng-Wen Ko³ ¹Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ²Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; ³Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
- 2730. Patients with Corrected Atrioventricular Septal Defect Demonstrate Regionally Disturbed Left Ventricular Inflow Patterns with Decreased LV Ejection Efficiency : A Quantitative Evaluation by 4DFlow MRI and Particle Tracing

Emmeline Calkoen¹, Patrick de Koning², Rob van der Geest², Albert de Roos², Arno Roest¹, Jos Westenberg² ¹Pediatric Cardiology, LUMC, Leiden, Netherlands; ²Radiology, LUMC, Leiden, Netherlands

2731. Beat-To-Beat Stroke Volume Estimation Using Magnetohydrodynamic Voltages Induced in Intra-MRI Electrocardiograms

*T. Stan Gregory*¹, John Oshinski², Ehud J. Schmidt³, Mikayel Dabaghyan³, Raymond Y. Kwong⁴, William G. Stevenson⁴, Zion Tsz Ho Tse¹

¹College of Engineering, The University of Georgia, Athens, GA, United States; ²Department of Radiology, Emory University Hospital, Atlanta, GA, United States; ³Department of Radiology, Brigham and Women's Hospital, Boston, MA, United States; ⁴Department of Cardiology, Brigham and Women's Hospital, Boston, MA, United States

- 2732. Sub-Millimeter Motion-Corrected Tissue Phase Mapping for Transmural Analysis of LV Motion Jan Paul¹, Stefan Wundrak¹, Heiko Neumann², Volker Rasche¹
 ¹Internal Medicine II, University Hospital Ulm, Ulm, Germany; ²Institute of Neural Information Processing, University of Ulm, Ulm, Germany
- **2733.** Fast Quantification of Global Cerebral Metabolic Rate of Oxygen (CMRO₂) Suliman Barhoum¹, Michael C. Langham¹, Jeremy F. Magland¹, Chamith S. Rajapakse¹, Cheng Li¹, Felix W. Wehrli¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States
- 2734. Ventilator Gated 4D Flow MRI in Pediatric Patients with CHD: Initial Feasibility and Internal Validation Patrick Magrath¹, ², Stanislas Rapacchi², Fei Han¹, ², Peng Hu², J. Paul Finn², Daniel B. Ennis, ¹² ¹Bioengineering, University of California, Los Angeles, CA, United States; ²Radiology, University of California, Los Angeles, CA, United States

2735. 4D Flow Imaging Incorporating a Fluid Dynamics Model Anthony G. Christodoulou¹, Rebecca Ramb², Marius Menza², Jürgen Hennig², Zhi-Pei Liang¹ ¹Beckman Institute and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Department of Radiology, Medical Physics, University Medical Center, Freiburg, Baden-Württemburg, Germany

- 2736. Quantitative MRI Reveals Impaired Endothelial Function and Vascular Reactivity in Cigarette Smokers Michael Langham¹, Yongxia Zhou¹, Erica N. Chirico¹, Erin K. Englund¹, Emile R. Mohler², Jeremy F. Magland¹, Wensheng Guo³, Felix W. Wehrli¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Medicine, University of Pennsylvania, Philadelphia, PA, United States; ³Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
- 2737. 2D PC-MRI with 3D Flow Encoding Acquisitions Only (FEsO) for Accurate Slice Orientation-Independent Blood Flow Measurement

Da Wang¹,², Peng Hu¹,²

¹Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; ²Biomedical Physics Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, United States

2738. Hemodynamic Assessment Ofpulmonary Arteryon Smokerswith 3.0T Phase-Contrast MR Imaging: Initial Experience

Ruyi Bao¹, Qingwei Song², Ailian Liu², Zhiyong Li² ¹Radiology department, The First Affiliated Hospital of Dalian Medical University, DaLian, LiaoNing, China; ²Radiology department, The First Affiliated Hospital of Dalian Medical University, DaLian, LiaoNing, China

2739. Cerebrospinal Fluid (CSF) Flow in Pediatric Patients with Type I Chiari Malformation Compared to Control Subjects

Samir Sarda¹, Joshua J. Chern¹, Nilesh K. Desai², John Oshinski², ³ ¹Pediatric Neurosurgery Associates, Children's Healthcare of Atlanta, Atlanta, GA, United States; ²Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; ³Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States

2740. Robust Phase Contrast Correction with Parallel Imaging

Ana Beatriz Solana Sánchez¹, Piero Ghedin², Ek Tsoon Tan³, Christopher J. Hardy³, Anja Brau² ¹GE Global Research, Garching bei Muenchen, Bayern, Germany; ²GE Healthcare, Garching bei Muenchen, Bayern, Germany; ³GE Global Research, Niskayuna, NY, United States

2741. The More the Merrier? Finding the "Right" Temporal Resolution for Blood Velocity Measurements: A Multimodal Study

*Francesco Santini¹, Oliver Bieri¹, Tilman Schubert*² ¹Radiological Physics, University of Basel Hospital, Basel, Switzerland; ²Department of Radiology, University of Basel Hospital, Basel, Switzerland

2742. Free-Breathing Motion Corrected Phase Contrast Flow Quantification

Hui Xue¹, Peter Kellman², Kendall O'Brien³, Michael Schacht Hansen¹ ¹Magnetic Resonance Technology Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ²Medical Image and Signal Processing Program, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ³Children's National Medical Center, Washington, DC, United States

2743. Correlation Mapping Technique for Characterizing Pulsatile Cerebrospinal Fluid (CSF) Motion Obtained by Four Dimensional Velocity Mapping

Satoshi Yatsushiro¹, Akihiro Hirayama², Naokazu Hayashi², Mitsunori Matsumae², Nao Kajihara³, Afnizanfizal Abdullah⁴, Kagayaki Kuroda¹

¹Course of Information Science and Engineering, Tokai University, Hiratsuka, Kanagawa, Japan; ²Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan; ³Department of Radiology, Tokai University Hospital, Isehara, Knagawa, Japan; ⁴Faculty of Computer Science and Information Systems, Universiti Teknologi Malaysia, Johor, Malaysia

2744. Effects of Temporal Resolution and Velocity Encoding Strategies on Aortic Flow Measurement with Two-Dimensional Phase-Contrast MRI

Can Wu¹, ², Susanne Schnell², Michael Markl¹, ²

¹Biomedical Engineering, Northwestern University, Chicago, IL, United States; ²Radiology, Northwestern University, Chicago, IL, United States

2745. Hemodynamic Abnormalities Reflected by High OSI as a Potential Trigger to Atherosclerosis in Non-Dilated Lower Abdominal Aorta.

Masataka Sugiyama¹, Yasuo Takehara², Naoki Oishi², Marcus Alley³, Tetsuya Wakayama⁴, Atsushi Nozaki⁴, Hiroyuki Kabasawa⁴, Shuhei Yamashita¹, Harumi Sakahara¹

¹Radiology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; ²Radiology, Hamamatsu University Hospital, Shizuoka, Japan; ³Radiology, Stanford University School of Medicine, CA, United States; ⁴Applied Science Laboratory Asia Pacific, GE Healthcare Japan, Tokyo, Japan

2746. Accelerated 4D Phase Contrast UTE MRI

Abdallah G. Motaal¹, Verena Hoerr², Huiming Dong¹, Luc M. J. Florack³, Klaas Nicolay¹, Gustav J. Strijkers¹ ¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, North Brabant, Netherlands; ²Department of Clinical Radiology, University Hospital of Muenster, Muenster, Germany; ³Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, North Brabant, Netherlands

2747. Comparison of the Accuracy in 2D and 4D PCMRI to Evaluate Oscillating Flow in Small Diameters

Gwenael Page¹, Roger Bouzerar¹, Dominique Haye², Dong-Joo Kim³, Hack-Jin Lee³, Anne-Virginie Salsac⁴, Olivier Baledent¹

¹BioFlow Image, CHU Amiens, Amiens, France; ²PFT Innovaltech, France; ³Department of Brain and Cognitive Engineering, Korea; ⁴Laboratoire de Biomecanique et Bioengenierie, CNRS, France

2748. Validation of Intravascular Pressure Gradients Derived from Four-Dimensional Flow-Sensitive Magnetic Resonance: *In Vitro* Intraluminal Catheter Comparison Using an Elastic Phantom

Amir Awwad¹, Daniel Rodrieguez¹, Marcus Alley², Shane MacSweeney³, Sebastian Kozerke⁴, Dorothee P. Auer¹ ¹Sir Peter Mansfield Imaging Centre (SPMIC), University of Nottingham, Nottingham, United Kingdom; ²Radiological Sciences Laboratories, Lucas Centre for Imaging, Stanford University, Palo Alto, CA, United States; ³Vascular & Endovascular Surgery Dept., Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; ⁴Institute of Biomedical Engineering, University and ETH Zurich, Switzerland

2749. Evaluation of Cardiac Function in Chronic Kidney and Liver Disease

Charlotte E. Buchanan¹, ², Claire Grant², Eleanor F. Cox¹, Nick M. Selby², ³, Chris W. McIntyre⁴, ⁵, Maarten W. Taal², Susan T. Francis¹

¹SPMIC, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, Nottingham, United Kingdom; ³Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom; ⁴Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; ⁵Division of Medical Sciences and Graduate Entry Medicine, Royal Derby Hospital, Nottingham, United Kingdom

2750. The Effect of Resolution on Viscous Dissipation Measured with 4D-Flow MRI in Patients with Fontan Circulation: Evaluation Using Computational Fluid Dynamics

Merih Cibis¹, Kelly Jarvis², ³, Michael Markl², ³, Michael Rose², ⁴, Cynthia Rigsby², ⁴, Alex J. Barker², Jolanda J. Wentzel¹

¹Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands; ²Radiology, Northwestern University, Chicago, IL, United States; ³Biomedical Engineering, Northwestern University, Chicago, IL, United States; ⁴Medical Imaging, Ann& Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States

2751. Multi-Venc Measurement of Phase Contrast MRI for Improving Accuracy of Velocity Field

Hojin Ha¹, Guk Bae Kim², Jihoon Kweon², Young-Hak Kim³, Namkug Kim⁴, ⁵, Dong Hyun Yang⁴, Sang Joon Lee¹ ¹Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea; ²Asan Institute of Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ³Department of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ⁴Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ⁵Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

- **2752.** Improved Full Turbulence Tensor Quantification Using ICOSA6 Flow Encoding for Phase-Contrast MRI Henrik Haraldsson¹, Sarah Kefayati¹, Belén Casas Garcia², Jonas Lantz², Tino Ebbers², David Saloner¹ ¹University of California, San Francisco, San Francisco, CA, United States; ²University of Linkoping, Sweden
- 2753. Noninvasive Measurement of Intravascular Pressure Gradients Based on 3D Anatomy and 4D Flow Image Fusion

Hanieh Mirzaee¹, Anja Hennemuth¹ ¹Fraunhofer MEVIS, Bremen, Germany

2754. Steady-State 4D Flow Using Double Gating: A Healthy Volunteer Study

Stanislas Rapacchi¹, ², Yutaka Natsuaki³, Paul J. Finn², Gerhard Laub⁴, Daniel Ennis², Peng Hu² ¹CRMBM, Aix-Marseille University, Marseille, France; ²Radiology, UCLA, los angeles, CA, United States; ³Siemens, Los Angeles, CA, United States; ⁴Siemens, CA, United States

2755. Thoracic Aorta Flow Sensitive 4D MR Imaging in Hypertension

Lizhen Cao¹, Zhiyuan Dong¹, Aur ¹lien F. Stalder², Xiangying Du¹, Tianjing Zhang³, Andreas Greiser², Kuncheng Li¹ ¹The Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China, China; ²Siemens AG Healthcare Sector, Erlangen, Germany; ³Siemens MR Northeastern Collaboration, Beijing, China, China

Traditional Poster Diffusion - Simulation & Validation Exhibition Hall Thursday 13:30-15:30

2756. Monte Carlo Diffusion Simulations Disambiguate the Biophysical Mechanisms of Diffusion Hinderance Along Tracts

Michiel Kleinnijenhuis¹, Jeroen Mollink¹, Paul Kinchesh², Wilfred W. Lam¹, Vitaly L. Galinsky³, Lawrence R. Frank³, Sean C. Smart², Saad Jbabdi¹, Karla L. Miller¹

¹FMRIB Centre, University of Oxford, Oxford, United Kingdom; ²Department of Oncology, University of Oxford, Oxford, United Kingdom; ³Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, United States

2757. Theoretical Study of the Free Water Elimination Model Quinten Collier¹, Jelle Veraart¹, ², Ben Jeurissen¹, Arnold J. den dekker¹, ³, Jan Sijbers¹ ¹iMinds-Vision Lab, University of Antwerp, Antwerp, Belgium; ²Center for Biomedical Imaging, New York University Langone Medical Center, New York, United States; ³Delft Center for System and Control, Delft University of Technology, Delft, Netherlands

2758. Quantitative Evaluation of Eddy Current Distortion as Part of Quality Assurance Protocol for Multicenter DTI Trial at 3T

Xiaopeng Zhou¹, Ken Sakaie¹, Robert Fox¹, Mark Lowe¹ ¹The Cleveland Clinic, Cleveland, OH, United States

2759. Calibrating High Q-Value Diffusion MRI Methods with a Novel Anisotropic Phantom Michal Komlosh¹, ², Dan Benjamini³, ⁴, Alan S. Barnett³, Ferenc Horkay³, Peter J. Basser³ ¹NICHD/NIH, Bethesda, MD, United States; ²CNRM/USUHS, Bethesda, MD, United States; ³NICHD/NIH, MD, United States; ⁴The Iby and Aladar Fleischman Faculty of Engineering, Tel-Aviv University, Israel

2760. A Highly Standardized, Easy to Produce and Cost-Effective Isotropic PVP Diffusion Phantom for Quality Assessment and Multi-Center Studies *Pim Pullens¹*, *Piet Bladt¹*, *Paul M. Parizel¹* ¹Radiology, University Hospital Antwerp & University of Antwerp, Antwerp, Belgium

- 2761. Diffusion Tensor Imaging of Thirty-Five Anisotropic DTI Phantoms for CENTER-TBI Pim Pullens¹, Michael Bach², Bram Stieltjes³, Dirk Smeets⁴, Paul M. Parizel¹ ¹Radiology, University Hospital Antwerp & University of Antwerp, Antwerp, Belgium; ²Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ³Radiology, Universitätsspital Basel, Basel, Switzerland; ⁴icoMetrix, Leuven, Belgium
- 2762. Quantitative Quality Assurance Metrics in a High Angular Resolution Diffusion Imaging (HARDI) Multicenter Study Xiaopeng Zhou¹, Ken Sakaie¹, Josef Debbins², Robert Fox¹, Mark Lowe¹

395

¹The Cleveland Clinic, Cleveland, OH, United States; ²Barrow Neurological Institute, Phoenix, AZ, United States

2763. Efficient Gradient Calibration Based on Diffusion MRI

Irvin Teh¹, *Mahon L. Maguire¹*, *Jürgen E. Schneider¹* ¹ Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom

2764. Gradient Nonlinearity Correction on ADC Measurement: A Multi-Platform Study on Diffusion Weighted Imaging

*Chien-Lin Yeh*¹, ², *Ruoyun Ma*¹, ², *Brain Dale*³, *Thomas L. Chenevert*⁴, *Michael A. Boss*⁵, *Chen Lin*² ¹School of Health Sciences, Purdue University, West lafayette, IN, United States; ²Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States; ³Siemens Medical Solutions, NC, United States; ⁴Department of Radiology, University of Michigan Health System, MI, United States; ⁵Electromagnetics Division, National Institute of Standards and Technology, CO, United States

2765. Evaluation of MR Contrast in Cleared Tissue

Christoph Leuze¹, Raju Tomer², Qiyuan Tian¹, Emily Ferenczi², Dan Spielman¹, Michael Zeineh¹, Karl Deisseroth², ³, Jennifer A. McNab¹

¹Radiology, Stanford University, Stanford, CA, United States; ²Bioengineering, Stanford University, Stanford, CA, United States; ³Psychiatry and Behavioural Research, Stanford University, Stanford, CA, United States

2766. Quantification of 3D Microscopic Tissue Features in CLARITY Data for Comparison with Diffusion MRI

Qiyuan Tian¹, Christoph W.U. Leuze², Raju Tomer³, Emily Ferenczi⁴, Michael Zeineh², Karl Deisseroth⁴, ⁵, Jennifer McNab²

¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Bioengineering, Stanford University, Stanford , CA, United States; ⁴Bioengineering, Stanford University, Stanford, CA, United States; ⁵Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States

Traditional Poster Modeling & Microstructure Exhibition Hall Thursday 13:30-15:30

2767. In Vivo Mouse Brain NODDI Acquired at 9.4T Using Cryogenic Probe

Van Thu Nguyen¹, Farshid Sepehrband¹, Othman Alomair¹, Suyinn Chong², Karine Mardon¹, Quang Tieng¹, Graham Galloway¹, Nyoman Kurniawan¹

¹Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia; ²Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia

2768. ABTIN: ABsolute TIssue Density from NODDI, Focusing on Myelin Density

Farshid Sepehrband¹, ², Kristi A. Clark³, Jeremy F. P Ullmann¹, Nyoman D. Kurniawan¹, Gayeshika Leanage¹, David C. Reutens¹, Zhengyi Yang¹, ⁴

¹Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; ²Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; ³Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, United States; ⁴School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia

- 2769. MRI Measurement of Three-Dimensional Morphological Features of Axons Dan Benjamini^l, ², Peter J. Basser^l ¹National Institute of Health, Bethesda, MD, United States; ²Tel Aviv University, Tel Aviv, Israel
- 2770. In-Vivo Measurements of Axon Radius and Density in the Corpus Callosum Using Anomalous Diffusion from Diffusion MRI

Qiang YU¹, Viktor Vegh¹, Kieran O'Brien¹,², Thorsten Feiweier³, David Reutens¹
¹Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; ²Healthcare Sector, Siemens Ltd, Brisbane, Queensland, Australia; ³Siemens Healthcare, Erlangen, Germany

- 2771. Reconstruction of Size Distribution of Cellular-Sized Pores Using DWI with Clinically Applicable Gradients Yaniv Katz¹, Dan Benjamini¹, ², Peter J. Basser³, Uri Nevo¹
 ¹Biomedical Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel; ²Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States; ³Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States; ³Bunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
- 2772. Neurite Density Imaging (NDI): Rapid Acquisition and Estimation of the Intracellular Volume Fraction. Björn Lampinen¹, Danielle van Westen², ³, Freddy Ståhlberg¹, ², Jimmy Lätt³, Oskar Hansson⁴, Markus Nilsson⁵ ¹Dpt. of Medical Radiation Physics, Lund University, Lund, Sweden; ²Dpt. of Diagnostic Radiology, Lund University, Lund, Sweden; ³Imaging and function, Skane University Health Care, Lund, Sweden; ⁴Clinical Memory Research Unit, Clinical Sciences, Malmö, Lund University, Lund, Sweden; ⁵Lund University Bioimaging Center, Lund University, Lund, Sweden
- 2773. Cell Size, Intracellular Volume Fraction and Membrane Permeability Weighted Imaging: A Monte Carlo Study Damien J. McHugh¹, ², Penny L. Hubbard Cristinacce¹, ², Josephine H. Naish¹, ², Geoff J M Parker¹, ² ¹Centre for Imaging Sciences, The University of Manchester, Manchester, United Kingdom; ²Biomedical Imaging Institute, The University of Manchester, Manchester, United Kingdom
- 2774. ActiveAx Using Dictionary Learning with Electron Microscopy Validation Farshid Sepehrband¹, ², Daniel C. Alexander³, Nyoman D. Kurniawan¹, David C. Reutens¹, Zhengyi Yang¹, ⁴ ¹Centre for Advanced Imaging, University of Queensland, Brisbane, Queensland, Australia; ²Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; ³Department of Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom; ⁴School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, Australia
- 2775. Validation of Extra-Axonal Diffusion Spectrum Model with Frequency-Dependent Restriction Wilfred W. Lam¹, Bernard Siow², ³, Lauren Burcaw⁴, Daniel C. Alexander², ³, Mark F. Lythgoe², Karla L. Miller¹, Saad Jbabdi¹
 ¹FMRIB Centre, University of Oxford, United Kingdom: ²Centre for Advanced Biomedical Imaging, University College

¹FMRIB Centre, University of Oxford, Oxford, United Kingdom; ²Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ³Centre for Medical Image Computing, University College London, London, United Kingdom; ⁴Department of Radiology, New York University School of Medicine, New York, NY, United States

- 2776. Longitudinally Hindered Diffusion of In Vivo Human White Matter at Long Diffusion Time Wilfred W. Lam^l, Karla L. Miller^l, Michiel Kleinnijenhuis^l, Saad Jbabdi^l ¹FMRIB Centre, University of Oxford, Oxford, United Kingdom
- 2777. Low-Pass Filter Effect of Finite Gradient Duration on Time-Dependent Diffusion in the Human Brain Hong-Hsi Lee^l, Lauren M. Burcaw^l, Jelle Veraart^l, Els Fieremans^l, Dmitry S. Novikov^l ¹Center for Biomedical Imaging, NYU Langone Medical Center, New York, United States
- **2778.** Can We Make QSI Clinically Feasible? : A Study of Short Step QSI Koji Sakai¹, Jun Tazoe², Hajime Yokota², Thorsten Feiweier³, Kentaro Akazawa⁴, Hiroyasu Ikeno², Kei Yamada² ¹Kyoto University, Kyoto, Japan; ²Kyoto Prefectural University of Medicine, Kyoto, Japan; ³Siemens AG, Erlangen, Germany; ⁴Johns Hopkins University, MD, United States
- 2779. Cellular-Level Investigation of a Diffusion Time Dependent Contrast Enhancement Technique for Oncological Imaging

Jeremy J. Flint¹, ², Brian Hansen³, Stephen J. Blackband¹, ⁴

¹Neuroscience, University of Florida, Gainesville, FL, United States; ²UF McKnight Brain Institute, Gainesville, FL, United States; ³Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; ⁴National High Magnetic Field Lab, Tallahassee, FL, United States

2780. Oscillating Gradient Diffusion MRI as a Biomarker for Early Detection of Radiation Therapy Response Andre Bongers¹, Han Shen², Erika Davies¹, Eric Hau, ²³

¹Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia; ²Adult Cancer Program, University of New South Wales, Sydney, NSW, Australia; ³Cancer Care Centre, St George Hospital, NSW, Australia

2781. NODDI Analyses Can Demonstrate Differences of Tissue Microstructure Between Brain Metastasis and Meningioma

Yuichi Suzuki¹, Kouhei Kamiya¹, Masaki Katsura¹, Harushi Mori¹, Akira Kunimatsu¹, Akitake Mukasa², Katsuya Maruyama³, Yasushi Watanabe¹, Takeo Sarashina¹, Keniji Ino¹, Masami Goto¹, Jiro Sato¹, Keiichi Yano¹, Nobuhito Saito², Kuni Ohtomo¹

¹Department of Radiology, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan; ²Department of Neurosurgery, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan; ³Siemens Japan K.K., Tokyo, Japan

2782. Neurite Orientation Dispersion and Density Imaging Could Show the Microstractual Changes of Cortico-Spinal Tract in Patients with Idiopathic Normal Pressure Hydrocephalus

Kohei Tsuruta¹, ², Ryusuke Irie², Masaaki Hori², Issei Fukunaga¹, ², Yoshitaka Masutani³, Kuohei Kamiya⁴, Akira Nishikori¹, ², Mariko Yoshida², Michimasa Suzuki², Masakazu Miyajima², Madoka Nakajima², Koji Kamagata², Hajime Arat², Atsushi Nakanishi², Shigeki Aoki², Atsushi Senoo¹

¹Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan; ²Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan; ³Faculty of Information Sciences and Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Japan; ⁴Radiology, The University of Tokyo Hospital, Tokyo, Japan

2783. Diffusion Restriction Along Fibres: How Coherent Is the Corpus Callosum?

ismem merit award magna cum laude Jeroen Mollink¹, Michiel Kleinnijenhuis¹, Stamatios N. Sotiropoulos¹, Olaf Ansorge², Saad Jbabdi¹, Karla L. Miller¹ ¹Nuffield Department of Clinical Neurosciences, FMRIB centre, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Nuffield Department of Clinical Neurosciences, Neuropathology, University of Oxford, Oxford, Oxfordshire, United Kingdom;

2784. Can Diffusion Weighted Spectroscopy (DWS) in Brain White Matter Become a Viable Clinical Tool? a Re-Producibility/robustness Study at 3T and 7T

Ece Ercan¹, *Emily T. Wood²*, ³, *Andrew Webb¹*, *Daniel S. Reich²*, *Itamar Ronen¹* ¹C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Translational Neuroradiology Unit (NINDS), National Institutes of Health, Bethesda, MD, United States; ³Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States

2785. Estimation of Microstructural Properties of Fixed Corpus Callosum from OGSE Measurements

Wilfred W. Lam¹, Bernard Siow², ³, Sean Foxley¹, Steven A. Chance⁴, Rogier B. Mars¹, ⁵, Daniel C. Alexander², ³, Mark F. Lythgoe², Karla L. Miller¹, Saad Jbabdi¹

¹FMRIB Centre, University of Oxford, Oxford, United Kingdom; ²Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ³Centre for Medical Image Computing, University College London, London, United Kingdom; ⁴Division of Clinical Neurology, University of Oxford, Oxford, United Kingdom; ⁵Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom

2786. Investigating the Extracellular Contribution to the Double-Wave-Vector Diffusion-Weighted Signal Patricia Ulloa¹, Viktor Wottschel², Martin A. Koch¹ ¹Institute of Medical Engineering, University of Lübeck, Lübeck, Germany; ²Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom 2787. Simultaneous Determination of Pore Sizes and Direction in Tilted Microcapillaries by Angular-Double-Pulsed-Field-Gradient (D-PFG) NMR.

Darya Morozov¹, Leah Bar¹, Nir Sochen¹, Yoram Cohen¹ ¹The Raymond and Beverly Sackler Faculty of Exact Science, Tel-Aviv University, Tel-Aviv Yaffo, Israel

2788. Isotropic Diffusion Weighting Provides Insight on Diffusion Compartments in Human Brain White Matter In Vivo

Bibek Dhital¹, ², Elias Kellner, Marco Reisert, Valerij G. Kiselev ¹German Cancer Consortium (DKTK), Heidelberg, Baden, Germany; ²Department of Diagnostic Radiology, University Medical Center, Freiburg, Baden, Germany

- 2789. Multi-Exponential Characteristics of Acetate Diffusion-Weighted MRS Signal in the *In Vivo* Rat Brain at 14.1T Masoumeh Dehghani M.¹, Nicolas Kunz², Bernard Lanz³, Rolf Gruetter, ²³
 ¹Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland;
 ²Centre d'Imagerie Biomédicale, Ecole Polytechnique Fédérale de Lausanne, Vaud, Switzerland; ³Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Vaud, Switzerland;
- 2790. Investigation of NODDI Estimates at Two Different Magnetic Fields Along the Rat Corpus Callosum Nicolas Kunz¹, Stéphane Sizonenko², Petra Susan Hüppi², Rolf Gruetter¹, ³, Yohan van de Looij⁴ ¹CIBM-AIT, EPFL, Lausanne, Vaud, Switzerland; ²Division of Child Growth and Development, University of Geneva, Geneva, Switzerland; ³Department of Radiology, University of Geneva and Lausanne, Lausanne, Switzerland; ⁴University of Geneva, Division of Child Growth and Development, Geneva, Switzerland

Traditional Poster Diffusion Acquisition Exhibition Hall Thursday 13:30-15:30

2791. Minimizing Diffusion Encoding of Slice Selection in Stimulated Echo Imaging Paul Kinchesh¹, Michiel Kleinnijenhuis², Karla L. Miller², Sean C. Smart¹ ¹Department of Oncology, University of Oxford, Oxford, United Kingdom; ²FMRIB Centre, , Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom

- 2792. Confounding Effects of Imaging Gradients in Stimulated Echo: Case of Diffusion Exchange Imaging Samo Lasic¹, Henrik Lundell², Casper Kaae Sønderby², Daniel Topgaard³, Tim B. Dyrby² ¹CR Development, Lund, Skåne, Sweden; ²Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark; ³Physical Chemistry, Lund University, Lund, Skåne, Sweden
- 2793. A Crusher Gradient Scheme for Stimulated Echo Double Wave Vector Diffusion Imaging for 7T Human MRI Grant Kaijuin Yang¹, ², Christoph W.U. Leuze², Jennifer McNab² ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States
- 2794. Differential Diffusion Imaging (DDI): A Novel Scheme for Resolving Small Axon Diameters by a Set of Single PGSE Experiments. Yogesh Rathi¹, Samo Lasic², Tim Dyrby³, Carl-Fredrik Westin⁴ ¹Harvard Medical School, Boston, MA, United States; ²Colloidal Resource, Sweden; ³Danish Research Centre for Magnetic Resonance, Denmark; ⁴Harvard Medical School, MA, United States
- 2795. Characterizing Diffusion Anisotropy for Molecules Under the Influence of a Parabolic Potential: A Plausible Alternative to DTI

Maryam Afzali¹, Cem Yolcu², ³, Evren Ozarslan³

¹Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran; ²Department of Physics and Astronomy, Università di Padova, Padova, Italy; ³Department of Physics, Bogazici University, Istanbul, Turkey

2796. Real Diffusion Weighted MRI Enabling True Signal Averaging and Increased Diffusion Contrast

Cornelius Eichner¹, ², Stephen F. Cauley¹, Julien Cohen-Adad³, Harald E. Möller², Robert Turner², Kawin Setsompop¹, Lawrence L. Wald¹

¹Martinos Center for Biomedical Imaging, Boston, MA, United States; ²Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, SX, Germany; ³École Polytechnique, University of Montreal, Montreal, QC, Canada

2797. Reduced Blurring in Diffusion-Weighted EPI Using a Dual-Shot, Reverse-Gradient Sequence with Asymmetric K-Space Splicing and Inherent Distortion Correction

Wei Liu¹, Kun Zhou¹, David A. Porter²

¹Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Select, China; ²Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany

2798. Slice Acceleration Without Parallel Imaging for Diffusion-Weighted Echo-Planar Imaging of the Cervical Spinal Cord

Jürgen Finsterbusch¹,²

¹Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Neuroimage Nord, University Medical Centers Hamburg-Kiel-Lübeck, Hamburg-Kiel-Lübeck, Germany

2799. High Resolution Spine Diffusion Imaging Using 2D-Navigated Interleaved EPI with Shot Encoded Parallel-Imaging Technique (SEPARATE)

Xiaodong Ma¹, Zhe Zhang¹, Yishi Wang¹, Erpeng Dai¹, Hua Guo¹ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China

2800. Motion-Compensated Iterative Self-Consistent Parallel Imaging (SPIRiT) and Analytical Q-Ball Imaging Reconstruction for High Spatial and Angular Resolution Diffusion Imaging with Multi-Shot Multi-Channel Non-Cartesian Data

Congyu Liao¹, Hongjian He¹, Song Chen¹, Merry Mani², Mathews Jacob², Vincent Magnotta², Jianhui Zhong¹ ¹Center for Brain Imaging Science and Technology, Zhejiang University, Hangzhou, Zhejiang, China; ²University of Iowa, IA, United States

2801. Regularized SENSE+CG with a Fast and Stable Convergence for Reconstruction in Multi-Shot Navigator-Free Diffusion Weighted Spiral Imaging

Xiaodong Ma¹, Bida Zhang², Zhangxuan Hu¹, Trong-Kha Truong³, Allen W. Song³, Hua Guo¹ ¹Department of Biomedical Engineering, Tsinghua University, Beijing, China; ²Healthcare Department, Philips Research China, Shanghai, China; ³Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

2802. Enhancing Diffusion Weighted Image (DWI) Quality with Navigator-MUSE

Mark H. Sundman¹, Hing-Chiu Chang¹, Dan Xu², Arnaud Guidon³, Nan-kuei Chen¹ ¹Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States; ²Global MR Applications and Workflow, GE Healthcare, Waukesha, WI, United States; ³Global MR Applications and Workflow, GE Healthcare, Boston, MA, United States

2803. Evidence of Rotational Dependency on Standard DTI Measurements

Arturo Cardenas-Blanco¹, Julio Acosta-Cabronero¹, Martin Kanowski², Joern Kaufmann², Claus Tempelman², Stefan Teipel³, Peter J. Nestor¹

¹Brain plasticity and neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany; ²Department of Neurology, Otto-von-Guericke University, Magdeburg, Germany; ³German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany

magna cum laude

2804. Reproducibility and Variation in Diffusion Measures of the In Vivo and Ex Vivo Squirrel Monkey Brain

Kurt Schilling¹, Yurui Gao¹, Iwona Stepniewska², Ann S. Choe¹, Bennett A. Landman³, Adam W. Anderson¹ ¹VUIIS, Vanderbilt University, Nashville, TN, United States; ²Psychology, Vanderbilt University, Nasvhille, United States; ³Electrical Engineering, Vanderbilt University, Nashville, TN, United States

Traditional Poster Diffusion Processing & Analysis Exhibition Hall Thursday 13:30-15:30

2805. Why Should Standard Eddy-Current Distortion Correction Techniques Be Avoided Even for Moderately High B-Value Data?

Mark S. Graham¹, Ivana Drobnjak¹, Hui Zhang¹ ¹Department of Computer Science and Centre for Medical Image Computing, UCL, London, United Kingdom

2806. DTI Geometric Distortion Correction by Non-Linear Registration and Field Map Correction: Quantitative Analysis of DTI Tractography and Fractional Anisotropy

David Rotenberg¹, Peter Savadjiev², Yogesh Rathi², Aristolle Voineskos³, ⁴, M. Mallar Chakravarty⁵, ⁶ ¹Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; ²Laboratory of Mathematics and Imaging, Harvard Medical School, MA, United States; ³Centre for Addiction and Mental Health, Ontario, Canada; ⁴Department of Psychiatry, University of Toronto, Ontario, Canada; ⁵Cerebral Imaging Centre, Douglas Mental Health University Institute, Quebec, Canada; ⁶Department of Psychiatry, McGill University, Quebec, Canada

2807. Investigations on Motion Corruption for Diffusion Weighted Imaging from Population Analysis

Yishi Wang¹, Zhe Zhang¹, Xue Zhang¹, Xuesong Li¹, Sheng Xie², Chun Yuan¹, ³, Hua Guo¹ ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Department of Radiology, China-Japan Friendship Hospital, Beijing, China; ³Department of Radiology, University of Washington, Seattle, , WA, United States

2808. Ghost Artifact Removal Using Texture Analysis in Spinal Cord Diffusion Tensor Images Mahdi Alizadeh¹,², Pallav Shah², Devon M. Middleton¹,², Chris J. Conklin,²³, Sona Saksena², Scott H. Faro,¹², MJ Mulcahey⁴, Jürgen Finsterbusch⁵, Feroze B. Mohamed,¹² ¹Bioengineering, Temple university, Philadelphia, PA, United States; ²Radiology, Temple university, PA, United States; ³Electrical Engineering, Temple university, PA, United States; ⁴Occupational Therapy, Thomas Jefferson University, PA, United States; ⁵Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany

2809. Gibbs Ringing Removal in Diffusion MRI Using Second Order Total Variation Minimization Jelle Veraart¹, Florian Knoll¹, Jan Sijbers², Els Fieremans¹, Dmitry S. Novikov¹ ¹Center for Biomedical Imaging, NYU Langone Medical Center, New York, NY, United States; ²iMinds - Vision Lab, University of Antwerp, Antwerp, Belgium

2810. Connectome-Like Quality Diffusion MRI in 13 Minutes - Improving Diffusion MRI Spatial Resolution with Denoising

Samuel St-Jean¹, Guillaume Gilbert², Maxime Descoteaux¹ ¹Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Québec, Canada; ²MR Clinical Science, Philips Healthcare, Markham, Ontario, Canada

2811. Model-Based Diffusion Tensor Denoising with Tensor and FA Smoothness Constraints

Xi Peng^l, Shanshan Wang^l, Yuanyuan Liu^T, Dong Liang^l ¹Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China

2812. High Resolution IVIM Parameter Maps in the Presence of Rician Noise

Alexander M. Cerjanic¹, ², Joseph L. Holtrop¹, ², Bradley P. Sutton¹, ² ¹Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

2813. Denoising Diffusion-Weighted Images by Using Higher-Order Singular Value Decomposition

Xinyuan Zhang¹, Man Xu¹, Zhe Zhang², Hua Guo², Fan Lam³, Zhipei Liang³, Qianjin Feng¹, Wufan Chen¹, Yanqiu Feng¹

¹Biomedical Engineering, Guangdong Provincial Key Laborary of Medical Image Processing, Southern Medical University, Guangzhou, Guangdong, China; ²Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; ³Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

2814. Accelerated Microstructure Imaging Via Convex Optimization (AMICO) in Crossing Fibers

Anna Auria¹, Eric Canales-Rodriguez⁵, ³, Yves Wiaux⁴, Tim Dirby⁵, Daniel Alexander⁶, Jean-Philippe Thiran⁷, ⁸, Alessandro Daducci¹, ⁸

¹Signal Processing Lab (LTS5), EPFL, Lausanne, Switzerland; ²FIDMAG Germanes Hospitalàries, Barcelona, Spain; ³Centro de Investigacion Biomédica en Red de Salud Mental, CIBERSAM, Spain; ⁴Institute of Sensors, Signals and Systems, Heriot-Watt University, Edinburgh, United Kingdom; ⁵Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark; ⁶Department of Computer Science and Centre for Medical Image Computing, University College London, United Kingdom; ⁷Signal Processing Lab (LTS5), EPFL, Switzerland; ⁸University Hospital Center (CHUV) and University of Lausanne (UNIL), Switzerland

- 2815. Diffusion in Realistic Biophysical Systems May Lead to Aliasing Effects in Diffusion Spectrum Imaging Luis Miguel Lacerda¹, Jonathan I. Sperl², Marion I. Menzel², Gareth Barker¹, Flavio Dell'Acqua¹ ¹Department of Neuroimaging, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, Denmark Hill, United Kingdom; ²GE Global Research, Munich, BY, Germany
- 2816. A New Linear Transform Approach for Estimating ODFs from Multi-Shell Diffusion Data Divya Varadarajan¹, Justin P. Haldar¹ ¹Electrical Engineering, University of Southern California, Los Angeles, CA, United States

2817. Diffusion Spectrum Imaging from Undersampled Data Using Tensor Fitting Gabriel Varela-Mattatall⁷, Alexandra Tobisch², ³, Tony Stoecker², ⁴, Pablo Irarrazaval⁵, ⁶ ¹Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Santiago, Metropolitan District, Chile; ²German Center for Neurodegenerative Diseases, North Rhine-Westphalia, Germany; ³Department of Computer Science, University of Bonn, North Rhine-Westphalia, Germany; ⁴Department of Physics and Astronomy, University of Bonn, North Rhine-Westphalia, Germany; ⁵Biomedical Imaging Center, Pontificia Universidad Catolica de Chile, Metropolitan District, Chile; ⁶Department of Electrical Engineering, Pontificia Universidad Catolica de Chile, Metropolitan District, Chile

- 2818. Diffusion Textures: A Novel Way to Represent Brain Tissue Microstructure Marco Reisert¹, Katharina Göbel¹, Bibek Dhital¹ ¹Medical Physics, University Medical Center Freiburg, Freiburg, Germany
- 2819. In Vivo Measurement of Intra-Voxel Crossing Fibers in the Cerebral Cortex Using Diffusion MRI *Qiyuan Tian¹*, Christoph W.U. Leuze², Ariel Rokem³, Jennifer A. McNab² ¹Department of Electrical Engineering, Stanford University, Stanford, CA, United States; ²Department of Radiology, Stanford University, CA, United States; ³Psychology, Stanford University, Stanford, CA, United States
- **2820.** Diffusion Reconstruction by Combining Spherical Harmonics and Generalized Q-Sampling Imaging Sudhir K. Pathak¹, Catherine Fissell², Deepa Krishnaswamy¹, Sowmya Aggarwal¹, Rebecca Hachey², Walter Schneider²

¹Bioengineering, University Of Pittsburgh, Pittsburgh, PA, United States; ²Psychology, University Of Pittsburgh, Pittsburgh, PA, United States

2821. Reconstruction of Convex Polynomial Diffusion MRI Models Using Semi-Definite Programming Tom Dela Haije¹, Andrea Fuster¹, Luc Florack¹ ¹Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Noord-Brabant, Netherlands

2822. The Diffusion-ODF as a Band-Pass Filter - Selecting the Right Diffusion and Improving Angular Resolution Luis Miguel Lacerda¹, Jonathan I. Sperl², Marion I. Menzel², Gareth Barker¹, Flavio Dell'Acqua⁴ ¹Department of Neuroimaging, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, Denmark Hill, United Kingdom; ²GE Global Research, Munich, BY, Germany

2823. Analysis of Neuronal Fiber Orientation Distribution in Gray Matter and at Gray-White Matter Borders Using Spherical Deconvolution of High-Resolution (1.4 Mm)³ 7T DWI Data

Ralf Luetzkendorf⁴, Robin M. Heidemann², Thorsten Feiweier², Joerg Stadler³, Sebastian Baecke¹, Michael Luchtmann⁴, Johannes Bernarding¹

¹Department for Biometry and Medical Informatics, University of Magdeburg, Magdeburg, Germany; ²Siemens Healthcare, Erlangen, Germany; ³Leibniz Institute for Neurobiology, Magdeburg, Germany; ⁴Department of Neurosurgery, University of Magdeburg, Magdeburg, Germany

2824. Tissue Separation of Multi-Shell DW-MRI with a Physiologically Constrained Multi Compartment Model and Spherical Deconvolution

Alberto De Luca¹, ², Marco Castellaro¹, Stefania Montemezzi³, Massimiliano Calabrese⁴, Alessandra Bertoldo¹ ¹Department of Information Engineering, University of Padova, Padova, PD, Italy; ²Department of Neuroimaging, Scientific Institute, IRCCS "Eugenio Medea", Bosisio Parini, LC, Italy; ³Radiology Unit, Azienda Ospedaliera di Verona, Verona, Italy; ⁴Neurology Section, Department Of Neurological and Movement Sciences, University Hospital of Verona, Verona, Italy

2825. Novel Robust Segmentation of the Thalamic Nuclei – Validation on Healthy Subjects and Patients

Elena Najdenovska¹, ², Giovanni Battistella³, ⁴, Constantin Tuleasca¹, ⁵, Philippe Maeder⁴, Alessandro Daducci², ⁵, Jean-Philippe Thiran, ⁴⁵, Marc Levivier¹, Eleonora Fornari, ²⁴, Meritxell Bach Cuadra², ⁴ ¹Department of Clinical Neuroscience, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; ²Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland; ³Department of Neurology, Mount Sinai School of Medicine, NY, United States; ⁴Department of Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; ⁵Signal Processing Laboratory (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

- **2826.** LASADD: Linear Acceleration Method for Adapting Diffusion Dictionaries *Ana Karen Loya-Olivas¹, Mariano Rivera¹, Ramon Aranda¹* ¹Computer Science Department, Centro de Investigación en Matemáticas, Guanajuato, Mexico
- 2827. Multi-Kernel Estimation of Fiber Orientation Distribution Functions with L0-Norm Induced Group Sparsity Pew-Thian Yap¹, Yong Zhang², Dinggang Shen¹ ¹Department of Radiology, University of North Carolina, Chapel Hill, NC, United States; ²Department of Psychiatry & Behavioral Sciences, Stanford University, CA, United States
- **2828.** Construction of a High Angular Resolution Diffusion MRI Atlas Using the Human Connectome Project Data Fang-Cheng Yeh¹, Timothy Verstynen¹ ¹Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- **2829.** Recovering Detailed Intra-Voxel White Matter Structure by Using an Adaptive Diffusion Dictionary Ramon Aranda¹, Mariano Rivera¹, Alonso Ramirez-Manzanares¹

¹Computer Science Department, Centro de Investigación en Matemáticas, Guanajuato, Mexico

2830. Diffusivity Anomaly at Midline of Transcallosal Motor Pathway Ken Sakaie¹, Lael Stone¹, Lowe Mark¹

¹The Cleveland Clinic, Cleveland, OH, United States

Traditional Poster Diffusion Kurtosis

Exhibition Hall Thursday 13:30-15:30

2831. Improving Visibility of Tissue Heterogeneity in Diffusion Kurtosis Imaging Using Vector-Based Non-Local Means Filter

Minxiong Zhou¹, ², *Xu Yan³*, *Guang Yang²*

¹Shanghai Medical Instrumentation College, University of Shanghai for Science and Technology, Shanghai, China; ²Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China; ³MR Collaboration NE Asia, Siemens Healthcare, Shanghai, China

2832. Detection of Microstructural Changes of Nigra-Striatum Dopaminergic Neurons in Parkinson's Disease Using High Resolution DWI

Akira Nishikori¹, ², Kohei Tsuruta¹, ², Koji Kamagata², Taku Hatano², Fumi Okuzumi², Masaaki Hori², Michimasa Suzuki², Shigeki Aoki², Atsushi Seno¹

¹Tokyo Metropolitan University, Arakawa-ku, Tokyo, Japan; ²Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan

2833. The Mean Kurtosis Evaluation Measurements Show a Considerable Disparity from the Analytically Evaluated Ones for a Clinically Used Range of B-Values

Andrey Chuhutin¹, Ahmad Raza Khan¹, Brian Hansen¹, Sune Nørhøj Jespersen¹, ² ¹Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; ²Dept. of Physics and Astronomy, Aarhus University, Denmark

2834. Assessing Inter-Subject Variability of White Matter Response Functions Used for Constrained Spherical Deconvolution

Ben Jeurissen¹, Jan Sijbers¹, Jacques-Donald Tournier², ³ ¹iMinds-Vision Lab, Dept. of Physics, University of Antwerp, Antwerp, Belgium; ²Centre for the Developing Brain, King's College London, London, United Kingdom; ³Dept. of Biomedical Engineering, King's College London, London, United Kingdom

2835. Simultaneous Measurement of Cerebral Blood Volume and Diffusion Heterogeneity Using Two-Compartment-Model-Based Diffusion Kurtosis Imaging

Wen-Chau Wu¹, ², *Han-Min Tseng³*, *Ya-Fang Chen⁴* ¹Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan; ²Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan; ³Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan; ⁴Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan

2836. Non-Gaussian Diffusion in the Rat Spinal Cord In Vivo with Phase and Susceptibility Corrected Segmented EPI Elizabeth Zakszewski¹, Nathan Skinner², Shekar Kurpad¹, Brian Schmit³, Matthew Budde¹ ¹Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ²Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ³Biomedical Engineering, Marquette University, Milwaukee, WI, United States

2837. Cortical Profile of Mean Kurtosis and Fractional Anisotropy with High Resolution DKI and DTI of Macaque Brains

Austin Ouyang¹, Mihovil Pletikos², Nenad Sestan², Hao Huang¹ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Neurobiology, Yale University, CT, United States

2838. Probabilistic Fiber Tractography Using Neighborhood Information

Helen Schomburg¹, Thorsten Hohage¹, Christoph Rügge¹, Sabine Hofer², ³, Jens Frahm² ¹Institute for Numerical and Applied Mathematics, Georg-August-Universität Göttingen, Göttingen, Germany; ²Biomedizinische NMR Forschungs GmbH, Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany; ³Bernstein Center for Computational Neuroscience, Göttingen, Germany

2839. Parallel Global Tractography

Haiyong Wu¹, Dinggang Shen¹, Pew-Thian Yap¹ ¹Department of Radiology, University of North Carolina, Chapel Hill, NC, United States

- 2840. Surface Tracking from the Cortical Mesh Complements Diffusion MRI Fiber Tracking Near the Cortex Etienne St-Onge¹, Gabriel Girard¹, Kevin Whittingstall², Maxime Descoteaux¹ ¹Sherbrooke Connectivity Imaging Lab, Université de Sherbrooke, Sherbrooke, Québec, Canada; ²Department of Diagnostic Radiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Québec, Canada
- **2841.** Tract Specifics Without the Tears: Fully Automated Tract Segmentation and Quantification *Greg Parker¹*, *Mark Postans¹*, *Derek Jones¹* ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, South Glamorgan, United Kingdom
- 2842. Line Graphs and Vector Weights: A Novel Paradigm for Brain Network Analysis Peter Savadjiev¹, Carl-Fredrik Westin², Yogesh Rathi¹ ¹Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ²Laboratory for Mathematics in Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- 2843. Megatrack: A Fast and Effective Strategy for Group Comparison and Supervised Analysis of Large-Scale Tractography Datasets

Flavio Dell'Acqua¹, Luis Lacerda¹, Rachel Barrett¹, Lucio D'Anna², Stella Tsermentseli³, Laura Goldstein⁴, Marco Catani²

¹Dept of Neuroimaging, King's College London, London, United Kingdom; ²Dept of Forensic and Neurodevelopmental Sciences, King's College London, London, United Kingdom; ³Dept of Psychology, University of Greenwich, London, United Kingdom; ⁴Dept of Psychology, King's College London, United Kingdom

- **2844.** Cleaning Up the Mess: Tractography Outlier Removal Using Hierarchical QuickBundles Clustering Marc-Alexandre Côté¹, Eleftherios Garyfallidis¹, Hugo Larochelle¹, Maxime Descoteaux¹ ¹Université de Sherbrooke, Sherbrooke, Québec, Canada
- **2845.** Joint Brain Connectivity Estimation from Diffusion and Functional MRI Using a Network Flow Model Shu-Hsien Chu^l, Keshab K. Parhi^l, Christophe Lenglet^l ¹University of Minnesota, Minneapolis, MN, United States
- 2846. A Novel Threshold-Free Network-Based Statistical Method: Demonstration and Parameter Optimisation Using *In Vivo* Simulated Pathology

Lea Vinokur¹, ², Andrew Zaesky³, ⁴, David Raffelt¹, Robert Smith¹, Alan Connelly¹, ² ¹The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; ²Department of Florey Neurosciences, University of Melbourne, Melbourne, Victoria, Australia; ³Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia; ⁴Melbourne Neuropsychiatry Centre, University of Melbourne, Melbourne, Victoria, Australia

2847. Pushing the Limits of Ex-Vivo Diffusion MRI and Tractography of the Human Brain

Christian Wieseotte¹, ², Thomas Witzel³, Jon Polimeni³, Aapo Nummenmaa³, Bernhard Gruber⁴, Laura Schreiber¹, ⁵, Lawrence Wald⁶

¹Department of Radiology, Section of Medical Physics, Johannes Gutenberg University Medical Center, Mainz, Germany; ²Max Planck Graduate Center, Mainz, Germany; ³Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States; ⁴Department for Medical Engineering, University of Applied Sciences Upper Austria, Linz, Austria; ⁵Department of Cellular and Molecular Imaging, Comprehensive Heart Failure Center, Würzburg, Germany; ⁶Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, United States

- **2848.** Real Time Interaction with Millions of Streamlines *Francois Rheault¹, Jean-Christophe Houde¹, Maxime Descoteaux¹* ¹Université de Sherbrooke, Sherbrooke, Quebec, Canada
- 2849. Comparison of Diffusional Kurtosis Imaging (DKI) and Diffusion Spectrum Imaging (DSI) for White Matter Fiber Tractography

G. Russell Glenn¹, Jens H. Jensen², Yi-Ping Chao³, Chu-Yu Lee², Joseph A. Helpern⁴, Li-Wei Kuo⁵ ¹Neurosciences & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ²Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, SC, United States; ³Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan; ⁴Radiology, Neurosciences, & Center for Biomedical Imaging, Medical Univesity of South Carolina, SC, United States; ⁵Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County, Taiwan

- 2850. Investigating the Consequences for Connectomic Metrics of Methods to Correct Fibre Tracking Biases Chun-Hung Yeh¹, Robert Smith¹, Xiaoyun Liang¹, Fernando Calamante¹, ², Alan Connelly¹, ²
 ¹The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia; ²Department of Medicine, Austin Health and Northern Health, University of Melbourne, Melbourne, Victoria, Australia
- **2851.** Automatic Classification of Brain Tractography Data Esha Datta¹, Kesshi Jordan¹, Eduardo Caverzasi¹, Roland Henry¹ ¹University of California, San Francisco, San Francisco, CA, United States

2852. A Non-Rigid Fiber Registration Method for Tractography Level DTI Analysis

YISHAN LUO¹, LIN SHI², ³, WINNIE CW CHU¹, VINCENT CT MOK², Defeng Wang¹, ⁴ ¹Dept of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong; ²Dept of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong; ³Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong; ⁴Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong, Hong Kong, Hong Kong

2853. Recognition of Bundles in Healthy and Severely Diseased Brains

Eleftherios Garyfallidis¹, Marc-Alex Côté¹, Janice Hau², Guy Perchey², Laurent Petit², Stephen C. Cunnanne³, Maxime Descoteaux¹

¹Département d'informatique, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; ²GIN UMR5296 CNRS CEA, Université de Bordeaux, France; ³Research Center on Aging and Department of Medicine, Université de Sherbrooke, Quebec, Canada

2854. Studying White Matter Tractography Reproducibility Through Connectivity Matrices

Gabriel Girard¹, ², *Kevin Whittingstall³*, *Rachid Deriche⁴*, *Maxime Descoteaux¹* ¹Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Quebec, Canada; ²Project Team Athena -INRIA, Sophia Antipolis, France; ³Department of Diagnostic Radiology, Faculty of Medicine and Health Science, Université de Sherbrooke, Sherbrooke, Quebec, Canada; ⁴Project Team Athena - INRIA, Sophia Antipolis, France 2855. A New Fiber Bundle Pathway Identified with Diffusion MRI Fiber Tractography: Fact or Fantasy?

Anneriet M. Heemskerk¹, Michel Thiebaut de Schotten², Marco Catani², Silvio Sarubbo³, Laurent Petit⁴, Max Viergever¹, Derek K. Jones⁵, John Evans⁵, Tomáš Paus⁶, ⁷, Alexander Leemans¹

Chiara Hospital, Italy; ⁴GIN-UMR5296, CNRS, CEA,, University of Bordeaux, Bordeaux, France; ⁵Cardiff University, United Kingdom; ⁶Rotman Research institute, Baycrest, Toronto, Canada; ⁷Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada

- 2856. Creating a Child Brain Connectivity Atlas for Reliable Bundle Identification in Developmental Studies Sofya Kulikova¹, Jessica Dubois², Pamela Guevara³, Jean-François Mangin⁴, Catherine Chiron⁵, Nicole Chemaly⁵, Silvia Napuri⁶, Cvril Poupon⁷, Lucie Hertz-Pannier¹ ¹INSERM UMR1129, CEA/Neurospin/UNIACT, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; ²INSERM UMR992, CEA/Neurospin/UNICOG, Université Paris Sud, Paris, France; ³University of Concepción/Departamento de Ingeniería Eléctrica, Chile; ⁴CEA/Neurospin/UNATI, Gif-sur-Yvette, France; ⁵INSERM UMR1129, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; ⁶Pediatric Department, CHU Hôpital Sud, Rennes, France; ⁷CEA/Neurospin/UNIRS, Gif-sur-Yvette, France
- 2857. Optimising Connectivity-Based Fixel Enhancement: A Method for Whole-Brain Statistical Analysis of Diffusion MRI

David Raffelt¹, Robert E. Smith¹, J-Donald Tournier², ³, Gerard R. Ridgway⁴, ⁵, David Vaughan¹, ⁶, Alan Connelly¹, ⁷ ¹Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia; ²Centre for the Developing Brain, King's College London, London, United Kingdom; ³Department of Biomedical Engineering, King's College London, London, United Kingdom; ⁴FMRIB Centre, University of Oxford, Oxford, United Kingdom; ⁵UCL Institute of Neurology, University College London, London, United Kingdom; ⁶Department of Medicine, University of Melbourne, Melbourne, Australia; ⁷The Department of Florey Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia

2858. The Structural Connectivity Basis for Supporting Functional Connectivity in Mice

Joanes Grandjean¹, Zsófia Pröhle², Markus Rudin¹, ¹Institute for Biomedical Engineering, ETH and University Zurich, Zurich, Switzerland; ²Department of Physics, ETH Zurich, Zurich, Switzerland; ³Institute of Pharmacology and Toxicology, University Zurich, Zurich, Switzerland

2859. Longitudinal Change of Cortically Transcallosal Connectivity in Macaque Monkeys Revealed by Diffusion Spectrum Imaging Tractography

Yuguang Meng⁷, Xiaodong Zhang¹,² ¹Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States; ²Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States

- 2860. Improved In-Vivo Reconstruction of the Auditory Pathway Using High Spatial Resolution Diffusion MRI Tyler Rehbein¹. Michelle Moerel². Frederico De Martino³. An Vu². Essa Yacoub². Christophe Lenglet² ¹University of Minnesota Medical School, Minneapolis, MN, United States; ²Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ³Department of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- 2861. Combination of Super-Resolution Reconstruction Diffusion Tensor Imaging and Track Density Imaging Reveals Song Control System Connectivity in Zebra Finches

Gwendolyn Van Steenkiste¹, Julie Hamaide², Ben Jeurissen¹, Dirk H.J. Poot³, ⁴, Johan Van Audekerke², Jan Sijbers¹, Marleen Verhove²

¹iMinds-Vision Lab, University of Antwerp, Antwerp (Wilrijk), Antwerp, Belgium; ²Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; ³BIGR (Medical informatics and Radiology), Erasmus Medical Center Rotterdam, Rotterdam, Netherlands; ⁴Imaging Science and Technology, Delft University of Technology, Delft, Netherlands

Traditional Post	er		
Diffusion Outsid	e the B	raiı	1
T		1	10

Exhibition Hall Thursday 13:30-15:30

2862. Perfusion Fraction Tensor Imaging of the Kidney

Fabian Hilbert¹, Simon Veldhoen¹, Tobias Wech¹, Henning Neubauer¹, Thorsten Bley¹, Herbert Köstler¹ ¹Departement of Radiology, University of Würzburg, Würzburg, Germany

2863. Diffusion Weighting Bias Correction for Quantitative IVIM Metrics in Kidney

Dariya Malyarenko^T, Yuxi Pang¹, Julien Senegas², Marko Ivancevic³, Brian D. Ross¹, Thomas L. Chenevert¹ ¹Radiology, University of Michigan, Ann Arbor, MI, United States; ²Philips Research Laboratories, Hamburg, Germany; ³Philips Healthcare, Best, Netherlands

2864. Use of a Multi-Exponential Attenuation Model for Sequential Registration of Diffusion Weighted Imaging in the Abdomen and Pelvis

Matthew R. Orton¹, Neil Peter Jerome¹, Evangelia Kaza¹, David J. Collins¹, Dow-Mu Koh², Bernd Kuehn³, Martin O. Leach¹

¹Radiotherapy and Imaging Department, Institute of Cancer Research, Sutton, Surrey, United Kingdom; ²Department of Radiology, Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ³Siemens Medical Solutions, Erlangen, Germany

2865. Intravoxel Incoherent Motion Imaging of Renal Fibrosis: A Murine Model Study of Unilateral Ureteral Obstruction

Tong San Koh¹, Septian Hartono¹, Tiffany P. Hennedige¹, Yet Yen Yan¹, In Chin Song², Lin Zheng², Wing Sum Lee², Helmut Rumpel³, Laurent Martarello⁴, James B.K. Khoo¹, Dow-Mu Koh⁵, Choon Hua Thng¹ ¹National Cancer Centre Singapore, Singapore, Singapore; ²SingHealth Experimental Medicine Centre, Singapore, Singapore; ³Singapore General Hospital, Singapore, Singapore; ⁴Roche-Singapore Translational Medicine Hub, Singapore, Singapore; ⁵Royal Marsden Hospital, Surrey, United Kingdom

- 2866. Double-Pulsed Gradient Spin-Echo from DTI in the Fibromuscular Stroma of the Prostate Scott A. Willis¹, Timothy Stait-Gardner¹, William S. Price¹, Roger Bourne² ¹Nanoscale Organisation and Dynamics Group, School of Science and Health, University of Western Sydney, Sydney, NSW, Australia; ²Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
- 2867. Comparison of Seven Compartment Models of Diffusion in Prostate Tissue

Sisi Liang¹, Eleftheria Panagiotaki², Peng Shi³, Roger Bourne⁴ ¹College of Engineering and Science, Victoria University, Melbourne, Vic, Australia; ²Centre for Medical Image Computing, University College London, London, England, United Kingdom; ³College of Engineering and Science, Victoria University, Melbourne, Vic, Australia; ⁴Discipline of Medical Radiation Sciences, Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia

2868. Intra-Voxel Incoherent Motion Modelling of Diffusion Weighted MRI Data Is Feasible in 5 Minutes Scan Time Oliver Gurney-Champion¹,², Martijn Froeling³, Remy Klaassen⁴,⁵, Hanneke W.M. van Laarhoven⁴, Jaap Stoker¹, Arjan Bel², Aart J. Nederveen¹

¹Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Radiation Oncology, Academic Medical Center, Amsterdam, Netherlands; ³Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Department of Medical Oncology, Academic Medical Center, Amsterdam, Netherlands; ⁵Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Oncology and Radiobiology, Academic Medical Center, Amsterdam, Netherlands; ⁶Laboratory for Experimental Center, Amste

2869. Multi-Site Liver Tumour ADC Reproducibility at 1.5 T Ryan Pathak¹, Hossein Ragheb², Neil A. Thacker², David Morris², Alan Jackson¹ ¹The Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; ²Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom

- 2870. Longitudinal Reproducibility of Quantitative Diffusion Weighted MRI Improved by Spatially Constrained Probability Distribution Model of Incoherent Motion (SPIM) Sila Kurugol¹, Moti Freiman¹, Onur Afacan¹, Sean Clancy¹, Simon K. Warfield¹ ¹Radiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
- 2871. Changes in Tissue Components with Distinct Diffusivities Rather Than 'cellularity' Is the Major Contributor to Clinically Observed Variations of ADC in Prostate Tissue

Aritrick Chatterjee¹, Geoff Watson², Esther Myint³, Paul Sved², Mark McEntee¹, Roger Bourne¹ ¹Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia; ²Royal Prince Alfred Hospital, Sydney, New South Wales, Australia; ³Douglass Hanly Moir Pathology, Sydney, New South Wales, Australia

2872. Optimised VERDICT MRI Protocol for Prostate Cancer Characterisation

Eleftheria Panagiotaki¹, Andrada Ianus¹, Edward Johnston², Rachel W. Chan², Nicola Stevens², David Atkinson², Shonit Punwani², David J. Hawkes¹, Daniel C. Alexander¹ ¹Centre for Medical Image Computing, University College London, London, United Kingdom; ²Centre for Medical Imaging, University College London, London, United Kingdom

2873. Title: Importance of T2 Correction in Intravoxel Incoherent Motion (IVIM) Based Quantitation of the Necrosed Region Post Thermal Ablation of Uterine Fibroid

Feifei Qu¹, Ramkumar Krishnamurthy², Pei-Herng Hor¹, ³, John Fisher⁴, Claudio Arena⁴, Debra Dees⁴, Raja Muthupillar⁴

¹Physics Department, University of Houston, Houston, TX, United States; ²Radiology Department, Texas Children's Hospital, Houston, TX, United States; ³Texas Center for Superconductivity, Houston, TX, United States; ⁴Diagnostic and Interventional Radiology, St. Luke's Medical Center, Houston, TX, United States

2874. Histogram Analysis of Apparent Diffusion Coefficient Maps Reveals Differences Among the Different Types of Uterine Fibroids Based on T2WIs

Hao Fu¹, Chenxia Li¹, Rong Wang¹, Jianxin Guo¹, Jian Yang¹ ¹Department of Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China

2875. Characterization of High Performance Human Gradient System for Spin Echo Cardiac DTI

ismem merit award magna cum laude Konrad Schieban¹, Timothy G. Reese², Christian T. Stoeck¹, David E. Sosnovik², Sebastian Kozerke¹, ³, Choukri Mekkaoui²

¹Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland; ²Radiology, Harvard Medical School, Massachusetts General Hospital, Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³Division of Imaging Sciences, King's College London, London, United Kingdom

2876. Evaluation of Diffusion-Weighted Imaging Apparent Diffusion Coefficient Histogram for the Differential Diagnosis Between Lipoma and Liposarcoma

Haiyan Sun¹, Shaowu Wang², Ziheng Zhang³, Weisheng Zhang¹, Lina Zhang¹, Minting Zheng¹, Meiyu Sun¹, Qingwei Song¹, Dianxiu Ning¹

¹Radiology department, The first hospital affiliated to Dalian Medical University, Dalian, Liaoning, China; ²Radiology department, The second hospital affiliated to Dalian Medical University, Dalian, Liaoning, China; ³GE Healthcare China, Beijing, Beijing, China

2877. Investigation of the Presence and Repeatability of Intravoxel Incoherent Motion (IVIM) in Breast Parenchyma of Healthy Volunteers Using an Optimised B-Value Scheme

Nina L. Purvis¹, Peter Gibbs², Martin D. Pickles², Lindsay W. Turnbull² ¹Centre for MR Investigations, Hull York Medical School, Hull, East Yorkshire, United Kingdom; ²Centre for MR Investigations, University of Hull at HYMS, Hull, East Yorkshire, United Kingdom **2878.** The Use of Quantitative T2 to Enhance Computed Diffusion Weighted Imaging Lin Cheng¹, Matthew D. Blackledge¹, David J. Collins¹, Nina Tunariu¹, Martin O. Leach¹, Dow-Mu Koh¹ ¹Institute of Cancer Research, Sutton, London, United Kingdom

Diffusio	n Seq	uences & Sampling
Exhibition	Hall	Monday 10:45-11:45
Computer 1	2879.	In Vivo Diffusion Tensor Imaging and Tractography of Human Brain at Submillimeter Isotropic Resolution on a Clinical MRI Scanner
		Mark Sundman ¹ , Hing-Chiu Chang ¹ , Laurent Petit ² , Shayan Guhaniyogi ¹ , Christopher Petty ¹ , Allen Song ¹ , Nan-kuei
		Chen ¹
		¹ Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States; ² Groupe d'Imagerie
		Neurofonctionnelle (GIN) - UMR5296, CNRS, CEA, Universite de Bordeaux, Bordeaux, France
Computer 2	2880.	Diffusion MRI of Crossing Fibers Combining Double Pulsed Field Gradient (DPFG) Eccentricity and Q-Ball
•		Imaging
		Thomas Witzel ¹ , Aapo Nummenmaa ¹ , Qiuyun Fan ¹ , Susie Yi Huang ¹ , Lawrence Leroy Wald ¹ , ²
		Charlestown, MA, United States: ² Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States
Computer 3	2881.	Eddy Current Compensation for Double Wave Vector Diffusion MRI
-		Lars Müller ¹ , Andreas Wetscherek ¹ , Frederik Bernd Laun ¹
		¹ Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Computer 4	2882.	Accelerated Motion-Robust Non-Cartesian Multi-Shot Diffusion-Weighted Imaging with Reconstruction in the
•		Image Space
		Benoit Scherrer ¹ , Ali Gholipour ¹ , Onur Afacan ¹ , Sanjay P. Prabhu ¹ , Simon K. Warfield ¹
		'Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
Computer 5	2883.	Variable Sample Density at High B-Values for Radial Diffusion Spectrum Imaging Improves Angular
		Resolution
		Steven Baete', ', Fernando Emilio Boada', '
		for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, United States
	••••	
Computer 6	2884.	Comparison of NOGSE and PGSE Sequences for Axon Diameter Estimation William Parrault ¹ Tanguy Duyal ¹ Julian Cohon Adad ^{1 2}
		¹ Polytechnique de Montreal, Montreal, Quebec, Canada; ² Functional Neuroimaging Unit, CRIUGM, University of Montreal,
		Montreal, Quebec, Canada
Computer 7	2885	Chost and Distortion Correction in DW-FPI Using Phase I abaling Approach
Computer 7	2005.	Victor B. Xie ¹ , ² , Ed X. Wu ¹
		¹ The University of Hong Kong, Laboratory of Biomedical Imaging and Signal Processing, Hong Kong SAR, China; ² The University
		of Hong Kong, Department of Electrical and Electronic Engineering, Hong Kong SAR, China
Computer 8	2886.	Diffusion-Weighted Matched-Phase Adiabatic Spin Echo (DW-MASE) Sequence for Ultrahigh Field Brain
		Diffusion-Weighted Imaging
		Hadrien Dyvorne ¹ , Rafael O'Halloran ¹ , Priti Balchandani ¹
		Radiology, Icanii School of Medicine at Mount Sinal, New York, NY, United States
Computer 9	2887.	Generalized Blipped CAIPI for Interleaved EPI Diffusion Weighted Imaging
		Erpeng Dai ¹ , Zhe Zhang ¹ , Xiaodong Ma ¹ , Bida Zhang ² , Bin Xie ² , Chun Yuan ¹ , ³ , Hua Guo ¹
		Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China: ² Healthcare Department, Philips Research China, Shanghai, China: ³ Department of Radiology, University of Washington
		Seattle, WA, United States

Electronic Poster

Computer 10 2888. The High Resolution 3D Rat Spine Diffusion Study by Utilizing Wideband MRI Technique Po Wei Cheng¹,², Yung Hao Chuang¹,², Yun An Huang², Edzer L. Wu², Tzi Dar Chiueh, Jyh Horng Chen¹,²</sup>

¹Graduate Institute of Biomedical Engineering and Bioinformatics,National Taiwan University, Taipei, Taiwan, Taiwan; ²Interdisciplinary MRI/MRS Lab, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan

Computer 11 2889. Feasibility of *In Vivo* Dynamic Diffusion Tensor Imaging on a 3T Clinical Scanner with a Multi Echo Sequence and Compressed Sensing Reconstruction

Steven Baete¹, ², Jose Raya², Florian Knoll¹, ², Gene Young Cho², ³, Prodromos Parasoglou¹, ², Ryan Brown¹, ², Tobias Block¹, ², Ricardo Otazo¹, ², Jenny Bencardino, Eric Sigmund¹, ²

¹Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ²Center for Biomedical Imaging, Dept. of Radiology, NYU School of Medicine, New York, NY, United States; ³Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, United States

Computer 12 2890. Undersampled Simultaneous Multi-Slice Readout-Segmented EPI Diffusion Acquisition with a Patch-Based Low Rank Constraint

Ganesh Adluru¹, Bradley D. Bolster Jr², Robert Frost³, Lorie Richards⁴, Edward V.R. DiBella¹ ¹Radiology, University of Utah, Salt Lake City, UT, United States; ²Siemens Healthcare, Salt Lake City, UT, United States; ³FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; ⁴Occupational Therapy, University of Utah, Salt Lake City, UT, United States

Computer 13 2891. Investigation of the Golden-Angle Radial DESS Sequence for Diffusion-Weighted MRI Xia Zhao^l, Michael Langham^l, Cheng Li^l, Hee Kwon Song^l ¹Laboratory for Structural NMR Imaging, University of Pennsylvania, Philadelphia, PA, United States

Computer 14 2892. Novel Single and Multiple Shell Gradient Sampling Schemes for Diffusion MRI Using Spherical Codes Jian Cheng¹,², Dinggang Shen³, Pew-Thian Yap³, Peter Basser¹ ¹Section on Tissue Biophysics and Biomimetics (STBB), PPITS, NICHD, NIH, Bethesda, MD, United States; ²The Intramural Research Program (IRP), NIBIB, Bethesda, MD, United States; ³Department of Radiology and BRIC, The University of North Carolina at Chapel Hill, NC, United States

Computer 15 2893. Diffusion Weighted Imaging Using Multi-Shot Spiral with a Simultaneous Multi-Slice Excitation Joseph L. Holtrop¹, ², Bradley P. Sutton¹, ² ¹Bioengineering, University of Illinois Champaign-Urbana, Urbana, IL, United States; ²Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Computer 16 2894. Effects of Maximal B Value and Sampling Interval on Water Displacement Profile in Q-Space Imaging Ping-Huei Tsai¹, ², Hua-Shan Liu, ²³, Hsiao-Wen Chung⁴, Chia-Feng Lu², Fei-Ting Hsu², Li-Chun Hsieh², Cheng-Yu Chen¹, ² ¹Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; ²Imaging Research Center and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan;

Center and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan; ³Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan; ⁴Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan

Computer 17 2895. Optimisation of Single-Shell HARDI for Neonatal Imaging Jacques-Donald Tournier¹, Emer Hughes¹, Nora Tusor¹, A. David Edwards¹, Joseph V. Hajnal¹ ¹Centre for the Developing Brain, Kings College London, London, United Kingdom

Computer 18 2896. Joint Reconstruction of Quantitative T₂ and ADC Maps in the Brain Using Spin Echo Diffusion Weighted Imaging Eric Aliotta¹,², Daniel B. Ennis¹,²

¹Radiological Sciences, UCLA, Los Angeles, CA, United States; ²Biomedical Physics IDP, UCLA, Los Angeles, CA, United States

Computer 19 2897. Data-Driven Optimisation of Multi-Shell HARDI Jacques-Donald Tournier¹, ², Emer Hughes¹, ³, Nora Tusor¹, ³, Stamatios N. Sotiropoulos⁴, Saad Jbabdi⁴, Jesper Andersson⁴, Daniel Rueckert⁵, A. David Edwards¹, ³, Joseph V. Hajnal¹, ² ¹Centre for the Developing Brain, Kings College London, London, United Kingdom; ²Department of Biomedical Engineering, Kings College London, London, United Kingdom; ³Department of Perinatal Imaging & Health, Kings College London, London, United

Kingdom; ⁴FMRIB Centre, University of Oxford, Oxford, United Kingdom; ⁵Department of Computing, Imperial College London, London, United Kingdom

Computer 20 2898. Acquisition Strategies for Highly Accelerated Diffusion Weighted Imaging Pavan Poojar¹, Bikkemane Jayadev Nutandev¹, Arush Honnedevasthana Arun¹, Antharikshanagar Bellappa Sachin Anchan¹, Ramesh Venkatesan², Sairam Geethanath¹ ¹Dayananda Sagar Institutions, Bangalore, karnataka, India; ²Wipro-GE Healthcare, karnataka, India

- Computer 21 2899. Quantitative Evaluation of Rotating Short-Axis (RSA) EPI for High Spatial Resolution Diffusion MRI Yu-Chien Wu¹ ¹Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- Computer 22 2900. Retrospective Motion Correction in Diffusion-Weighted Imaging by Using Optimum Order for Measuring Diffusion Directions Suguru Yokosawa¹, Hisaaki Ochi¹, Yoshitaka Bito²

¹Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo, Japan; ²Hitachi Medical Corporation, Kashiwa, Chiba, Japan

- Computer 23 2901. Comparison of Three Different Diffusion Weighted Imaging Acquisitions of the Upper Abdomen Between 1.5 T and 3 T Zhuo Shi^l, Xinming Zhao^l, Han Ouyang^l, Lizhi Xie² ¹Department Of Imaging Diagnosis, Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union, Beijing, China; ²GE Healthcare China, Beijing, China
- Computer 24 2902. A Framework to Calculate the IVIM Signal for Different Diffusion Gradient Profiles Andreas Wetscherek¹, Frederik Bernd Laun¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Electronic Poster

Com

Diffusion: Non Gaussian

Exhibition Hall Monday 10:45-11:45

puter 25	2903.	Influence of Blood Fl	ow on Intracranial '	Water Fluctuation:	A Phantom Study
-					

Shota Ishida¹, Tosiaki Miyati¹, Naoki Ohno¹, Tomohiro Chigusa², Hikari Usui³, Masaaki Hattori⁴, Yuki Hiramatsu⁴, Satoshi Kobayashi⁵, Toshifumi Gabata⁵

¹Division of Health sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; ²Okazaki City Hospital, Okazaki, Aichi, Japan; ³Yokohama City University Hospital, Yokohama, Kanagawa, Japan; ⁴School of Health sciences, College of Medical, Pharmaceutical and Health sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; ⁵Department of Radiology, Kanazawa University School of Medicine, Kanazawa, Ishikawa, Japan

Computer 26 2904. Identification of the Vascular and Avascular Zones of Human Meniscus with Intravoxel Incoherent Motion Reduced FOV Diffusion Weighted MR Imaging Tan Guo¹, Dandan Zheng², Min Chen¹, Juan Chen¹

¹Department of Radiology, Beijing Hospital, Beijing, China; ²GE Healthcare, China, Beijing, China

Computer 27 2905. A Time Efficient IVIM Analysis Method Using Fuzzy Clustering Algorithm Kaining Shi¹, He Wang², Guang Cao³, Ying Qi⁴, Xiaoming Wang⁴ ¹Imaging Systems Clinical Science, Philips Healthcare (China), Beijing, China; ²Philips Research (China), Shanghai, China; ³Imaging Systems Clinical Science, Philips Healthcare (China), Hongkong, China; ⁴Radiology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China

Computer 28 2906. Biexponential Modeling of the Diffusion Weighted MRI Signal in a U87 Brain Tumor Model: A Comparison of Least Squares and Bayesian Modeling Alexander D. Cohen¹, Kimberly R. Pechman¹, Mona Al-Gizawiy¹, Kathleen M. Schmainda¹, ²

¹Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States

Computer 29 2907. Anomalous Diffusion Stretched Exponential γ-Imaging Model Provides New Information on Spinal Cord Microstructure Alessandra Caporale¹, ², Marco Palombo, ²³, Silvia Capuani², ⁴ ¹Physics Department, University 'Sapienza', Rome, ITALY, Italy, ²Physics Department, CNR-IPCF Roma Sapienza University of Rome, Rome, ITALY, Italy; ³CEA/DSV/12BM/MIRCen, Fontenay-aux-Roses, FRANCE, France; ⁴Center for Life NanoScience@LaSapienza,Istituto Italiano di Tecnologia, Rome, ITALY, Italy

Computer 30 2908. A Statistically Stationary Anomalous Diffusion Model for Diffusion Weighted Imaging Yang Fan¹, Bing Wu², Jia-Hong Gao¹ ¹Center for MRI Research, Peking University, Beijing, China; ²GE Healthcare, Beijing, China

- Computer 31 2909. Using Continuous Time Random Walk Diffusion to Quantify the Progression of Huntington's Disease Allen Q. Ye¹, Rodolfo Gatto¹, Luis Colon-Perez², Thomas Mareci², Gerardo Morfini¹, Richard Magin¹ ¹University of Illinois at Chicago, Chicago, IL, United States; ²University of Florida, Gainesville, FL, United States
- Computer 32 2910. Reliability of the Diffusion Indexes Derived from Fast Diffusion Kurtosis Imaging *Wen-Chau Wu^l*, ² ¹National Taiwan University, Taipei, Taiwan; ²Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- Computer 33 2911. Comparison of Results Obtained by Fitting DWI Data to a Model Including IVIM and Kurtosis Using Nonlinear Least Squares and Maximum Likelihood Estimation Keith Hulsey¹, Matthew Lewis¹, Yin Xi¹, Qing Yuan¹, Robert Lenkinski¹ ¹Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States

Computer 34 2912. Discrimination Between Tumor-Infiltration and Vasogenic Edema Using Non-Gaussian Diffusion MRI Technoques: Preliminary Experience Kouhei Kamiya¹, Yuichi Suzuki², Shota Tanaka³, Akitake Mukasa³, Masaaki Hori⁴, Harushi Mori¹, Akira Kunimatsu¹, Nobuhito Saito³, Shigeki Aoki⁴, Kuni Ohtomo¹ ¹Department of Radiology, The University of Tokyo, Bunkyo, Tokyo, Japan; ²Department of Radiological Technology, The University of Tokyo Hospital, Bunkyo, Tokyo, Japan; ³Department of Neurosurgery, The University of Tokyo, Bunkyo, Tokyo, Japan; ⁴Department of Radiology, Juntendo University School of Medicine, Bunkyo, Tokyo, Japan

Computer 35 2913. Diffusion Kurtosis Imaging of Fibrotic Mouse Kidneys Birgitte Fuglsang Kjølby¹, Steen Jakobsen², Jonas Brorson Jensen², Lea Hougaard Pedersen³, Louise M. Rydtoft¹, Sune N. Jespersen¹, ⁴, Brian Hansen¹ ¹CFIN, Aarhus University Hospital, Aarhus, Denmark; ²Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark; ³Research Lab. for Biochemical Patology, Aarhus University Hospital, Aarhus, Denmark; ⁴Dept. of Physics and Astronomy, Aarhus University, Aarhus, Denmark

Computer 36 2914. Diffusion-Tensor-Based Method for Robust and Accurate Estimation of Axial and Radial Diffusional Kurtosis Yasuhiko Tachibana¹, ², Takayuki Obata¹, Hiroki Tsuchiya¹, Tokuhiko Omatsu¹, Riwa Kishimoto¹, Koji Kamagata³, Masaaki Hori³, Shigeki Aoki³, Tomio Inoue² ¹Research Center of Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan; ²Department of Radiology, Yokohama City University, Yokohama, Kanagawa, Japan; ³Department of Radiology, Juntendo University, Tokyo, Japan

Computer 37 2915. Inner Field of View Diffusion Kurtosis Imaging (DKI) of the Pediatric Spinal Cord

Chris J. Conklin¹, ², Devon M. Middleton, ²³, Jürgen Finsterbusch⁴, Mahdi Alizadeh, ²³, Scott H. Faro, ²³, Pallav Shah², Laura Krisa⁵, ⁶, Rebecca Sinko⁶, Joan Z. Delalic¹, MJ Mulcahey⁶, Feroze B. Mohamed, ²³ ¹Electrical Engineering, Temple University, Philadelphia, PA, United States; ²Radiology, Temple University, Philadelphia, PA, United States; ³Bioengineering, Temple University, Philadelphia, PA, United States; ⁴Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁵Physical Therapy, Thomas Jefferson University, Philadelphia, PA, United States; ⁶Occupational Therapy, Thomas Jefferson University, Philadelphia, PA, United States

- Computer 38 2916. Diffusion Complexity of Gray Nucleus in Alzheimer' S Disease: An Initial Diffusion Kurtosis Imaging Study Weiwei Wang¹, Rui Hu¹, Ziheng Zhang², Qingwei Song¹, Ailian Liu¹, Yanwei Miao¹ ¹Radiology Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; ²GE Healthcare China, Beijing, China
- Computer 39 2917. Whole Body Diffusion Weighted Imaging in Multiple Myeloma; a Comparison of Gaussian and Non-Gaussian Diffusion Models for Quantitative Derived Parameters Arash Latifoltojar¹, Margaret Hall-Craggs², Alan Bainbridge², Stuart Taylor¹, Nikos Dikaios¹, Kwee Yong¹, Neil Rabin², Shonit Punwani¹

¹University College London, London, United Kingdom; ²University College London Hospital, London, United Kingdom

Computer 40 2918. Effect of Axonal Structure to DKI White Matter Parameters - A Monte Carlo Simulation Study Jordan Kovar¹, Rao Gullapalli², Jiachen Zhuo² ¹Physics & Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, United States; ²Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States

Computer 41 2919. Modeling of Brain Microstructure by Kurtosis Analysis of Neural Diffusion Organization (KANDO) Edward S. Hui¹, G. Russell Glenn², Joseph A. Helpern³, Jens H. Jensen⁴ ¹Diagnostic Radiology, The University of Hong Kong, Pokfulam, Hong Kong; ²Neurosciences & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ³Radiology, Neurosciences & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ⁴Radiology & Center for Biomedical Imaging, Medical ⁴Radiology & Center for Biomedical Imaging, Medical Im

Computer 42 2920. Double-Pulsed Diffusional Kurtosis Imaging for the *In Vivo* Assessment of Human Brain Microstructure *Edward S. Hui¹, Jens H. Jensen*², ³ ¹Department of Diagnostic Radiology, The University of Hong Kong, Pokfulam, Hong Kong, China; ²Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, United States; ³Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States

Computer 43 2921. Kurtosis Imaging Network: A Collaborative, Open-Source Imaging Database Rachael LeeAnn Deardorff¹, Emilie T. McKinnon¹, Tara Eckenrode Sokolowski¹, Jens H. Jensen¹, Masaaki Hori², Varan Govind³, Joseph A. Helpern¹ ¹Department of Radiology & Radiological Science, Medical University of South Carolina, Charleston, SC, United States; ²Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan; ³Miller School of Medicine, University of Miami, Miami, FL, United States

Computer 44 2922. Preliminary Evidence of Midazolam Effect in Brain Microstructure Using Diffusional Kurtosis Imaging Xingju Nie¹, Dorothea Rosenberger², Aurelie Ledreux³, Ann-Charlotte Granholm³, Heather Boger³, Maria Falangola¹,

¹Radiology and Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States;
²Anesthesiology, University of Utah, UT, United States;
³Neuroscience, Medical University of South Carolina, Charleston, SC, United States

Computer 45 2923. Clinical Application of Gamma Distribution Model for Spinal Lesions: Initial Clinical Results Miyuki Takasu¹, Koichi Oshio², Yuji Akiyama¹, Ryuji Akita¹, Kazushi Yokomachi¹, Yoko Kaichi¹, Shuji Date¹, Kazuo Awai¹

¹Diagnostic Radiology, Hiroshima University Hospital, Hiroshima, Japan; ²Department of Diagnostic Radiology, Keio University, Tokyo, Japan

Computer 46 2924. Characterization of Micro-Structural Changes in the Ultra-Early Phase of Antiangiogenic Treatment Using Non-Gaussian Diffusion Models

Zaiyi Liu¹, Xin Chen², Zelan Ma¹, Zhongping Zhang³

¹Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China; ²Radiology, Guangzhou First People's Hospital, Guangzhou Medical College, Guangzhou, Guangdong, China; ³GE Healthcare China, Beijing, China

Computer 47	2925.	Fitting the Diffusional Kurtosis Tensor to Rotated Diffusion MR Images
		Pedro A. Gómez ¹ , ² , Tim Sprenger ¹ , ² , Marion I. Menzel ² , Jonathan I. Sperl ²
		¹ Technical University Munich, Munich, Germany; ² GE Global Research, Munich, Germany

Computer 48 2926. Carpe Momentum: Computing Kurtosis with Anomalous Diffusion Measures Carson Ingo¹, Yu Fen Chen², Todd B. Parrish², Andrew G. Webb¹, Itamar Ronen¹ ¹C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Department of Radiology, Northwestern University, Chicago, IL, United States

Electronic Poster Diffusion Acquisition

Exhibition Hall	Monday 10:45-11:45
Computer 49 2927	• Fat Suppression for DW-FSE Sequences Using an Integrated Multi-Acquisition Dixon Method Tim Schakel ¹ , Bjorn Stemkens ¹ , Hans Hoogduin ² , Marielle Philippens ¹
	Radiotherapy, UMC Utrecht, Utrecht, Netherlands; Radiology, UMC Utrecht, Utrecht, Netherlands
Computer 50 2928	 Modelling Multiple Flip Angle Diffusion Weighted SSFP Data Saad Jbabdi¹, Sean Foxley¹, Karla L. Miller¹ ¹FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom
Computer 51 2929	 A Short-TE Computed Diffusion Imaging (CDWI) <i>Tokunori Kimura¹, Naotaka Sakashita¹, Yutaka Machii²</i> ¹Clinical Application Research and Development Dept., Toshiba Medical Systems corp., Otawara, Tochigi, Japan; ²MRI development dept., Toshiba Medical Systems corp., Otawara, Tochigi, Japan
Computer 52 2930	• On the Influence of Scanner Vibrations on ADC in Apparent Exchange Rate Measurements Julian Emmerich ¹ , Lars Müller ¹ , Andreas Wetscherek ¹ , Frederik Bernd Laun ¹ ¹ Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
Computer 53 2931	 Correction of Artifacts Caused by Transient Eddy Currents in Simultaneous Multi-Slice DMRI Rafael O'Halloran¹, Chen Yang¹, Junqian Xu¹ ¹Radiology, Icahn School of Medicine at Mt Sinai, New York, NY, United States
Computer 54 2932	 Towards High Spatial Resolution Diffusion-Sensitized MR Imaging of the Eye and Orbit at 3.0 T and 7.0 T: Quantitative Assessment of the Anatomic Fidelity of EPI and RARE Variants Katharina Paul¹, Andreas Graessl¹, Jan Rieger¹, ², Darius Lysiak¹, ², Till Huelnhagen¹, Lukas Winter¹, Robin Heidemann³, Tobias Lindner⁴, Stefan Hadlich⁵, Paul-Christian Krueger⁵, Soenke Langner⁵, Oliver Stachs⁴, ⁶, Thoralf Niendorf⁴, ⁷ ¹Max-Delbrueck Centre for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany; ²MRI.TOOLS GmbH, Berlin, Germany; ³Siemens Healthcare Sector, Erlangen, Germany; ⁴University Medicine Rostock, Pre-clinical Imaging Research Group, Rostock, Germany; ⁵University of Greifswald, Institute for Diagnotic Radiology and Neuroradiology, Greifswald, Germany; ⁶University Medicine Rostock, Department of Ophthalmology, Rostock, Germany; ⁷Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center, Berlin, Germany
Computer 55 2933	Acquisition of Diffusion MRI Data with High Spatial and Angular Resolution on Postmortem Monkey Brains Using 3D Segmented EPI Longchuan Li ¹ , ² , Jaekeun Park ² , Yuguang Meng ³ , Todd Preuss ⁴ , Xiaodong Zhang ³ , Xiaoping Hu ² ¹ Department of Pediatrics, Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States; ² Biomedical Imaging Technology Center, School of Medicine, Emory University, Atlanta, GA, United States; ³ Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, GA, United States; ⁴ Division of Neuropharmacology and Neurologic Diseases, Emory University, GA, United States

Computer 56 2934. Motion Immune Diffusion Imaging Using Augmented MUSE (AMUSE) for High-Resolution Multi-Shot EPI Shayan Guhaniyogi¹, Mei-Lan Chu¹, Hing-Chiu Chang¹, Allen Song¹, Nan-Kuei Chen¹ ¹Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

Image ismen merit award magna cum laude Wenchuan Wu¹, Peter Koopmans¹, Robert Frost¹, Karla L. Miller¹ ¹FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom Computer 58 2936. Prospective Motion Correction of Segmented Diffusion Weighted EPI Michael Herbst¹,², Benjamin Zahneisen¹, Benjamin Knowles², Maxim Zaitsev², Thomas Ernst¹ ¹University of Hawaii, Honolulu, HI, United States; ²University Medical Center Freiburg, Freiburg, Germany Computer 59 2937. Intrinsic Diffusion Sensitivity of the BSSFP Signal: Optimizing the Flip Angle in the Presence of Strong Read **Out Gradients** Sébastien Bär¹, Matthias Weigel², Jürgen Hennig¹, Dominik Von Elverfeldt¹, Jochen Leupold¹ ¹Department of Radiology, Medical Physics, University Medical Center, Freiburg, Freiburg, Germany; ²Radiological Physics, University of Basel Hospital, Basel, Switzerland Computer 60 2938. High-Ouality and Self-Navigated Diffusion-Weighted Imaging Enabled by a Novel Interleaved Block-Segmented (iblocks) EPI Hing-Chiu Chang¹, Mei-Lan Chu¹, Mark Sundman¹, Nan-Kuei Chen¹ ¹Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States Computer 61 2939. Low Frequency OGSE Improves Axon Diameter Imaging in Monkey Corpus Callosum Over Simple PGSE Method Ivana Drobnjak¹, John Lyon¹, Andrada Ianus¹, Daniel C. Alexander¹, Tim B. Dyrby² ¹Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; ²Copenhagen University Hospital Hvidovre, Danish Research Centre for Magnetic Resonance, Hvidovre, Denmark Computer 62 2940. High Angularly Resolved Diffusion Imaging with Short Scan Time and Low Distortion Tzu-Cheng Chao¹, ², Jr-Yuan George Chiou³, Stephan E. Maier³, Bruno Madore⁴ ¹Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan; ²Institute of Medical Informatics, National Cheng-Kung University, Tainan, Taiwan; ³Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, M.A., United States Computer 63 2941. Multi-Slice Localized Parallel Excitation for DWI with a Reduced FOV in the Spinal Cord Denis Kokorin¹, Jürgen Hennig¹, Maxim Zaitsev¹ ¹Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany Computer 64 2942. Effects of Slab Boundary Artifacts on Diffusion Measures in 3D Multi-Slab Diffusion Imaging Wenchuan Wu¹, Peter Koopmans¹, Karla L. Miller¹ ¹FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom Computer 65 2943. An Optimized Protocol for Neurite Orientation Dispersion and Density Imaging (NODDI) in Preclinical Studies Andreia C. Silva¹, Eleni Demetriou¹, Magdalena Sokolska¹, Mohamed Tachrount¹, Niall Colgan², Bernard Siow², Mark F. Lythgoe², Xavier Golay¹, Hui Zhang³ ¹Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ²Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ³Department of Computer Science and Centre for Medical Image Computing, University College London, London, United Kingdom Computer 66 2944. 3D Multi-Band Diffusion MRI Iain P. Bruce¹, Hing-Chiu Chang¹, Nan-Kuei Chen¹, Allen W. Song¹ ¹Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

Computer 57 2935. Reducing Slab Boundary Artifacts in 3D Multi-Slab Diffusion Imaging by Jointly Estimating Slab Profile and

Computer 67 2945. Comparison of Different Compressed Sensing Denoising Strategies for DSI Acquisition for Several Diffusion Mixing Times

Miguel Molina-Romero¹, ², Jonathan I. Sperl², Tim Sprenger¹, ², Pedro A. Gómez¹, ², Xin Liu¹, ², Ek T. Tan³, Christopher J. Hardy³, Luca Marinelli³, Bjoern Menze¹, Derek K. Jones⁴, Marion I. Menzel² ¹Technical University Munich, Garching, BY, Germany; ²GE Global Research, Garching, BY, Germany; ³GE Global Research, Niskayuna, NY, United States; ⁴Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, Wales, United Kingdom

Computer 68 2946. Analysis of Local Spatial Magnetization Frequency Sheds New Light on Diffusion MRI Hans Knutsson¹, ², Magnus Herbertsson³, Carl-Fredrik Westin, ¹⁴ ¹Biomedical Engineering, Linköpings Universitet, Linköping, ÖG, Sweden; ²CMIV, Linkoping University, Linköping, ÖG, Sweden; ³Mathematics, Linköpings Universitet, Linköping, ÖG, Sweden; ⁴Radiology, Brigham and Women's, Harvard Medical School, Boston, MA, United States

Computer 69 2947. Comparison of Diffusion MRI Protocols for the Microstructural Characterization of the Spinal Cord on the Healthy Mouse and on a Murine Model of Amyotrophic Lateral Sclerosis

Matteo Figini¹, Alessandro Scotti¹, Stefania Marcuzzo², Silvia Bonanno², Pia Bernasconi², Victoria Moreno Manzano³, José Manuel Garcia Verdugo⁴, Renato Mantegazza², Ileana Zucca¹, Maria Grazia Bruzzone⁵ ¹Scientific Direction, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; ²Neurology IV - Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; ³Neuronal and Tissue Regeneration laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain; ⁴Unidad de Neurobiología comparada, Universidad de Valencia, Valencia, Spain; ⁵Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy

Computer 70	2948.	Improvement of Heart IVIM Using 2nd Moment Nulling Pulse
		TOMOYA NAKAMURA ¹ , Isao Muro ² , Nao Kajihara ² , Shuhei Shibukawa ² , Tetsuo Ogino ³
		¹ Tokai University Hospital, Isehara, Kanagawa, Japan; ² Tokai University Hospital, Kanagawa, Japan; ³ Philips Healthcare Asia Pacific,
		Tokyo, Japan

Computer 71 2949. Constrained Optimization of Gradient Waveforms for Isotropic Diffusion Encoding Jens Sjölund¹, ², Markus Nilsson³, Daniel Topgaard³, Carl-Fredrik Westin¹, ⁴, Hans Knutsson¹, ⁵ ¹Linköping University, Linköping, Sweden; ²Elekta Instrument AB, Stockholm, Sweden; ³Lund University, Sweden; ⁴Brigham and Women's Hospital and Harvard Medical School, MA, United States; ⁵Center for Medical Image Science and Visualization (CMIV), Linköping, Sweden

Computer 72 2950. Impact of Noise Bias with Parallel Imaging for Axon Diameter Estimation with Q-Space MRI *T. Duval¹, T. Witzel², B. Keil², L. L. Wald², V. Smith², E. Klawiter², J. Cohen-Adad¹, ³* ¹Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, Québec, Canada; ²A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ³Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montréal, Québec, Canada

Electronic Poster

Arterial	Spin	Labelling
Exhibition	Hall	Monday 10:45-11:45
Computer 73	2951.	Background Suppressed Arterial Spin Labeling with Simultaneous Multi-Slice Echo Planar Imaging <i>Liyong Chen¹</i> , ² , <i>Alexander Beckett¹</i> , ² , <i>David A. Feinberg¹</i> , ² ¹ University of California, Berkeley, CA, United States; ² Advanced MRI Technologies, LLC, Sebastopol, CA, United States
Computer 74	2952.	Measuring the Influence of Vessel Geometry on PCASL Labeling Efficiency Jan Petr ¹ , Georg Schramm ¹ , Jörg van den Hoff ¹ ¹ Institute of Radiopharmaceutical Cancer Research, Helmholtz-zentrum Dresden Rossendorf, Dresden, Germany
Computer 75	2953.	A Novel Method to Estimate Labeling Efficiency for Pseudo-Continuous Arterial Spin Labeling Imaging Zhensen Chen ¹ , ² , Xingxing Zhang ² , Andrew G, Webb ² , Xihai Zhao ¹ , Matthias J.P., van Osch ²

¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-holland, Netherlands

Computer 76	2954.	Correcting for Encoding Filed Imperfections in Arterial Spin Labeling Using Gradient Impulse Responses and Concurrent Field Monitoring
		Mustafa Cavusoglu ¹ , Lars Kasper ¹ , Johanna S. Vannesjo ² , Benjamin E. Dietrich ¹ , Simon Gross ¹ , Klaas P. Pruessmann ¹ ¹ Biomedical Engineering, ETH Zurich, Zurich, Switzerland; ² FMRIB centre, Oxford University, Oxford, United Kingdom
Computer 77	2955.	Reducing Readout Duration in Single-Shot, Stack-Of-Spirals Arterial Spin Labeling Using 2D In-Plane
		Yulin V. Chang ¹ , ² , Marta Vidorreta ¹ , Ze Wang ³ , ⁴ , Maria A. Fernandez-Seara ⁵ , John A. Detre ¹ ¹ Neurology, University of Pennsylvania, Philadelphia, PA, United States; ² Radiology, University of Pennsylvania, Philadelphia, PA, United States; ³ Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, Zhejiang, China; ⁴ Psychiatry, University of Pennsylvania, Philadelphia, PA, United States; ⁵ Functional Neuroimaging Laboratory, CIMA, University of Navarra, Navarra, Spain
Computer 78	2956.	A Simple Modification for Reducing Scanning Time and Motion Artefacts in Clinical Implementations of 3D-
		Stephen James Wastling ¹ , Gareth John Barker ¹ , Jonathan Ashmore ² , Fernando Zelaya ¹ ¹ Department of Neuroimaging, King's College London, London, United Kingdom; ² Department of Neuroradiology, King's College Hospital, London, United Kingdom
Computer 79	2957.	Strategies for Increasing Spatial Coverage of Balanced Steady-State Free Precession Arterial Spin Labeling $Paul Kvu Han^{1}$ long Chul Va ¹ Fung Yaon Kim ² Saung Hong Choi ³ Sung-Hong Park ¹
		¹ Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; ² Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea; ³ Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
Computer 80	2958.	Support Vector Machine Classification Analysis of Arterial Volume-Weighted Arterial Spin Tagging (AVAST)
		Yash S. Shah ¹ , Luis Hernandez-Garcia ¹ , Hesamoddin Jahanian ¹ , Scott J. Peltier ¹ ¹ University of Michigan, Ann Arbor, MI, United States
Computer 81	2959.	Model-Independent Arterial Transit Time Mapping Using Pseudo-Continuous ASL
		¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany; ² Faculty of Physics and Earth Sciences, University of Leipzig, Saxony, Germany
Computer 82	2960.	Arterial Transit Time Imaging with Vessel-Selective Arterial Spin Labeling $J_{anxin} Ou^{l}$ Bing Wu^{l} Min Char ² Vinchui Thana ^l Theory Theor ^l
		¹ GE Healthcare China, Beijing, China; ² Beijing Hospital, Beijing, China
Computer 83	2961.	Cardiac-Triggered PCASL: A Cost-Effective Scheme to Enhance the SNR of ASL Yang Li ¹ Deng Mao ¹ Hanzhang Lu ¹
magna cum l	aude	¹ Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
Computer 84	2962.	Independent Determinants of Cerebral Blood Flow from Multiple Post Label Delay Arterial Spin-Labeling and Phase Contrast Angiography Help Differentiate the Influence of Small and Large Arteries Andrew D. Robertson ¹ , Bradley J. MacIntosh ¹ , ²
		¹ Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; ² Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
Computer 85	2963.	Feasibility of Quantification of Cerebral Blood Perfusion Using Multi-Phase Inter-Slice Perfusion Imaging

Ki Hwan Kim¹, Seung Hong Choi², Sung-Hong Park³
 ¹Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; ²Department of Radiology, Seoul National University College of Medicine, Korea; ³Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Korea

Computer 86 2964. Cerebral Perfusion Measurements at 17.2 T Using PCASL: A Feasibility Study

Luisa Ciobanu¹, Lydiane Hirschler², ³, Tomokazu Tsurugizawa¹, Denis Le Bihan¹, Clément Debacker², ³, Emmanuel L. Barbier, ³⁴

¹Neurospin, CEA, Gif-sur-Yvette, France; ²Bruker Biospin, Wissembourg, France; ³University Grenoble Alpes, Grenoble, France; ⁴U836, Inserm, Grenoble, France

Computer 87 2965. The Comparison of ASL Features Between Young and Elderly Population: Clinically Feasible Parameter Setting for Long Labeled Pseudo-Continuous ASL to Reduce the Sensitivity of Delayed Arterial Transit Time Yasuhiro Fujiwara¹, Hirohiko Kimura², Tsuyoshi Matsuda³, Masayuki Kanamoto⁴, Tatsuro Tsuchida², Kazunobu Tsuji², Nobuyuki Kosaka², Toshiki Adachi⁴

¹Department of Medical Imaging, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ²Department of Radiology, University of Fukui, Fukui, Japan; ³Global MR Applications and Workflow, GE Healthcare Japan, Tokyo, Japan; ⁴Radiological Center, University of Fukui Hospital, Fukui, Japan

Computer 88 2966. The Importance of Partial Volume Correction in ASL Based Studies of Cerebral Perfusion in Mild Cognitive Impairment: A Quantitative Comparison

Virginia Mato Abad¹, Pablo García-Polo², ³, Juan Álvarez-Linera⁴, Ana Frank⁵, Fernando Zelaya⁶, Juan Antonio Hernández-Tamames¹

¹LAIMBIO, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ²Martinos Center, MGH, M+Visión Advanced Fellowship, Charlestown, MA, United States; ³Center for Biomedical Technology (CTB-UPM), Madrid, Spain; ⁴Hospital Ruber Internacional, Madrid, Spain; ⁵Hospital Universitario La Paz, Madrid, Spain; ⁶Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, United Kingdom

Computer 89 2967. Modeling Flow Dispersion in Pseudocontinuous Arterial Spin Labeling and Its Application in Moyamoya Disease Patients

Zungho Zun¹, ², R. Marc Lebel³, Ajit Shankaranarayanan⁴, Greg Zaharchuk¹ ¹Stanford University, Stanford, CA, United States; ²Children's National Medical Center, Washington, DC, United States; ³GE Healthcare, Calgary, AB, Canada; ⁴GE Healthcare, Menlo Park, CA, United States

Computer 90 2968. Effects of 24 Hour Sleep Deprivation on Cerebral Blood Flow Measured by ASL Henri Mutsaerts¹, Torbjørn Elvåshagen², Lars Westlye³, Atle Bjørnerud², Inge Groote³ ¹Academic Medical Center, Amsterdam, Netherlands; ²Oslo University Hospital, Norway; ³University of Oslo, Norway

Computer 91 2969. An Exercise-Recovery Protocol Depicts Muscle Perfusion and Capillary Recruitment Heterogeneity in Peripheral Arterial Disease

Jason K. Mendes¹, Christopher J. Hanrahan¹, Jeff L. Zhang¹, Gwenael Layec², Corey Hart³, Russell Richardson, ³⁴, Sarang Joshi⁵, Vivian S. Lee⁴

¹Radiology, University of Utah, Salt Lake City, UT, United States; ²Medicine, University of Utah, Salt Lake City, UT, United States; ³Exercise and Sports Science, University of Utah, Salt Lake City, UT, United States; ⁴Medicine, University of Utah, UT, United States; ⁵Bioengineering, University of Utah, Salt Lake City, UT, United States

Computer 92 2970. Altered Blood-Brain Barrier Function in Patients with Obstructive Sleep Apnea

Jose A. Palomares¹, Danny JJ Wang², ³, Bumhee Park¹, Sudhakar Tummala¹, Mary A. Woo⁴, Daniel W. Kang⁵, Keith S. St Lawrence⁶, Ronald M. Harper⁷, Rajesh Kumar¹, ³

¹Anesthesiology, University of California at Los Angeles, Los Angeles, CA, United States; ²Neurology, University of California at Los Angeles, Los Angeles, CA, United States; ³Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁴School of Nursing, University of California at Los Angeles, Los Angeles, CA, United States; ⁵Medicine, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Lawson Health Research Institute, London, Canada; ⁷Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Neurobiology, University of California at Los Angeles, Neurobiology, Neurobi

Computer 93 2971. Multi-Voxel Pattern Analysis Delineates Selective ASL-Collateral Supply in Patients with Intracranial Stenosis Andrea Federspiel¹, Simon Schwab¹, Mirjam R. Heldner², Urs Fischer², Jan Gralla³, Roland Wiest³ ¹Psychiatric Neurophysiology, University Hospital of Psychiatry, Bern, Switzerland; ²Inselspital, University of Bern, Department of Neurology and Stroke Center, Bern, Switzerland; ³Inselspital, University of Bern, Institute of Diagnostic and Interventional Neuroradiology, Bern, Switzerland

Computer 94 2972. 3D GRASE Pseudo-Continuous Arterial Spin Labeling (PCASL) of Preterm Human Brains

Minhui Ouyang¹, Peiying Liu¹, Hanzhang Lu¹, Tina Jeon^T, Lina Chalak², Jonathan M. Chia³, Andrea Wiethoff⁴, Nancy K. Rollins⁴, Hao Huang¹

¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Radiology, Children's Medical Center, Dallas, TX, United States

Computer 95 2973. ASAP: Automatic Software for ASL Processing

Virginia Mato Abad¹, *Pablo García-Polo²*, ³, *Owen O'Daly⁴*, *Juan Antonio Hernández-Tamames¹*, *Fernando Zelaya⁴* ¹LAIMBIO, Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ²Martinos Center, MGH, M+Visión Advanced Fellowship, Charlestown, MA, United States; ³Center for Biomedical Technology (CTB-UPM), Madrid, Spain; ⁴Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, United Kingdom

Computer 96 2974. Detection of Brain Activation Using High-Resolution Arterial Spin Labeling Perfusion fMRI at 3T Iris Asllani¹, Ajna Borogovac², Dylan Bruening², Sophie Schmid³, Wouter M. Teeuwisse³, Matthias J.P. van Osch³ ¹RIT, Rochester, NY, United States; ²RIT, NY, United States; ³Leiden University Medical Center, Leiden, Netherlands

Electronic Poster

Diffusion & Tractography Analyses

 Exhibition Hall
 Monday 11:45-12:45

 Computer 1
 2975.
 Multiple Sclerosis Clinical Classification Based on DTI Fiber Analysis Claudio Stamile¹, Gabriel Kocevar¹, Françoise Durand-Dubief, ¹², François Cotton¹, ³, Carole Frindel¹, Salem Hannoun¹, Dominique Sappey-Marinier¹, ⁴ ¹CREATIS (CNRS UMR5220 & INSERM U1044), Université Lyon 1, INSA-Lyon, Villeurbanne, France; ²Service de Neurologie A, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France; ³Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Benite, France; ⁴CERMEP - Imagerie du Vivant, Université de Lyon, Bron, France

Computer 2 2976. Detection of Longitudinal DTI Changes in Multiple Sclerosis Patients Based on Sensitive WM Fiber Modeling Claudio Stamile¹, Gabriel Kocevar¹, François Cotton¹, ², Françoise Durand-Dubief¹, ³, Salem Hannoun¹, Carole Frindel¹, David Rousseau¹, Dominique Sappey-Marinier¹, ⁴ ¹CREATIS (CNRS UMR5220 & INSERM U1044), Université Lyon 1, INSA-Lyon, Villeurbanne, France; ²Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Benite, France; ³Service de Neurologie A, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France; ⁴CERMEP - Imagerie du Vivant, Université de Lyon, Bron, France

Computer 3 2977. Individualized Prediction of ADHD Based on Patterns of Altered Tract Integrity Over the Whole Brain: A Performance Test on Adult Females with ADHD Using Diffusion Spectrum Imaging Yu-Jen Chen¹, Yun-Chin Hsu¹, Yu-Chun Lo¹, Shur-Fen Susan Gau², Wen-Yih Isaac Tseng¹, ³ ¹Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taiwan; ²Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; ³Molecular Imaging Center, National Taiwan University, Taipei, Taiwan

Computer 4 2978. Profilometry: Towards a More Specific Characterization of White Matter Pathways, with Application to Multiple Sclerosis.

Michael Dayan¹, Elizabeth Monohan², Sneha Pandya¹, Amy Kuceyeski¹, Thanh Nguyen¹, Susan Gauthier², Ashish Raj¹ ¹Radiology, Weill Cornell Medical College, New York, NY, United States; ²Neurology, Weill Cornell Medical College, New York, NY, United States

Computer 5 2979. A Machine Learning Approach to Identify Structural Connections Affected in Diffuse Axonal Injury J. Mitra¹, S. Ghose¹, K-K. Shen¹, K. Pannek², P. Bourgeat¹, J. Fripp¹, O. Salvado¹, J. L. Mathias³, D. J. Taylor⁴, S. Rose¹ ¹Australian e-Health & Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia; ²Imperial College London,

Australian e-Health & Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia; Imperial College London, London, United Kingdom; ³School of Psychology, University of Adelaide, Adelaide, SA, Australia; ⁴Dept. of Radiology, The Royal Adelaide Hospital, Adelaide, SA, Australia

Computer 6	2980.	Quantitative Assessment of Diffusional Kurtosis Anisotropy
		G. Russell Glenn ¹ , Joseph A. Helpern ² , Ali Tabesh ³ , Jens H. Jensen ³

¹Neurosciences & Center for Biomedical Imaging, Medical University of South Carolina, Charleston , SC, United States; ²Radiology, Neurosciences, & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States;

Computer 7 2981. Choices in Processing Steps for Diffusion MRI Analyses: Does It Really Matter? Szabolcs David¹, Chantal M. W. Tax¹, Max A. Viergever¹, Anneriet Heemskerk¹, Alexander Leemans¹ ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands

Computer 8 2982. Hybrid Parallel Tempering and Levenberg-Marquardt Method for Efficient and Stable Fitting of Noisy MRI Dataset

Marco Palombo¹, ², *Matthias Vandesquille¹*, ², *Julien Valette¹*, ² ¹CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France, France; ²CEA-CNRS URA 2210, Fontenay-aux-Roses, France, France

Computer 9 2983. Robustness of Phase Sensitive Reconstruction in Diffusion Spectrum Imaging

Marion I. Menzel¹, Tim Sprenger¹, ², Ek T. Tan³, Valdimir Golkov¹, ², Christopher J. Hardy³, Luca Marinelli³, Jonathan I. Sperl¹

¹Diagnostics, Imaging and Biomedical Technologies Europe, GE Global Research, Munich, Germany; ²Technical University Munich, Munich, Germany; ³GE Global Research, Niskayuna, NY, United States

Computer 10 2984. An Efficient Motion Correction Method for Improved ADC Estimates in the Abdomen

Hossein Ragheb¹, Neil A. Thacker¹, Jean-Marie Guyader², Stefan Klein², Alan Jackson³ ¹Centre for Imaging Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom; ²Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology, Erasmus MC, Rotterdam, Netherlands; ³The Wolfson Molecular Imaging Centre, Faculty of Medical and Human Sciences, University of Manchester, Manchester, United Kingdom

Computer 11 2985. GPU Imaging Analysis for Ultra-Fast Non-Gaussian Diffusion Mapping

Marco Palombo¹, ², Dianwen Zhang³, Chen Zhu⁴, Julien Valette¹, Alessandro Gozzi⁵, Angelo Bifone⁵, Andrea Messina⁶, Gianluca Lamanna⁷, Silvia Capuani, ⁶⁸ ¹CEA/DSV/12BM/MIRCen, Fontenay-aux-Roses, France, France; ²IPCF-UOS Roma, Phys. Dpt., Sapienza University, Rome, Italy; ³ITG, Beckman Institute, UIUC, Urbana, IL, United States; ⁴College of Economics & Management, CAU, Beijing, China; ⁵IIT, Center for Neuroscience and Cognitive Systems @ UniTn, Rovereto, Italy; ⁶Physics Dpt., Sapienza University, Rome, Italy; ⁷INFN, Pisa Section, Pisa, Italy; ⁸IPCF-UOS Roma, Phys. Dept., Sapienza University, Rome, Italy;

- Computer 12 2986. Comparison of Diffusion Kurtosis Modeling Algorithms: Accuracy and Application Daniel Olson¹, Volkan Arpinar², L Tugan Muftuler² ¹Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ²Neurosurgery, Medical College of Wisconsin, WI, United States
- Computer 13 2987. Are SHORE-Based Biomarkers Suitable Descriptors for Microstructure in DSI? Lorenza Brusini¹, Mauro Zucchelli¹, Alessandro Daducci², Cristina Granziera³, ⁴, Gloria Menegaz¹ ¹Computer Science, University of Verona, Verona, Italy; ²EPFL, Lausanne, Switzerland; ³Siemens Healthcare IM BM PI & Department of Radiology, CHUV, Lausanne, Switzerland; ⁴Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland
- Computer 14 2988. Correcting for Perfusion and Isotropic Free Diffusion in Diffusion Weighted Imaging and DTI and CSD Analysis Martijn Froeling¹, Peter R. Luijten¹, Alexander Leemans²

¹Radiology, UMC Utrecht, Utrecht, Netherlands; ²Image Sciences Institute, UMC Utrecht, Utrecht, Netherlands

Computer 15 2989. Parameters Estimation for White Matter Microstructure Models Using Variable Projection Method and Stochastic Global Search Algorithms

Hamza Farooq¹, Junqian Xu², Essa Yacoub³, Tryphon Georgiou¹, Christophe Lenglet³ ¹Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States; ²Department of Radiology, Icahn School of Medicine, The Mount Sinai Hospital, NY, United States; ³Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States

Computer 16 2990. Estimation and Removal of Partial Volume Effects of Cerebrospinal Fluid in Intravoxel Incoherent Motion (IVIM) Imaging

Hajime Tamura^T, Shunji Mugikura², Yoshiaki Komori³, Kazuomi Yamanaka, Hideki Ota² ¹Graduate School of Medicine, Tohoku University, Sendai, Japan; ²Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan; ³Siemens Japan K.K., Tokyo, Japan

Computer 17 2991. The Impact of a New Sampling Theorem for Non-Bandlimited Functions on the Sphere: HARDI at the Price of DTI?

Samuel Deslauriers-Gauthier¹, Pina Marziliano², Michaël Paquette¹, Maxime Descoteaux¹ ¹SCIL, Computer science department, Université de Sherbrooke, Montréal, Québec, Canada; ²School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

- Computer 18 2992. Altered Structural Connectivity Between Patients with Schizophrenia and Healthy Adults Measured by Combined Direct and Indirect Connection Strengths Sung-Chieh Liu^l, Yu-Jen Chen^l, Yun-Chin Hsu^l, Tzung-Jeng Hwang², Hai-Gwo Hwu², Wen-Yih Isaac Tseng^l, ³ ¹Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; ²Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; ³Molecular Imaging Center, National Taiwan University, Taipei, Taiwan
- Computer 19 2993. Ventral Intermediate Nucleus (VIM) Localization with Probablistic Diffusion Tractography *Chia-Chu Chou^l*, ², *Prashant Raghavan^l*, *Dheeraj Gandhi^l*, *Rao P. Gullapalli^l*, *Jiachen Zhuo^l* ¹Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; ²Electrical and Computer Engineering, University of Maryland, College Park, MD, United States
- Computer 20 2994. Probabilistic Fiber Tracking at UHF: Effects of Distortion Correction and Reverse Phase Polarity Combination. Oleg P. Posnansky¹, Myung-Ho In¹, Oliver Speck¹ ¹Institute of Experimental Physics, Department of Biomedical Magnetic Resonance, Otto-von-Guericke University, Magdeburg, Germany
- Computer 21 2995. Mesh-Based FMRI-Driven-Tractography for Automated Analysis of Non-Parcellateable Brains with Pathology Lee Bremner Reid¹, ², Kerstin Pannek³, Roslyn Boyd², Stephen Rose¹ ¹e-Health Research Centre, CSIRO, Brisbane, Queensland, Australia; ²Queensland Cerebral Palsy and Rehabilitation Research Centre, University of Queensland, Queensland, Australia; ³Department of Computing, Imperial College London, London, United Kingdom
- Computer 22 2996. Optimization of White Matter Fiber Tractography with Diffusional Kurtosis Imaging *G. Russell Glenn¹, Joseph A. Helpern², Ali Tabesh³, Jens H. Jensen³* ¹Neurosciences & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ²Radiology, Neurosciences, & Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Radiology & Center for Biomedical Imaging, Medical Univesity of South Carolina, Charleston, SC, United States; ³Ra
- Computer 23 2997. Improving Cortical Tractography Using Double Inversion Recovery Hamied A. Haroon¹, Claude J. Bajada², Hojjatollah Azadbakht¹, Sha Zhao¹ ¹Centre for Imaging Sciences, The University of Manchester, Manchester, England, United Kingdom; ²School of Psychological Sciences, The University of Manchester, England, United Kingdom
- Computer 24 2998. Mapping Residuals Along Tracts: An Effective Quality Control Approach for Tract Specific Measurements Elisa Scaccianoce¹, ², Maria Marcella Laganà¹, Francesca Baglio¹, Giuseppe Baselli², Flavio Dell'Acqua³ ¹Don Carlo Gnocchi Foundation ONLUS, IRCCS S. Maria Nascente, Milano, Italy; ²Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy; ³NATBRAINLAB, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom

Electronic Poster

Diffussi	on Ap	oplications
Exhibition	Hall	Monday 11:45-12:45
Computer 25	2999.	Can the Distribution of Low B-Value and the NEX Influence the Pseudodiffusion Parameter Derived from IVIM in Brain? <i>Yuchuan Hul¹, LinFeng Yan¹, Lang Wu², DanDan Zheng³, TianYong Xu⁴, Wen Wang⁵, GuangBin Cui¹</i> ¹ Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi ₁ ⁻ an, Shaanxi, China; ² Center for Clinical and Translational Science, Mayo Clinic, MN, United States; ³ MR Research China, GE Healthcare China, Beijing, China; ⁴ MR Research China,, GE Healthcare China, Beijing, China; ⁵ Fourth Military Medical University, Shaanxi, China
Computer 26	3000.	Longitudinal Study of Cuprizone-Induced White Matter Degeneration and Recovery Using Diffusion White Matter Tract Integrity Metrics (WMTI). Ileana O. Jelescu ¹ , ² , Magdalena Zurek ¹ , Kerryanne Winters ¹ , ² , Jelle Veraart ¹ , ² , Anjali Rajaratnam ¹ , ² , Timothy M. Shepherd ¹ , ² , Dmitry S. Novikov ¹ , ² , Sungheon G. Kim ¹ , ² , Els Fieremans ¹ , ² ¹ Center for Biomedical Imaging, Dept. of Radiology, NYU Langone Medical Center, New York, United States; ² Center for Advanced Imaging Innovation and Research, Dept. of Radiology, NYU Langone Medical Center, New York, United States
Computer 27	3001.	Improved Tract Resolvability with High-Resolution Diffusion-Weighted Steady State Free Precession Data of Post-Mortem Human Brain at 7T Sean Foxley ¹ , Saad Jbabdi ¹ , Stuart Clare ¹ , Moises Fernandez ¹ , Connor Scott ² , Olaf Ansorge ² , Karla Miller ¹ ¹ FMRIB Centre, University of Oxford, Oxford, OXON, United Kingdom; ² Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OXON, United Kingdom
Computer 28	3002.	Neuroimaging Bridge to CLARITY <i>Kristi Clark¹, Farshid Sepehrband², ³, Alexander Talishinsky⁴, Samuel Barnes⁵, Russell Jacobs⁵, Shagun Mehta⁴, Celia</i> <i>Williams⁴, Carol Miller⁴</i> ¹ Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, United States; ² Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; ³ Queensland Brain Institute, The University of Queensland, Brisbane, Australia; ⁴ Department of Pathology, University of Southern California, Los Angeles, CA, United States; ⁵ Beckman Institute, California Institute of Technology, Pasadena, CA, United States
Computer 29	3003.	DTI and Molecular Expression Based Studies Detects Radiation Induced Early Acute Neuroinflammatory Changes in Hippocampus Poonam Rana ¹ , Sushanta Kumar Mishra ¹ , Mamta Aryabhushan Gupta ¹ , Richa Trivedi ¹ , B S Hemanth Kumar ¹ , Subash Khushu ¹ ¹ NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India
Computer 30	3004.	Diffusion Tensor Imaging of Forearm Nerves for Early Diagnosis of Multifocal Motor Neuropathy <i>Wieke Haakma</i> ¹ , ² , <i>Bas Jongbloed</i> ³ , <i>Martijn Froeling</i> ¹ , <i>Clemens Bos</i> ¹ , <i>Stephan H. Goedee</i> ³ , <i>Michael Pedersen</i> ⁴ , <i>Ludo van der Pol</i> ³ , <i>Alexander Leemans</i> ⁵ , <i>Jeroen Hendrikse</i> ¹ ¹ Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ² Department of Forensic Medicine & Comparative Medicine Lab, Aarhus University, Aarhus, Central Denmark, Denmark; ³ Department of Neurology, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands; ⁴ Department of Clinical Medicine - Comparative Medicine Lab, Aarhus University, Aarhus, Central Denmark, Denmark; ⁵ Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
Computer 31	3005.	A Method to Improve the Quality of Diffusion MRI with Rapid Histological Correlation in a Murine Model <i>Yu-Chun Lin¹, Chun-Chieh Wang², Gigin Lin¹, Jiun-Jie Wang³</i> ¹ Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan, Taiwan; ² Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan; ³ Department of Medical Imaging and Radiological Sciences, Chang Gung University, Yaoyuan, Taiwan
Computer 32	3006.	Alterations in White Matter Tracts in Alcohol Dependence: A Tract-Based Spatial Statistics (TBSS) Based DTI Study Mukesh Kumar ¹ Shilpi Modi ¹ Pawan Kumar ¹ Subash Khushu ¹

Mukesh Kumar¹, *Shilpi Modi¹*, *Pawan Kumar¹*, *Subash Khushu¹* ¹NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, Delhi, India

Computer 33 3007. Characterization of Structural Connectivity of the Default Mode Network in Dogs Using Diffusion Tensor Imaging

Madhura Baxi¹, ², Jennifer Robinson¹, ³, Paul Waggoner⁴, Ronald Beyers¹, Edward Morrison⁵, Nouha Salibi¹, ⁶, Thomas S. Denney Jr. ¹, ³, Vitaly Vodyanoy⁵, Gopikrishna Deshpande¹, ³

¹AU MRI Research Center, Dept. of Electrical & Computer Engineering, Auburn University, Auburn, Al, United States; ²Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ³Dept. of Psychology, Auburn University, Auburn, Al, United States; ⁴Canine Detection Research Institute, Auburn University, Auburn, Al, United States; ⁵Dept. of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, Al, United States; ⁶MR R&D, Siemens Healthcare, Malvern, PA, United States

Computer 34 3008. Heterogenous PLP1 Mutations Express Differing Pathology of the Corpus Callosum in Pelizaeus-Merzbacher Disease.

Malek I. Makki¹, Jeremy J. Laukka² ¹MRI Research, University Children Hospital of Zurich, Zurich, Switzerland; ²Neuroscience and Neurology, University of Toledo, Toledo, OH, United States

Computer 35 3009. Advanced Diffusion Methods Proved More Robust Assessments of Microstructure Than Standard DTI in Complex Human Brain Tissue

Joong Kim¹, David L. Brody¹ ¹Washington University School of Medicine, St. Louis, MO, United States

Computer 36 3010. Quality Assessment and Ranking System for Quantitative Breast Diffusion-Weighted Imaging of the Breast in the ACRIN 6698 Trial

Sheye Aliu¹, David Newitt¹, Wen Li¹, Jessica Gibbs¹, Lisa Cimino², Eunhee Kim², Savannah Partridge³, Patrick Bolan⁴, Thomas Chenevert⁵, Mark Rosen⁶, Nola Hylton¹

¹Radiology & Biomedical Imaging, University of California at San Francisco, San Francisco, CA, United States; ²ECOG-ACRIN Cancer Research Group, PA, United States; ³Radiology, University of Washington School of Medicine, Seattle Cancer Care Alliance, WA, United States; ⁴Center for Magnetic Resonance Research, University of Minnesota, MN, United States; ⁵Radiology, University of Michigan Health System, MI, United States; ⁶Radiology, University of Pennsylvania, PA, United States

Computer 37 3011. Robust Estimation of IVIM Metrics in Human Liver Using Rician Noise Filter Zhongping Zhang¹, Bing Wu¹, Jin Wang², Zhenyu Zhou¹ ¹GE Healthcare China, Beijing, China; ²Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China

Computer 38 3012. Whole Body Diffusion-Weighted MRI: Normal Lymph Node Distribution, Volume and Apparent Diffusion Coefficient (ADC) in Healthy Volunteers Raphael Shih Zhu Yiin¹, Giuliano Scattoli¹, Dow-Mu Koh¹, David J Collins², Martin O Leach², Matthew D. Blackledge² ¹Department of Radiology, The Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ²CR-UK and EPSRC Cancer Imaging Centre, Sutton, Surrey, United Kingdom

Computer 39 3013. In-Vivo Detection of Diffusive Water Transport in Human Eye Using High-Resolution Diffusion Weight Imaging Jiancheng Zhuang^l, Bosco S. Tjan^l ¹University of Southern California, Los Angeles, CA, United States

Computer 40 3014. Diffusion Tensor Imaging of the Human Aortic Wall: An Ex-Vivo Study

Nicola Martini¹, Simona Celi, ¹², Daniele Della Latta¹, Daniele De Marchi¹, Giuseppe Valvano, ¹³, Angelo Monteleone¹, Vincenzo Positano⁴, Maria Filomena Santarelli, ⁴⁵, Sergio Berti¹, Marco Solinas¹, Luigi Landini, ¹³, Dante Chiappino¹ ¹Fondazione G.Monasterio CNR-Regione Toscana, Massa, MS, Italy; ²Scuola Superiore Sant'Anna, Pisa, PI, Italy; ³Department of

⁵Institute of Clinical Physiology, CNR, Pisa, PI, Italy

Computer 41 3015. Diffusion Tensor Imaging of the Lumbar and Sacral Plexus in Post Mortem Subjects

Wieke Haakma¹,², Michael Pedersen³, Martijn Froeling², Lars Uhrenholt⁴, Jeroen Hendrikse², Alexander Leemans⁵, Lene Warner Thorup Boel⁴

¹Department of Forensic Medicine & Comparative Medicine Lab, Aarhus University, Aarhus, Central Denmark, Denmark; ²Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ³Department of Comparative Medicine Lab -Clinical Institute, Aarhus University, Central Denmark, Denmark; ⁴Department of Forensic Medicine, Aarhus University, Aarhus, Central Denmark, Denmark; ⁵Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands

Computer 42 3016. Assessment of Aquaporins Function in Stages of Clinical Liver Fibrosis Using Multi-B DWI *Qiuju Li^l, Qiyong Guo^l, Zhoushe Zhao², Jiahui Li^l, Bing Yu^l, Yu Shi^l* ¹Radiology, shengjing hospital, Shenyang, Liaoning, China; ²General Electronic Company Healthcare (China), General Electronic Company Healthcare (China), Beijing, China

Computer 43 3017. Surface to Volume Ratio Mapping of Mouse GBM Using OGSE Olivier Reynaud¹, ², Kerryanne V. Winters¹, ², Dmitry S. Novikov¹, ², Sungheon Gene Kim¹, ² Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States

- Computer 44 3018. Impact of Co-Registration on the Histogram Analysis of ADC Maps in MRI/MRS Brain Tumor Diagnostics Nuno Pedrosa de Barros¹, ², Urspeter Knecht², Roland Wiest², Johannes Slotboom² ¹University of Bern, Bern, Switzerland; ²Institute for Diagnostic and Interventional Neuroradiology, Bern, Switzerland
- Computer 45 3019. A Simplified Intravoxel Incoherent Motion Model for Diffusion Weighted Imaging in Prostate Cancer Evaluation: Comparison with Monoexponential and Biexponential Models Qing Yuan¹, Daniel N. Costa¹, ², Julien Sénégas³, Yin Xi¹, Andrea J. Wiethoff², ⁴, Robert E. Lenkinski¹, ², Ivan Pedrosa¹,

¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ²Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ³Philips Research Laboratories, Hamburg, Germany; ⁴Philips Research North America, Briarcliff Manor, NY, United States

Computer 46 3020. Value of DTI and DTT Map to Differentiate Prostate Cancer in Central Gland from Benign Prostate Hyperplasia

*Tao GONG*¹, *bin wang*², *guangbin WANG*³, *shuhui YUAN*⁴ ¹Shandong Medical Imaging Research Institute, Shandong University, Shandong, Jinan, China; ²binzhou medical university, Shandong, yantai, China; ³Shandong Medical Imaging Research Institute, Shandong University, jinan, China; ⁴binzhou medical university, yantai, China

- Computer 47 3021. Diffusion Weighted Imaging Using Intravoxel Incoherent Motion Model with T2 Relaxivity Correction for Therapeutic Efficacy in VX2 Liver Tumor in Rabbits Jeong Hee Yoon¹, Jeong Min Lee¹, Mun Young Paek², Sangwoo Lee³, Joon Koo Han¹ ¹Radiology, Seoul National University Hospital, Seoul, Korea; ²Siemens Healthcare Korea, Seoul, Korea; ³Samsung electronics, Seoul, Korea
- Computer 48 3022. Intravoxel Incoherent Motion MR Imaging: Diffusion and Perfusion Characteristics in Early Assessment of Chemotherapy Response in Nasopharyngeal Carcinoma Zhuangzhen He¹, Yunbin Chen, Youping Xiao, Minfeng Li, Weibo Chen², He Wang³ ¹ Fujian Province Cancer Hospital, Fuzhou, Fujian, China; ²Philips Healthcare, Shanghai, China; ³Philips Research China, Shanghai, China

Electronic Poster

Diffusion: Modelling of Microstructure

Exhibition Hall Monday 11:45-12:45

Computer 49 3023. Characterizing the Diffusion Properties of Blood

Carsten Funck¹, Frederik Bernd Laun¹, Andreas Wetscherek¹

¹Medical Physics In Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Computer 50 3024. Monitoring the Progressive Changes in Kidney Diffusion and Perfusion in Contrast-Induced Nephropathy Using IVIM MRI

Shuixing Zhang¹, Wenbo Chen¹, Long Liang¹, Kannie W.Y. Chan², Yuguo Li², Bin Zhang¹, Guanshu Liu², Changhong Liang¹

¹Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong, China; ²Russell H. Morgan Department of Radiology and Radiological Sciences, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

Computer 51 3025. Time Dependent Diffusion in Prostate

*Gregory Lemberskiy*¹, ², *Andrew Rosenkrantz*¹, *Henry Rusinek*¹, *Els Fieremans*¹, *Dmitry S. Novikov*¹ ¹Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States

- Computer 52 3026. Diffusion Microstructure Modelling Using a Modular and Extensible GPU Accelerated Toolkit *Robbert Harms¹*, Silvia de Santis¹, ², Matteo Bastiani¹, Rainer Goebel¹, Alard Roebroeck¹ ¹Maastricht University, Maastricht, Limburg, Netherlands; ²CUBRIC Cardiff University, Cardiff, United Kingdom
- Computer 53 3027. Using Oscillating Gradient Spin-Echo Sequences to Infer Micron-Sized Bead and Pore Radii Sheryl L. Herrera¹, Morgan E. Mercredi¹, Trevor J. Vincent², ³, Richard Buist⁴, Melanie Martin², ⁵ ¹Physics & Astronomy, University of Mantioba, Winnipeg, Manitoba, Canada; ²Physics, University of Winnipeg, Manitoba, Canada; ³Physics, University of Toronto, Toronto, Ontario, Canada; ⁴Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ⁵Physics & Astronomy, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada
- Computer 54 3028. How to Get More Out of a Clinically Feasible 64 Gradient DMRI Acquisition: Multi-Shell Versus Single-Shell Rutger Fick¹, Mauro Zucchelli², Gabriel Girard, ¹³, Gloria Menegaz², Maxime Descoteaux³, Rachid Deriche¹ ¹Team Athena - INRIA, Sophia Antipolis, Alpes Maritimes, France; ²University of Verona, Verona, Italy; ³Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Quebec, Canada
- Computer 55 3029. Estimation of Pore Size Distributions with Diffusion MRI: Feasibility for Clinical Scanners Gaetan Duchene¹, Frank Peeters¹, Thierry Duprez¹ ¹Medical Imaging, Université Catholique de Louvain, Brussels, Belgium
- Computer 56 3030. Potential Effect of Varying Background B₀ Gradients on Diffusion Measurements: An *in Silico* Study *Marco Palombo¹*, ², *Chloé Najac¹*, ², *Julien Valette¹*, ² ¹CEA/DSV/I2BM/MIRCen, Fontenay-aux-Roses, France, France; ²CEA-CNRS URA 2210, Fontenay-aux-Roses, France

Computer 57 3031. Simulation Study Investigating the Role of Vessel Topology in Differentiating Normal and Tumor Vessels Using Transverse Relaxation Times Mohammed Salman Shazeeb¹, Bashar Issa¹ ¹Department of Physics, UAE University, Al-Ain, Abu Dhabi, United Arab Emirates

- Computer 58 3032. Effect of Diffusion and Vessel Topology on Relaxation Mechanisms Using a Cylinder Fork Model Mohammed Salman Shazeeb¹, Bashar Issa¹ ¹Department of Physics, UAE University, Al-Ain, Abu Dhabi, United Arab Emirates
- Computer 59 3033. Time-Dependent Influence of Cell Membrane Permeability on MR Diffusion Hua Li^l, Xiaoyu Jiang^l, Jingping Xie^l, J. Oliver McIntyre^l, John C. Gore^l, Junzhong Xu^l ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States
- Computer 60 3034. New Mathematical Model for the Diffusion Time Dependent ADC Simona Schiavi¹, Houssem Haddar¹, Jing-Rebecca Li¹ ¹DeFI, INRIA, École Polytechnique, Palaiseau, France

Computer 61	3035.	Model-Based Estimation of Microstructure Parameters from Diffusion MRI Data in a Substrate with Microscopic Anisotropy and a Distribution of Pore Sizes Andrada Ianus ¹ , Ivana Drobnjak ¹ , Daniel C. Alexander ¹ ¹ Centre for Medical Image Computing, Department of Computer Science, UCL, London, United Kingdom
Computer 62	3036.	Simulating the DPFG and QMAS in a Model of Acute Axonal Injury Matthew Budde ¹ , Nathan Skinner ² ¹ Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ² Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
Computer 63	3037.	Moving Away from Single-Shell?: A Study on Angular Accuracy of Constrained Spherical Deconvolution. <i>Michael Paquette¹, Chantal M.W. Tax², Alexander Leemans², Maxime Descoteaux¹</i> ¹ Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Quebec, Canada; ² University Medical Center Utrecht, Image Sciences Institute, Utrecht, Netherlands
Computer 64	3038.	An Osage Orange as a Diffusion Imaging Phantom for the Evaluation of Slice-Accelerated Diffusion Imaging Sequence <i>Kwan-Jin Jung¹</i> ¹ Radiology, University of Louisville, Louisville, KY, United States
Computer 65	3039.	Effect of Demyelination on Diffusion Tensor Indices: A Monte Carlo Simulation Study <i>Maximilian Pietsch¹, J-Donald Tournier¹</i> ¹ Centre for the Developing Brain, King's College London, London, United Kingdom
Computer 66	3040.	Human Brain Tissue Microstructure Characterization Using 3D-SHORE on the HCP Data Mauro Zucchelli ¹ , Maxime Descoteaux ² , Gloria Menegaz ¹ ¹ Computer Science, University Of Verona, Verona, Italy; ² Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Quebec, Canada
Computer 67	3041.	Micro-MR Correlates of Cellular-Level Alterations in Epileptogenesis <i>Katharina Göbel¹, Johannes Gerlach², Robert Kamberger³, Jochen Leupold¹, Dominik von Elverfeldt¹, Carola Haas², Jan G. Korvink³, Jürgen Hennig¹, Pierre LeVan¹ ¹Medical Physics, Dept. of Radiology, University Medical Center Freiburg, Freiburg, Germany; ²Experimental Epilepsy Research, University Medical Center Freiburg, Freiburg, Germany; ³Dept. of Microsystems Engineering (IMTEK), Technical Faculty, University of Freiburg, Freiburg, Germany</i>
Computer 68	3042.	Microscopic Anisotropy in the Fixed Spinal Cord from DPFG and QMAS Diffusion Weighted Imaging Compared to DTI Nathan P. Skinner ¹ , ² , Matthew D. Budde ¹ , ³ ¹ Biophysics Graduate Program, Medical College of Wisconsin, Milwaukee, WI, United States; ² Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI, United States; ³ Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
Computer 69	3043.	Estimation of Neurite Density from an Isotropic Diffusion Model <i>Brian Hansen¹, Torben E. Lund¹, Ryan Sangill¹, Sune N. Jespersen¹, ²</i> ¹ Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; ² Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
Computer 70	3044.	Estimation of Intra-Axonal Fraction in Spinal Cord White Matter by Using Monte Carlo Simulation of Water Diffusion and High B-Value Diffusion Sensitized MRI Nabraj Sapkota ¹ , ² , John Rose ³ , Scott Miller ⁴ , Beth Bowman ⁴ , Lubdha Shah ⁴ , Erica Bisson ⁵ , Sook Yoon ¹ , ⁶ , Eun-Kee Jeong ¹ , ⁷ ¹ Utah Center for Advanced Imaging Research, University of Utah, SLC, UT, United States; ² Department of Physics, University of Utah, SLC, UT, United States; ⁴ Department of Radiology, University of Utah, SLC, UT, United States; ⁶ Department of Neurosurgery, University of Utah, SLC, UT, United States; ⁶ Department

of Multimedia Engineering, Mokpo National Engineering, Jeonnam, Korea; ⁷Department of Radiology, Korea University, Seoul, Korea

Computer 71 3045. Diffusion MRI Detects Early Axon Loss Despite Confounding Inflammation in Optic Neuritis

Carlos J. Perez-Torres¹, Tsen-Hsuan Lin¹, Chia-Wen Chiang¹, Peng Sun¹, Yong Wang¹, ², Anne H. Cross, ²³, Sheng-Kwei Song¹, ²

¹Radiology, Washington University, Saint Louis, MO, United States; ²Hope Center for Neurological Disorders, Washington University, Saint Louis, MO, United States; ³Neurology, Washington University, Saint Louis, MO, United States

Computer 72 3046. Resolving Diffusion Compartments Using Single-Shell Data Via Estimation with Enhanced Sparsity *Pew-Thian Yap¹*, Yong Zhang², Dinggang Shen¹ ¹Department of Radiology, University of North Carolina, Chapel Hill, NC, United States; ²Department of Psychiatry & Behavioral Sciences, Stanford University, CA, United States

Electronic Poster

Perfusion & Permeability - Contrast Agent Methods

Exhibition Hall Monday 11:45-12:45

Computer 73 3047. Feasibility of Test-Bolus Dynamic Contrast-Enhanced MRI Using CAIPIRINHA-VIBE for Evaluation of Pancreas Malignancy. Jimi Huh¹, Kyung Won Kim¹, Jisuk Park², Jae Ho Byun¹, In Seong Kim³, Berthold Kiefer⁴, Moon-Gyu Lee

¹radiology, Seoul Asan Medical Center, Seoul, Korea; ²radiology, Seoul Asan Medical Center, SEOUL, Korea; ³Siemens Healthcare, Seoul, Korea; ⁴Siemens Healthcare, Erlangen, Germany

Computer 74 3048. Survival Rate Prediction in Patients with Glioblastoma Multiforme, Using Dynamic Contrast Enhanced MRI and Nested Model Selection Technique

Hamed Moradi¹, Azimeh Noorizadeh Dehkordi², ³, Siamak P. Nejad-Davarani⁴, Reza Faghihi¹, Brent Griffith⁵, Ali S. Arbab⁶, Tom Mikkelsen⁷, Hamid Soltanian-Zadeh⁵, Lisa Scarpace⁷, Hassan Bagher-Ebadian⁵, ⁸ ¹Mechanical Engineering, Shiraz University, Shiraz, Fars, Iran; ²Nuclear Engineering, Shahid Beheshti University, Tehran, Iran; ³Nuclear Engineering and Science, Azad University of Najafabad, Najafabad, Isfahan, Iran; ⁴Neurology, Henry Ford Hospital, Detroit, MI, United States; ⁵Radiology and Research Administration, Henry Ford Hospital, Detroit, MI, United States; ⁶GRU Cancer Center, Georgia Regents University, Atlanta, GA, United States; ⁷Neurological Surgery, Henry Ford Hospital, Detroit, MI, United States; ⁸Physics, Oakland University, Rochester, MI, United States

Computer 75 3049. Assessment and Prediction of Vestibular Schwannoma Response to Anti-Angiogenic Therapy in Neurofibromatosis Type 2 Patient Using Low Dose High Temporal Resolution DCE-MRI Ka-Loh Li¹, Alan Jackson¹, Xiaoping Zhu¹ ¹WMIC, University of Manchester, Manchester, Great Manchester, United Kingdom

Computer 76 3050. High-Resolution Whole-Brain DCE MRI of Brain Tumor Using Constrained Reconstruction: Prospective Clinical Evaluation

Yi Guo¹, R. Marc Lebel², Yinghua Zhu¹, Mark S. Shiroishi³, Meng Law³, Krishna S. Nayak¹ ¹Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ²GE Healthcare, Calgary, Alberta, Canada; ³Department of Radiology, University of Southern California, Los Angeles, CA, United States

Computer 77 3051. Prospective Glioma Grading Using Single Dose Dynamic Contrast Enhanced MRI Perfusion

Aprajita Mehta¹, Krishan K. Jain¹, Prativa Sahoo², Bhaswati Roy¹, Ritu Tyagi¹, Ram K S Rathore³, Rana Patir⁴, Sandeep Vaishya⁴, Neeraj Prakash⁵, Nandini Vasudev⁵, Rakesh K. Gupta¹ ¹Radiology, Fortis Memorial Research Institute, Gurgaon, India; ²Philips Healthcare, Philips India Ltd, Gurgaon, India; ³Dept of Mathematics, Indian Institute of Technology, Kanpur, India; ⁴Neurosurgery, Fortis Memorial Research Institute, Gurgaon, India; ⁵Pathology, Fortis Memorial Research Institute, Gurgaon, India

Computer 78 3052. Evaluation of DCE-MRI Data Sampling, Reconstruction and Model Fitting Using Digital Brain Phantom *Yinghua Zhu^l*, *Yi Guo^l*, *Sajan Goud Lingala^l*, *Samuel Barnes²*, *R. Marc Lebel³*, *Meng Law^l*, *Krishna Nayak^l* ¹University of Southern California, Los Angeles, CA, United States; ²California Institute of Technology, Pasadena, CA, United States; ³GE Healthcare, Calgary, Canada

Computer 79 3053 .	Dynamic Contrast-Enhanced MRI Model Parameters from Different Regions Within the Vascular Wall of Carotid Plaques: Comparison with Histology Raf H.M. van Hoof ¹ , ² . Evelien Hermeling ¹ , ² . Nickv J.A. Wiinen ¹ . Floris H.B.M. Schreuder ¹ , ³ . Martine T.B. Truiiman ¹ .
	³ , Stefan A. Voo, ²⁴ , Jack P.M. Cleutjens, ²⁵ , Judith C. Sluimer, ²⁵ , Sylvia Heeneman, ²⁵ , Robert J. van Oostenbrugge, ²³ , Jan-Willem H. Daemen ⁶ , Mat J.A.P. Daemen ⁷ , Joachim E. Wildberger ¹ , ² , M. Eline Kooi ¹ , ² ¹ Radiology, Maastricht University Medical Center, Maastricht, Netherlands; ² Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands; ³ Neurology, Maastricht University Medical Center, Maastricht, Netherlands; ⁵ Pathology, Maastricht University Medical Center, Maastricht, Netherlands; ⁵ Pathology, Maastricht University Medical Center, Maastricht, Netherlands; ⁷ Pathology, Academic Medical Center, Maastricht, Netherlands; ⁸ Nuclear Medical Center, Amsterdam, Netherlands
Computer 80 3054.	Accelerating Brain DCE-MRI Acquisition Using an Iterative Reconstruction Method with Total Generalized Variation Penalty: Feasibility Study Chunhao Wang ¹ , ² , Fang-Fang Yin ¹ , ² , John P. Kirkpatrick ¹ , ² , Zheng Chang ¹ , ² ¹ Radiation Oncology, Duke University Medical Center, Durham, NC, United States; ² Medical Physics Graduate Program, Duke University, Durham, NC, United States
Computer 81 3055	Concentrating and Clearing Mechanism of the Kidney Revealed by OSM at Illtra-Short TF
	<i>Luke Xie¹, Nian Wang², Chunlei Liu, ¹², G. Allan Johnson¹</i> ¹ Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States; ² Brain Imaging Analysis Center, Duke University Medical Center, Durham, NC, United States
Computer 82 3056.	Multi-Band Multi-Echo EPI (M2-EPI) for Dynamic Suscentibility Contrast (DSC) Perfusion Imaging: A
	Feasibility Study Degiang Qiu ¹ , Amit Saindane ¹ , Xiaodong Zhong ² , Seena Dehkharghani ¹ ¹ Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States; ² Siemens Healthcare, GA, United States
Computer 83 3057.	Quantifying MRI Contrast Agent in Flowing Blood Using DCE-MRI – a Feasibility Study <i>Matt N. Gwilliam¹, David J. Collins¹, Martin O. Leach¹, Matthew R. Orton¹</i> ¹ Institute of Cancer Research, London, Greater London, United Kingdom
Computer 84 3058	Patrospective Resolution Adaption for DCF MRI Using 3D Colden Angle Radial Acquisition
ISMRM MERIT AWARD magna cum laude	Ina Nora Kompan ¹ , ² , Benjamin Richard Knowles ³ , Cristoffer Cordes ¹ , Matthias Guenther ¹ , ² ¹ Fraunhofer MEVIS, Bremen, Germany; ² mediri GmbH, Heidelberg, Baden-Württemberg, Germany; ³ Universitätsklinikum Freiburg, Freiburg, Baden-Württemberg, Germany
Computer 85 3059.	Comparison of Different Leakage-Correction Methods for DSC-Based CBV Measurement in Human Gliomas <i>Anne Kluge¹, Mathias Lukas², Vivien Toth³, Stefan Förster², Claus Zimmer¹, Christine Preibisch¹, ⁴</i> ¹ Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany; ² Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Munich, Germany; ³ Department of Radiology, Klinikum rechts der Isar, TU München, Munich, Germany; ⁴ Department of Neurology, Klinikum rechts der Isar, TU München, Munich, Germany
Computer 86 3060 .	Closing Up on Pharmacokinetic Modeling – Exploring the Limits of the Tofts Model for DCE-MRI Analysis
	Using Intravital Microscopy Dina Sikpa ^l , Réjean Lebel ^l , Vincent Turgeon ^l , Lisa Whittingstall ^l , Jérémie Fouquet ^l , Marc-André Bonin ^l , Luc Tremblay ^l , Martin Lepage ^l ¹ Centre d'imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
Computer 87 3061.	Quantifying Pulmonary Perfusion in Health and Pulmonary Disease with DCE-MRI: Effect of Bolus Delay J. Tim Marcus ¹ , Barry Ruijter ¹ , Taco Kind ² , Rudolf Verdaasdonk ¹ , Anton Vonk Noordegraaf ²
	Center, Amsterdam, Netherlands

Computer 88 3062. A Novel Vascular Transfer Function for Modeling the Local Arterial Input Function for More Accurate Estimation of Vascular Permeability Parameters in DCE-MRI Studies Siamak Nejad-Davarani¹, ², Hassan Bagher-Ebadian³, ⁴, Douglas Noll², Tom Mikkelsen⁵, Lisa Scarpace⁵, Azimeh Noorizadeh Vahed Dehkordi⁶, James R. Ewing¹, ⁴, Michael Chopp¹, ⁴, Quan Jiang¹, ⁴ ¹Department of Neurology, Henry Ford Hospital, Detroit, MI, United States; ²Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; ³Department of Radiology, Henry Ford Hospital, Detroit, MI, United States; ⁶Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, United States; ⁶Department of Nuclear Engineering, Shahid Beheshti University, Tehran, Iran

Computer 89 3063. A Tracer Kinetic Model with Optimal Compartments for Assessing Intravoxel Tumor Heterogeneity in Papillary Thyroid Carcinoma

Yonggang Lu¹, Yousef Mazaheri¹, Vaois Hatzoglou¹, Hilda Stambuk¹, Ashok Shaha¹, Joseph O. Deasy¹, R. Michael Tuttle¹, Amita Shukla-Dave¹ ¹Memorial Sloan-Kettering Cancer Center, NEW YORK, United States

Computer 90 3064. An Efficient Method for Pharmacokinetics Parameter Calculation in Permeability Study Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging *Chunhao Wang¹, ², Fang-Fang Yin¹, ², Zheng Chang¹, ²* ¹Radiation Oncology, Duke University Medical Center, Durham, NC, United States; ²Medical Physics Graduate Program, Duke University, Durham, NC, United States

Computer 91 3065. Comparison of the Arterial Input Function Measured at Low and High Contrast Agent Doses in Prostate Cancer Patients Shiyang Wang¹, Gregory S. Karczmar¹, Xiaobing Fan¹, Federico Pineda¹, Milica Medved¹, Ambereen Yousuf¹, Aytek Oto¹

¹Radiology, University of Chicago, Chicago, IL, United States

Computer 92 3066. DCE-MRI Analysis Using Model-Based Classification Shapes with Non-Negative Least-Squares Zaki Ahmed¹, Ives R. Levesque, ¹² ¹Medical Physics Unit, McGill University, Montreal, Quebec, Canada; ²Research Institute of the McGill University Health Center, Montreal, Quebec, Canada

Computer 93 3067. Automatic Selection of Arterial Input Function Using K-Mean Cluster Algorithm *Tian-Yu Su^l*, *Sheng-Min Huang^l*, *Cheng-He Li^l*, *Kung-Chu Ho²*, *Fu-Nien Wang^l* ¹Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; ²Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan

Electronic Poster

Hybrid Systems, Gradients & Monitoring

Exhibition Hall Monday 14:15-15:15

Computer 1 3068. Integrated MRI-LINAC Radiotherapy Machine Oliver Heid¹, Michael Kleemann¹, Jürgen Heller¹ ¹CT NTF HTC, Siemens AG, Erlangen, Bavaria, Germany

Computer 2 3069. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone

Daniel H. Paulus¹, Harald H. Quick¹, ², Matthias Fenchel³, Christian Geppert³, David Faul⁴, Yiqiang Zhan⁵, Fernando E. Boada⁶, ⁷, Kent L. Friedman⁶, Thomas Koesters⁶, ⁷

¹Institute of Medical Physics, University of Erlangen-Nürnberg, Erlangen, Germany; ²High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany; ³Siemens AG Healthcare, Erlangen, Germany; ⁴Siemens AG Healthcare, New York, NY, United States; ⁵Siemens AG Healthcare, Malvern, PN, United States; ⁶NYU Langone Medical Center, Center for Biomedical Imaging, Department of Radiology, New York, NY, United States; ⁷NYU Langone Medical Center, Center for Advanced Imaging Innovation and Research, CAI2R, New York, NY, United States

Computer 3 3070. Clinical MR-Linac System

Johan Overweg¹, Falk Uhlemann¹, Phil Jonas², Thomas Amthor¹, Peter Forthmann², Panu Vesanen³, Tero Virta³, Christopher Busch³, Kevin Brown⁴ ¹Philips Innovative Technologies, Hamburg, Germany; ²Philips Healthcare, Latham, NY, United States; ³MR therapy, Philips Healthcare, Vantaa, Finland; ⁴Elekta Limited, Crawley, United Kingdom

Computer 4 3071. Optimisation of a 32-Channel Resonator for Simultaneous PET/MRI of the Head at 3.0 Tesla: Material Selection and Performance Testing

Adam Farag¹, ², Jean Theberge³, ⁴

¹Ceresensa Inc, London, Ontario, Canada; ²Western University, London, Ontario, Canada; ³Lawson Health Research Institute, Ontario, Canada; ⁴Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada

Computer 5 **3072.** Zero TE Based PET Attenuation Correction in the Head Florian Wiesinger¹, Anne Menini¹, Sangtae Ahn², Lishui Cheng², Gaspar Delso³, Sandeep Kaushik⁴, Ravindra Manjeshwar², Dattesh Shanbhag⁴ ¹GE Global Research, Munich, Germany; ²GE Global Research, Niskayuna, NY, United States; ³GE Healthcare, Zurich, Switzerland; ⁴GE Global Research, Bangalore, India

Computer 6 3073. MR Driven PET-Attenuation Correction in Presence of Metal Implants Using Anatomy Context Driven Decisioning

Dattesh D. Shanbhag¹, Sandeep S. Kaushik¹, Sheshadri Thiruvenkadam¹, Florian Wiesinger², Sangtae Ahn³, Rakesh Mullick⁴, Ravindra M. Manjeshwar⁵

¹Medical Image Analysis Laboratory, GE Global Research, Bangalore, Karnataka, India; ²Diagnostics & Biomedical Technology Laboratory, GE Global Research, Garching, Bavaria, Germany; ³Functional Imaging Laboratory, GE Global Research, Niskayuna, NY, United States; ⁴Diagnostics & Biomedical Technologies, GE Global Research, Bangalore, Karnataka, India; ⁵X-ray & Functional Imaging, GE Global Research, Niskayuna, NY, United States

Computer 7 3074. MR Guided Motion Correction for Yttrium 90 Imaging Using a Simultaneous PET/MRI Scanner

Mootaz Eldib¹, ², Niels Oesingmann³, David Faul³, Jason Bini¹, ², Lale Kostakoglu⁴, Karin Knesaurek⁴, Zahi A. Fayad¹ ¹TMII, Ichan School of Medicine at Mount Sinai, New York, NY, United States; ²Biomedical Engineering, City College of New York, New York, NY, United States; ³Siemens Healthcare, New York, NY, United States; ⁴Radiology, Ichan School of Medicine at Mount Sinai, New York, NY, United States

Computer 8 3075. A New Unilateral Breast Specific Coil Design and Dual-Modality Interface Configuration for MR/scintimammography Jaedu Cho¹, Seunghoon Ha¹, Alex Luk¹, Farouk Nouizi¹, Orhan Nalcioglu¹, Gultekin Gulsen¹, Ming-Ying Su¹

Jaedu Cho', Seunghoon Ha', Alex Luk', Farouk Nouizi', Orhan Nalcioglu', Gultekin Gulsen', Ming-Ying Su' ¹Center for Functional Onco-Imaging, University of California Irvine, Irvine, CA, United States

Computer 9 3076. Design of a Whole-Body Radio Frequency Coil for Image-Guided Radiotherapy Treatment in a MRI-LINAC System Aurelien Destruel¹, Ewald Weber¹, Ivan Hughes¹, Yu Li¹, Feng Liu¹, Stuart Crozier¹

Aurelien Destruel¹, Ewald Weber¹, Ivan Hughes¹, Yu Li¹, Feng Liu¹, Stuart Crozier¹ ¹School of ITEE, University of Queensland, Brisbane, Queensland, Australia

Computer 10 3077. Feasibility of 18F-FDG Radio-Tracer Dose Reduction in Simultaneous Carotid PET/MR Imaging Mootaz Eldib¹, ², Jason Bini¹, ², Olivier Lairez¹, ², Zahi A. Fayad¹, ², Venkatesh Mani¹, ² ¹Radiology, Icahn School of Medicine at Mount Sinai, New York, United States; ²Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, NEW YORK, United States

- Computer 11 3078. Whole-Body PET-MR Including DWI, T2w, and Gadofosveset-Enhanced T1w Sequences: Evaluation of MR Performance Compared to PET-CT and Relative Benefits Provided by Each Sequence Piotr Obara¹, Andreas Loening¹, Valentina Taviani¹, Andrei Iagaru¹, Brian Hargreaves¹, Shreyas Vasanawala¹ ¹Radiology, Stanford Hospital, Stanford, CA, United States
- Computer 12 3079. MR Performance Evaluation of a PET/MR with SiPM Based Time of Flight PET Detectors Mohammad Mehdi Khalighi¹, Gaspar Delso², Sri-Harsha Maramraju³, Greg Zaharchuk⁴, Gary Glover⁴
¹Applied Science Lab, GE Healthcare, Menlo Park, CA, United States; ²Applied Science Lab, GE Healthcare, Zurich, Switzerland; ³PET/MR Engineering, GE Healthcare, Waukesha, WI, United States; ⁴Radiology Dep., Stanford University, Stanford, CA, United States

Computer 13 3080. MR Performance of an MR-Linac Prototype

States

Panu Vesanen¹, Jukka Tanttu¹, Juha Oila¹, Tiina Näsi¹, Annemaria Halkola¹, Tero Virta¹, Falk Uhlemann², Johan Overweg², Jarmo Ruohonen¹ ¹MR Therapy, Philips Healthcare, Vantaa, Finland; ²Philips Innovative Technologies, Hamburg, Germany

Computer 14 3081. Dynamic Brain PET/MR Using TOF Reconstruction Mohammad Mehdi Khalighi¹, Gaspar Delso², Sri-Harsha Maramraju³, Michel Tohme³, Gary Glover⁴, Greg Zaharchuk⁴ ¹Applied Science Lab, GE Healthcare, Menlo Park, CA, United States; ²Applied Science Lab, GE Healthcare, Zurich, Switzerland; ³PET/MR Engineering, GE Healthcare, Waukesha, WI, United States; ⁴Radiology Dep., Stanford University, Stanford, CA, United

Computer 15 3082. Stress and Strain Sensitivity Study of 1.5T Conduction Cooled MgB₂ Magnet Design.

Abdullah Al Amin¹, Tanvir Baig², Zhen Yao², Michael A. Martens² ¹Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Department of Physics, Case Western Reserve University, Cleveland, OH, United States

Computer 16 3083. A 24-Channel Shim Array for Real-Time Shimming of the Human Spinal Cord: Characterization and Proof-Of-Concept Experiment

Ryan $\hat{T}opfer^{1}$, *Kai-Ming* Lo^{2} , *Karl* $Metzemaekers^{2}$, *Donald* $Jette^{2}$, *Hoby P*. $Hetherington^{3}$, *Piotr* $Starewicz^{2}$, *Julien Cohen-Adad*¹, ⁴

¹Institute of Biomedical Engineering, Ecole Polytechnique de Montréal, Montreal, QC, Canada; ²Resonance Research Inc., Billerica, MA, United States; ³Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ⁴Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada

Computer 17 3084. Simultaneous EEG-FMRI: Evaluating the Effect of the EEG Cap Cabling Configuration on the Gradient Artefact.

Muhammad E H Chowdhury¹, Karen J. Mullinger¹, ², Richard Bowtell¹ ¹SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; ²BUIC, School of Psychology, University of Birmingham, Birmingham, United Kingdom

Computer 18 3085. An Improved Design of Multi-Channel Switching Circuit for Matrix Gradient Coil

Huijun Yu¹, Frank Huethe², Sebastian Littin¹, Kelvin Layton¹, Stefan Kroboth¹, Feng Jia¹, Jürgen Hennig¹, Maxim Zaitsev¹

¹Dept. of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, BW, Germany; ²Dept. of Clinical Neurology and Neurophysiology, University of Freiburg, Freiburg, BW, Germany

Computer 19 3086. Virtual Phantom (ViP) MRI: A Method to Generate Virtual Phantoms That Mimic Water-Fat Systems *Roberto Salvati¹*, ², *Eric Hitti¹*, ², *Jean-Jacques Bellanger¹*, ², *Herve Saint-Jalmes¹*, ³, *Giulio Gambarota¹*, ² ¹Université de Rennes 1, LTSI, Rennes, France; ²INSERM, UMR 1099, Rennes, France; ³INSERM, UMR 1099, Rennes, France

Computer 20 3087. Peripheral Nerve Stimulation Considerations in the Presence of the Metallic Objects Vahid Ghodrati¹, Niloufar Zakariaei¹, Abbas Nasiraei Moghaddam¹, ² ¹BME, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; ²School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Computer 21 3088. Dynamic Off-Resonance Magnetic Field Monitoring and Correction Using Proton Field Probes *Ying-Hua Chu^l*, *Yi-Cheng Hsu^l*, *Shang-Yueh Tsai²*, *Wen-Jui Kuo³*, *Fa-Hsuan Lin^l* ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²National Chengchi University, Taipei, Taiwan; ³National Yang Ming University, Taipei, Taiwan

Computer 22 3089. Accurate Vibroacoustic Simulations in High Performance Gradient Coils Simone Angela Winkler¹, Trevor P. Wade², Andrew Alejski², Charles McKenzie², Brian K. Rutt¹ ¹Dept. of Radiology, Stanford University, Stanford, CA, United States; ²Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada Computer 23 3090. The Automatic Placement of Cooling Pathways for MRI Gradient Coils Using Path Finding Algorithms Elliot Smith¹, Fabio Freschi, ¹², Maurizio Repetto², Stuart Crozier¹ School of ITEE, University of Queensland, Brisbane, Queensland, Australia; ²Department of Energy, Politecnico di Torino, Torino, Italy

Computer 24 3091. Design of a Shielded Coil Element of a Matrix Gradient Coil Feng Jia¹, Sebastian Littin¹, Kelvin Layton¹, Stefan Kroboth¹, Huijun Yu¹, Jürgen Hennig¹, Maxim Zaitsev¹ ¹Dept. of Radiology, University Medical Center Freiburg, Freiburg, BW, Germany

Electronic Poster

Non-Array RF Coils, Materials & Other Hardware

Exhibition Hall Monday 14:15-15:15

Computer 25 3092. RF Dipole Coil with Novel Slotted Shielding Plate Achieving an Improved B1 Distribution for 7 T MRI Zhichao Chen¹, ², Mahdi Abbasi¹, Klaus Solbach², Daniel Erni¹, Andreas Rennings¹ ¹General and Theoretical Electrical Engineering (ATE), Faculty of Engineering, University of Duisburg-Essen, Duisburg, NRW, Germany; ²High Frequency Engineering (HFT), Faculty of Engineering, University of Duisburg-Essen, Duisburg, NRW, Germany

- Computer 26 3093. Inductively Coupled Planar TX Coils: Analysis of B₁⁺ Efficiency and SAR Performance Johanna Schöpfer¹, ², Klaus Huber², Stephan Biber³, Markus Vester³, Sebastian Martius², Martin Vossiek⁴ ¹LHFT, University of Erlangen-Nuremberg, Erlangen, Germany; ²Siemens AG, Corporate Technology, Erlangen, Germany; ³Siemens AG, Healthcare, Erlangen, Germany; ⁴LHFT, University of Erlangen-Nuremberg, Erlangen, Germany
- Computer 27 3094. Tackling the Challenges of Imaging the Infant Brain in a Dedicated Neonatal Coil Emer Hughes¹, Tobias Winchmann², Laurent Mager³, Francesco Padormo⁴, Hutter Jana⁴, Julia Wurie¹, Matthew Fox¹, Maryanne Sharma¹, David Edwards¹, Andrew Kapetanakis¹, Alessandro Allievi⁵, Joseph Hajnal⁴ ¹Centre for the developing brain, Kings College London, London, United Kingdom; ²Rapid biomedical engineering, Germany; ³Peraltec AG, Switzerland; ⁴Division of imaging science and biomedical engineering, Kings College London, London, United Kingdom; ⁵Imperial College London, London, United Kingdom
- Computer 28 3095. WITHDRAWN

Computer 29 3096. High-Precision Magnetic Susceptometry Applied to 3D-Printed RF Coil Construction *R. Adam Horch¹*, ², John C. Gore¹, ² ¹Department of Radiology & Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Nashville, TN, United States

- Computer 30 3097. Ink-Jet Printing Enables Maskless Electroplating Mould Patterning for Rapid MRI Coil Fabrication Markus V. Meissner¹, Nils Spengler¹, Dario Mager¹, Jens Höfflin¹, Peter T. While¹, Jan G. Korvink¹ ¹Department of Microsystems Engineering - IMTEK, University of Freiburg, Freiburg, BW, Germany
- Computer 31 3098. Baluned-Hairpin-(BHP)-Resonator for Field Monitoring Thomas Riemer¹ ¹Insitute for Medical Physics and Biophysics, University of Leipzig, Leipzig, Saxony, Germany
- Computer 32 3099. Comparison of Different Simulation Methods Regarding Their Feasibility for MRI Coil Design Sebastian Martius¹, Johanna Schöpfer², ³, Andreas Fackelmeier¹, Klaus Huber¹ ¹Siemens AG, Coporate Technology, Erlangen, Germany; ²LHFT, University of Erlangen-Nuremberg, Erlangen, Germany; ³Siemens AG, Coporate Technology, Erlangen, Germany

Computer 33 3100. The Distributed Inductance Electric Dipole Antenna

*Graham C. Wiggins*¹, ², *Karthik Lakshmana*¹, ², *Gang Chen*¹, ³ ¹The Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, Newyork, NY, United States; ²The Center for Advanced Imaging Innovation and Research (CAI2R),Department of Radiology, New York University School of Medicine, Newyork, NY, United States; ³The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, Newyork, NY, United States

Computer 34 3101. A Cryogenic Solenoid Transmit/Receive Coil Cooled with Liquid Nitrogen for Sodium Imaging at 11.7 T Kuan Zhang¹, Lian Xue¹, Guangfu Xu², Zungang Liu², Erzhen Gao², Q.Y. Ma², Nikolaus M. Szeverenyi³, Graeme Bydder³ ¹Time Medical Systems. Inc. San Diego. CA. United States: ²Time Medical Systems. Inc. China: ³University of California. San J

¹Time Medical Systems, Inc, San Diego, CA, United States; ²Time Medical Systems, Inc, China; ³University of California, San Diego, CA, United States

Computer 35 3102. Evaluation on Coupling Strategies for Ultra-High Field MRI Probe Made of Cylindrical Dielectric Resonator *Rui Liu¹, Wei Luo², Thomas Neuberger³, ⁴, Michael Lanagan, ¹²* ¹Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States; ²Material Research Institute, Pennsylvania State University, University Park, PA, United States; ³Huck Institute of Life Science, Pennsylvania State University, University Park, PA, United States; ⁴Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, United States

Computer 36 3103. Evaluation of Displacement Currents and Conduction Currents in a Close Fitting Head Array with High Permittivity Material

*ChristopherM. M. Collins*¹, ², *Giuseppe Carluccio*¹, ², *Manushka Vaidya*¹, ², *Gillian Haemer*¹, ², *Riccardo Lattanzi*¹, ², *Graham C. Wiggins*¹, ², *Daniel K. Sodickson*¹, ², *Qing X. Yang*³ ¹Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, United

States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, NY, United States; ³Center for NMR Research, Penn State College of Medicine, Hershey, PA, United States

Computer 37 3104. Changes in Neighbor and Next-Nearest-Neighbor Coupling of Transmit/receive Arrays in the Presence of Close-Fitting High Permittivity Materials

Gillian G. Haemer¹, ², Manushka V. Vaidya¹, ², Christopher M. Collins¹, ², Graham C. Wiggins¹ ¹The Center for Advanced Imaging Innovation and Research, and the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States;

Computer 38 3105. SAR Reduction in RF Shimming Through the Use of High Permittivity Materials: Approach Towards the Ultimate Intrinsic SAR

*Gillian G. Haemer*¹, ², *Manushka V. Vaidya*¹, ², *Christopher M. Collins*¹, ², *Daniel K. Sodickson*¹, ², *Graham C. Wiggins*¹, *Riccardo Lattanzi*¹, ²

¹The Center for Advanced Imaging Innovation and Research, and the Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States

Computer 39 3106. Improving B₁⁺ Uniformity Using Segmented Dielectric Pads Aurelien Destruel¹, Jin Jin¹, Feng Liu¹, Mingyan Li¹, Ewald Weber¹, Stuart Crozier¹ ¹School of ITEE, University of Queensland, Brisbane, Queensland, Australia

Computer 40 3107. The Basis Functions: A Novel Approach for Electromagnetic Fields Evaluations for Any Matching and Coupling Conditions Gianluigi Tiberi¹, ², Nunzia Fontana³, Riccardo Stara⁴, Alessandra Retico⁵, Agostino Monorchio³, Michela Tosetti² ¹Imago7, Pisa, PI, Italy; ²IRCCS Stella Maris, Pisa, PI, Italy; ³Dipartimento di Ingegneria dell'Informazione, Pisa, PI, Italy; ⁴Dipartimento di Fisica, Pisa, PI, Italy; ⁵Istituto Nazionale di Fisica Nucleare, sezione di Pisa, Pisa, PI, Italy

Computer 41 3108. RF Safety Validation of High Permittivity Pads at 7 Tesla

Wyger Brink¹, Yacine Noureddine², Oliver Kraff², Andreas K. Bitz², ³, Andrew Webb¹

Electronic Poster

¹Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; ³Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Computer 42 3109. Ideal Current Patterns Correspond to Larger Surface Coils with Use of High Permittivity Materials Manushka V. Vaidya¹,², Gillian G. Haemer¹,², Giuseppe Carluccio¹, Dmitry Novikov¹,², Daniel K. Sodickson¹,², Christopher M. Collins¹,², Graham C. Wiggins¹,², Riccardo Lattanzi¹,² ¹Center for Advanced Imaging Innovation and Research, and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, United States

Computer 43 3110. Optimal Permittivity of Dielectric Liners and Their Effects on Transmit Array Performance Atefeh Kordzadeh¹, Nicola DeZanche² ¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; ²Department of Medical Physics, Cross Cancer Institute and University of Alberta, Edmonton, Alberta, Canada

Computer 44 3111. Influence of Metamaterial Insert to Cylindrical RF Coil Array in Human Knee MR Imaging at 1.5T

Xiaoqing Hu¹, Chunlai Li², Hongyi Wang¹, Xiaoliang Zhang³, Xin Liu¹, Hairong Zheng¹, Lin Luan², Ye Li¹ ¹Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen, Guangdong, China; ²ShenzhenKey Laboratory of Optical and Terahertz Meta-RF, Kuang-Chi Institute of Advanced Technology, Shenzhen, Guangdong, China; ³Department of Radiology and Biomedical Imaging, University of California San Francisco, CA, United States

Computer 45 3112. Development of Low Field MRI System Running on the Same Magnetic Circuit Used for 750 MHz CW EPR **Imaging System**

Hideo Sato-Akaba¹, Hiroshi Hirata²

¹Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan; ²Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan

Computer 46 3113. SpinoTemplate: A System for MR-Guided Spinal Cellular Therapeutics Injections Alexander Squires¹, John Oshinski², Jason Lamanna², Zion Tsz Ho Tse¹ ¹College of Engineering, The University of Georgia, Athens, GA, United States; ²Department of Radiology, Emory University, Atlanta, GA, United States

Computer 47 3114. Non-Metal Electrodes for Local Field Potential Recordings in Magnetic Resonance Scanners Jennifer Michelle Taylor¹, ², Shan Hu³, Rajesh Rajamani⁴, Xiao-Hong Zhu², Yi Zhang², Wei Chen¹, ² ¹Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; ²Radiology, University of Minnesota, ismen merit award magna cum laude Minneapolis, MN, United States; ³Mechanical Engineering, Iowa State University, Ames, IA, United States; ⁴Mechanical Engineering, University of Minnesota, Minneapolis, MN, United States

Computer 48 3115. Design of FPGA On-Chip Module for Real-Time Image Processing Limin Li^{l} , Alice M. Wyrwicz^l, ² ¹Center for Basic MR Research, NorthShore University HealthSystem, Evanston, IL, United States; ²Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States

Electronic Poster RF Coil Arrays

Exhibition Hall	Monday 14:15-15:15
Computer 49 3116 .	Dipole Arrays for MR Head Imaging: 7T Vs. 10.5T
	Jinfeng Tian ¹ , Russell Lagore ² , J. Thomas Vaughan ²
	¹ Center for Magnetic Resonance Research, U. of Minnesota, Minneapolis, MN, United States, ² U. of Minnesota, MN, United States

Computer 50 3117. Asymmetrically Segmented Loop Phased Coil for Uniform RF Field Excitation at 7T Seunghoon Ha¹, Haoqin Zhu¹, Labros Petropoulos¹

¹R&D, IMRIS Inc., Minnetonka, MN, United States

Computer 51 3118. Magnetic Wall Decoupling for Dipole Transceiver Array for MR Imaging: A Feasibility Test Xinqiang Yan¹, ², Xiaoliang Zhang³, Long Wet², Rong Xue¹ ¹State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ²Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ³Department of Radiology and Biomedical Imaging, University of California San Francisco and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States

Computer 52 3119. Evaluation of a Modified Passive Clamp Decoupling Network at High Frequencies Chathura Kumaragamage¹, ², Jamie Near, ² ¹Biomedical Engineering, McGill University, Montreal, Quebec, Canada; ²The Douglas Brain Imaging Centre, Montreal, Quebec, Canada

Computer 53 3120. Matching-Network Noise Dominating Regime for Receive Coil Loops *Xueming Cao¹*, *Elmar Fischer¹*, *Boris Keil²*, *Lawrence L. Wald²*, ³, *Jan G. Korvink⁴*, *Jürgen Hennig¹*, *Maxim Zaitsev¹* ¹University Medical Center Freiburg, Freiburg, Germany; ²A. A. Martinos Center for Biomedical Imaging, Dpt. of Radiology, Massachusetts General Hospital, Charlestown, MA, United States; ³Harvard Medical School, Boston, MA, United States; ⁴IMTEK, University of Freiburg, Freiburg, Germany

Computer 54 3121. ³¹P MRSI of the Brain at 3T with an Improved 8-Channel Receive Array and Whitened Singular Value Decomposition for Optimal Combination of ³¹P Array Signals

M.J. van Uden¹, A. Rijpma², ³, C.T. Rodgers⁴, Bart Philips⁵, T.W.J. Scheenen⁵, A. Heerschap¹ ¹Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Department of Geriatric Medicine, Radboud University Medical Center, Gelderland, Netherlands; ³Radboud Alzheimer Center, Radboud University Medical Center, Gelderland, Netherlands; ⁴OCMR, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom; ⁵Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands

Computer 55 3122. Comparison of 16-Channel Stripline and 10-Channel Fractionated Dipole Transceive Arrays for Body Imaging at 7T

M. Arcan Erturk¹, Alexander J. E. Raaijmakers², Gregor Adriany¹, Jinfeng Tian¹, Pierre-Francois van de Moortele¹, Cornelis A. T. van den Berg², Dennis W. J. Klomp², J. Thomas Vaughan¹, Kamil Ugurbil¹, Gregory J. Metzger¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Imaging Division, UMC Utrecht, Utrecht, Netherlands

Computer 56 3123. A 24-Channel Quadrature Surface Coil Array for High-Resolution Human Temporal Lobe fMRI at 3T Pu-Yeh Wu¹, Ying-Hua Chu¹, Shang-Yueh Tsai², Wen-Jui Kuo³, Fa-Hsuan Lin¹ ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²Institute of Applied Physics, National Chengchi University, Taipei, Taiwan; ³Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan

Computer 57 3124. Three-Channel Flexible Phased Array Using Circular Coils with Annex Structure for Decoupling Jhy-Neng Tasso Yeh¹, Fa-Hsuan Lin¹ ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan

Computer 58 3125. Triangular Receiver Coils to Support Superior/inferior Acceleration Paul T. Weavers¹, Jacob N. Gloe¹, Eric G. Stinson¹, Phillip J. Rossman¹, Thomas C. Hulshizer¹, Stephen J. Riederer¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States

Computer 59 3126. Direct Derivation of Multi-Channel Receive Coil Sensitivity

Victor Taracila¹, Fraser Robb¹ ¹General Electric, Aurora, OH, United States

Computer 60 3127. High Acceleration Ability of a Homemade 8-Ch Mouse Phased Array Suggests the Possibility for EPI-Based Functional Studies of Mice Models Using a Standard 3T Human Scanner

Hui Han¹, John Stager¹, Wei Cao², Miguel Navarro³, Fraser Robb³, Junghun Cho¹, Nozomi Nishimura⁴, Chris Schaffer⁴, Valerie Reyna¹, Yi Wang¹, Wen-Ming Luh¹

¹Cornell MRI Facility, Cornell University, Ithaca, NY, United States; ²Tongji Hospital, Huazhong University of Science and Technology, Hubei, China; ³GE Healthcare, OH, United States; ⁴Biomedical Engineering, Cornell University, Ithaca, NY, United States

Computer 61 3128. Lung-Cardiac Specific ¹H RF Array Coil at 1.5 T Madhwesha Rao¹, Fraser Robb¹, ², Jim Wild¹ ¹University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²GE Healthcare, Aurora, OH, United States

Computer 62 3129. Swaddle Coils for a Newborn

A.M. Flynn¹, J.R. Corea¹, P.B. Lechene¹, P.D. Calderon², T. Zhang³, G.C. Scott³, S.S. Vasanawala⁴, A.C. Arias¹, M. Lustig¹

¹EECS, Univ. of California, Berkeley, CA, United States; ²Diamant Engineering, Castro Valley, CA, United States; ³EECS, Stanford Univ., Palo Alto, CA, United States; ⁴Radiology, Stanford LPCH, Palo Alto, CA, United States

Computer 63 3130. Array Coil and Sample Preparation and Support System for Whole Brain Ex Vivo Imaging at 100 µm

Azma Mareyam¹, Jonathan R. Polimeni¹, ², Allison Stevens¹, Andre Van Der Kouwe¹, ², Loren D. Bridgers³, Jason P. Stockmann¹, ², Matthew D. Tisdall¹, ², Lee Tirrell¹, Allison L. Moreau¹, Ani Varjabedian¹, Brian L. Edlow¹, ², Bruce Fischl¹, ⁴, Lawrence L. Wald¹, ²

¹A.A. Martinos Center of Biomedical Engineering, Department of Radiology, Charlestown, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁴CSAIL, Massachusetts Institute of Technology, Cambridge, MA, United States

Computer 64 3131. Short Dipole Array for Enhanced B1 Efficiency/sensitivity at the Expense of SAR

Alexander J.E. Raaijmakers¹, Arcan Erturk², Greg Metzger², Cornelis A.T. van den Berg¹, Gregor Adriany² ¹Imaging Division, UMC Utrecht, Utrecht, Netherlands; ²Center for Magnetic Resonance Research, Minneapolis, MN, United States

Computer 65 3132. Transmit Power Reduction and B₁⁺ Homogenization Using 4-Channel Regional RF Shimming for Shoulder Imaging at 3T

Yukio Kaneko¹, Yoshihisa Soutome¹, ², Kosuke Ito², Masahiro Takizawa², Hideta Habara¹, ², Yusuke Seki¹, Tetsuhiko Takahashi², Yoshitaka Bito², Hisaaki Ochi¹ ¹Central Research Laboratory, Hitachi Ltd., Kokubunji-shi, Tokyo, Japan; ²Hitachi Medical Corporation, Kashiwa, Chiba, Japan

Computer 66 3133. A Combined Electric Dipole and Loop Head Coil for 7T Head Imaging Gang Chen¹,², Karthik Lakshmanan¹, Daniel Sodickson¹, Graham Wiggins¹

¹Center for Advanced Imaging Innovation and Research (CA12R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, NY, United States

Computer 67 3134. A Receive Chain Add-On for Implementation of a 32-Channel Integrated Tx/Rx Body Coil and Use of Local Receive Arrays at 7 Tesla Stephan Orzada¹, Andreas K. Bitz², Klaus Solbach³, Mark E. Ladd, ¹² ¹Erwin L. Hahn Institute for MRI, Essen, NRW, Germany; ²Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ³RF Technology, University Duisburg-Essen, Duisburg, Germany

Computer 68 3135. Initial Results: Ultra-High Field 32-Ch Tx Body Array with Bright Centers. Shailesh B. Raval¹, Tiejun Zhao², Narayanan Krishnamurthy¹, Yujuan Zhao¹, Sossena Wood¹, Kyongtae Bae¹, Tamer S. Ibrahim¹ ¹University of Pittsburgh, Pittsburgh, PA, United States; ²Siemens Medical Solutions, Pittsburgh, PA, United States

Computer 69 3136. Boosting ³¹P Signals by Using a 7 Channel Receive Array at 7T Bart L. van de Bank¹, Frits Smits¹, Miriam W. van de Stadt-Lagemaat¹, Tom W.J. Scheenen¹, ²

¹Departement of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, Netherlands; ²Erwin L. Hahn Institute, University Duisburg-Essen, Germany

- Computer 70 3137. 3D-Printed Microstrip Resonators for 4.7T MRI Saeed Javidmehr¹, Adam Maunder², Mojgan Daneshmand¹, Nicola De Zanche³ ¹Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada; ²Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada; ³Oncology, University of Alberta, Edmonton, Alberta, Canada
- Computer 71 3138. Harmonic Excitation of MR Signal for Interventional MRI Dmitri Artemov¹, Yoshinori Kato, ¹² ¹Radiology, Johns Hopkins University, Baltimore, MD, United States; ²3 Life Science Tokyo Advanced Research Center, Hoshi University, Tokyo, Shinagawa-ku, Japan
- Computer 72 3139. Onboard RF Combination for Receiver Channel Reduction Ziyuan Fu¹, Mark Bolding², Shumin Wang¹ ¹Auburn University, Auburn, AL, United States; ²Radiology, University of Alabama, Birmingham, AL, United States

Electronic Poster UHF Applications: General

- I.	1		
Exhibition	Hall	Monda	y 14:15-15:15

Computer 73 3140. Simultaneous In Vivo ¹H/²³Na-Imaging of Superficial Lymph Nodes Using 7 Tesla-MRI Martin T. Freitag¹, Nadia Benkhedah², Pedram Yazdanbakhsh³, Titus Lanz³, Moritz Berger², Mathies Breithaupt²,

Summa cum laude Jessica Hassel⁴, Heinz-Peter Schlemmer¹, Mark E. Ladd², Armin M. Nagel² ¹Department of Radiology, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany; ²Medical Physics in

Radiology, German Cancer Research Center, Heidelberg, Baden-Wuerttemberg, Germany; ³Rapid Biomedical, Rimpar, Bayern, Germany; ⁴Department of Dermatology, National Center for Tumor Diseases, Heidelberg, Baden-Wuerttemberg, Germany

Computer 74 3141. Successful 2-Spoke PTX RF Pulse Excitation Using a Single-Channel Transmit 7T Console Retrofitted with a 16-Channel B1 Shimming Unit

Sebastian Schmitter¹, Xiaoping Wu¹, Edward John Auerbach¹, Lance DelaBarre¹, Gregor Adriany¹, Kamil Ugurbil¹, Pierre-Francois Van de Moortele¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Computer 75 3142. Measuring the Rate of Phosphocreatine Recovery in Human Skeletal Muscle After Exercise by Localized 1H

MRS Without Water Suppression at 7T Jimin Ren¹,², Baolian Yang³, A. Dean Sherry¹,⁴, Craig R. Malloy¹,⁵ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of

Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Department of Chemistry, University of Texas at Dallas, Richardson, TX, United States; ⁵VA North Texas Health Care System, Dallas, TX, United States

Computer 76 3143. MR Imaging of the Temporomandibular Joint at 7.0 Tesla: A Feasibility Study Using Novel High Permittivity **Dielectric Pads**

Andrei Manoliu¹, ², Georg Spinner², Michael Wyss², Daniel Nanz¹, Dominik Ettlin³, Luigi M. Gallo³, Gustav Andreisek¹ ¹Department of Radiology, University Hospital Zurich, Zurich, Switzerland; ²Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ³Center for Dental and Oral Medicine and Maxillofacial Surgery, University of Zurich, Zurich, Switzerland

Computer 77 3144. A 32 Channel Bi-Lateral Breast Array for High Resolution Accelerated MR Imaging

R. O. Giaquinto¹,², R. G. Pratt¹, W. M. Loew¹, H. Friel³, L. Bickford³, C. Ireland¹, B. Daniels¹, B. Williams¹, L. Haas¹, J. M. Lanier¹, K. M. Cecil¹, ², M. Mahoney², E. A. Morris⁴, C. L. Dumoulin¹, ² ¹Imaging Research Center, Cincinnati Childrens Hospital Medical Center, Cincinnati, OH, United States; ²UC College of Medicine, University of Cincinnati, Cincinnati, OH, United States; ³Philips Healthcare, Best, Netherlands; ⁴Memorial Sloan Kettering Cancer Center, New York, United States

Computer 78 3145. Overcoming the SAR Limitation of Magnetization Transfer Pulses at 7 Tesla Using Parallel Transmission ^{ISMEM AREAT} ^{ISMEM AREAT</sub> ^{ISMEM AREAT} ^{ISMEM AREAT} ^{ISMEM AREAT</sub> ^{ISMEM AREAT ^{ISMEM AREAT ^{ISMEM AREAT ^{ISMEM AREAT</sub> ^{ISMEM AREAT ^{ISMEM AREAT</sub> ^{ISMEM AREAT ^{ISMEM}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Computer 79 3146. The Three-Dimensional Shape of the Myopic Eye Measured with MRI

Jan-Willem M. Beenakker¹, ², Denis P. Shamonin³, Andrew G. Webb¹, Gregorius PM Luyten², Berend C. Stoel³ ¹Department of Radiology, C.J.Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands; ²Department of Ophthalmology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands; ³Department of Radiology, devision of Image Processing, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands

Computer 80 3147. It Goes to 11: A Scalable Home-Built Transmit Array Beyond Eight Channels Andre Kuehne¹, ², Patrick Waxmann³, Werner Hoffmann³, Harald Pfeiffer³, Reiner Seemann³, Frank Seifert³, Oliver Speck⁴, Bernd Ittermann³ ¹Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; ²MR Centre of Excellence, Medical University of Vienna, Vienna, Austria; ³Physikalisch-Technische Bundesanstalt (PTB), Braunschweig und Berlin, Berlin, Germany; ⁴Otto-von-Guericke-University, Magdeburg, Germany

Computer 81 3148. Phosphorus 3D CSI at 9.4 T Using a 27-Channel Receiver Array Shajan G¹, Christian Mirkes², Rolf Pohmann¹, Klaus Scheffler¹, ² ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Baden Wuerttemberg, Germany; ²University Hospital, Tuebingen, Baden Wuerttemberg, Germany

Computer 82 3149. Multi-Slice GagCEST Sequence for Whole-Joint GagCEST Mapping: Application to Articular Cartilage in the Ankle Feliks Kogan¹, Brian Hargreaves¹, Garry Gold¹

¹Department of Radiology, Stanford University, Stanford, CA, United States

Computer 83 3150. Upper Extremity Neural and Vascular Imaging with UHF 7T MRI Shailesh Raval¹, Tiejun Zhao², Narayanan Krishnamurthy³, Tales Santini³, Vijay S. Gorantla³, Tamer S. Ibrahim³ ¹UPMC, Pittsburgh, PA, United States; ²Siemens Medical Solutions, Pittsburgh, PA, United States; ³University of Pittsburgh, Pittsburgh, PA, United States

- Computer 84 3151. Stability Test Method for Cartesian Feedback Power Amplifier in PTx Array Samaneh Shooshtary¹, Adam Buck¹, Klaus Solbach¹ ¹Institute of Microwave and RF Technology, Duisburg-Essen University, Duisburg, Germany
- Computer 85 3152. B₀ Shimming Further Improves Human Cardiac ³¹P-MRS at 7 Tesla Lance DelaBarre¹, Stefan Neubauer², Matthew D. Robson², J. Thomas Vaughan¹, Christopher T. Rodgers² ¹CMRR, University of Minnesota, Minneapolis, MN, United States; ²OCMR, University of Oxford, Oxon, United Kingdom

Computer 86 3153. Diffusion-Sensitized Ophthalmic MRI Free of Geometric Distortion in Patients with Intraocular Masses Katharina Paul¹, Andreas Graessl¹, Jan Rieger¹, ², Darius Lysiak¹, ², Till Huelnhagen¹, Lukas Winter¹, Robin Heidemann³, Tobias Lindner⁴, Stefan Hadlich⁵, Annette Zimpfer⁶, Andreas Pohlmann¹, Paul-Christian Krueger⁵, Soenke Langner⁵, Oliver Stachs⁴, ⁷, Thoralf Niendorf⁴, ⁸
 ¹Max-Delbrueck Centre for Molecular Medicine, Berlin Ultrahigh Field Facility (B.U.F.F.), Berlin, Germany; ²MRI.TOOLS GmbH, Berlin, Germany; ³Siemens Healthcare Sector, Erlangen, Germany; ⁴University Medicine Rostock, Pre-clinical Imaging Research Group, Rostock, Germany; ⁵University of Greifswald, Institute for Diagnotic Radiology and Neuroradiology, Greifswald, Germany; ⁶University Medicine Rostock, Institute of Pathology, Rostock, Germany; ⁷University Medicine Rostock, Department of Ophthalmology, Rostock, Germany; ⁸Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and the Max-Delbrueck-Center, Berlin, Germany

Computer 87 3154. GAGCEST Imaging of Knee at 7T a Reproducibility Study Anand Kumar Venkatachari¹, Cory Wyatt¹, Doug Kelley², Sharmila Majumdar¹ ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²GE Healthcare Technologies, San Francisco, CA, United States

Computer 88	3155.	Multi-Parametric Renal MRI at 7T <i>Xiufeng Li^l, Edward J. Auerbach^l, Pierre-Francois Van de Moortele^l, Kamil Ugurbil^l, Gregory J. Metzger^l</i> ¹ Radiology-CMRR, University of Minnesota, Minneapolis, MN, United States
Computer 89	3156.	Construction of a 4-Channel Transmit/ 4-Channel Receive Neck Array for Carotid Artery Vessel Wall Imaging at 7 Tesla <i>Konstantinos Papoutsis¹, ², Linqing Li², Stephen J. Payne¹, Peter Jezzard²</i> ¹ Department of Engineering science, University of Oxford, Oxford, United Kingdom; ² FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Computer 90	3157.	MRI of the Pulleys of the Flexor Tendons of the Fingers at 11.7T <i>Kenyu Iwasaki^l, Reni Biswas^l, Betty Tran^l, Sheronda Statum^l, Christine Chung^l, Nikolaus M. Szeverenyi^l, Graeme Bydder^l</i> ¹ University of California, San Diego, CA, United States
Computer 91	3158.	T₁- And TR-Independent B₁⁺ Mapping by Bloch-Siegert Shift for 7T Human Cardiac ³¹P-MRS <i>William T. Clarke¹, Matthew D. Robson¹, Christopher T. Rodgers¹</i> ¹ OCMR, RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
Computer 92	3159.	Ultrahigh Field MRI After Upper Extremity Transplantation. Shailesh B. Raval ¹ , Tiejun Zhao ² , Yujuan Zhao ¹ , Vijay S. Gorantla ¹ , Tamer S. Ibrahim ¹ ¹ University of Pittsburgh, Pittsburgh, PA, United States; ² Siemens Medical Solutions, Pittsburgh, PA, United States
Computer 93	3160.	MRI of the Cartilaginous and Fibrous Structure of the Meniscus of the Knee: <i>In Vitro</i> Studies at 11.7T Hongda Shao ¹ , Soorena A. Zanganeh ¹ , Jihye Baek ¹ , Daryl D'Lima ¹ , Jiang Du ¹ , Nikolaus M. Szeverenyi ¹ , Graeme Bydder ¹ ¹ University of California, San Diego, CA, United States
Computer 94	3161.	<i>In-Vivo</i> ³¹ P Chemical Shift Imaging Sensitivity Improvement Utilizing High Dielectric Pads <i>Rita Schmidt¹</i> , <i>Wyger Brink¹</i> , <i>Andrew Webb¹</i> ¹ Leiden University Medical Center, Leiden, Netherlands
Computer 95	3162.	Parallel Imaging of the Prostate at 7T Using a B0 Crusher Coil to Suppress Aliasing Artifacts <i>Remco Krijthe¹, Vincent Boer¹, Arjan Hendriks¹, Dennis Klomp¹</i> ¹ Radiology, University Medical Center Utrecht, Utrecht, Netherlands
Computer 96	3163.	Functional ³¹ P Magnetic Resonance Spectroscopic Imaging of the Human Calf Muscle at 7 T by Means of Echo- Planar Acquisition Techniques <i>Andreas Korzowski^l, Peter Bachert^l</i> ¹ Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Baden-Württemberg, Germany
Electron	nic Po	ster
RF Coil	Arra	ys
Exhibition	Hall 3164	Monday 15:15-16:15 Analysis of FDTD Field Simulation and Experimental Results in a Monopole Antenna Array Coil at 7T
Computer 1	5104.	<i>Myung-Kyun Woo¹, Suk-Min Hong², Jongho Lee¹, Young-Bo Kim³, Zang-Hee Cho⁴</i> ¹ Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; ² Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany; ³ Gil Hospital, Incheon, Korea; ⁴ Neuroscience Research Institute, Incheon, Korea

Electronic Poster

- Computer 2 3165. Optimal Arrangement of Finite Element Loop Arrays for Parallel Imaging in a Spherical Geometry at 9.4 T Andreas Pfrommer¹, Anke Henning¹, ² ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland
- Computer 3 3166. Potential Gain of a 256 Channel Head Coil at 7T: Combined Measurements and G-Factor Calculations *Arjan D. Hendriks¹, Michel G.M. Italiaander², Natalia Petridou¹, Dennis W.J. Klomp¹, ²* ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²MR Coils B.V., Drunen, Netherlands
- Computer 4 3167. A Novel Design 20-Channel Head Coil for Cortical Imaging with Ultra-High Resolution. Alexander Beckett¹, ², Liyong Chen¹, ², An T. Vu³, David A. Feinberg¹, ² ¹Helens Wills Neuroscience Institute, University of California, Berkeley, CA, United States; ²Advanced MRI Technology, Sebastopol, CA, United States; ³CMRR, University of Minnesota, Minneapolis, MN, United States
- Computer 5 3168. High-Throughput Diffusion-Tensor-Imaging of Mouse Brains Using a Four-Coil System John C. Nouls¹, Alexandra Badea¹, Gary P. Cofer¹, G Allan Johnson¹ ¹Center for In Vivo Microscopy, Duke University Medical Center, Durham, NC, United States
- Computer 6 3169. Performance Evaluation of 2-Channel Endorectal Coil Geometries for Imaging the Prostate at 7T *M. Arcan Erturk¹*, *Gregor Adriany¹*, *Gregory J. Metzger¹* ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States

Computer 7 3170. A Novel Decoupling Technique for Multiple-Row Microstrip Transceiver Array Designs Xinqiang Yan¹, ², Long Wei², Rong Xue¹, Xiaoliang Zhang³ ¹State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ²Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ³Department of Radiology and Biomedical Imaging, University of California San Francisco and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States

Computer 8 3171. Tx-Array Design Strategies for Reducing Excitation Artifact and Local SAR Hot Spots in PTx MRI Pei-Shan Wei¹, ², Mike J. Smith², Christopher P. Bidinosti³, Scott B. King, ¹⁴ ¹Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada; ²National Research Council of Canada , Winnipeg, Manitoba, Canada; ³Department of Physics, University of Winnipeg, Winnipeg, Manitoba, Canada; ⁴National Research Council of Canada, Winnipeg, Manitoba, Canada

Computer 9 3172. A 3 Channel ³¹P and 2 Channel ¹H Coil Array for ³¹P NMR in the Visual Cortex at 7 T Sigrun Goluch¹, ², Andre Kuehne¹, ², Albrecht Ingo Schmid¹, ², Ewald Moser¹, ², Elmar Laistler¹, ² ¹MR Center of Excellence, Medical University of Vienna, Vienna, Austria; ²Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Austria

Computer 10 3173. Two-Channel High-Temperature Superconducting Array for Diffusion Tensor Imaging of Rat Spinal Cord at 7T Yun-Jie Li¹, Meng-Chi Hsieh¹, In-Tsang Lin², Xiao-Liang Zhang³, Jyh-Horng Chen¹, ⁴

Yun-Jie Li^{*}, Meng-Chi Hsieh^{*}, In-Isang Lin^{*}, Xiao-Liang Zhang^{*}, Jyh-Horng Chen^{*}, ^{*}
 ¹Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Taiwan; ²Xiamen University, Xiamen, Fujian, China; ³Department of Radiology and Biomedical imaging, University of California, University of California, CA, United States; ⁴Dept. of Electrical engineering, National Taiwan University, Taipei, Taiwan, Taiwan

Computer 11 3174. Preliminary Investigation on Shielding-Ring Based Decoupling Technique for Small Monolithic RF Coils Zhoujian Li¹, Roberta Kriegl², ³, Elmar Laistler⁴, ⁵, Marie Poirier-Quinot¹, Luc Darrasse¹, Jean-Christophe Ginefri¹ ¹Laboratoire d'Imagerie par Résonance Magnétique Médicale et Multi-Modalités (IR4M), UMR8081 CNRS, Université Paris-Sud, Orsay, France; ²Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; ³MR Centre of Excellence, Medical University of Vienna, Vienna, Austria; ⁴Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; ⁵MR Centre of Excellence, Medical University of Vienna, Vienna, Austria

Computer 12 3175. Comparison of Improved Breast Magnetic Resonance Guided Focused Ultrasound System with Improved Radio Frequency Phased Array Coils. Emilee Minalga¹, Robb Merrill¹, Dennis L. Parker¹, Allison Pavne¹, J. Rock Hadlev¹

¹UCAIR, University of Utah, Salt Lake City, UT, United States

- Computer 13 3176. Optimization of an 8-Channel Receive-Only Surface Array for Whole Brain MRI of Marmosets Daniel Papoti¹, Cecil Chern-Chyi Yen¹, Pascal Sati¹, Joseph Robert Guy¹, Daniel S. Reich¹, Afonso C. Silva¹ ¹NINDS, National Institutes of Health, Bethesda, MD, United States
- Computer 14 3177. Asymmetric Transceiver Phased Array for Functional Imaging and Spectroscopy of the Visual Cortex at 9.4 T Nikolai I. Avdievich¹, Ioannis A. Giapitzakis¹, Anke Henning¹, ² ¹Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland

Computer 15 3178. An SNR Comparison Between a Sodium Phased Array Coil and a Single Channel Coil Amin Nazaran¹, Joshua D. Kaggie², ³, Meredith Taylor¹, Daniel J. Park¹, Grayson Tarbox¹, Rexford D. Newbould⁴, Neal Bangerter¹, Glen Morrell³ ¹Electrical and Computer Engineering, Brigham Young University, Provo, UT, United States; ²Physics, University of Utah, Salt Lake City, UT, United States; ³Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States; ⁴Imanova Centre for Imaging Sciences, London, United Kingdom

- Computer 16 3179. Streamlined Construction of a Six-Channel Mouse Array Coil with 3D Printing Wen-Yang Chiang¹, Mary P. McDougall¹ ¹Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Computer 17 **3180.** A Novel Compact 10-Channel Phased Array for a Dedicated 1.5T Neonate MRI System Wolfgang Loew¹, Yu Li¹, Ron Pratt¹, Jean Tkach¹, Charles Dumoulin¹, Randy O. Giaquinto¹ ¹Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Computer 18 3181. Active Decoupling of RF Coils: Application to 3D MRI with Concurrent Excitation and Acquisition *Ali Caglar Ozen¹*, ², *Michael Bock¹*, *Ergin Atalar*² ¹Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- Computer 19 3182. A 7T Transmit and Receive Array Combination for Simultaneous Investigation of Electrophysiology and fMRI in Non-Human Primates Shajan G¹, David Zsolt Balla¹, Thomas Steudel¹, Philipp Ehses², Hellmut Merkle¹, Nikos Logothetis¹, ³, Rolf Pohmann¹, Klaus Scheffler¹, ² ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Baden Wuerttemberg, Germany; ²Department of Biomedical Magnetic Resonance, University Hospital, Tuebingen, Baden Wuerttemberg, Germany; ³University of Manchester, Manchester, United

Computer 20 3183. Analytical Performance Evaluation and Optimization of Resonant Inductive Decoupling (RID) Andre Kuehne¹, ², Elmar Laistler¹, ², Anke Henning³, ⁴, Ewald Moser¹, ², Nikolai I. Avdievich³ ¹Center for Medical Physica and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; ²MR Centre of Excellence, Medical University of Vienna, Vienna, Austria; ³Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; ⁴Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland

Computer 21 3184. A Novel Transceiver Wired & Wireless Array Coil Assembly for MR Guided Robot Assisted Interventions and Radiosurgery Procedures

Seunghoon Ha¹, Haoqin Zhu¹, Labros Petropoulos¹ ¹R&D, IMRIS Inc., Minnetonka, MN, United States

Kingdom

Computer 22 318	5. Validation of a Semi-Flexible 64-Channel Receive-Only Phased Array for Pediatric Body MRI at 3T Tao Zhang ¹ , ² , Joseph Y. Cheng ¹ , ² , Paul D. Calderon ¹ , Thomas Grafendorfer ³ , Greig Scott ² , Bob Rainey ³ , Mark Giancola ³ , Fraser Robb ³ , John M. Pauly ² , Brian A. Hargreaves ¹ , Shreyas S. Vasanawala ¹ ¹ Radiology, Stanford University, Stanford, CA, United States; ² Electrical Engineering, Stanford University, Stanford, CA, United States; ³ GE Healthcare, WI, United States
Computer 23 318	5. A Dual-Tuned Two-Element Array for ¹ H/ ² H Imaging at 1 Tesla Scott A. Blasczyk ¹ , John C. Bosshard ¹ , Neal A. Hollingsworth ¹ , Brian J. Bass ¹ , Steven M. Wright ¹ ¹ Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States
Computer 24 318	7. Signal Combination Mode Matrix Calculation on Considering Multiregion SNR Zhang Qiong ¹ , Sun zhi guo ¹ , Liu Wei ¹ , Wang jian min ¹ ¹ Siemens, ShenZhen, GuangDong, China
Electronic I UHF Acqui Exhibition Hal	oster sitions: Neuro Monday 15:15-16:15
Computer 25 318	3. Whole Brain 3D-FLAIR Imaging at 7T Eberhard Daniel Pracht ¹ , Daniel Brenner ¹ , Tony Stöcker ¹ , ² ¹ German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ² Department of Physics and Astronomy, University of Bonn, Bonn, Germany

- Computer 26 3189. Proton Observed Phosphorus Editing (POPE) for *In Vivo* Detection of Phospholipid Metabolites *Jannie P. Wijnen¹*, ², *Dennis J.W. Klomp¹*, *Christine I.H.C Nabuurs³*, *Robin A. de Graaf⁴*, *Irene M.L. van Kalleveen¹*, *Wybe J.M. van der Kemp¹*, *Peter R. Luijten¹*, *Mark C. Kruit²*, *Andrew Webb²*, *Hermien E. Kan²*, *Vincent O. Boer¹* ¹Radiology, University Medical Centre Utrecht, Utrecht, Netherlands; ²Radiology, Leiden University Medical Centre, Leiden, Zuid Holland, Netherlands; ³Radiology, Maastricht University, Maastricht, Limburg, Netherlands; ⁴Radiology, Yale University, New Haven, CT, United States
- Computer 27 3190. Zero Echo Time (ZTE) Imaging of Human Brain Tumor at 7T Douglas A C Kelley¹, Angela Jakary², Qiuting Wen², Yan Li², Sarah Nelson² ¹Neuro Apps and Workflow, GE Healthcare, San Francisco, CA, United States; ²Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States
- Computer 28 3191. Comparing Different Contrasts for Myelin-Related Cortical Mapping at 7T *Roy Haast¹*, *Dimo Ivanov¹*, *Kâmil Uludağ*¹ ¹Cognitieve Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands
- Computer 29 3192. Reduced Specific Absorption Rate (SAR) and Scan Time Using Variable Density Magnetization Transfer (VdMT) for 7T Se-Hong Oh¹, Wanyong Shin¹, Jongho Lee², Mark J Lowe¹

¹Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; ²Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

- **Computer 30 3193. RF Pulse Designs for MPRAGE at 9.4T** Desmond Ho Yan Tse¹, ², Daniel Brenner³, Johannes G Ramaekers¹, Joachim E Wildberger², Benedikt A Poser¹ ¹Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; ²Department of Radiology, Maastricht University Medical Centre, Maastricht, Netherlands; ³German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Computer 31 3194. Robust Tissue Segmentation of Human Brain Images Acquired with a Surface Coil at Ultrahigh Field Byeong-Yeul Lee¹, Wei Chen¹, Xiao-Hong Zhu¹ ¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States

Computer 32 3195. An 8-Channel Parallel Transmit System for 7T MRI Based on Custom-Built I/Q Modulators

Sören Johst¹, Marcel Gratz¹,², Samaneh Shoostary³, Klaus Solbach³, Mark E. Ladd¹,⁴, Stephan Orzada¹ ¹Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; ²High-field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany; ³High Frequency Technology, University Duisburg-Essen, Duisburg, Germany; ⁴Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany

Computer 33 3196. A Parkinson's Disease ³¹P-MRSI Study at 7T Silvina G. Horovitz¹, Peter Lauro², Pascal Sati³, Nora Vanegas-Arroyave², Codrin I. Lungu², Mark Hallett¹ ¹MNB, HMCS, NINDS, NIH, Bethesda, MD, United States; ²OCD, NINDS, NIH, Bethesda, MD, United States; ³NIB, TNU, NINDS, NIH, Bethesda, MD, United States

Computer 34 3197. 7T MRSI Using Semi-Adiabatic Spectral-Spatial Spectroscopic Imaging (SASSI) for Improved B1-Insensitivity in Refocusing and Reduced Chemical Shift Artifact Rebecca Emily Feldman¹, Priti Balchandani¹

¹Radiology, Icahn School of Medicine at Mount Sinai, New York, United States

Computer 35 3198. Correction of Artifacts in Ultrahigh Field T_2^* Imaging Using a Training Model for Field Probe Based B₀ Measurements

Anders Garpebring¹,², Joep Wezel¹, Vincent O. Boer³, Tijl A. van der Velden³, Andrew G. Webb¹, Dennis W.J. Klomp³, Matthias J. P. van Osch¹

¹C.J. Gorter center for high field MRI, Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Radiation Sciences, Umeå University, Umeå, Sweden; 3Radiology, University Medical Center Utrecht, Utrecht, Netherlands

Computer 36 3199. Simultaneous T₁ and T₂ Quantitation of the Human Brain at 7 Tesla by MR Fingerprinting Yun Jiang¹, Huihui Ye², ³, Berkin Bilgic², Dan Ma¹, Thomas Witzel², Stephen F. Cauley², Elfar Adalsteinsson², ⁴, Kawin Setsompop², Mark A. Griswold¹, ⁵, Lawrence L. Wald², ⁴
¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ³Department of Biomedical Engineering, Zhejiang University, Hangzhou, Zhejiang, United States; ⁴Department of Electrical Engineering and Computer Science; Harvard-MIT Division of Health Sciences, MIT, Cambridge, MA, United States; ⁵Department of Radiology, Case Western Reserve University, OH, United States

Computer 37 3200. Wide Screen Visual Stimulation: fMRI Combined with Fast GABA Detection Arjan D. Hendriks¹, Catalina S. Arteaga de Castro¹, Vincent O. Boer¹, Dennis W.J. Klomp¹, Natalia Petridou¹ ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands

Computer 38 3201. Towards Routine Application of Dynamic Parallel Transmission for Whole-Brain Imaging at 9.4 Tesla Jens Hoffmann¹,², G. Shajan¹, Christian Mirkes¹,³, Tingting Shao¹, Anke Henning¹,⁴, Rolf Pohmann¹, Klaus Scheffler¹,

¹High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; ²Graduate School of Neural & Behavioural Sciences, Tuebingen, Germany; ³Department for Biomedical Magnetic Resonance, University of Tuebingen, Germany; ⁴Institute for Biomedical Engineering, University and ETH Zurich, Switzerland

Computer 39 3202. The Traveling Heads: Initial Comparisons of Multicenter Data on 7 Tesla MRI Systems

Maximilian N. Voelker¹, ², Oliver Kraff⁴, Daniel Brenner³, Astrid Wollrab⁴, Tony Stoecker³, David Norris⁵, Mark E. Ladd¹, ⁶, Oliver Speck⁴, ⁷

¹Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany; ²Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany; ³German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; ⁴Otto-von-Guericke-University, Magdeburg, Germany; ⁵Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, North Rhine-Westphalia, Germany; ⁶Medical Physics in Radiology, German Cancer Research Center (dkfz), Heidelberg, Germany; ⁷Leibniz Institute for Neurobiology, Magdeburg, Germany

Computer 40 3203. Reliable GABA Spectral Editing BASING-PRESS MRS at 7T

Yan Li¹, Bian Wei², Peder Larson², Jason C. Crane², Srikantan Nagarajan², Sarah J. Nelson², ³ ¹University of California, San Francisco, CA, United States; ²Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; ³Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States

Computer 41 3204. High Resolution MR Spectroscopic Imaging of the Visual Cortex at 9.4T with Minimal Chemical Shift Displacement Artefact

Desmond H.Y. Tse¹, Vincent O. Boer², Valentin G. Kemper³, Dennis W.J. Klomp², Jacobus F.A. Jansen¹ ¹Radiology, Maastricht UMC, Maastricht, Netherlands; ²Radiology, UMC Utrecht, Utrecht, Netherlands; ³Cognitive Neuroscience FPN, Maastricht University, Maastricht, Netherlands

- Computer 42 3205. Multi-Channel B0 Crusher Coil for Lipid Suppression in MRI and MRSI Vincent Boer¹, Mariska Damen, Dennis Klomp ¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands
- Computer 43 3206. 3D Eigenmodes Optimizations for 3D Imaging at 7T Yujuan Zhao¹, Narayanan Krishnamurthy¹, Sossena Wood¹, Tiejun Zhao², Shailesh B. Raval¹, Tamer S. Ibrahim¹ ¹University of Pittsburgh, Pittsburgh, PA, United States; ²Siemens Medical Solutions USA, Pittsburgh, PA, United States

Computer 44 3207. Laminar Variation of Population Receptive Field Center-Surround Properties in Human Primary Visual Cortex Revealed by 7T fMRI

Alessio Fracasso¹, Serge O. Dumoulin¹, Natalia Petridou² ¹Experimental Psychology, Helmholtz institute, Utrecht University, Utrecht, Netherlands; ²Radiology, Imaging Division, University Medical Center, Utrecht, Netherlands

```
Computer 45 3208. High-Resolution 3D EPI at 9.4 Tesla with Parallel Transmit B1+ Field Homogenisation
Benedikt A Poser<sup>1</sup>, Daniel Brenner<sup>2</sup>, Desmond H Y Tse<sup>1</sup>, <sup>3</sup>
<sup>1</sup>Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; <sup>2</sup>German Centre for Neurodegenerative
Diseases (DZNE), Bonn, Germany; <sup>3</sup>Department of Radiology, Maastricht University, Maastricht, Netherlands
```

Computer 46 3209. 7T Multi-Slab Whole-Head Homogenous and Low SAR T2 Acquisitions with Limited RF Power Amplifiers Capabilities

Narayanan Krishnamurthy¹, Yujuan Zhao², Shailesh Raval², Junghwan Kim², Sossena Wood², Tales Santini², Tiejun Zhao³, Tamer Ibrahim² ¹University of Pittsburgh, Pittsburgh, PA, United States; ²University of Pittsburgh, PA, United States; ³Siemens Medical Solutions, PA, United States

- Computer 47 3210. Systematic Investigation of Influence Factor on Parallel Transmit Pulse Performance at 9.4 Tesla *Tingting Shao¹*, *Nikolai Avdievich¹*, *Paul Chang¹*, *Jens Hoffmann¹*, *Klaus Scheffler¹*, *Anke Henning¹*, ² ¹Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland
- Computer 48 3211. Expected Homogeneity Gain and Hardware Requirements for Slice-Wise 3rd Order Dynamic Shim Updating for fMRI

*Ariane Fillmer¹, Anke Henning*² ¹Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland; ²Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

Electronic	c Pos	ster	
Safety in I	MRI	[
Exhibition H	Iall	Monday 15:15-16:15	
Computer 49 32	212.	Q Matrix Approach to Control I Frank Seifert ¹ , Gerd Weidemann ¹ , ¹ Physikalisch-Technische Bundesansta	mplant Heating by Transmit Array Coils Bernd Ittermann ¹ It (PTB), Braunschweig und Berlin, Germany

Computer 50 3213. Local SAR Elevations in the Human Head Induced by High-Permittivity Pads at 7 Tesla issues deservations in the Human Head Induced by High-Permittivity Pads at 7 Tesla Thomas M. Fiedler¹, Mark E. Ladd¹, ², Andreas K. Bitz¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany

Computer 51 3214. A Comparison Between Three-Point Dixon Sequences and Label Fusion Techniques for Water-Fat Separation in High-Field MRI Local SAR Estimation

Angel Torrado-Carvajal¹, ², Esra A. Turk², ³, Joaquin L. Herraiz², ³, Yigitcan Eryaman², ⁴, Juan A. Hernandez-Tamames¹, ², Elfar Adalsteinsson⁵, ⁶, Larry L. Wald⁴, ⁶, Norberto Malpica¹, ² ¹Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain; ²Madrid-MIT M+Vision Consortium, Madrid, Spain; ³Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁴Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States; ⁵Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁶Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

- Computer 52 3215. Local SAR Estimation for Parallel RF Transmit at 7T Using Directional Couplers Matthew Restivo¹, C.A.T van den Berg¹, Alexander Raaijmakers¹, Peter Luijten¹, Hans Hoogduin¹ ¹University Medical Center Utrecht, Utrecht, Netherlands
- Computer 53 3216. Anatomical Models of Pregnant Women in 3T PTx Body Coils: Evaluation of SAR and B1+ Optimization in Various Imaging Positions

*Manuel Murbach*¹, *Esra Neufeld*¹, *Eugenia Cabot*¹, *Earl Zastrow*¹, *Juan Corcoles*², *Wolfgang Kainz*³, *Niels Kuster*¹, ⁴ ¹ITIS Foundation, Zurich, Switzerland; ²Department of Electronic and Communication Technology, Universidad Autónoma de Madrid (UAM), Madrid, Spain; ³Center for Devices and Radiological Health (CDRH), US Food and Drug Administration (FDA), Silver Spring, MD, United States; ⁴Swiss Federal Institute of Technology (ETH), Zurich, Switzerland

- Computer 54 3217. Multi-Body-Model Method for Design of Mismatch-Insensitive SAR-Aware Parallel Transmit RF Pulses Mihir Pendse¹, Brian Rutt¹ ¹Radiology, Stanford University, Stanford, CA, United States
- Computer 55 3218. Temperature Sensor Implant for Analysis of RF Safety of Active Implantable Medical Devices Under MRI Berk Silemek¹, ², Volkan Acikel¹, ², Ergin Atalar¹, ² ¹Bilkent University, Ankara, Turkey; ²Umram, Ankara, Turkey
- Computer 56 3219. A Phantom Designed Specifically for Local SAR Validation Matthew Restivo¹, Ronald Mooiweer¹, C.A.T van den Berg¹, Alexander Raaijmakers¹, Frank Simonis¹, Peter Luijten¹, Hans Hoogduin¹ ¹University Medical Center Utrecht, Utrecht, Netherlands

Computer 57 3220. An Approach to Temperature-Based Virtual Observation Points for Safety Assurance and Pulse Design *Giuseppe Carluccio¹*, ², *Cem Murat Deniz¹*, ², *Christopher Michael Collins¹*, ² ¹Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, United States; ²Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, New York University, New York, United States

- Computer 58 3221. Torque and Translational Force Estimation for Ferromagnetic Objects: The Saturation Effect Vahid Ghodrati¹, Abbas Nasiraei Moghaddam¹, ² ¹BME, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; ²School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Computer 59 3222. Experiments and Analysis of Virtual Observation Points at 7T *Yujuan Zhao¹, Tiejun Zhao², Tamer Ibrahim¹* ¹University of Pittsburgh, Pittsburgh, PA, United States; ²Siemens Medical Solutions USA, Pittsburgh, PA, United States

Computer 60 3223. Breast Tissue Expanders with Magnetic Ports: Clinical Experience at 1.5-Tesla

Nanda Deepa Thimmappa¹, Christina Y. Ahn², Silvina P. Dutruel¹, Joshua L. Levine³, Srikanth Reddy Boddu¹, Martin R. Prince¹

¹Radiology, Weill Cornell Medical College, New York, NY, United States; ²NY Langone Medical Center, Department of Plastic Surgery, New York, United States; ³Department of Plastic Surgery, New York Eye and Ear Infirmary of Mount Sinai, New York, United States

Computer 61 3224. An Algorithm for Maximum-SAR Targeted RF Hyperthermia *Mihir Pendse¹*, *Brian Rutt¹* ¹Radiology, Stanford University, Stanford, CA, United States

Computer 62 3225. Effect of 3T MRI Noise on Adults Hearing Observed by the Dynamic Auditory Brainstem Response Test Huan Li¹, Yan An¹, Qinli Sun¹, Yanyan Li¹, Pan Cao¹, Miaomiao Wang¹, Jianxin Guo¹, Jian Yang¹ ¹Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Computer 63 3226. RF-Induced Heating in MRI of Tissue Around an Aneurysm Clip Near the Middle Cerebral Artery at 7 T Under Consideration of the Pennes Bioheat Equation Yacine Noureddine¹,², Oliver Kraff¹, Mark E. Ladd¹,³, Karsten Wrede⁴, Gregor Schaefers², Andreas K. Bitz³ ¹Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, NRW, Germany; ²MR:comp GmbH, MR Safety Testing Laboratory, Gelsenkirchen, NRW, Germany; ³Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany; ⁴Clinic for Neurosurgery, University Hospital Essen, Essen, NRW, Germany

Computer 64 3227. MRI Planning for SAR Management in PTx Systems

Joaquin L. Herraiz¹, Yigitcan Eryaman, ¹², Esra Åbaci Turk¹, Angel Torrado-Carvajal, ¹³, Adrian Martin, ¹⁴, Emanuele Schiavi, ¹⁴, Bastien Guerin⁵, Elfar Adalsteinsson, ¹⁶, Lawrence L. Wald⁵, Juan A. Hernandez-Tamames, ¹³, Norberto Malpica, ¹³

¹Madrid-MIT M+Vision Consortium in RLE, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Center for Magnetic Resonance Research,Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ³Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain; ⁴Dept. of Applied Mathematics, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain; ⁵Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States; ⁶Dept. of Electrical Engineering and Computer Science, Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

Computer 65 3228. Fast, Thermal Dose-Based Exposure Safety Supervision Esra Neufeld¹, Manuel Murbach¹, Niels Kuster¹, ² ¹IT'IS Foundation for Research on Information Technologies in Society, Zurich, Switzerland; ²Swiss Federal Institute of Technology (ETHZ), Zurich, Switzerland

Computer 66 3229. Signal Changes in Dentate Nuclei with 10 or More Gadolinium-Based Contrast Administrations: Comparison of Linear Versus Macrocytic Contrast Agents Daisy Q. Huang¹, Martin Prince¹, George Shih¹, Yan Cao¹ ¹Radiology, New York Presbyterian Hospital/Weill Cornell, NY, NY, United States

Computer 67 3230. Radiofrequency-Induced Heating of Intracranial Stereo-EEG Electrodes During MRI: A Phantom Study Annie Papadaki¹, ², David Carmichael³, Mark James White¹, ², Hoskote Chandrashekar¹, Tarek Yousry¹, ², Beate Diehl⁴, ⁵, Louis Lemieux⁴, John Stephen Thornton¹, ² ¹Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, UCLH, London, United Kingdom; ²Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ³Imaging and Biophysics Unit, UCL Institute of Child Health, London, United Kingdom; ⁴Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United Kingdom; ⁵Department of Neurophysiology, National Hospital for Neurology and Neurosurgery, UCLH, London, United Kingdom

Computer 68 3231. Trial of Safe Working Procedure Against Occupational SMF Exposure - Evaluation of Its Effectiveness in Occupational SMF Exposure Levels and Work Performances Among 3 T MRI System Users -Sachiko Yamaguchi-Sekino¹, Masaki Sekino², Toshiharu Nakai³ ¹National Institute of Occupational Safety and Health, Japan, Kawasaki, Kanagawa, Japan; ²Graduate School of Engineering, The University of Tokyo, Tokyo, Japan; ³Neuroimaging & Informatics, National Center for Geriatrics and Gerontology, Aichi, Japan

Computer 69	3232.	Effect of Cranial Fixation Plates on Brain MR Imaging at 7T in Neurosurgical Patients Bixia Chen ¹ , ² , Tobias Schoemberg ¹ , ² , Oliver Kraff ⁴ , Andreas K. Bitz ¹ , ³ , Harald H. Quick ¹ , ⁴ , Mark Edward Ladd ¹ , ³ , Ulrich Sure ² , Karsten Henning Wrede ¹ , ² ¹ Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, NRW, Germany; ² Department of Neurosurgery, University Hospital Essen, University Duisburg-Essen, Essen, NRW, Germany; ³ Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, BW, Germany; ⁴ High Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, NRW, Germany
Computer 70	3233.	RF Safety Assessment of a Bilateral 4-Channel Tx/Rx 7T Breast Coil <i>Thomas M. Fiedler¹, Aaron S. Kujawa¹, Frank Resmer², Patrick Stein², Titus Lanz², Mark E. Ladd¹, ³, Andreas K. Bitz¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²RAPID Biomedical GmbH, Rimpar, Bavaria, Germany; ³Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany</i>
Computer 71	3234.	Direct SAR Mapping by Thermoacoustic Imaging: Experimental Proof-Of-Concept Simone Angela Winkler ¹ , Paul Picot ² , Michael Thornton ² , Brian K. Rutt ¹ ¹ Dept. of Radiology, Stanford University, Stanford, CA, United States; ² Endra Inc., Ann Arbor, MI, United States
Computer 72	3235.	An Investigation on IEC Head SAR Limit on Orbit Heating Xin Chen ¹ , Charles Poole ² , Michael Steckner ¹ , Robert Brown ² ¹ MR, Toshiba Medical Research Institute USA, Inc., Mayfield Village, OH, United States; ² Department of Physics, Case Western Reserve University, Cleveland, OH, United States

Electronic Poster

Relaxometry-Technical Developments

Exhibition Hall	Monday 16:30-17:30
Computer 1 3236.	MR Fingerprinting and B0 Inhomogeneities
	Thomas Christen ¹ , Wendy W. Ni ¹ , Samantha Holdsworth ¹ , Murat Aksoy ¹ , Roland Bammer ¹ , Michael Moseley ¹ , Greg
	Zaharchuk
	¹ Department of Radiology, Stanford University, Stanford, CA, United States
Computer 2 3237.	Isotropic T2 Mapping Using a 3D Radial FSE (Or TSE) Pulse Sequence
ISMRM MERIT AWARD SUMMA CUM LAUDO	Mahesh Bharath Keerthivasan', Ali Bilgin', ', Diego R. Martin', Maria I. Altbach'
742	Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States; Medical Imaging, University of Arizona, Tucson, AZ, United States
Computer 3 3238.	MIRACLE: Motion-Insensitive RApid Configuration ReLaxomEtry
	Damien Nguyen ¹ , Oliver Bieri ¹
	¹ Radiological Physics, Dep. of Radiology, University of Basel Hospital, Basel, Switzerland
Computer 4 3239.	Quantitative Assessment of Hematocrit, Hemoglobin Concentration and Oxygenation Effects on the
	Longitudinal Relaxation Time of Blood
	Wenbo Li', ", Ksenija Grgac', ", Alan Huang', ", Qin Qin', ", Nirbhay Yadav', ", Peter Van Ziji", "
	Center for Functional Brain Imaging Kennedy Krieger Institute Baltimore MD United States: ³ Current Address: Philips Healthcare
	Best, Netherlands
Computer 5 3240.	Analytical Correction of Banding Artifacts in Driven Equilibrium Single Pulse Observation of T2 (DESPOT2)
	Jean-David Jutras', Keith Wachowicz', ² , Nicola DeZanche ¹ , ²
	Oncology, University of Alberta, Edmonton, AB, Canada; 'Medical Physics, Cross Cancer Institute, Edmonton, AB, Canada

Computer 6 3241. Biexponential T₁ Relaxation at 7T: Characterization and Impact on T₁ Mapping James A. Rioux¹, Ives R. Levesque¹, ², Brian K. Rutt¹

¹Radiology, Stanford University, Stanford, CA, United States; ²Medical Physics Unit, and Research Institute of the McGill University Health Centre, McGill University, Montreal, QC, Canada

Computer 7	3242.	Estimating Microvessel Spacing or Cell Sizes Using R ₁ , Dispersion John Thomas Spear ¹ , ² , Xiaoyong Zhang ² , ³ , John Gore ² , ³ ¹ Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ² Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³ Department of Radiology, Vanderbilt University, Nashville, TN, United States
Computer 8	3243.	Measurement and Theoretical Description of Spin-Echo T2 Anisotropy in the Human Brain <i>Michael John Knight¹, Bryony Wood¹, Elizabeth Coulthard², Risto Kauppinen¹</i> ¹ School of experimental psychology, University of Bristol, Bristol, Avon, United Kingdom; ² Southmead Hospital, University of Bristol, Bristol, Avon, United Kingdom
Computer 9	3244.	Differentiating Microscopic Field Inhomogeneity Induced Relaxation from R ₂ and R ₂ * Relaxations with Magnetic Field Correlation Imaging <i>Chu-Yu Lee¹</i> , ² , <i>Xingju Nie¹</i> , ² , <i>Jens H. Jensen¹</i> , ² , <i>Vitria Adisetiyo¹</i> , ² , <i>Qingwei Liu³</i> , <i>Joseph A. Helpern¹</i> , ² ¹ Department of Radiology and Radiology Science, Medical University of South Carolina, Charleston, SC, United States; ² Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States; ³ Neuroimaging research, Barrow Neurological Institute, Phoenix, AZ, United States
Computer 10	3245.	Assessment of T1rho Sensitivity to PH and Glucose for Human Brain Imaging at 3T Nana K. Owusu ¹ , Casey P. Johnson ² , William R. Kearney ² , John A. Wemmie ³ , ⁴ , Vincent A. Magnotta ² ¹ Biomedical Engineering, University of Iowa, Iowa City, IA, United States; ² Radiology, University of Iowa, Iowa City, IA, United States; ³ Psychiatry, University of Iowa, Iowa City, IA, United States; ⁴ Veterans Affairs Medical Center, Iowa City, IA, United States
Computer 11	3246.	Monte Carol Modeling of the Non-Monoexponential CPMG Relaxation in Iron Overload <i>Chu-Yu Lee^l</i> , ² , <i>Jens H. Jensen^l</i> , ² ¹ Department of Radiology and Radiology Science, Medical University of South Carolina, Charleston, SC, United States; ² Center for Biomedical Imaging, Medical University of South Carolina, Charleston, SC, United States
Computer 12	3247.	B1 and B0 Sensitivity of Spin-Lock Preparation Pulses for Whole-Brain Quantitative T1rho Mapping <i>Casey P. Johnson¹, Vincent A. Magnotta¹</i> ¹ Radiology, University of Iowa, Iowa City, IA, United States
Computer 13	3248.	B1+ Inhomogeneity Compensated MRF Using Simultaneous AFI <i>Taehwa Hong¹, Min-Oh Kim¹, Dongyeob Han¹, Dosik Hwang¹, Dong-Hyun Kim¹</i> ¹ Electrical & Electronic Engineering, Yonsei University, Seodamun-gu, Seoul, Korea

Computer 14 3249. Measurement of T2* and T1 of Bound and Pore Water in Cortical Bone Using UTE Sequences Jun Chen¹, Michael Carl², Hongda Shao¹, Qun He¹, Eric Chang¹, ³, Christine B. Chung¹, ³, Graeme M. Bydder¹, Jiang Du¹ ¹Radiology, University of California, San Diego, CA, United States; ²GE Healthcare, San Diego, CA, United States; ³Department of Radiology, VA San Diego Healthcare System, San Diego, CA, United States

Computer 15 3250. Variable Flip Angle T1 Mapping in the Human Brain with Reduced T2 Sensitivity Using Fast RF-Spoiled Gradient Echo Imaging Rahel Heule¹, Carl Ganter², Oliver Bieri¹ ¹Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland; ²Department of Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany

Computer 16 3251. Accurate T2-Mapping with CPMG Prepared Turbo-Flash Sequence Kecheng Liu¹, Dan Ma², Tiejun Zhao¹, Mark Griswold² ¹Siemens Medical Solutions USA, Inc., Malvern, PA, United States; ²Case Western Reserved University, Cleveland, OH, United States

Computer 17	3252.	Fast and Robust 3D T1 Mapping Using Spiral Gradient Shape and Continuous Radio-Frequency Excitation at 7 T : Application on Cardiac Manganese Enhanced MRI (MEMRI) in Mice <i>Charles Robert Castets¹, Emeline Julie Ribot¹, Aurélien Julien Trotier¹, William Lefrançois¹, Jean-Michel Franconi¹, Sylvain Miraux¹</i> ¹ RMSB - UMR5536, CNRS - Université de Bordeaux, Bordeaux, Aquitaine, France
Computer 18	3253.	Application of Acceleration Methods to Qmap and Synthetic MR Imaging Ken-Pin Hwang ¹ , ² , Kevin King ³ , Peng Lai ³ , Wolfgang Stefan ² , Christopher McClellan ² , Ersin Bayram ¹ , Ajit Shankaranarayanan ³ ¹ Global MR Applications and Workflow, GE Healthcare, Houston, TX, United States; ² Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; ³ Global MR Applications and Workflow, GE Healthcare, Waukesha, WI, United States
Computer 19	3254.	On the Motion-Robustness of TOWERS (T-One with Enhanced Robustness and Speed) <i>Cihat Eldeniz¹, Jürgen Finsterbusch², Weili Lin¹, Hongyu An¹</i> ¹ University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ² Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
Computer 20	3255.	Efficient Maximum Likelihood Estimation of T ₁ , T ₂ *, and Flip Angle Error Using Variable-Length Echo Trains in Combined AFI and FLASH Experiments <i>M. Dylan Tisdall¹</i> , ² , André J. W. van der Kouwe ¹ , ² ¹ Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; ² Radiology, Harvard Medical School, Boston, MA, United States
Computer 21	3256.	Efficient 2D MRI Relaxometry Via Compressed Sensing <i>Ruiliang Bai¹</i> , ² , <i>Alexander Cloninger³</i> , <i>Wojciech Czaja⁴</i> , <i>Peter J. Basser¹</i> ¹ Section on Tissue Biophysics and Biomimetics, National Institutes of Health, Bethesda, MD, United States; ² Biophysics Program, University of Maryland, College Park, Marland, United States; ³ Applied Mathematics Program, Yale University, New Haven, CT, United States; ⁴ Department of Mathematics, University of Maryland, College Park, MD, United States
Computer 22	3257.	Application of Compressed Sensing to 2D and 3D Relaxometry and Related Experiments Hasan Celik ¹ , Ariel Haffika ² , Alexander Cloninger ³ , Wojciech Czaja ² , Richard G. Spencer ¹ ¹ National Institute on Aging, National Institutes of Health, Baltimore, MD, United States; ² Department of Mathematics, University of Maryland, College Park, MD, United States; ³ Applied Mathematics Program, Yale University, New Haven, CT, United States
Computer 23	3258.	R2* Estimation Performance in Iron-Overloaded Livers: Fit First or Average First? Debra E. Horng ¹ , ² , Diego Hernando ¹ , Scott B. Reeder ¹ , ² ¹ Radiology, University of Wisconsin-Madison, Madison, WI, United States; ² Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
Computer 24	3259.	Explicit Modeling of SPGR Signals Using Extended Phase Graphs in DESPOT Style Relaxometry - A Dictionary Approach <i>Rui Pedro A. G. Teixeira¹, ², Shaihan J. Malik¹, ², Joseph V. Hajnal¹, ²</i> ¹ Center for the Developing Brain, King's College London, London, United Kingdom; ² Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom
Electron	ic Po	ster

Relaxometry Applications

Exhibition Hall	Monday 16:30-17:30
Computer 25 3260.	Heat Induced Contrast Mechanisms in MRI: In Vivo Tissue Characterization by MR Thermal Response
	Matthew Tarasek ¹ , Oguz Akin ² , Jeannette Christine Roberts ³ , Tom Foo ¹ , Desmond T.B. Yeo ¹
	¹ MRI, GE Global Research, Niskayuna, NY, United States; ² Radiology, MSKCC, New York, NY, United States; ³ Imaging &
	Physiology Lab, GE Global Research, Niskayuna, NY, United States

Computer 26 3261. IR-MRI Layers of the Visual Cortex in Congenitally Blind Subjects Daniel Barazany¹,², Ella Striem-Amit³, Shani Ben Amitay¹, Amir Amedi³, Yaniv Assaf⁴ ¹Neurobiology, Tel Aviv University, Tel Aviv, Israel; ²CUBRIC School of Psychology, Cardiff University, Cardiff, United Kingdom; ³Medical Neurobiology, The Hebrew University of Jerusalem, Jerusalem, Israel Computer 27 3262. Quantification of Fluid Accumulation in IP Space of Mice Using Whole-Body NMR Lina Avancini Colucci¹, Matthew Li¹, Michael J. Cima² ¹Health Sciences and Technology (HST), MIT, Cambridge, MA, United States; ²Materials Science and Engineering, MIT, Cambridge, MA. United States Computer 28 3263. Synthetic MP-RAGE Anatomies with Pure T1-Weighting Improve the Detectability of Brain Tumors Ulrike Noeth¹, Elke Hattingen², Oliver Baehr³, Julia Tichy³, Ralf Deichmann¹ ¹Brain Imaging Center (BIC), Goethe University Frankfurt/Main, Frankfurt/Main, Germany; ²Institute of Neuroradiology, University Hospital Frankfurt/Main, Germany; ³Dr Senckenberg Institute of Neurooncology, Goethe University Frankfurt/Main, Germany Computer 29 3264. MRI Properties of Cerebrospinal Fluid for Assessment in Neurodegenerative Diseases Alexia Daoust¹, Stephen Dodd¹, Govind Nair¹, Steven Jacobson¹, Daniel S. Reich¹, Alan Koretsky¹ ¹NINDS, LFMI, NIH, Bethesda, MD, United States Computer 30 3265. Relaxation Rate Enhancement from 1.5T to 3T in Iron-Loaded Organs Kristin Toy¹, Eamon Doyle, ¹², Thomas Coates³, John C. Wood¹, ² ¹Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, United States; ²Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; ³Hematology-Oncology, Children's Hospital of Los Angeles, Los Angeles, CA, United States Computer 31 3266. R1 Determination as an Iron Quantification Method at 3T Kristin Toy¹, Eamon Doyle², Thomas Coates³, John C. Wood¹ ¹Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, United States; ²Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; ³Hematology-Oncology, Children's Hospital of Los Angeles, Los Angeles, CA, United States Computer 32 3267. Blood Serum Demonstrates Antioxidative Mechanism: A Magnetic Resonance Relaxation Studies Lech Wiktor Skorski¹, Dorota Wierzuchowska², Barbara Blicharska¹ ¹Radiospectroscopy, Jagiellonian University, Krakow, Malopolskie, Poland; ²Pedagogical University, Krakow, Malopolskie, Poland Computer 33 3268. Non-Linear Relationship Between Estimated Liver Iron Concentration and R2* Erik M. Akkerman¹, Jurgen H. Runge¹, Marian A. Troelstra¹, Aart J. Nederveen¹, Jaap Stoker¹ ¹Radiology, Academic Medical Centre, Amsterdam, North Holland, Netherlands Computer 34 3269. Corn-Starch Solution: A Phantom with a Short T2/T1 Ratio (T2*/T1) Roberto Salvati¹, ², Eric Hitti¹, ², Herve Saint-Jalmes¹, ², Robert Mulkern³, ⁴, Giulio Gambarota¹, ² ¹Université de Rennes 1, LTSI, Rennes, France; ²INSERM, UMR 1099, Rennes, France; ³Department of Radiology, Boston Children's, Boston, MA, United States; ⁴Harvard Medical School, Boston, MA, United States

- Computer 35 3270. Comparison of Concentration-Dependent Signal Intensities of MRI Contrast Media Solutions Obtained at Different Pulse Sequences at 3T and 7T *Thomas Frenzel¹, Pavol Szomolanyi², Iris Noebauer-Huhmann², Martin Rohrer¹, Gregor Jost¹, Siegfried Trattnig²* ¹Bayer Healthcare, Berlin, Germany; ²High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna / Vienna General Hospital, Vienna, Austria
- Computer 36 3271. Relationship Between Liver R1, R2, and R2* at 1.5T Kristin Toy¹, Eamon Doyle², Thomas Coates³, John C. Wood¹

¹Cardiology, Children's Hospital of Los Angeles, Los Angeles, CA, United States; ²Biomedical Engineering, University of Southern California, Los Angeles, CA, United States; ³Hematology-Oncology, Children's Hospital of Los Angeles, Los Angeles, CA, United States

Computer 37 3272. Correction for T1 Effects on MRI Estimation of Muscle Sodium Levels

Ping Wang¹, Isaac V Manzanera Esteve¹, Charles Nockowski², John C. Gore¹ ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Philips Healthcare Technical Support at Vanderbilt, Nashville, TN, United States

Computer 38 3273. Excretion Rate and Distribution Volumes in Common Marmoset Monkeys After Slow and Fast Injection of Gadobutrol

*Gunther Helms*¹, ², *Christina Schlumbohm*³, *Enrique Garea-Rodriguez*⁴, ⁵, *Eberhard Fuchs*⁵ ¹Medical Radiation Physics, Lund University, Lund, Scania, Sweden; ²Cognitive Neurology, Göttingen University Medical Center, Göttingen, Lower Saxony, Germany; ³Encepharm Inc., Göttingen, Lower Saxony, Germany; ⁴Neuroanatomy, Albert-Ludwigs-University Freiburg, Freiburg, Badenia, Germany; ⁵Clinical Neurobiology Group, German Primate Center, Göttingen, Lower Saxony, Germany

Computer 39 3274. Riboflavin (Vitamin B2) May Be Used as a Potential Chelate in Wilson Disease: Magnetic Resonance Relaxation Study

Lech Wiktor Skorski¹, Barbara Blicharska² ¹Radiospectroscopy, Jagiellonian University, Krakow, Malopolskie, Poland; ²Radiospectroscopy, Jagiellonian University, Malopolskie, Poland

Computer 40 3275. Investigating the Properties of Silk Formation in Bombyx Mori Silkworms Using T1 and T2 Image Maps. Steven Reynolds¹, Peter R. Laity², Ben Curie¹, Chris Holland², Martyn N. Paley¹ ¹Academic Unit of Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²Department Materials Science and Engineering, University of Sheffield, South Yorkshire, United Kingdom

Computer 41 3276. Thyroid T1 Value Increase in Patients with Hypothyroidism Min Liu¹, Fangfang Yu¹, Guang Wang², Tianjing Zhang³, Jing An³ ¹the department of Radiology, Beijing Chaoyang Hospital of Capital Medical University, Bei Jing, China; ²the department of Endocrinology, Beijing Chaoyang Hospital of Capital Medical University, Bei Jing, China; ³MR Collaborations NE Asia, Siemens Healthcare, Bei Jing, China

Computer 42 3277. Myelin and More: McDESPOT Applied to Post Mortem Multiple Sclerosis Spinal Cord

Amy R. McDowell¹, Tobias C. Wood², Natalia Petrova¹, Daniele Carassiti¹, Marc Miquel³, David Thomas⁴, Gareth J. Barker², Klaus Schmierer⁵, ⁶

¹Blizard Institute, Queen Marys University of London, London, United Kingdom; ²Neuroimaging, King's College London, London, United Kingdom; ³Clinical Physics, Barts Health NHS Trust, London, United Kingdom; ⁴UCL Institute of Neurology, London, United Kingdom; ⁵Barts and The London School of Medicine & Dentistry, Blizard Institute, London, Greater London, United Kingdom; ⁶Neurology, Barts Health NHS Trust, London, United Kingdom

Computer 43 3278. A Fast Method for T1 and T2 Mapping of Cerebrospinal Fluid at 7T Jolanda M. Spijkerman¹, Esben T. Petersen¹, ², Peter Luijten¹, Jeroen Hendrikse¹, Jaco J. Zwanenburg¹ ¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands

Computer 44 3279. High-Resolution T1 Mapping of the Mouse Brain Using MP2RAGE at 14.1T Nathalie Just¹, Luc Driancourt¹, Rolf Gruetter¹, ² ¹CIBM-AIT, EPFL, Lausanne, Switzerland; ²Department of Radiology, Universities of Lausanne and Geneva, Lausanne and Geneva, NA, Switzerland

Computer 45 3280. Quantification of Myelin Degeneration in Multiple Sclerosis Within Clinical Scan Times. L. Soustelle¹, ², O. Commowick¹, E. Bannier¹, ³, C. Barillot¹ ¹Unité VISAGES U746 INSERM-INRIA, IRISA UMR CNRS 6074, University of Rennes, France; ²Université de Strasbourg, CNRS, ICube, FMTS, Strasbourg, France; ³Radiology Dept., University Hospital of Rennes, F-35043 Rennes, France

Computer 46 3281. Quantitative T₂ and T₂* Relaxometry of Hippocampal Subfields

Md Nasir Uddin¹, *Yushan Huang²*, *Nikolai V. Malykhin¹*, ², *Alan H. Wilman¹* ¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; ²Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada

Computer 47 3282. Reproducibility and Sensitivity of T₂* Measured in Patients with Squamous Cell Carcinoma of the Head and Neck at 3T

Rafal Panek¹, Liam Welsh¹, Maria A. Schmidt¹, Alex Dunlop¹, Kate L. Newbold¹, Kee Wong¹, Angela M. Riddell¹, Dow-Mu Koh¹, Dualta Mcquaid¹, Shreerang A. Bhide¹, Kevin J. Harrington², Christopher M. Nutting², Georgina Hopkinson³, Cheryl Richardson³, Simon P. Robinson, Martin O. Leach¹ ¹Royal Marsden NHS FT and Institute of Cancer Research, Sutton, Surrey, United Kingdom; ²Royal Marsden NHS FT and Institute of Cancer Research, London, United Kingdom; ³Royal Marsden NHS FT, London, United Kingdom

Computer 48 3283. 3D Cine T1 Mapping Using a Stack-Of-Spirals Sampling Scheme and a Look-Locker Inversion Recovery Preparation at 7T : Application on Small Animal Cardiac Imaging. Charles Robert Castets¹, William Lefrançois¹, Aurélien Julien Trotier¹, Emeline Julie Ribot¹, Jean-Michel Franconi¹, Sylvain Miraux¹ ¹RMSB - UMR5536, CNRS - Université de Bordeaux, Bordeaux, Aquitaine, France

Electronic Poster

Electro-Magnetic Tissue Properties Mapping

Exhibition Hall Monday 16:30-17:30

Computer 49 3284. Continuous Monitoring of Radiofrequency Ablation Using MR-Based Fast Conductivity Imaging Method ^{ISSUEST AUAGO} magna cum laube ^{ISSUEST AUAGO} ^{ISSUEST AUAGO</sub> ^{ISSUEST AUAGO</sub> ^{ISSUEST AUAGO}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Computer 50 3285. Simultaneous Dual-Frequency Range Conductivity Mapping MR Method for Tissue Characterization: In Vivo Canine Brain Disease Model Study Woo Chul Jeong¹, Min Oh Kim², Saurav ZK Sajib¹, Ji Eun Kim¹, Hyung Joong Kim¹, Oh In Kwon³, Dong Hyun Kim², Eung Je Woo¹

¹Kyung Hee University, Yongin, Gyeonggi, Korea; ²Yonsei University, Seoul, Korea; ³Konkuk University, Seoul, Korea

- Computer 51 3286. Simultaneous Quantitative Imaging Method for Neuroimaging Sung-Min Gho¹, Jaewook Shin¹, Min-Oh Kim¹, Dongyeob Han¹, Dong-Hyun Kim¹ ¹Electrical and Electronic Engineering, Yonsei University, Sinchon-dong, Seoul, Korea
- Computer 52 3287. Electrical Conductivity Images of Brain Metabolites Using MR-Based Tissue Property Mapping Saurav ZK Sajib¹, Ji Eun Kim¹, Woo Chul Jeong¹, Hyung Joong Kim¹, Oh In Kwon², Eung Je Woo¹ ¹Kyung Hee University, Yongin, Gyeonggi, Korea; ²Konkuk University, Seoul, Korea

Computer 53 3288. Current-Controlled Alternating Reversed DESS MREIT for Joint Estimation of Tissue Relaxation and Electrical Properties *Hyunyeol Lee¹, Jaeseok Park²* ¹Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Gyeonggi, Korea; ²Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Gyeonggi, Korea

Computer 54 3289. Geometrical Shift Results in Erroneous Appearance of Low Frequency Tissue Eddy Current Induced Phase Maps: Theory, Simulations and Measurements S. Mandija¹, A.L.H.M.W. van Lier¹, P. Petrov², S.W.F. Neggers², P.R. Luijten¹, C.A.T. van den Berg¹ ¹Imaging Division, UMC Utrecht, Utrecht, Netherlands; ²Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, Netherlands

Computer 55	3290.	Simulating Charge at Electrical Property Interfaces <i>Eric Duggan Gibbs¹, ², Chunlei Liu, ²³</i> ¹ Biomedical Engineering, Duke University, Durham, NC, United States; ² Duke University Medical Center, Brain Imaging and Analysis Center, Durham, NC, United States; ³ Department of Radiology, Duke University, Durham, NC, United States
Computer 56	3291.	Further Study of the Effects of a Time-Varying Gradient Fields on Phase Maps – Theory and Experiments <i>Jiasheng Su^l</i> , <i>Bingwen Zheng²</i> , <i>Sam Fong Yau Li²</i> , <i>Shao Ying Huang¹</i> ¹ Singapore University of Technology and Design, Singapore, Singapore; ² Department of Chemistry, National University of Singapore, Singapore
Computer 57	3292.	Water-Content-Map Assisted Electrical Properties Reconstruction of Brain Tissue at 3T <i>Eric Michel¹, Daniel Hernandez¹, Min Hyoung Cho¹, Soo Yeol Lee¹</i> ¹ Kyung Hee University, Suwon, Gyeonggi-Do, Korea
Computer 58	3293.	<i>In Vivo</i> Reconstructed Conductivity Values of Cervical Cancer Patients Based on EPT at 3T MRI Edmond Balidemaj ¹ , Peter de Boer ¹ , Hans Crezee ¹ , Rob Remis ² , Lukas Stalpers ¹ , Aart Nederveen ³ , Cornelis A.T. van den Berg ⁴ ¹ Radiotherapy, Academic Medical Center, Amsterdam, Netherlands; ² Circuits and Systems Group, TU Delft, Delft, Netherlands; ³ Radiology, Academic Medical Center, Amsterdam, Netherlands; ⁴ Radiotherapy, UMC Utrecht, Utrecht, Netherlands
Computer 59	3294.	Effect of Ion Size on Conductivity Measurements of MR-Phase-Based Electric Properties Tomography. Jan Sedlacik ¹ , Ulrich Katscher ² , Jens Fiehler ¹ ¹ University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ² Philips Research Europe, Hamburg, Germany
Computer 60	3295.	A Regularized Model-Based Approach to Phase-Based Conductivity Mapping Kathleen M. Ropella ¹ , Douglas C. Noll ¹ ¹ Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
Computer 61	3296.	On the Signal-To-Noise Ratio of MR-Based Electrical Properties Tomography Seung-Kyun Lee ¹ , Selaka Bandara Bulumulla ¹ , Ileana Hancu ¹ ¹ GE Global Research, Niskayuna, NY, United States
Computer 62	3297.	Local Electrical Properties Tomography with Global Regularization by Gradient <i>Jiaen Liu^l, Xiaotong Zhang^l, Yicun Wang^l, Pierre-Francois Van de Moortele², Bin He^l, ³</i> ¹ Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; ² Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ³ Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
Computer 63	3298.	Combination of Multichannel Receive Data for Local Cr-MREPT Necip Gurler ¹ , Omer Faruk Oran ¹ , Yusuf Ziya Ider ¹ ¹ Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
Computer 64	3299.	Low Pass Filter Based Electrical Property Tomography (EPT) Reconstruction Jaewook Shin ¹ , Min-oh Kim ¹ , Narae Choi ¹ , Dong-Hyun Kim ¹ ¹ Electrical and Electronic Engineering, Yonsei University, Seodaemun-gu, Seoul, Korea
Computer 65	3300.	PDE Solution of Electrical Properties Tomography with Multi-Channel B1 Transmission <i>Jiaen Liu^l, Yicun Wang^l, Xiaotong Zhang^l, Pierre-Francois Van de Moortele², Bin He^l,</i> ³ ¹ Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; ² Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ³ Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States
		455

Computer 66	3301.	Minimum-Noise Laplacian Kernel for MR-Based Electrical Properties Tomography
		Seung-Kyun Lee ¹
		¹ GE Global Research, Niskayuna, NY, United States

- Computer 67 3302. The Dielectric Properties of Brain Tissues: Variation in Electrical Conductivity with Tissue Sodium Concentration and Tissue Water Content at 3T/4T *YuPeng Liao¹, Sandro Romanzetti¹, Vincent Gras¹, DengFeng Huang¹, N. Jon Shah¹, ²* ¹Institute of Neuroscience and Medicine-4, Forschungszentrum Juelich, Juelich, Germany; ²JARA-Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Computer 68 3303. Total Variance Constrained Electrical Properties Tomography Using a 16-Channel Transceiver Array Coil at 7T

Yicun Wang¹, Xiaotong Zhang¹, Jiaen Liu¹, Pierre-Francois Van de Moortele², Bin He¹, ³ ¹Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States; ²Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ³Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, United States

Computer 69 3304. Calculation of Electromagnetic Field Distribution to Detect Liver Abnormalities Using MR-Based Electrical Impedance Tomography

Ji Eun Kim¹, Saurav ZK Sajib¹, Woo Chul Jeong¹, Hyung Joong Kim¹, Oh In Kwon², Eung Je Woo¹ ¹Kyung Hee University, Yongin, Gyeonggi, Korea; ²Konkuk University, Seoul, Korea

- Computer 70 3305. Anisotropic Conductivity Distribution of Brain Using a Combination of DTI and MREIT Saurav ZK Sajib¹, Woo Chul Jeong¹, Ji Eun Kim¹, Hyung Joong Kim¹, Oh In Kwon², Eung Je Woo¹ ¹Kyung Hee University, Yongin, Gyeonggi, Korea; ²Konkuk University, Seoul, Korea
- Computer 71 3306. Investigating Breast Tumor Malignancy with Electric Conductivity Measurement *Ulrich Katscher^J*, *Hiroyuki Abe²*, *Marko K. Ivancevic³*, *Jochen Keupp¹* ¹Philips Research Europe, Hamburg, Germany; ²Medical Center, University of Chicago, Chicago, IL, United States; ³Philips Healthcare, Best, Netherlands
- Computer 72 3307. Correlation Between the Electric Conductivity Measured by MREPT and Apparent Diffusion Coefficient in Invasive Breast Cancer Min Jung Kim¹, Soo-Yeon Kim¹, Dong-Hyun Kim², Jaewook Shin², Eun-Kyung Kim¹ ¹Yonsei University, Seoul, Korea; ²Yonsei University, Korea

Electronic Poster

Quantitative Susceptibility Mapping

Exhibition Hall Monday 16:30-17:30

Computer 73 3308.	COMbining Phased Array Data Using Offsets from a Short Echo-Time Reference Scan (COMPOSER)
	Simon Daniel Robinson ¹ , Wolfgang Bogner ¹ , Barbara Dymerska ¹ , Pedro Cardoso ¹ , Günther Grabner ¹ , Xeni
	Deligianni ² , Oliver Bieri ² , Siegfried Trattnig ¹
	¹ High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna,
	Austria; ² Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland

Computer 74 3309. Multi-Channel Data Combination with Linear Phase Baseline Correction Saifeng Liu¹, Yongquan Ye², Sagar Buch³, E. Mark Haacke, ¹² ¹The MRI Institute for Biomedical Research, Waterloo, Ontario, Canada; ²Department of Radiology, Wayne State University, Detroit, MI, United States; ³School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada

Computer 75 3310. Multi-Echo Multi-Receiver MR Phase Reconstruction with Bipolar Acquisitions Joseph Dagher¹

¹Department of Medical Imaging, University of Arizona, Tucson, AZ, United States

Computer 76 3311. The Impact of Background Removal Techniques on the Quantification of Magnetic Susceptibility in the Human Cortex

Diana Khabipova¹, José P. Marques¹ ¹CIBM, Lausanne, Vaud, Switzerland

```
Computer 77 3312. DirEct Complex SignAl Fitting (DECAF) for Multi-Compartment Analysis in White Matter

Yoonho Nam<sup>l</sup>, Dong-Hyun Kim<sup>2</sup>, Jongho Lee<sup>l</sup>

<sup>1</sup>Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; <sup>2</sup>Department of Electrical and

Electronic Engineering, Yonsei University, Seoul, Korea
```

```
Computer 78 3313. iHARPERELLA: An Improved Method for Integrated 3D Phase Unwrapping and Background Phase Removal Wei Li<sup>1</sup>, <sup>2</sup>, Bing Wu<sup>3</sup>, Chunlei Liu<sup>4</sup>, <sup>5</sup>

<sup>1</sup>Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States;

<sup>2</sup>Ophthalmology, University of Texas Health Science Center at San Antonio, TX, United States; <sup>3</sup>GE Healthcare,

Beijing, China; <sup>4</sup>Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; <sup>5</sup>Radiology, Duke University,

Durham, NC, United States
```

Computer 79 3314. Quantitative Assessment of Background Field Removal Methods for Abdominal Imaging Debra E. Horng¹, ², Samir D. Sharma¹, Diego Hernando¹, Scott B. Reeder¹, ² ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Computer 80 3315. Removal of Background Fields with Spatially Variable Kernel Radii Guided by the Frequency-Offset-Gradient (FOG) Magnitude *PINAR SENAY ÖZBAY¹*, ², *Cristina Rossi¹*, *Klaas Paul Prüssmann³*, *Daniel Nanz¹* ¹Department of Radiology, University Hospital Zürich, Zürich, Switzerland; ²Institute of Biomedical Engineering, ETH Zürich, Zürich, Switzerland; ³Institute of Biomedical Engineering, ETH Zürich, Switzerland

Computer 81 3316. regularized QSM with Instant Parameter Sweep and Reduced Streaking Artifacts in Seconds Job G. Bouwman¹, Peter R. Seevinck¹ ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands

Computer 82 3317. Quantitative Susceptibility Mapping of Intracranial Hemorrhage: Artifacts Reduction Hongfu Sun¹, Mahesh Kate², Laura C. Gioia², Derek J. Emery³, Kenneth Butcher², Alan H. Wilman¹ ¹Biomedical Engineering, University of Alberta, Edmonton, AB, Canada; ²Neurology, U of Alberta, AB, Canada; ³Radiology, U of Alberta, AB, Canada

Computer 83 3318. Streaking Artifacts Reduction for QSM Hongjiang Wei¹, Wei Li², Nian Wang¹, Chunlei Liu¹, ³ ¹Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; ²University of Texas Health Science Center at San Antonio, TX, United States; ³Department of Radoilogy, School of Medicine, Duke University, Durham, NC, United States

Computer 84 3319. Quantitative Susceptibility Mapping Using Adaptive Edge-Preserving Filtering *Toru Shirai¹*, *Ryota Sato¹*, *Yo Taniguchi¹*, *Takenori Murase²*, *Yoshitaka Bito²*, *Hisaaki Ochi¹* ¹Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan; ²MRI system division, Hitachi Medical Corporation, Chiba, Japan

- Computer 85 3320. Enhancing K-Space Methods for Quantitative Susceptibility Mapping by Exploiting Consistency in Cone Data Yan Wen¹,², Yi Wang²,³, Tian Liu¹ ¹MedImageMetric LLC, New York, United States; ²Biomedical Engineering, Cornell University, Ithaca, NY, United States; ³Radiology, Weill Cornell Medical College, New York, United States
- Computer 86 3321. Quantitative Susceptibility Mapping Using Segmentation-Enabled Dipole Inversion Jakob Meineke^l, Julien Senegas^l, Ulrich Katscher^l, Fabian Wenzel^l

¹Philips Research Europe, Hamburg, Germany

Computer 87 3322. Structural Feature Based Collaborative Reconstruction for Quantitative Susceptibility Mapping

Lijun Bao¹, ², Zhong Chen¹, Peter C.M. van Zijl², Xu Li² ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Department of Radiology, School of medicine, Johns Hopkins University, Baltimore, MD, United States

Computer 88 3323. Distribution Specified Dipole Inversion for Quantitative Susceptibility Mapping

*Yilin Yang¹, Tian Liu², Jianwu Dong³, Pascal Spincemaille⁴, Yi Wang,*⁴⁵ ¹Department of Electronic Engineering, Tsinghua University, Beijing, China; ²MedImageMetric, LLC, New York, NY, United States; ³Department of Automation, Tsinghua University, Beijing, China; ⁴Department of Radiology, Weill Medical College of Cornell University, New York, NY, United States; ⁵Department of Biomedical Engineering, Cornell University, Ithaca, NY, United States

Computer 89 3324. Quantitative Susceptibility Mapping Using Piecewise Gradient Weighting *Zhiwei Zheng¹*, *Shuhui Cai¹*, *Congbo Cai²*, *Zhong Chen¹* ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Department of Communication Engineering, Xiamen University, Xiamen, Fujian, China

Computer 90 3325. Quantitative Susceptibility Mapping with Superfast Dipole Inversion: Influence of Regularization Parameters on the Susceptibility of the Substantia Nigra and the Red Nucleus Olaf Dietrich¹, Seyed-Ahmad Ahmadi², Johannes Levin², Juliana Maiostre², Annika Plate², Armin Giese³, Kai Bötzel², Maximilian F. Reiser¹, Birgit Ertl-Wagner ¹Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, LMU Ludwig Maximilian University of Munich, Munich, Germany; ²Department of Neurology, LMU Ludwig Maximilian University of Munich, Germany; ³Center for Neuropathology and Prion Research, LMU Ludwig Maximilian University of Munich, Germany

Computer 91 3326. On the Feasibility of QSM in MR-Invisible Regions Diego Hernando¹, Debra E. Horng, ¹², Samir D. Sharma¹, Scott B. Reeder¹, ² ¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Computer 92 3327. On the Influence of Zero Padding on the Non Linear Operations of Quantitative Susceptibility Mapping Sarah Eskreis-Winkler¹, Dong Zhou², Tian Liu³, Ajay Gupta², Susan Gauthier², Yi Wang², Pascal Spincemaille² ¹Weill Cornell Medical College, New York, NY, United States; ²Weill Cornell Medical College, NY, United States; ³MedImageMetric, LLC, NY, United States

Computer 93 3328. p-Space Imaging: Where Does the Contrast Come From? Sina Straub¹, Andreas Wetscherek², Mark E. Ladd², Frederik B. Laun² ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Computer 94 3329. Compressed Sensing (CS) in Phase Imaging Requires Dedicated Reconstruction Strategies *Ukash Nakarmi¹*, *Shruti Prasad²*, *Leslie Ying¹*, ³, *Paul Polak²*, *Robert Zivadinov²*, ⁴, *Ferdinand Schweser²*, ⁵ ¹Dept. of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Buffalo Neuroimaging Analysis Center, Dept of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, NY, United States; ³Dept. of Biomedical Engineering, State University of New York at Buffalo, NY, United States; ⁴MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States; ⁵MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States; ⁵MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States; ⁵MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States; ⁵MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States;

Computer 95 3330. Improved Accuracy in Susceptibility-Based OEF Measurements by Mitigation of Partial-Volume Effects Via Combined Magnitude and Phase Reconstruction Patrick McDaniel¹, Audrey Fan², Berkin Bilgic³, Jeffrey N. Stout⁴, Elfar Adalsteinsson¹, ⁴ ¹Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Radiology, Richard M. Lucas Center for Imaging, Stanford University, Stanford, CA, United States; ³A. A. Martinos Center for Imaging, Department of Radiology, Massachusetts General Hopsital, Charlestown, MA, United States; ⁴Health Sciences and Technology, Harvard-MIT, Cambridge, MA, United States

Computer 96 3331. On the Limitations of Brain Lesion Characterization by Direct Assessment of MRI Phase

Paul Polak¹, Robert Zivadinov¹, ², Ferdinand Schweser¹, ² ¹Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, Buffalo, NY, United States; ²Molecular and Translational Imaging Center, MRI Center, Clincal and Translational Research Center, Buffalo, NY, United States

Electronic Poster

CEST Technologies & Molecular Applications of CEST

Exhibition Hall Monday 17:30-18:30

Computer 1	3332.	Transfer Rate Edited Experiment for the Selective Detection of Chemical Exchange
		Ding Xia ¹ , Joshua I. Friedman ² , Jae-Seung Lee ¹ , ² , Ravinder R. Regatte ¹ , Alexej Jerschow ²
		¹ Department of Radiology, New York University Langone Medical Center, New York, NY, United States; ² Department of Chemistry,
		New York University, New York, NY, United States

Computer 2 3333. Slice Multiplexed Chemical Exchange Saturation Transfer Bing Wu¹, Han Ouyang², Zhenyu Zhou¹ ¹GE healthcare China, Beijing, China; ²China academy of sciences cancer hospital, Beijing, China

Computer 3 3334. *R*₁ Correction for Quantitative Amide Proton Transfer Imaging Hua Li¹, Ke Li¹, Xiao-Yong Zhang¹, Zhongliang Zu¹, Moritz Zaiss², Daniel F. Gochberg¹, John C. Gore¹, Junzhong Xu¹ ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ²Department of Medical Physics in Radiology, DKFZ, Heidelberg, BW, Germany

Computer 4 3335. A Length and Offset Varied Saturation (LOVARS) CEST MRI: A New Tool in Early Detecting Both Intracerebral Hemorrhage and Infarct

Meiyun Wang¹, Erning Zhang¹, Carlos Torres², Yan Bai, Xiaowei He³, Dapeng Shi, Panli Zuo⁴, Michael T. McMahon⁵, Benjamin Schmitt⁶, Xiaolei Song⁷

¹Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, Henan, China; ²Department of Radiology, The Ottawa Hospital, The University of Ottawa, Ottawa, ON, Canada; ³School of Information Sciences and Technology, Northwest University, Xian, Shanxi, China; ⁴Siemens Healthcare, Beijing, China; ⁵Dept. of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Siemens Ltd Australia, Macquarie Park, Australia; ⁷Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States

Computer 5 3336. Applying Variable RF-Power CEST (VCEST) to Detect Exchangeable Hydroxyl Protons in the Presence of MT at 3 Tesla

*Daniel James Clark*¹, ², *Alex K. Smith*³, ⁴, *Michael V. Knopp*¹, *Seth A. Smith*³, ⁴ ¹Wright Center of Innovation, Department of Radiology, The Ohio State University, Columbus, OH, United States; ²Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States; ³VUIIS, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

Computer 6 3337. Improving Sensitivity to Hydroxyl Protons and Simultaneous Measurement of Amide and NOE Signals at 3T Using Variable Pre-Saturation Power CEST (VCEST) Daniel James Clark¹, ², Alex K. Smith³, ⁴, Michael V. Knopp¹, Seth A. Smith³, ⁴ ¹Wright Center of Innovation, Department of Radiology, The Ohio State University, Columbus, OH, United States; ²Department of

¹Wright Center of Innovation, Department of Radiology, The Ohio State University, Columbus, OH, United States; ²Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States; ³VUIIS, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

Computer 7 3338. Saturation Parameters Influence on SAFARI Performance

Shu Zhang¹, Jochen Keupp², Zheng Liu³, Robert E. Lenkinski¹, ⁴, Elena Vinogradov¹, ⁴ ¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ²Philips Research, Hamburg, Germany; ³Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ⁴Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States

Computer 8	3339.	Importance of Saturation Power Optimization in Improving the Estimation Accuracy of Chemical Exchange Rates with the Omega Plot: A Simulation Study Sha Sha Yang ¹ , Ke Jiang ¹ , Yin Wu ¹ ¹ Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
Computer 9	3340.	Reduced FOV Chemical Exchange Transfer Saturation <i>Bing Wu¹, Chunmei Li², Min Chen², Zhenyu Zhou¹</i> ¹ GE healthcare China, Beijing, China; ² Beijing hospital, Beijing, China
Computer 10	3341.	Reduced FOV Amide Proton Transfer on Brain Tumor <i>Chien-Yuan Eddy Lin¹, ², Bing Wu², Zhongping Zhang², Zhenyu Zhou², Ai-Chi Chen³, Chi-Ren Chen³</i> ¹ GE Healthcare, Taipei, Taiwan; ² GE Healthcare China, Beijing, China; ³ Department of Radiology, Taipei Medical University - Shuang Ho Hospital, New Taipei City, Taiwan
Computer 11	3342.	On the Selection of Reference Images Used for Registration in CEST Imaging <i>Yi Zhang¹, Hye-Young Heo¹, Dong-Hoon Lee¹, Jinyuan Zhou¹, ²</i> ¹ Division of MR Research, Department of Radiolgoy, Johns Hopkins University, Baltimore, MD, United States; ² F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

Computer 12 3343. A Robust Method to Estimate CEST MRI Parametric Maps *In Vivo*: Simultaneous Quantification of Concentration and Exchange Rate by Minimizing the Lp Norm *Julio Cárdenas-Rodríguez¹*, Mark D. Pagel¹ ¹Biomedical Engineering, University of Arizona, Tucson, AZ, United States

Computer 13 3344. SAS: Symmetric Analysis of Z-Spectra, a Method to Evaluate B0 Correction Techniques for CEST Data in Clinical Systems Using Non-Exchanging Phantoms James E M Fairney¹, ², Guanshu Liu³, Karin Shmueli¹, Xavier Golay²
¹Department of Medical Physics & Biomedical Engineering, University College London, London, United Kingdom; ²Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ³F.M.Kirby Center, Kennedy Krieger Institute, Department of Radiology, Johns Hopkins University, Baltimore, MD, United States

```
Computer 14 3345. Lorentzian Fitting of the CEST Z-Spectra in Blood Red Cells

Shaokuan Zheng<sup>1</sup>, Guoxing Lin<sup>2</sup>, Zhongliang Zu<sup>3</sup>, Yansong Zhao<sup>4</sup>, Matthew J. Gounis<sup>1</sup>

<sup>1</sup>Department of Radiology, UMASS Medical School, Worcester, MA, United States; <sup>2</sup>Gustav H. Carlson School of Chemistry, Clark

University, Worcester, MA, United States; <sup>3</sup>Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; <sup>4</sup>Philips

Healthcare, Cleveland, OH, United States
```

```
Computer 15 3346. CEST Peak Extraction Method for Multi Peak Fitting
Mitsuharu Miyoshi<sup>1</sup>, Tsuyoshi Matsuda<sup>1</sup>, Hiroyuki Kabasawa<sup>1</sup>
<sup>1</sup>Global MR Application and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan
```

```
Computer 16 3347. Matrix-Algebra-Based Modeling Approach to MT, NOE and CEST for an Arbitrary Number of Interacting
Spin Pools
Tobias Lenich<sup>1</sup>, André Pampel<sup>1</sup>, Harald E. Möller<sup>1</sup>
<sup>1</sup>Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany
```

```
Computer 17 3348. Accurate Fitting of a Multi-Pool Proton Exchange System with a Priori Fitted Two-Pool MTC Information
Hye-Young Heo<sup>1</sup>, Yi Zhang<sup>1</sup>, Dong-Hoon Lee<sup>1</sup>, Xiaohua Hong<sup>1</sup>, Jinyuan Zhou<sup>1</sup>
<sup>1</sup>Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
```

```
Computer 18 3349. In Vitro Study of CEST Effects from Endogenous Metabolites at 3 T and 7 T Jae-Seung Lee<sup>1</sup>, <sup>2</sup>, Ding Xia<sup>1</sup>, Alexej Jerschow<sup>2</sup>, Ravinder R. Regatte<sup>1</sup>
```

¹Department of Radiology, New York University, New York, NY, United States; ²Department of Chemistry, New York University, New York, NY, United States

- Computer 19 3350. Mapping Glutamate in Mice Using Chemical Exchange Saturation Transfer at 9.4T Alex Li¹, Miranda Bellyou-Camilleri¹, Joseph Gati¹, Robert Bartha¹, Ravi Menon¹ ¹Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
- Computer 20 3351. Combining CEST with CESL to Differentiate Slow Exchanging Pool from Fast Exchanging Pool: Mapping the Concentration of Glutamate and Amides Separately Olivier E. Mougin¹, Penny A. Gowland¹ ¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottinghamshire, United Kingdom
- Computer 21 3352. Separated Quantification of Creatine and Phosphocreatine Based on a Novel Proton MR Method Combing ¹H-MRS and CEST MRI

Rong-Wen Tain¹, ², Weiguo Li³, Shaolin Yang⁴, Xiaohong Joe Zhou¹, ², Kejia Cai¹, ² ¹Radiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; ²Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; ³Research Resource Center, University of Illinois at Chicago, IL, United States; ⁴Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States;

- Computer 22 3353. In Vivo Measurement of Free Creatine and Phosphocreatine Kinetics in Lower Leg Muscle. Olusegun Adegbite¹, Prodromos Parasoglou¹, Lee Jae Seung¹, Ding Xia¹, Ravinder R. Regatte¹ ¹Radiology, NYU, Langone Medical Centre, New York, United States
- Computer 23 3354. A Smart CEST Imaging Sensor Based on Thermo-Sensitive Micelle Xiaolei Zhu^l, Shizhen Chen^l, Qing Luo^l, Xin Zhou^l ¹National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Wuhan, Hubei, China

Computer 24 3355. Reconstituted HDL for PARACEST-Fluorescence Multimodal Imaging *Qi Wang¹*, *Shizhen Chen¹*, *Qing Luo¹*, *Xin Zhou¹* ¹National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Wuhan, Hubei, China

Electronic Poster

Magnetization Transfer & CEST

Exhibition Hall Monday 17:30-18:30

Computer 25 3356. Whole Brain Inhomogeneous MT Using an IhMT Prepared 3D GRE Sequence at 1.5T

Olivier M. Girard¹, Arnaud Le Troter¹, Gopal Varma², Valentin H. Prevost¹, Maxime Guye¹, ³, Jean-Philippe Ranjeva¹, ³, David C. Alsop², Guillaume Duhamel¹ ¹CRMBM UMR 7339, CNRS and Aix-Marseille University, Marseille, France; ²Radiology Department, Beth Israel Deaconess

Medical Center and Harvard Medical School, Boston, MA, United States; ³Pôle d'Imagerie Médicale, CEMEREM, APHM, Marseille, France

Computer 26 3357. Extracting a Robust Inhomogeneous Magnetization Transfer (IhMT) Rate Parameter, IhMT-Rex

Gopal Varma¹, Olivier M. Girard², Valentin Prévost², Guillaume Duhamel², David C. Alsop¹ ¹Radiology, Division of MR Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States; ²CRMBM UMR 7339, CNRS and Aix-Marseille Université, Marseille, France

Computer 27 3358. Rapid, Motion Robust, and Quiet Quantitative Magnetization Transfer (QMT) Imaging Using a Zero Echo Time (ZTE) Acquisition

James H. Holmes¹, Alexey Samsonov², Pouria Mossahebi³, Diego Hernando², Aaron S. Field², ⁴, Kevin M. Johnson⁵ ¹Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ²Radiology, University of Wisconsin-Madison, Madison, WI, United States; ³Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States; ⁴Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; ⁵Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Electronic Poster

Computer 28 3359. Optimisation of Magnetisation Transfer Ratio Sequence Acquisition Parameters: Application to the Spinal Cord Marco Battiston¹, James E M Fairney², ³, Marios C. Yiannakas¹, Claudia A M Wheeler-Kingshott¹, Rebecca S. Samson¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²Department of Medical Physics and Biomedical Engineering, UCL, London, England, United Kingdom; ³Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, England, United Kingdom

Computer 29 3360. Correction for Residual Effects of B1+ Inhomogeniety on MT Saturation in FLASH-Based Multi-Parameter Mapping of the Brain *Gunther Helms¹*, ² ¹Medical Radiation Physics, Lund University, Lund, Scania, Sweden; ²Cognitive Neurology, Göttingen University Medical Center,

Computer 30 3361. Initial Investigation Into Effect of Radiation Damping on Magnetization Transfer Parameters Extracted from Inversion Recovery Experiments Emily Willson¹, Heather Whitney²

¹Wheaton College, Wheaton, IL, United States; ²Physics, Wheaton College, Wheaton, IL, United States

Computer 31 3362. MT Spectra Asymmetry and NOE Studies in the Brachial Plexus Zaid Bin Mahbub¹, Olivier Mougin², Penny Gowland² ¹Arts & Sciences, Ahsanullah University of Science & Technology, Dhaka, Bangladesh; ²SPMMRC, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

Computer 32 3363. Nuclear Overhauser Enhancement Imaging of Glioblastoma Patients at 7 Tesla: Region Specific Correlation with Diffusion Weighted MRI

Daniel Paech¹, Sina Burth¹, Johannes Windschuh², Jan Eric Meissner², Moritz Zaiss², Oliver Eidel¹, Philipp Kickingereder¹, Peter Bachert², Wolfgang Wick³, Heinz Peter Schlemmer⁴, Ralf Omar Floca⁴, Mark Edward Ladd², Sabine Heiland¹, Martin Bendszus¹, Alexander Radbruch¹

¹Neuroradiology, University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany; ²Department of Medical Physics in Radiology, German cancer research center, Baden-Württemberg, Germany; ³Neurooncology, University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany; ⁴Department of Radiology, German cancer research center, Baden-Württemberg, Germany

Computer 33 3364. Impaired Biophysical Integrity of Default Mode Network in Type 2 Diabetes Revealed by Magnetization Transfer Imaging

Shaolin Yang^{1, 2}, *Minjie Wu*¹, *Olusola Ajilore*¹, *Anand Kumar*¹ ¹Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; ²Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States

Computer 34 3365. Magnetization Transfer Ratio (MTR) Imaging in the Presence of Fat

Göttingen, Lower Saxony, Germany

James H. Holmes¹, Kevin M. Johnson², Diego Hernando³, Scott B. Reeder, ²³, Alexey Samsonov³ ¹Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ²Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ³Radiology, University of Wisconsin-Madison, Madison, WI, United States

Computer 35 3366. Whole-Brain Amide Proton Transfer (APT) and Nuclear Overhauser Enhancement (NOE) Imaging in Glioma Patients Using Low-Power Steady State Pulsed CEST at 7T

Hye-Young Heo¹, Shruti Agarwal², Craig Jones¹, ³, Jun Hua¹, ³, Nirbhay Yadav¹, ³, Jinyuan Zhou¹, ³, Peter C.M van Zijl¹, ³, Jay J. Pillai²

¹Division of MR Research, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ²Division of Neuroradiology, Russell H Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ³F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States

Computer 36 3367. On the Distribution of Pure Amide Proton Transfer and Pure Nuclear Overhauser Enhancement Signals in Gray and White Matter in the Human Brain at 7T

Vitaliy Khlebnikov¹, Jeroen Siero¹, Jannie Wijnen¹, Fredy Visser², Peter Luijten¹, Dennis Klomp¹, Hans Hoogduin¹ ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Netherlands

Computer 37 3368. Sufficiency of Two-Pool Model for Quantitative Magnetization Transfer Imaging in Tumors

Ke Li^{1, 2}, Hua Li^{1, 3}, Xiao-Yong Zhang^{7, 2}, Ashley M. Stokes^{1, 2}, Hakmook Kang⁴, Zhongliang Zu^{1, 2}, Chad C. Quarles^{1, 2}, Daniel F. Gochberg^{1, 2}, John C. Gore^{1, 2}, Junzhong Xu^{1, 2} ¹Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ²Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biostatistics,

Computer 38 3369. Oxidative Stress Sensitive Magnetization Transfer *Rong-Wen Tain¹*, ², *Weiguo Li³*, *Tibor Valyi-Nagy⁴*, *Xiaohong Joe Zhou¹*, ², *Kejia Cai¹*, ² ¹Radiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; ²Center for MR Research, College of Medicine, University of Illinois at Chicago, IL, United States; ³Research Resource Center, University of Illinois at Chicago, IL, United States; ⁴Pathology, College of Medicine, University of Illinois at Chicago, IL, United States

Computer 39 3370. Characterization of the Optic Nerve In-Vivo Using High-Resolution APT-CEST Alex K. Smith¹, ², Lindsey M. Dethrage, ²³, Samantha By¹, ², Siddharama Pawate⁴, Seth A. Smith², ³ ¹Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Neurology and Neuroimmunology, Vanderbilt University, Nashville, TN, United States

Computer 40 3371. Chemical Exchange Saturation Transfer on a Prototype Model of Neurodegeneration. Eleni Demetriou¹, Andreia C. Silva¹, Marilena Rega¹, Francisco Torrealdea¹, James E M Fairney¹, ², Mohamed Tachrount¹, Mark Farrow³, Xavier Golay¹ ¹Brain repair and rehabilitation, Institute of Neurology, London, United Kingdom; ²Medical Physics &Biomedical engineering, University College of London, London, United Kingdom; ³MRC prion unit, UCL Institute of Neurology, London, United Kingdom

Computer 41 3372. CEST MRI of Cortical Gray Matter in Multiple Sclerosis Adrienne Dula¹, Siddharama Pawate¹, Lindsey M. Dethrage¹, Benjamin N. Conrad¹, Seth A. Smith¹ ¹Vanderbilt University, Nashville, TN, United States

Computer 42 3373. Longitudinal CEST Imaging of Spinal Cord Injury in Monkeys: Fingerprints of Cyst Feng Wang¹,², Zhongliang Zu¹,², Tung-Lin Wu², John C. Gore¹,², Li Min Chen¹,² ¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, United States

Computer 43 3374. Age-Dependent GagCEST Effect in Human Lumbar Intervertebral Discs Frithjof Wickrath¹, Anja Müller-Lutz¹, Christoph Schleich¹, Benjamin Schmitt², Tom Cronenberg¹, Rotem Shlomo Lanzman¹, Falk Miese¹, Hans-Jörg Wittsack¹ ¹Department of Diagnostic and Interventional Radiology, University Dusseldorf, Medical Faculty, D-40225 Dusseldorf, NRW, Germany; ²Healthcare Sector, Siemens Ltd. Australia

Computer 44 3375. Endogenous Urea CEST (UrCEST) for MRI Monitoring of Kidney Function Elena Vinogradov¹, ², Zheng Liu³, Ananth Madhuranthakam¹, ², Asghar Hajibeigi¹, Adrien Jump⁴, Ivan Pedrosa¹, ², Orson W. Moe⁴, Robert E. Lenkinski¹, ² ¹Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Advanced Imaging Research Center, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States; ⁴Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States

Computer 45 3376. Chemical Exchange Saturation Transfer (CEST) MR Imaging of Rat Liver with Fasting or CCl4 Intoxication Shuzhong Chen¹, Min Deng¹, Jing Yuan², Yi-Xiang Wang¹ ¹Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, ²Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong

Computer 46 3377. Can Brain Tumor Microenvironment and Associated Structures Be Probed by Amide Proton Transfer at 77? *Vitaliy Khlebnikov¹, Daniel Polders², Dennis Klomp¹, Jeroen Hendrikse¹, Piere Robe³, Eduard Voormolen³, Peter Luijten¹, Hans Hoogduin¹ ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Netherlands; ³Brain Division, University Medical Center Utrecht, Netherlands*

Computer 47 3378. Z-Spectral Modeling for CEST-MRI of Bladder Cancer

Ryan Nicholas Schurr¹, Huyen T. Nguyen², Kamal Pohar³, Amir Mortazavi⁴, Zarine Shah², Debra Zynger⁵, Michael V. Knopp², Guang Jia¹

¹Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; ²Department of Radiology, The Ohio State University, OH, United States; ³Department of Urology, The Ohio State University, OH, United States; ⁴Department of Internal Medicine, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁴Department of States States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH, United States; ⁵Department of Pathology, The Ohio State University, OH,

Computer 48 3379. Modulation and Regulation of Intracellular PH in Healthy Human Brain Studied by Means of Chemical Exchange Saturation Transfer (CEST) at 7T Vitaliy Khlebnikov¹, Alex Bhogal¹, Jeroen Siero¹, Michel Italiaander², Vincent Boer¹, Peter Luijten¹, Hans Hoogduin¹, Dennis Klomp¹ ¹Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ²MR Coils BV, Drunen, Netherlands

Electronic Poster MR Fingerprinting & Quantitative Imaging

Exhibition Hall Monday 17:30-18:30

Computer 49 3380. Nonlinear Dimensionality Reduction for Magnetic Resonance Fingerprinting with Application to Partial Volume Debra McGivney¹, Anagha Deshmane², Yun Jiang², Dan Ma², Mark Griswold¹, ² ¹Radiology, Case Western Reserve University, Cleveland, OH, United States; ²Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States

Computer 50 3381. A Bayesian Approach to the Partial Volume Problem in Magnetic Resonance Fingerprinting Debra McGivney¹, Anagha Deshmane², Yun Jiang², Dan Ma², Mark Griswold¹, ² ¹Radiology, Case Western Reserve University, Cleveland, OH, United States; ²Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States

Computer 51 3382. MR Fingerprinting Based on Realistic Vasculature in Mice: Identifiability of Physiological Parameters Philippe Pouliot¹, ², Louis Gagnon³, Tina Lam⁴, Pramod Avti⁵, Michèle Desjardins¹, Ashok Kakkar⁴, Sava Sakadzic³, David Boas³, Frédéric Lesage¹ ¹Electrical Engineering, Ecole Polytechnique Montreal, Montreal, QC, Canada; ²Research Centre, Montreal Heart Institute, Montreal, QC, Canada; ³Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, MA, United States; ⁴Chemistry Department, McGill University, QC, Canada; ⁵Montreal Heart Institute, QC, Canada

Computer 52 3383. Uncertainty Volume Analysis - A Measure for Protocol Performance Cristoffer Cordes¹, Matthias Günther¹, ² ¹Fraunhofer MEVIS, Bremen, Germany; ²MR-Imaging and Spectroscopy, University of Bremen, Bremen, Germany

Computer 53 3384. Tier-Specific Weighted Echo Sharing Technique (WEST) for Extremely Undersampled Cartesian Magnetic Resonance Fingerprinting (MRF) Taejoon Eo¹, Jinseong Jang¹, Minoh Kim¹, Dong-hyun Kim¹, Dosik Hwang¹ 'Yonsei University, Seoul, Korea

Computer 54 3385. 3D Balanced-EPI Magnetic Resonance Fingerprinting at 6.5 MT Mathieu Sarracanie¹, ², Ouri Cohen¹, Matthew S. Rosen¹, ² ¹MGH/A.A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States; ²Department of Physics, Harvard University, Cambridge, MA, United States Computer 55 3386. Pulse Sequence Optimization for Improved MRF Scan Efficiency Jesse Ian Hamilton¹, Katherine L. Wright¹, Yun Jiang¹, Luis Hernandez-Garcia², Dan Ma¹, Mark Griswold, ¹³, Nicole magna cum laude Seiberlich¹.³ ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; ³Radiology, Case Western Reserve University, Cleveland, OH, United States Computer 56 3387. Multiple Preparation Magnetic Resonance Fingerprinting (MP-MRF): An Extended MRF Method for Multi-Parametric Quantification Summa cum laude Christian Anderson¹, Ying Gao¹, Chris Flask¹, ², Lan Lu², ³ ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States; ³Urology, Case Western Reserve University, Cleveland, OH, United States Computer 57 3388. Quantitative Evaluation of the Effect of Reduction of Signal Acquisition Number in MR Fingerprinting Te-Ming Lin¹, Su-Chin Chiu¹, Cheng-Chieh Cheng¹, Wen-Chau Wu¹, ², Hsiao-Wen Chung¹ ¹Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ²Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan Computer 58 3389. Kd-Tree for Dictionary Matching in Magnetic Resonance Fingerprinting Nicolas Pannetier¹,², Norbert Schuff¹,² ¹Radiology, UCSF, San Francisco, CA, United States; ²VAMC, San Francisco, CA, United States Computer 59 3390. Three-Dimensional MR Fingerprinting (MRF) and MRF-Music Acquisitions Dan Ma¹, Eric Y. Pierre¹, Yun Jiang¹, Kawin Setsompop², Vikas Gulani³, Mark A. Griswold³ ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²A.A Martinos Center for Biomedical Engineering, MGH, Harvard Medical School, Boston, MA, United States; ³Radiology, Case Western Reserve University, Cleveland, OH, United States Computer 60 3391. PET-MRF: One-Step 6-Minute Multi-Parametric PET-MR Imaging Using MR Fingerprinting and Multi-**Modality Joint Image Reconstruction** Florian Knoll¹,², Martijn A. Cloos¹,², Thomas Koesters¹,², Michael Zenge³, Ricardo Otazo¹,², Daniel K. Sodickson¹,² ¹Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, NY, United States; ³Siemens Medical Solutions USA, Malvern, PA, United States Computer 61 3392. Comparison of Accuracy and Reproducibility of MR Fingerprinting with Conventional T1 and T2 Mapping Bernhard Strasser¹, Wolfgang Bogner¹, Peter Bär¹, Gilbert Hangel¹, Elisabeth Springer¹, Vlado Mlynarik¹, Mark A. Griswold², ³, Dan Ma², Yun Jiang², Mathias Nittka⁴, Haris Saybasili⁴, Siegfried Trattnig¹ ¹MRCE, Department of Biomedical Imaging and Image-guided Therapy, University of Vienna, Vienna, Austria; ²Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ³Radiology, Case Western Reserve University, Cleveland, OH, United States; ⁴Siemens Healthcare USA, Inc., Chicago, IL, United States Computer 62 3393. Lower Bound Signal-To-Noise Ratios and Sampling Durations for Accurate and Precise T1 and T2 Mapping with Magnetic Resonance Fingerprinting Zhaohuan Zhang¹, ², Zhe Wang², ³, Subashini Srinivasan², ³, Kyunghyun Sung², ³, Daniel B. Ennis². ³ ¹Department of Physics & Astronomy, Shanghai Jiao Tong University, Shanghai, China; ²Department of Radiological Sciences, University of California, Los Angles, CA, United States; Department of Bioengineering, University of California, Los Angles, CA, United States Computer 63 3394. Comparison of Different Approaches of Pattern Matching for MR Fingerprinting Thomas Amthor¹, Mariya Doneva¹, Peter Koken¹, Jochen Keupp¹, Peter Börnert¹ ¹Philips Research Europe, Hamburg, Germany

Computer 64 3395. Accuracy Analysis for MR Fingerprinting Mariya Doneva¹, Thomas Amthor¹, Peter Koken¹, Jochen Keupp¹, Peter Börnert¹ ¹Philips Research Europe, Hamburg, Germany

- **Computer 65 3396.** Undersampled High-Frequency Diffusion Signal Recovery Using Model-Free Multi-Scale Dictionary Learning Enhao Gong¹, Qiyuan Tian¹, John M. Pauly¹, Jennifer A. McNab² ¹Electrical Engineering, STANFORD UNIVERSITY, Stanford, CA, United States; ²Radiology, STANFORD UNIVERSITY, Stanford, CA, United States
- Computer 66 3397. Limitations of T2-Contrast 3D-Fast Spin Echo Sequences in the Differentiation of Radiation Fibrosis Versus Tumor Recurrence

Andrea Vargas¹, Laurent Milot², Simon Graham¹, Philip Beatty¹ ¹Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Sunnybrook Research Institute, Toronto, Canada

- Computer 67 **3398.** Optimization of Magnetization-Prepared Rapid Gradient-Echo (MP-RAGE) Sequence for Neonatal Brain MRI Lili He¹, Jinghua Wang², Mark Smith³, Nehal A. Parikh¹, ⁴ ¹Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; ²Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH, United States; ³Radiology Department, Nationwide Children's Hospital, Columbus, OH, United States; ⁴Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
- Computer 68 3399. T2 Shuffling: Multicontrast 3D Fast Spin Echo Imaging Jonathan I. Tamir¹, Weitian Chen², Peng Lai², Martin Uecker¹, Shreyas S. Vasanawala³, Michael Lustig¹ ¹Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; ²Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States; ³Radiology, Stanford University, Stanford, CA, United States
- Computer 69 3400. High Contrast-To-Noise Ratio Brain Structural Images Using Magnetization Preparation and TrueFISP Acquisition

Yi-Cheng Hsu¹, Ying-Hua Chu¹, Shang-Yueh Tsai², Wen-Jui Kuo³, Fa-Hsuan Lin¹ ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²Institute of Applied Physic, National Chengchi University, Taipei, Taiwan; ³Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan

Computer 70 3401. Rapid Whole Brain T1 Rho Mapping Bing Wu^l, Nan Hong², Zhenyu Zhou^l ¹GE healthcare China, Beijing, China; ²Peking university people's hospital, Beijing, China

- Computer 71 3402. Suppression of Artifacts in Simultaneous 3D T1 and T2*-Weighted Dual-Echo Imaging *Won-Joon Do¹*, Seung Hong Choi², Eung Yeop Kim³, Sung-Hong Park¹ ¹Korea Advanced Institute of Science and Technology, Daejeon, Korea; ²Department of Radiology, Seoul National University College of Medicine, Seoul, Korea; ³Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea
- Computer 72 3403. 2D Reduced Field of View Spiral Inversion Recovery Sequence for High Resolution Multiple Inversion Time Imaging in a Single Breath Hold Galen D. Reed¹, Reeve Ingle¹, Ken O. Johnson¹, Juan M. Santos¹, Bob S. Hu², William R. Overall¹ ¹Heartvista, Menlo Park, CA, United States; ²Cardiology, Palo Alto Medical Foundation, Menlo Park, CA, United States

Electronic Poster

Reconstruction & Processing Algorithms

Exhibition Hall Monday 17:30-18:30

Computer 73 3404. An Approach to Improve the Effectiveness of Wavelet and Contourlet Compressed Sensing Reconstruction Paniz Adipour¹, Michael R. Smith¹,² ¹Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada; ²Radiology, University of Calgary, Calgary, Alberta, Canada

Computer 74 3405. Enhanced Reconstruction of Compressive Sensing MRI Via Cross-Domain Stochastically Fully-Connected Random Field Model

Edward Li¹, Mohammad Javad Shafiee¹, Audrey Chung¹, Farzad Khalvati², Alexander Wong¹, Masoom A. Haider³

¹Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada; ²Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ³Sunnybrook Health Sciences Center, Toronto, Ontario, Canada

- Computer 75 3406. Overcoming the Image Position-Dependent Resolution Inherent in DFT and CS Reconstructions Michael R. Smith¹, ², Jordan Woehr¹, Mathew E. MacDonald, ²³, Paniz Adipour¹ ¹Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada; ²Radiology, University of Calgary, Calgary, Alberta, Canada; ³Seaman MR Family Research Centre, University of Calgary, Calgary, Alberta, Canada
- Computer 76 3407. Simultaneuos Magnitude and Phase Regularization in MR Compressed Sensing Using Multi-Frame FREBAS Transform Satoshi Ito¹, Mone Shibuya¹, Kenji Ito¹, Yoshifumi Yamada¹

¹Utsunomiya University, Utsunomiya, Tochigi, Japan

Computer 77 3408. Extended Phase Graphs: Understanding a Common Misconception of the Framework Which Leads to the Failure of Programming It Correctly Matthias Weigel¹ ¹Radiological Physics, Dept. of Radiology and Nuclear Medicine, University of Basel Hospital, Basel, Switzerland

Computer 78 3409. Acquisition Strategy for Limited Support Compressed Sensing Pavan Poojar¹, Bikkemane Jayadev Nutandev¹, Amaresha Sridhar Konar¹, Rashmi R. Rao¹, Ramesh Venkatesan², Sairam Geethanath¹ ¹Medical Imaging Research Centre, Dayananda Sagar Institutions, Bangalore, Karnataka, India; ²Wipro-GE Healthcare, Bangalore, Karnataka, India

Computer 79 3410. MRI Constrained Reconstruction Without Tuning Parameters Using ADMM and Morozov's Discrepency Principle

Weiyi Chen¹, Yi Guo¹, Ziyue Wu², Krishna S. Nayak¹, ² ¹Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ²Biomedical Engineering, University of Southern California, Los Angeles, CA, United States

- Computer 80 3411. A Fast Algorithm for Tight Frame-Based Nonlocal Transform in Compressed Sensing MRI Xiaobo Qu^l, Yunsong Liu^l, Jing Ye^l, Di Guo², Zhifang Zhan^l, Zhong Chen^l ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, Fujian, China
- Computer 81 3412. A Novel Non Convex Sparse Recovery Method for Single Image Super-Resolution, Denoising and Iterative MR Reconstruction

Nishant Zachariah¹, Johannes M. Flake², Qiu Wang³, Boris Mailhe³, Justin Romberg¹, Xiaoping Hu⁴, Mariappan Nadar³

¹Department of Electrical and Computer Engineering, Georgia Institute of Technoloy, Atlanta, GA, United States; ²Department of Mathematics, Rutgers University, New Brunswick, NJ, United States; ³Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, United States; ⁴Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States

Computer 82 3413. Momentum Optimization for Iterative Shrinkage Algorithms in Parallel MRI with Sparsity-Promoting Regularization

Matthew J. Muckley¹, Douglas C. Noll¹, Jeffrey A. Fessler² ¹Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; ²Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States

Computer 83 3414. Parameter-Free Sparsity Adaptive Compressive Recovery (SCoRe)

Rizwan Ahmad¹, *Philip Schniter¹*, *Orlando P. Simonetti²* ¹Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States; ²Internal Medicine and Radiology, The Ohio State University, Columbus, OH, United States

Computer 84	3415.	Graph-Based Compressed Sensing MRI Image Reconstruction: View Image Patch as a Vertex on Graph
		Zongying Lai ¹ , ² , Yunsong Liu ¹ , Di Guo ³ , Jing Ye ¹ , Zhifang Zhan ¹ , Zhong Chen ¹ , Xiaobo Qu ¹
		¹ Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ² Department of Communication Engineering, Xiamen
		University, Fujian, China; ³ School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, Fujian,
		China

Computer 85 3416. MR Image Reconstruction with Optimized Gaussian Mixture Model for Structured Sparsity *Zechen Zhou¹, Niranjan Balu², Rui Li¹, Jinnan Wang, ²³, Chun Yuan¹, ²* ¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China; ²Vascular Imaging Lab, Department of Radiology, University of Washington, Seattle, WA, United States; ³Philips Research North America, Briarcliff Manor, NY, United States

Computer 86 3417. Partial Discreteness: A New Type of Prior Knowledge for MRI Reconstruction Gabriel Ramos-Llordén¹, Hilde Segers¹, Willem Jan Palenstijn¹, Arnold J. den Dekker¹, ², Jan Sijbers¹ ¹iMinds Vision-Lab, University of Antwerp, Antwerp, Belgium; ²Delft Center for Systems and Control, Delft University of Technology, Delft, Netherlands

Computer 87 3418. Novel Non-Local Total Variation Regularization for Constrained MR Reconstruction Andres Saucedo¹, ², Stamatios Lefkimmiatis³, Stanley Osher³, Kyunghyun Sung¹, ² ¹Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States; ²Biomedical Physics Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA, United States; ³Department of Mathematics, University of California Los Angeles, CA, United States;

Computer 88 3419. Highly Undersampling MR Image Reconstruction Using Tree-Structured Wavelet Sparsity and Total Generalized Variation Regularization

Ryan Wen Liu¹, Lin Shi², Simon C.H. Yu¹, Defeng Wang¹, ³ ¹Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ²Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; ³Department of Biomedical Engineering and Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

Computer 89 3420. META: Multiple Entangled Denoising and Thresholding Algorithms for Suppression of MR Image Reconstruction Artifacts Johannes F. M. Schmidt¹, Sebastian Kozerke¹, ² ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Division of Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom

- Computer 90 3421. Double Smoothing Method-Based Algorithm for MR Image Reconstruction with Partial Fourier Data Xiaohui Liu^l, Jinhong Huang^l, Wufan Chen^l, Yanqiu Feng^l ¹Guangdong Provincial Key Laborary of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- Computer 91 3422. MR Image Reconstruction from Under-Sampled Measurements Using Local and Global Sparse Representations MingJian Hong¹, MengRan Lin¹, Feng Liu², YongXin Ge¹ ¹ChongQing University, ChongQing, China; ²ITEE, The University of Queensland, QLD, Australia
- Computer 92 3423. Balanced Sparse MRI Model: Bridge the Analysis and Synthesis Sparse Models in Compressed Sensing MRI *Yunsong Liu¹, Jian-Feng Cai², Zhifang Zhan¹, Di Guo³, Jing Ye¹, Zhong Chen¹, Xiaobo Qu¹* ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Department of Mathematics, University of Iowa, Iowa City, IA, United States; ³School of Computer and Information Engineering, Xiamen University of Technology, Xiamen, Fujian, China

Computer 93 3424. Joint MR-PET Reconstruction Using Vector Valued Total Generalized Variation Florian Knoll¹, ², Martin Holler³, Thomas Koesters¹, ², Daniel K. Sodickson¹, ² ¹Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, NYU School of Medicine, New York, United States; ³Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
Computer 94 3425. A New Region Based Volume Wised Method for PET-MR Imaging Using Artificial Neural Network

Chenguang Peng¹, Rong Guo¹, Yicheng Chen¹, Yingmao Chen², Quanzheng Li³, Georges El Fakhr³, Kui Ying¹ Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Department of Engineering, Beijing, China; ²Department of Nuclear Medicine, The general hospital of Chinese People's Liberation, Beijing, China, Beijing, China; ³Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Harvard Medical School, Boston, United States

Computer 95 3426. Reliability of MR Sequences Used for Attenuation Correction in PET/MR

Mathias Lukas¹, Anne Kluge², Jorge Cabello¹, Christine Preibisch², ³, Stephan Nekolla¹ ¹Department of Nuclear Medicine, Klinikum rechts der Isar, TU München, Munich, Germany; ²Department of Neuroradiology, Klinikum rechts der Isar, TU München, Munich, Germany; ³Department of Neurology, Klinikum rechts der Isar, TU München, Munich, Germany

Computer 96 3427. PET Attenuation Correction for PET/MR by Combining MR Segmentation and Selective-Update Joint Estimation

Lishui Cheng¹, Sangtae Ahn¹, Dattesh Shanbhag², Florian Wiesinger³, Sandeep Kaushik², Ravindra Manjeshwar¹ ¹GE Global Research, Niskayuna, NY, United States; ²GE Global Research, Bangalore, India; ³GE Global Research, Munich, Germany

Electronic Poster

Fetal & Pediatric Neuroimaging

Exhibition Hall Tuesday 10:00-11:00

Computer 1 3428. Introducing MANTis: Morphological Adaptive Neonate Tissue Segmentation. Unified Segmentation for Neonates

Richard Beare¹, Jian Chen¹, Dimitrios Alexopoulos², Christopher Smyser², Cynthia Rogers², Wai Yen Loh¹, ³, Lillian Gabra Fam¹, Claire Kelly¹, Jeanie Cheong¹, ⁴, Alicia Spittle¹, Peter Anderson¹, ⁵, Lex Doyle¹, ⁴, Terrie Inder⁶, Jeff Neil⁶, Marc Seal¹, Deanne Thompson¹

¹Murdoch Childrens Research Institute, Parkville, Victoria, Australia; ²Washington University in St Louis, MO, United States; ³Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; ⁴Royal Women's Hospital, Parkville, Victoria, Australia; ⁵Paediatrics, University of Melbourne, Parkville, Victoria, Australia; ⁶Brigham and Women's Hospital, Massachusettes, United States

Computer 2 3429. Magnetic Resonance Fingerprinting for Fetal Imaging at 3T - Initial Results

Borjan Gagoski¹, Huihui Ye², Stephen Cauley², Himanshu Bhat³, Kawin Setsompop², Itthi Chatnuntawech⁴, Adrian Martin⁴, ⁵, Yun Jiang⁶, Mark Griswold⁶, Elfar Adalsteinsson⁴, ⁷, P. Ellen Grant¹, Lawrence Wald², ⁷ ¹Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; ²A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States; ³Siemens Medical Solutions USA Inc, Charlestown, MA, United States; ⁴Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁵Applied Mathematics, Universidad Rey Juan Carlos, Madrid, Spain; ⁶Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ⁷Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States

Computer 3 3430. Brain Network Modular Fingerprint of Premature Born Children Elda Fischi-Gomez¹,², Alessandra Griffa¹,³, Emma Muñoz-Moreno⁴, Lana Vasung⁵, Cristina Borradori-Tolsa⁵, François Lazeyras⁶, Jean-Philippe Thiran¹,³, Petra Susan Hüppi⁵

¹Signal Processing Laboratory 5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, (VD), Switzerland; ²Division of Development and Growth. Department of Pediatrics, University of Geneva, Geneva, (GE), Switzerland; ³Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, (VD), Switzerland; ⁴Fetal and Perinatal Medicine Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer, IDIBAPS, Barcelona, (B), Spain; ⁵Division of Development and Growth. Department of Pediatrics , University of Geneva, Geneva, (GE), Switzerland; ⁶Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, (GE), Switzerland;

Computer 4 3431. Quantitative Analysis of Global Pattern of Early Cortical Folding in Polymicrogyria Fetal Brains Kiho Im¹, Alexandre Guimaraes¹, Borjan Gagoski¹, Caitlin Rollins¹, Edward Yang¹, P. Ellen Grant¹ ¹Boston Children's Hospital, Harvard Medical School, Boston, MA, United States

Computer 5 3432. Piecewise Diffusion Tensor Estimation for Fetal Imaging Application

Uday Krishnamurthy¹,², Ramtilak Gattu¹, Pavan Kumar Jella¹, Jaladhar Neelavalli¹,², Ewart Mark Haacke¹,²

¹Department of Radiology, Wayne State University, Detroit, MI, United States; ²Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States

Computer 6 3433. Sphingosin-1-Phosphate-Receptor Modulation Ameliorates Neonatal White Matter Damage and Improves Long-Term Cognitive Development

Yohan van de Looij¹, ², Meray Serdar³, Petra S. Hüppi¹, Ursula Felderhoff-Müser³, Ivo Bendix³, Stéphane V. Sizonenko¹

¹Division of Child Growth and Development, University of Geneva, Geneva, Switzerland; ²Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ³Department of Pediatrics, University Hospital Essen, Essen, Germany

Computer 7 3434. Abnormal Whiter Matter Connectivity Network Organization in Children with Autism Spectrum Disorder Using Diffusion Tensor Imaging

Shijun Li¹, Yi Wang², Long Qian³, Lin Ma⁴

¹Department of Medical Instruments, PLA General Hospital, Beijing, China; ²Department of Stomatology, PLA General Hospital, Beijing, China; ³Department of Biomedical Engineering, Peking University, Beijing, China; ⁴Department of Radiology, PLA General Hospital, Beijing, China

Computer 8 3435. Impaired White Matter Cerebrovascular Reactivity in Sickle Cell Disease Is Associated with Decreased White Matter Structural Integrity

Paula L. Croal¹, Junseok Kim¹, Jackie Leung¹, Andrea Kassner¹, ²

¹Physiology & Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; ²Medical Imaging, University of Toronto, Toronto, Ontario, Canada

- Computer 9 3436. Differential Involvement of Long Versus Short Range WM Connections in CVI Corinna M. Bauer¹, ², Bang-Bon Koo³, Lauren Zajac³, Lotfi B. Merabet¹, ² ¹Massachusetts Eye and Ear Infirmary, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Boston University School of Medicine, MA, United States
- Computer 10 3437. Different Genetic Mutations Are Associated with Different Abnormal Patterns of Language White Matter Pathways in Young Children with Global Developmental Delay JEONG-WON JEONG¹, Senthil Sundaram¹, Diane C. Chugani¹, Harry T. Chugani¹ ¹Pediatrics and Neurology, Wayne State University, Detroit, MI, United States

Computer 11 3438. Objective Differentiation of Pure Speech Delay from Global Developmental Delay in Young Children: DWI Tractography-Based Connectome Study *JEONG-WON JEONG*^{1, 2}, *Senthil Sundaram*^{1, 2}, *Diane C. Chugani*^{1, 2}, *Harry T. Chugani*^{1, 2} ¹Pediatrics and Neurology, Wayne State University, Detroit, MI, United States; ²Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, United States

Computer 12 3439. Brain Connectivity Increases Concurrent with Functional Improvement: Evidence from Connectome MRI in Children with Cerebral Palsy During Therapy Zoe Englander¹, ², Jessica Sun³, ⁴, Laura Case⁵, Mohamad Mikati³, Joanne Kurtzberg³, ⁶, Allen W. Song¹, ⁷ ¹Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; ²Department of Biomedical Engineering, Duke University, Durham, NC, United States; ³Department of Pediatrics, Duke University, Durham, NC, United States; ⁴The Robertson Cell and Translational Therapy Center, Duke University, Durham , NC, United States; ⁵Department of Physical Therapy, Duke University, Durham, NC, United States; ⁶The Robertson Cell and Translational Therapy Center, Duke University, Durham, NC, United States; ⁷Department of Radiology, Duke University, Durham , NC, United States; ⁷Department of Radiology, Duke University, Durham , NC, United States; ⁷Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United States; ⁹Department of Radiology, Duke University, Durham , NC, United

Computer 13 3440. Minimum Spanning Trees Reveal the Development of Functional Connectivity in the Preterm Brain Gareth Ball¹, Ricardo P. Monti², ³, Paul Aljabar¹, Nora Tusor¹, Nazakat Merchant¹, Tomoki Arichi¹, Giovanni Montana², ³, Serena J. Counsell¹, A David Edwards¹ ¹Centre for the Developing Brain, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; ²Department of Biomedical Engineering, Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; ³Department of Mathematics, Imperial College London, London, United Kingdom

Computer 14 3441. Resting State Network Development in Very Preterm Infants

Lili He⁷, Nehal A. Parikh¹,²

¹Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States; ²Department of Pediatrics, The Ohio State University College of Medicine, Columubs, OH, United States

Computer 15 3442. Altered Intrinsic Anterior Insular Connectivity Underlying Social Improvements in Younger Children with Autism Spectrum Disorders

Wenjuan Wei¹, *Minghao Dong²*, *Yan Bai³*, *Wei Qin²*, *Ruwei Dai¹*, *Meiyun Wang³*, *Dapeng Shi³*, *Jie Tian¹*, ² ¹Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Science, Beijing, China; ²School of Life Sciences and Technology, Xidian University, Xi'an, Shanxi, China; ³Department of Radiology, Henan Provincial People's Hospital, zhengzhou, Henan, China

Computer 16 3443. A Longitudinal Resting State Functional MRI Study of Children with Hemiplegic Cerebral Palsy Treated with Constraint Therapy

Kathryn Yvonne Manning¹, Darcy Fehlings², Ronit Mesterman³, Jan Willem Gorter⁴, Lauren Switzer², Craig Campbell⁵, Ravi S. Menon⁶

¹Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ²Department of Paediatrics, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada; ³CanChild Centre for Childhood Disability Research, McMaster Children's Hospital, Hamilton, Ontario, Canada; ⁴CanChild Centre for Childhood Disability Research, McMaster University, Hamilton, Ontario, Canada; ⁵Department of Paediatrics, University of Western Ontario, London, Ontario, Canada; ⁶Centre for Functional and Metabolic Mapping, University of Western Ontario, Canada

Computer 17 3444. Decrease in Functional Network Segregation in Infants with Congenital Heart Defects

Vincent Jerome Schmithorst¹, Jodie Votava-Smith², Vincent Lee¹, Vidya Rajagopalan², Shaheda Suleiman², Lisa Paquette², Ashok Panigrahy¹

¹Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States; ²Children's Hospital Los Angeles, Los Angeles, CA, United States

Computer 18 3445. Global Structural Network Topology Mediates Neurocognitive Outcome in Children with Congenital Heart Defects

Vincent Jerome Schmithorst¹, Ashok Panigrahy¹, Jessica Wisnowski¹, Chris Walsh², David Bellinger², Jane Newburger², Michael Rivkin² ¹Radiology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States; ²Boston Children's Hospital, Boston, MA, United States

Computer 19 3446. CSF Dynamic in a Population of Children with Intracranial CSF Increase

Florine Dallery¹, Catherine Gondry-Jouet¹, Cyrille Capel², Anthony Fichten², Malek Makki³, Bader Chaarani⁴, Roger Bouzerar⁴, Olivier Balédent⁴

¹Radiology, Jules Verne University of Picardie and Amiens University Hospital, Amiens, Picardie, France; ²Neurosurgery, Amiens University Hospital, Picardie, France; ³MRI Research Center, University Children Hospital of Zurich, Zurich, Switzerland; ⁴Imaging, Amiens University Hospital, Picardie, France

Computer 20 3447. The Effect of Therapeutic Hypothermia on Cerebral Metabolism in Neonates with Hypoxic-Ischemic Encephalopathy

Jessica L. Wisnowski¹, Aaron J. Reitman¹, Tai-Wei Wu², Jonathan M. Chia³, Eugenia Ho¹, Claire McLean¹, Philippe Friedlich¹, Ashok Panigrahy⁴, Stefan Bluml¹, ⁵

¹Children's Hospital Los Angeles/USC, Los Angeles, CA, United States; ²Chang Gung Memorial Hospital, Lankou, Taiwan; ³Philips Healthcare, Cleveland, OH, United States; ⁴Children's Hospital of Pittsburgh, Pittsburgh, PA, United States; ⁵Rudi Schulte Research Institute, Santa Barbara, CA, United States

Computer 21 3448. Is Fetal Hypoxia a Precursor of Neonatal White Matter Changes in Congenital Heart Disease?

Prakash Muthusami¹, Sujana Madathil², Susan Blaser³, Edgar Jaeggi², Lars Grosse-Wortmann², Shi-Joon Yoo¹, John Kingdom⁴, Edward Hickey⁵, John Sled⁶, Christopher Macgowan⁶, Steven Miller⁷, Mike Seed² ¹Division of Cardiac Imaging, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; ²Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; ³Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, University of Toronto, Toronto, Toronto, Ontario, Canada; ⁴Department of Obstetrics and Gynaecology, Mount Sinai Hospital, Toronto, Ontario, Canada; ⁵Department of Cardiovascular Surgery, The Hospital for Sick Children, University of Toronto, Ontario, Canada; ⁶Department of Physiology & Experimental Medicine, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; ⁷Department of Neurology, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada

Computer 22	3449.	Maternal Obesity Negatively Affects Offspring's Brain White Matter Development <i>Xiawei Ou¹, ², Aline Andres, ³, Keshari M. Thakali, Kartik Shankar, ³, Thomas Badger, ³</i> ¹ Arkansas Children's Hospital Research Institute, Arkansas Children's Nutrition Center, Little Rock, AR, United States; ² Radiology and Pediatircs, University of Arkansas for Medical Sciences, Little Rock, AR, United States; ³ University of Arkansas for Medical Sciences, AR, United States
Computer 23	3450.	The Effect of Weight Loss on Brain Microstructure in Obese Middle-Aged Women <i>Clifford Chan¹, Heather Collins¹, Patrick M. O'Neil², Joshua Brown², Joseph A. Helpern¹, Andreana Benitez¹</i> ¹ Department of Radiology and Radiological Sciences, Medical University of South Carolina, Charleston, SC, United States; ² Weight Management Center, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
Computer 24	3451.	Childhood Obesity Is Associated with Lower Grey Matter Volume in Children <i>Xiawei Ou¹</i> , ² , <i>Aline Andres</i> , ³ , <i>R.T. Pivik</i> , ³ , <i>Mario Cleves</i> , ³ , <i>Thomas Badger</i> , ³ ¹ Arkansas Children's Hospital Research Institute, Arkansas Children's Nutrition Center, Little Rock, AR, United States; ² Radiology and Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States; ³ University of Arkansas for Medical Sciences, AR, United States

Electronic Poster

Normal Developing Brain						
Exhibition Hall	Exhibition Hall Tuesday 10:00-11:00					
Computer 25 3452.	Inhomogeneous Magnetization Transfer: Developmental Changes During Childhood <i>Alyssa Mah¹</i> , <i>R Marc Lebel²</i> , ³ , <i>David C. Alsop⁴</i> , <i>Gopal Varma⁴</i> , <i>Catherine Lebel³</i> ¹ Biomedical Engineering Program, University of Calgary, Calgary, AB, Canada; ² General Electric Healthcare Canada, Calgary, AB, Canada; ³ Radiology, University of Calgary, Calgary, AB, Canada; ⁴ Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States					
Computer 26 3453.	Investigating Cortical Myelination and Maturation Using Quantitative Myelin Water Fraction and Relaxation Time Imaging Sean Deoni ¹ , Justin Remer ¹ , Douglas Dean ¹ , Jonathan O'Muircheartaigh ² ¹ Advanced Baby Imaging Lab, Brown University, Providence, RI, United States; ² Neuroimaging, King's College London, London, England, United Kingdom					
Computer 27 3454.	Validating a Cross-Sectional Brain Development Index with Longitudinal Brain Images Bo Cao ¹ , Benson Mwangi ¹ , Khader M. Hasan ² , Sudhakar Selvaraj ¹ , Giovana B. Zunta-Soares ¹ , Jair C. Soares ¹ ¹ Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, United States; ² Department of Diagnostic & Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States States					
Computer 28 3455.	Examining the Relationships Between Cortical Maturation and White Matter Myelination Throughout Early Childhood <i>Elise Croteau-Chonka¹, Justin Remer², Jonathan O'Muircheartaigh³, Holly Dirks², Doug Dean III⁴, Sean Deoni²</i> ¹ Advanced Baby Imaging Lab, Brown University, Providence, RI, United States; ² Advanced Baby Imaging Lab, Brown University, RI, United States; ³ King's College London, England, United Kingdom; ⁴ Waisman Center, University of Wisconsin-Madison, WI, United States					
Computer 29 3456.	Age-Related R2* Values Variation in Gray Matter from Birth to 5 Years Detected by Using an Atlas-Based Analysis Ning Ning ¹ , ² , Yajie Hu ¹ , ³ , Xianjun Li ¹ , ³ , Qinli Sun ¹ , Yanyan Li ¹ , Jian Yang ¹ , ³ ¹ Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ² Department of Nuclear medicine. The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi					

²Department of Radiology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ²Department of Nuclear medicine, The Second Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ³Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Computer 30 3457. Regional Differences in CVR Developmental Patterns in Healthy Children

Jackie Leung¹, Junseok Kim², Przemysław Kosinski², Andrea Kassner¹, ³ ¹The Hospital for Sick Children, Toronto, Ontario, Canada; ²Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; ³Medical Imaging, University of Toronto, Toronto, Ontario, Canada

- Computer 31 3458. Investigating the Age Modulation of Functional Connectivity in a Pediatric Population Using Multi-Echo EPI Binjian Sun^l, Thomas G. Burns^l, Thaddeus Reece^l, Laura L. Hayes^l, Kamilah Hendrix^l, Richard A. Jones^l, ² ¹Children's Healthcare of Atlanta, Atlanta, GA, United States; ²Emory University, Atlanta, GA, United States
- Computer 32 3459. The Influence of Birth Weight on Brain Network Construction in Neonates *Yajie Hu^l*, ², *Xianjun Li^l*, ², *Mengye Lyu^l*, ², *Yanyan Li^l*, *Huan Li^l*, *Miaomiao Wang^l*, *Jian Yang^l*, ² ¹Department of Diagnostic Radiology, The First Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ²Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China;

Computer 33 3460. Optimized Multi-Shell HARDI Acquisiton with Alternating Phase Encoding Directions for Neonatal DMRI

^{tunn utart avato magna cum laube} Jana Hutter¹, ², Jacques-Donald Tournier¹, Emer J. Hughes¹, Anthony N. Price¹, Lucilio Cordero-Grande¹, ², Rita G. Nunes¹, Rui Pedro A. G. Teixeira¹, ², Serena J. Counsell¹, Jesper L. R. Andersson³, Daniel Rueckert⁴, A. David Edwards¹, ², Jo V. Hajnal¹, ² ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Division of Imaging Sciences and Biomedical

⁴Centre for the Developing Brain, King's College London, London, United Kingdom; ⁴Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ³FMRIB, Oxford, Oxfordshire, United Kingdom; ⁴Biomedical Image Analysis Group, Department of Computing, Imperial College London, London, United Kingdom

- Computer 34 3461. High-Field Neurite Orientation Dispersion and Density Imaging of Sheep Brain Development *Yohan van de Looij¹, Justin M. Dean², Alistair J. Gunn², Petra S. Hüppi¹, Stéphane V. Sizonenko¹* ¹Division of Child Growth and Development, University of Geneva, Geneva, Switzerland; ²Department of Physiology, University of Auckland, Auckland, New Zealand
- Computer 35 3462. How Does White Matter Microstructure Change in Human Early Development Based on WMTI and NODDI? Ileana O. Jelescu¹, Jelle Veraart¹, Vitria Adisetiyo¹, Sarah Milla¹, Dmitry S. Novikov¹, Els Fieremans¹ ¹Center for Biomedical Imaging, Dept. of Radiology, NYU Langone Medical Center, New York, United States

Computer 36 3463. NODDI Intra-Axonal Volume Fraction Shows Stronger Correlation with Developmental Age Than Fractional Anisotropy in Preterm Human Newborns

Nicolas Kunz¹, Juliane Schneider², Lana Vasung³, Hui Zhang⁴, Patrick Hagmann⁵, Anita C. Truttmann², François Lazevras⁶, Petra Susan Hüppi³

¹CIBM-AIT, EPFL, Lausanne, Vaud, Switzerland; ²Unit of Neonatology and Follow up, Department of Pediatrics, Centre hospitalier universitaire Vaudois (CHUV), Vaud, Switzerland; ³Division of Development and Growth, Dept of Pediatrics, University of Geneva, Geneva, Switzerland; ⁴Computer Science, University College London, London, United Kingdom; ⁵Department of Radiology, Centre hospitalier universitaire Vaudois (CHUV), Vaud, Switzerland; ⁶Department of Radiology-CIBM, Geneva University Hospitals (HUG), Geneva, Switzerland

- Computer 37 3464. White Matter Changes of Neurite Density and Fiber Orientation Dispersion During Human Brain Maturation *Yi-Shin Chang¹*, Julia P. Owen¹, Nicholas J. Pojman¹, Tony Thieu¹, Polina Bukshpun¹, Mari Wakahiro¹, Jeffrey Berman², Timothy Roberts², Srikantan Nagarajan¹, Elliott Sherr¹, Pratik Mukherjee¹ ¹University of California in San Francisco, San Francisco, CA, United States; ²Children's Hospital of Philadelphia, PA, United States
- Computer 38 3465. Improved High-Resolution Diffusion Spectrum Imaging in Young and Normal Aging Monkeys *Zheng Wang¹*, *Qinying Jiang¹*, *Qiming Lv¹*, *Dazhi Yin¹*, *Zhuangming Shen¹* ¹Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China

Computer 39 3466. Combination of High Resolution Ex Vivo Diffusion Tensor Imaging and Tract-Based Spatial Statistics Serve as a Valuable User-Independent Method to Evaluate Long-Term Effects of an Inflammatory Exposure in the **Neonatal Rat Brain**

Chen Jin¹, Alexandre Castonguay², Julie Tremblay¹, Philippe Pouliot², ³, Irene Londono¹, Frédéric Lesage², ³, Gregory A. Lodygensky¹.³

Research Centre CHU Sainte-Justine, Montreal, Quebec, Canada; ²École Polytechnique de Montréal, Montreal, Quebec, Canada; ³Montreal Heart Institute, Montreal, Quebec, Canada

Computer 40 3467. Birth Weight Influence White Matter Development in Neonates: A Diffusion Tensor Study Based on Tract-

Based Spatial Statistics Yanyan Li¹, Xianjun Li, ¹², Jie Gao¹, Qinli Sun¹, Huan Li¹, Jian Yang¹, ² Department of radiology, the first affiliated hospital of medical college, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ²Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Xi'an, Shaanxi, China

Computer 41 3468. Comparison Between the Single-Compartment and Two-Compartment Parameters Derived from Diffusion Kurtosis Imaging in Assessing the Axon Growth

Xianjun Li¹,², Jie Gao¹, Qinli Sun¹, Yanyan Li¹, Huan Li¹, Mingxi Wan², Jian Yang¹,² ¹Radiology Department of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ²Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Computer 42 3469. Exploring the Early Organization and Maturation of Linguistic Pathways in the Human Infant Brain Jessica Dubois¹,², Cyril Poupon³, Bertrand Thirion,²⁴, Sofya Kulikova⁵, François Leroy¹,², Lucie Hertz-Pannier⁵, Ghislaine Dehaene-Lambertz¹,² ¹Cognitive Neuroimaging Unit, INSERM, Gif-sur-Yvette, France; ²NeuroSpin, CEA, Gif-sur-Yvette, France; ³NeuroSpin, UNIRS, CEA, Gif-sur-Yvette, France; ⁴Parietal, INRIA, Gif-sur-Yvette, France; ⁵NeuroSpin, UNIACT, U1129, INSERM-CEA, Gif-sur-Yvette, France

Computer 43 3470. The Role of Glial Fibers in Human Fetal Connectome with High Resolution Diffusion Tensor Imaging Virendra Mishra¹, Tina Jeon², Mihovil Pletikos³, Nenad Sestan³, Hao Huang¹ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, United States; ³Department of Neurobiology, Yale University, CT, United States

Computer 44 3471. Sex Differences in the Frontal Lobe of the Developing Mouse Brain Da Shi¹,², Jiachen Zhuo¹,², Su Xu¹,², Jaylyn Waddell³, Rao P. Gullapalli¹,² ¹Core for Translational Research in Imaging at University of Maryland, University of Maryland School of Medicine, Baltimore, MD, United States; ²Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; ³Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States

Computer 45 3472. The Detection of Microstructural Changes in Cerebral Gray Matter Nuclei Between Healthy Neonates and Young Adults by Diffusional Kurtosis Imaging Qinli Sun¹, Xianjun Li¹,², Yanyan Li¹, Jie Gao¹, Huan Li¹, Jian Yang¹,³

Department of Diagnostic Radiology, The First Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China; ²Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi,, China; ³Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China

Computer 46 3473. Population-Averaged Age-Specific DTI Templates of Preterm Human Brain at 33, 36 and 39 Gestational Weeks Virendra Mishra¹, Kenichi Oishi², Hang Li¹, ³, Tina Jeon¹, Minhui Ouyang¹, Lina Chalak⁴, Jonathan M. Chia⁵, Yun

Peng³, Nancy Rollins⁶, Susumu Mori², Hao Huang⁷, ⁸ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ³Department of Radiology, Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China; ⁴Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁵Philips Medical Systems, Dallas, TX, United States; ⁶Department of Radiology, Children's Medical Center at Dallas, Dallas, TX, United States; ⁷Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; 8Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States

Computer 47 3474. Comprehensive Assessment of the Regional Microstructure of the Preterm Human Brain Cerebral Cortex Using DKI and DTI

Tina Jeon¹, Austin Ouyang¹, Virendra Mishra¹, Alejandra Perez¹, Lina Chalak², Jonathan Chia³, Muraleedharan Sivarajan², Nancy Rollins⁴, Hao Huang¹

¹Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ²Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, United States; ³Philips Medical Systems, Dallas, TX, United States; ⁴Department of Radiology, Children's Medical Center at Dallas, Dallas, TX, United States

Computer 48 3475. White Matter Structural Development from Mid-Fetal Stage to Normal Time of Birth

Austin Ouyang¹, Qiaowen Yu², Virendra Mishra¹, Lina Chalak³, Tina Jeon¹, Jonathan M. Chia⁴, Muraleedharan Sivarajan³, Nancy Rollins⁵, Shuwei Liu², Hao Huang¹, ⁶

¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Research Center for Sectional and Imaging Anatomy, Shandong University School of Medicine, Shandong, China; ³Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Philips Healthcare, Cleveland, OH, United States; ⁵Department of Radiology, Children's Medical Center, Dallas, TX, United States; ⁶Department of Radiology, University of Texas Southwestern Medical Center, TX, United States

Electronic Poster

Neuroanatomy & Tissue Characterization

Exhibition Hall Tuesday 10:00-11:00

Computer 49 3476. Optimized Vascular Signal Reduction in Contrast Enhanced 3D T1 Turbo Spin Echo Imaging Neville D. Gai¹, John A. Butman¹ ¹Radiology & Imaging Sciences, NIH, Bethesda, MD, United States

Computer 50 3477. A 16-Channel Double-Row Microstrip Array for Human Head Parallel Imaging at Ultrahigh Fields *Xinqiang Yan¹*, ², *Jan Ole Pedersen*³, *Long Wei*², *Xiaoliang Zhang*⁴, *Rong Xue*¹ ¹State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ²Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ³Sino-Danish Center, University of Chinese Acaemy of Sciences, Beijing, China; ⁴Department of Radiology and Biomedical Imaging, University of California San Francisco and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States

Computer 51 3478. Eight-Channel ICE-Decoupled Monopole RF Array for Ultrahigh Field Human Head MR Imaging Xinqiang Yan¹, ², Long Wei², Rong Xue¹, Xiaoliang Zhang³ ¹State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; ²Key Laboratory of Nuclear Analysis Techniques, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; ³Department of Radiology and Biomedical Imaging, University of California San Francisco and UCSF/UC Berkeley Joint Graduate Group in Bioengineering, San Francisco, CA, United States

Computer 52 3479. Optimized Processing for Various TEs for Generation of Angiography Uehwan Kim¹, Hyunwook Park¹ ¹Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea

Computer 53 3480. Toward High Resolution Anatomical Imaging of Large *Ex Vivo* Brain Samples with Specialized 9.4T RF Coils Shubharthi Sengupta¹, Mark van Zandvoort², Dean Paes², Ralf Galuske³, Rainer Goebel¹, Alard Roebroeck¹ ¹Dept. of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands; ²Maastricht University, Netherlands; ³Fachbereich Biologie, Technische Universität Darmstadt, Germany

Computer 54 3481. Construction of MRI 3D High Resolution Sheep Brain Templates and the Use of Optimized Prior Probability Maps to Extract Structures in the Central Nervous System Arsene Longin Ella¹, Matthieu Keller¹ ¹Department of Reproductive Physiology and Behavior, INRA - Centre Val de Loire UMR 7247 - CNRS - University of Tours – IFCE, Nouzilly, Tours, France

Computer 55 3482. In Vivo Quantification of Human Hippocampal Subfields in Health and in Organic Amnesia Using 7.0-Tesla 0.4mm2 3-D Fast Spin Echo Imaging

Clive R. Rosenthal¹, Thomas D. Miller², Tammy W C Ng², Stuart Golodetz³, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Stord, University College London Hospital, London, United Kingdom; ³Computer Science, University of Oxford, Oxford, Oxford, Stord, Oxford, Stord, Oxford, Stord, Oxford, Stord, Oxford, Stord, Oxford, Stord, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Oxford, Oxford, Oxford, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Oxford, Oxford, Oxford, Oxford, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Oxford, Oxford, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Oxford, Oxford, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Oxford, Oxford, Oxford, Christopher Kennard¹, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Oxford, Oxford, Oxford, Oxford, Oxford, Christopher Kennard⁴, Penny A. Gowland⁴ ¹Clinical Neurosciences, University of Oxford, Christopher Kennard⁴, Penny A. Gowland⁴, ¹Clinical Neurosciences, University of Oxford, Oxford

Computer 56 3483. MP2RAGE for Deep Gray Matter Measurement of the Brain: A Comparative Study with MPRAGE Gosuke Okubo¹, Tomohisa Okada¹, Akira Yamamoto¹, Mitunori Kanagaki¹, Yasutaka Fushimi¹, Tsutomu Okada¹, Kaori Togashi¹ ¹Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan

Computer 57 3484. ExTracT: Extracting Tract Terminations Using Diffusion Imaging Claude J. Bajada¹, Hamied A. Haroon², Hojjatollah Azadbakht², Geoff J. M. Parker², Matthew A. Lambon Ralph¹, Lauren L. Cloutman¹ ¹Neuroscience and Aphasia Research Unit, School of Psychological Sciences, The University of Manchester, Manchester, United Kingdom; ²Centre for Imaging Science, Institute of Population Health, The University of Manchester, Manchester, United Kingdom

Computer 58 3485. Imaging Macaque Cortical Myeloarchitecture Frank Q. Ye¹, Xiaomin Yue² ¹Neurophysiology Imaging Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; ²Laboratory of Brain Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States

Computer 59 3486. Diffusion Tensor Tractography of Human Spinocerebellar, Cortico-Ponto-Cerebellar and Dentate-Rubro-Thalamo-Cortical Pathways

Khader M. Hasan¹, Zafer Keser², Arash Kamali³, Nuray Yozbatiran², Gerard E. Francisco² ¹Diagnostic and Interventional Imaging, University of Texas Health Science Center, Houston, TX, United States; ²Physical Medicine and Rehabilitation, University of Texas Health Science Center and TIRR NeuroRecovery Research Center, Houston, TX, United States; ³Department of Diagnostic Radiology, Division of Neuroradiology, Johns Hopkins University, MD, United States

Computer 60 3487. MR-Based Anatomical Covariance Predicts Brain Structural Connectivity in Mice Yohan Yee¹, ², Jacob Ellegood², Jason P. Lerch, ¹² ¹Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada

Computer 61 3488. A Novel Method of G-Ratio Measurement in White Matter with Validation of Monte Carlo Simulation ^{INSERVICENT AWARD} ^{INSERVICENT AWARD</sub> ^{INSERVICENT AWARD} ^{INSERVICENT AWARD</sub> ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u> ^{INSERVICENT AWARD ^{INSERVICENT AWARD ^{INSERVICENT AWARD</u>}}}}}}}}}}}}}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Computer 62 3489. A Population-Averaged Whole Brain Myelin Concentration Map Using ViSTa Myelin Water Imaging Se-Hong Oh¹, Jiwon Nam², Joon Yul Choi², Jongho Lee² ¹Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States; ²Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea

- Computer 63 3490. Corticospinal Tract Diffusivity Is Related to Motor Cortex Surface Area in Healthy Controls Niels Bergsland¹, ², Maria Marcella Laganà¹, Eleonora Tavazzi¹, Francesca Baglio¹, Paola Tortorella¹, Matteo Caffini², Mario Clerici¹, Giuseppe Baselli², Marco Rovaris¹ ¹IRCCS, Fondazione Don Gnocchi, Milan, MI, Italy; ²Dipartimento di Elettronica, Informatica e Bioingegneria, Politecnico di Milano, Milan, MI, Italy
- Computer 64 3491. Prenatal Inflammation and Stress Impairs Neurodevelopmental Trajectories as Measured by T2-Relaxometry J. Keiko McCreary¹, L. Sorina Truica¹, Ashlee Matkin², Albert R. Cross³, David M. Olson⁴, Gerlinde A. S. Metz¹ ¹Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada; ²Faculty of Medicine, University of Alberta, Alberta, Canada; ³Departments of Physics and Neuroscience, University of Lethbridge, Alberta, Canada; ⁴Departments of Obstetrics & Gynecology, Pediatrics and Physiology, University of Alberta, Alberta, Canada

Computer 65 3492.	2. The Effect of the Chemotherapy Agent Methotrexate on the Developing Brain Leigh Spencer Noakes ¹ , Brian J. Nieman ¹ , ² , Ellen van der Plas ³ , Shoshana Spring ¹ , Russell Schachar ⁴ ¹ Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; ² Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ³ Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada; ⁴ Psychiatry, University of Toronto, Toronto, Ontario, Canada					
Computer 66 3493.	Decomposing the Hippocampus Into Anatomical Informative Shape Measures Jason P. Lerch ¹ , ² , Jan Scholz ¹ ¹ Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario, Canada; ² Medical Biophysics, University of Toronto, Toronto, Ontario, Canada					
Computer 67 3494.	Brodmann Revisited: Using Diffusion MRI to Characterize Functionally Distinct Gray Matter Regions in Development Kirsten Mary Lynch ¹ , Arthur Toga ¹ , Kristi Clark ¹ ¹ Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, United States					
Computer 68 3495.	Viscoelasticity of the Mouse Hippocampus and the Influence of Enriched Environment Jing Guo ¹ , Tonia Munder ² , Charlotte Klein ² , Anna Pfeffer ² , Jürgen Braun ³ , Barbara Steiner ² , Ingolf Sack ¹ ¹ Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ² Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; ³ Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Berlin, Germany					
Computer 69 3496.	Neuroprotective Effect of Lactoferrin Following Inflammatory Injury in the Developing Rat Brain Assessed by High-Field Neurite Orientation Dispersion and Density Imaging Yohan van de Looij ¹ , ² , Vanessa Ginet ¹ , Petra S. Hüppi ¹ , Stéphane V. Sizonenko ¹ ¹ Division of Child Growth and Development, University of Geneva, Geneva, Switzerland; ² Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland					
Computer 70 3497.	Investigation of Brain Segmentation with FIRST by Using Different Hybrid Contrasts and Registrations <i>Xiang Feng¹, Andreas Deistung¹, Ferdinand Schweser², ³, Daniel Guellmar¹, Juergen R. Reichenbach¹</i> ¹ Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; ² Buffalo Neuroimaging Analysis Center, Dept. of Neurology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States; ³ MRI Molecular and Translational Imaging Center, Buffalo CTRC, State University of New York at Buffalo, Buffalo, NY, United States					
Computer 71 3498.	BrainGPS: A Cloud-Based Platform for Neuroimage Analysis and Neuroradiological Studies <i>Yue Li¹, Can Ceritoglu², Hangyi Jiang³, Anthony E. Kolasny², Timothy J. A. Brown², Xiaoying Tang², Zifei Liang³, ⁴, <i>Andreia V. Faria³, Marc Vaillant⁵, Naveen Santhanam⁵, Xin Li³, Susumu Mori³, Michael I. Miller²</i> ¹AnatomyWorks, LLC, Baltimore, MD, United States; ²Center for Imaging Science, Johns Hopkins University, Baltimore, MD, United States; ³Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁴Department of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China; ⁵Animetrics, Inc, Conway, NH, United States</i>					
Computer 72 3499.	Interpolated Compressed Sensing MR Image Reconstruction in Phase Encoding for the Brain <i>Yong Pang¹, Daniel B. Vigneron¹, ², Xiaoliang Zhang¹, ²</i> ¹ Dept of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ² UCSF/UC					

Electronic Poster

Advanced Neuroanatomy & Morphometry

Tuesday 10:00-11:00 Exhibition Hall

Computer 73 3500. A Comparison of MP-RAGE Sequence Optimizations Jinghua Wang¹, Lili He², Zhong-Lin Lu¹ ¹Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH, United States; ²Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, OH, United States

Berkeley Joint Graduate Group in Bioengineering, San Francisco & Berkeley, CA, United States

Computer 74 3501.	SNR Improvement of MP2RAGE from Slice Encoding Acceleration. <i>Wanyong Shin¹, Taehoon Shin², Sehong Oh¹, Mark J. Lowe¹</i> ¹ Imaging Institute, Cleveland Clinic Foundatoin, Cleveland, OH, United States; ² Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, United States
Computer 75 3502.	Fluid-Attenuated Three-Dimensional Structural Brain MRI Using Inversion-Recovery-Prepared DANTE- FLASH (IR-DASH) Linqing Li ^l , Moises Hernandez ^l , Peter Jezzard ^l ¹ Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
Computer 76 3503.	Robustness of a Fully Automated Brain Segmentation Tool for Multiple MRI Protocols: Test for Clinical Applications Zifei LIANG ¹ , ² , Xiaohai HE ¹ , Andreia V. Faria ² , Kenishi Oishi ² , Yue Li ³ , Kinya Okada ² , ⁴ , Can Ceritoglu ⁵ , Xiaoying Tang ⁵ , Michael Miller ⁵ , Susumu Mort ² , ⁶ ¹ College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China; ² Johns Hopkins University School of Medicine, BALTIMORE, MD, United States; ³ AnatomyWorks,LLC, BALTIMORE, MD, United States; ⁴ MitsubishiTanabe Pharma Corporation, Kawagishi, Japan; ⁵ Center for Imaging Science, Johns Hopkins University, BALTIMORE, MD, United States; ⁶ Kennedy Krieger Institute, BALTIMORE, MD, United States
Computer 77 3504.	Cortical Layers One by One: The Visual Cortex in Advanced QMRI <i>Ana-Maria Oros-Peusquens¹, Johannes Lindemeyer¹, N. Jon Shah¹</i> ¹ Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany
Computer 78 3505.	Cortical Thickness Measurements with MPRAGE and MP2RAGE at 3T <i>Quentin Duché¹, ², Parnesh Raniga³, Gary F. Egan³, Oscar Acosta¹, Pierrick Bourgeat², Vincent Doré², Hervé Saint-Jalmes¹, Olivier Salvado² ¹LTSI, INSERM, Université de Rennes 1, Rennes, France; ²CSIRO Digital productivity Flagship, Australian e-Health Research Centre, Herston, QLD, Australia; ³Monash Biomedical Imaging, Monash University, VIC, Australia</i>
Computer 79 3506.	An Algorithm and Quantitative Evaluation Framework for Registration of Multi-Modal Brain MRI Omar Ocegueda ¹ , Eleftherios Garyfallidis ² , Maxime Descoteaux ² , Mariano Rivera ¹ ¹ Computer Science Department, Centro de Investigación en Matemáticas, Guanajuato, Mexico; ² Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science department, Université de Sherbrooke, Sherbrooke, Québec, Canada
Computer 80 3507.	Reducing EPI Distortion with Gradient Slew Rate of 700 T/m/s in Human Brain Imaging Ek T. Tan ¹ , Seung-Kyun Lee ¹ , Dominic Graziani ¹ , Matt A. Bernstein ² , John Huston ² , Yunhong Shu ² , Paul T. Weavers ² , Shengzhen Tao ³ , Joshua D. Trzasko ³ , Jean-Baptiste Mathieu ⁴ , Christopher J. Hardy ¹ , John F. Schenck ¹ , Thomas KF Foo ¹ ¹ GE Global Research, Niskayuna, NY, United States; ² Radiology, Mayo Clinic, Rochester, MN, United States; ³ Biomedical Engineering, Mayo Clinic, Rochester, MN, United States; ⁴ GE Healthcare, Florence, SC, United States
Computer 81 3508.	<i>Ex-Vivo</i> MRI of the Brain: Longitudinal Effects of Formalin Exposure on Regional T1 Relaxation Times <i>Mekala R. Raman¹, Yunhong Shu², Clifford R. Jack², Kejal Kantarci²</i> ¹ Neurology, Mayo Clinic, Rochester, MN, United States; ² Radiology, Mayo Clinic, Rochester, MN, United States
Computer 82 3509.	Opposing Effects on Parieto-Frontal White Matter Plasticity After Demanding and Undemanding Working Memory Training: A Multimodal MRI Approach. <i>Claudia Metzler-Baddeley¹, Sonya Foley², Karen Caeyenberghs³, Derek K. Jones²</i> ¹ CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom; ² Cardiff University, Wales, United Kingdom; ³ Gent University, Gent, Belgium

Computer 83 3510. Reliability, Power, and Calibration for Multisite MRI Volumetric Studies

Anisha Keshavan¹, Friedmann Paul², Mona Beyer³, Rohit Bakshi⁴, Phillip De Jager⁴, Massimo Filippi⁵, David Hafler⁶, Hanne Harbo³, Stephen Hauser¹, Ludwig Kappos⁷, Filippo Martinelli⁵, Daniel Pelletier⁶, Maria Rocca⁵, Till Sprenger⁷, William Stern¹, Bernard Uitdehaag⁸, Mike Wattjes⁸, Howard Weiner⁴, Jens Würfel², Alyssa Zhu¹, Jorge Oksenberg¹, Roland Henry¹

¹Neurology, UCSF, San Francisco, CA, United States; ²Charité Universitätsmedizin, Germany; ³Oslo University Hospital, Norway; ⁴Brigham and Women's Hospital, MA, United States; ⁵Scientific Institute Ospedale San Raffaele, Italy; ⁶Yale University, CT, United States; ⁷University Hospital, Basel, Switzerland; ⁸Academic Hospital Vrije Universiteit, Netherlands

Computer 84 3511. Association of Hippocampal Shape with Children's Cognitive Performance Analyzed Using Radial-Distance Mapping and Two Non-Rigid Registration Methods

Peter T. Fwu¹, Elysia P. Davis², Claudia Buss², Muqing Lin¹, Kevin Head², Curt A. Sandman², Min-Ying Su¹ ¹Tu&Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, United States; ²Women and Children's Health and Well-Being Project, Department of Psychiatry & Human Behavior, University of California, Irvine, CA, United States

Computer 85 3512. Visualization of Human Brainstem Structures at 3T Using 3D Inversion Recovery Sequences Zhe Zhang¹, Changcun Pan², ³, Xiaodong Ma¹, Jie Tang³, Lihong Wang¹, Liwei Zhang, ²³, Hua Guo¹

¹Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China;
 ²Department of Neurosurgery, Medical Center, Tsinghua University, Beijing, China;
 ³Department of Neurosurgery, Beijing, Tiantan Hospital, Capital Medical University, Beijing, China

Computer 86 3513. In Vivo Structural Template of Human Brainstem Nuclei Based on Multi-Contrast MRI at 7 Tesla

Marta Bianciardi¹, Nicola Toschi¹, ², Brian L. Edlow³, Cornelius Eichner¹, Kawin Setsompop¹, Jonathan R. Polimeni¹, Emery N. Brown⁴, Hannah C. Kinney⁵, Bruce R. Rosen¹, Lawrence L. Wald¹ ¹Department of Radiology, A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, United States; ²Medical Physics Section, Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome "Tor Vergata", Rome, Italy; ³Department of Neurology, A. A. Martinos Center for Biomedical Imaging, MGH & Harvard Medical School, Boston, MA, United States; ⁴Department of Anesthesia, Critical Care and Pain Medicine, MGH, Boston, MA, United States;

Computer 87 3514. Structural Connectivity Mapping and Parcellation of the Human Subthalamic Nucleus Using Ultra-High Field Diffusion MRI

⁵Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States

Birgit Renske Plantinga¹, ², Alard Roebroeck³, Matteo Bastiani³, Valentin Gereon Kemper³, Maartje Melse¹, Kâmil Uludag³, Mark Kuijf⁴, Ali Jahanshahi¹, Bart ter Haar Romenij², Yasin Temel¹, ⁵ ¹Department of Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands; ²Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, Noord-Brabant, Netherlands; ³Department of Cognitive Neuroscience, Maastricht University, Maastricht, Limburg, Netherlands; ⁴Department of Neurology, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ⁵Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Limburg, Netherlands

Computer 88 3515. Ultra-High Field MR Microscopy of the Postmortem Human Brainstem

Yosef Berlow¹, Mara Bahri¹, Laura McMahon¹, John Nutt², Susan Goelz³, Ted Yednock³, Wagner Zago³, Randall Woltjer⁴, C.Dirk Keene⁵, William Rooney¹

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ²Department of Neurology, Oregon Health & Science University, Portland, OR, United States; ³Prothena, CA, United States; ⁴Department of Pathology, Oregon Health & Science University, Portland, OR, United States; ⁵Department of Pathology, University of Washington, Seattle, WA, United States

Computer 89 3516. Reproducibility Assessment of the First Principal Network Calculation: A Tool for Studying Anatomical Brain Connectivity

Emma Biondetti¹, Jonathan D. Clayden², Alessandra Bertoldo³, Declan T. Chard⁴, Claudia A. M. Wheeler-Kingshott⁴ ¹UCL Department of Medical Physics and Biomedical Engineering, University College London, London, England, United Kingdom; ²Developmental Imaging and Biophysics Section, UCL Institute of Child Health, University College London, London, England, United Kingdom; ³Department of Information Engineering, University of Padova, Padova, Italy; ⁴NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom

Computer 90 3517. Magnetic Resonance Elastography in the Brain: An in Silico Study on the Influence of Cranial Anatomy

Deirdre M. McGrath¹, ², Nishant Ravikumar¹, Alejandro F. Frangi¹, Iain D. Wilkinson², Zeike A. Taylor¹ ¹CISTIB, Center for Computational Imaging & Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²Academic Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

- Computer 91 3518. Is 1T the New 9.4T? a Tool for Morphological Phenotyping and Regional Brain Volume Extraction Holly Elizabeth Holmes*¹, Rajiv Ramasawmy¹, Da Ma¹,², Nicholas Powell¹,², Manuel Jorge Cardoso², Marc Modat², Simon Walker-Samuel¹, Sebastian Ourselin², Bernard Siow+¹,², Mark Lythgoe+¹ ¹Centre for Advanced Biomedical Imaging, University College London, London, Greater London, United Kingdom; ²Centre for Medical Image Computing, University College London, London, Greater London, United Kingdom
- Computer 92 3519. Using Dimensionality Reduction to Explore Virtual Reality Lobectomies Allen Q. Ye¹, Olusola Ajilore², Alessandro Febretti³, Andrew Johnson³, Johnson GadElkarim², Shaolin Yang², Richard Magin¹, Anand Kumar², Alex D. Leow² ¹Dept. of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ²Dept. of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; ³Dept. of Computer Science, University of Illinois at Chicago, Chicago, IL, United States
- Computer 93 3520. Investigation of the Confounding Effects of Vasculature and Metabolism on Computational Anatomy Studies Christine Lucas Tardif⁴, Christopher John Steele¹, Pierre-Louis Bazin¹, Arno Villringer¹, Claudine Joëlle Gauthier¹, ² ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany; ²Department of Physics, Concordia University, Montreal, Quebec, Canada

Computer 94 3521. High Resolution 7T MRI Scanning of Human Cerebral Vascular Casts J.H.G. Helthuis¹, A.A. Harteveld², J. Hendrikse², R.L.A.W. Bleys³, J.J.M. Zwanenburg², ⁴ ¹Department of Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands; ³Department of Anatomy, University Medical Center Utrecht, Utrecht, Netherlands; ⁴Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands

Computer 95 3522. Acceleration-Selective Arterial Spin Labeling (AccASL) for Intracranial MR Angiography Makoto Obara¹, Osamu Togao², Masami Yoneyama¹, Tomoyuki Okuaki³, Shuhei Shibukawa⁴, Marc Van Cauteren³ ¹Philips Electronics Japan, Minato-ku, Tokyo, Japan; ²Department of Clinical Radiology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan; ³Philips Healthcare, Tokyo, Japan; ⁴Department of Radiology, Tokai University Hospital, Kanagawa, Japan

Electronic Poster Addiction, Drug Exposure, Pain, Sleep

Exhibition	Hall	Tuesday 11:00-12:00
Computer 1	3523.	White Matter Abnormalities in Alcohol Dependents Using Diffusion Tensor Imaging at 3T Hyeon-Man Baek ¹ , ² , Mirim Bang ¹ , Youngjae Jeon ¹ , Jooyun Kim ¹ ¹ Center for MR Research, Korea Basic Science Institute, Ochang, Chungbuk, Korea; ² Department of Bio-Analytical Science, University of Science & Technology, Daejeon, Chungnam, Korea
Computer 2	3524.	Brain Metabolite Abnormalities in Alcohol Dependent Patients Using Proton MR Spectroscopy at 3T <i>Hyeon-Man Baek</i> ¹ , ² , <i>Siekyeong Kim</i> ³ , <i>Jeonghwan Lee</i> ³ , <i>Youngjae Jeon</i> ¹ , <i>Jooyun Kim</i> ¹ , <i>Mirim Bang</i> ¹ ¹ Center for MR Research, Korea Basic Science Institute, Ochang, Chungbuk, Korea; ² University of Science & Technology, Daejeon, Korea; ³ Department of Psychiatry, Chungbuk National University, Cheongju, Chungbuk, Korea
Computer 3	3525.	Altered Corticostriatal Functional Networks in Adolescents with Internet Addiction Disorder Revealed by Resting-State fMRI Fuchun Lin ¹ , Yasong Du ² , Yan Zhou ³ , Jianrong Xu ³ , Hao Lei ¹ ¹ State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China; ² Shanghai Mental Health Center, Jiao Tong University Medical School, Shanghai, China; ³ RenJi Hospital, Jiao Tong University Medical School, Shanghai, China

Computer 4 3526. The Lower White Matter Integrity Was Related to Relapse Propensity in Heroin Addicts Under Methadone Maintenance Treatment

wei li¹, yarong wang¹, qiang li¹, jianjun ye¹, wei wang¹ ¹Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, Xi₁⁻an, Shaanxi, China

- Computer 5 3527. A Combined Conventional ROI and Voxel Based T2 Relaxometry Analysis in Alcohol Use Disorders Deepika Bagga¹, Namita Singh¹, Shilpi modi¹, Prabhjot Kaur¹, Subash Khushu¹, Debajyoti Bhattacharya², Mohan lal Garg³ ¹INMAS, Delhi, India; ²Base Hospital, Delhi, India; ³Panjab University, Chandigarh, India
- Computer 6 3528. Prefrontal and Frontal Functional Connectivity Increases in Current Smokers Versus Non-Smokers Prantik Kundu¹, Valerie Voon² ¹Depts. of Radiology and Psychiatry, Icahn School of Medicine at Mt. Sinai, New York, NY, United States; ²Department of Psychiatry, University of Cambridge, Cambridgeshire, United Kingdom
- Computer 7 3529. Widespread White Matter Integrity Abnormalities in Cocaine Use Disorder Assessed by High Resolution DMRI and Tractography Rafael O'Halloran¹, Nelly Alia-Klein², Rita Z. Goldstein²

¹Radiology, Icahn School of Medicine at Mt Sinai, New York, NY, United States; ²Psychiatry, Icahn School of Medicine at Mt Sinai, NY, United States

Computer 8 3530. Effects of Methadone MaintenanceTreatment in Heroin Addicts on Inhibitory Controla Longitudinal Observationof fMRI

Jianjun Ye¹, Wei Wang¹, Wei Li¹, Dongsheng Zhang¹, Dandan Zheng² ¹Department of Radiology, Tangdu Hospital, The Fourth Military Medical University, xi'an, shaanxi, China; ²MR Advanced Application and Research Center, GE Healthcare China, Beijing, China

Computer 9 3531. Cerebral Metabolite Differences and Correlations in Short-Term Binge Ethanol-Exposed Rats: A Study of *Ex Vivo* Proton Nuclear Magnetic Resonance Spectroscopy at 11.7-T *Do-Wan Lee^l*, ², *Bo-Young Choe^l* ¹Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Korea; ²Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea

Computer 10 3532. Distribution of Temperature Changes and Neurovascular Coupling in Rat Brain Following 3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') Exposure Daniel Coman¹, Basavaraju G. Sanganahalli¹, Lihong Jiang¹, Fahmeed Hyder¹, ², Kevin Behar³ ¹Diagnostic Radiology, Yale University, New Haven, CT, United States; ²Biomedical Engineering, Yale University, New Haven, CT, United States; ³Psychiatry, Yale University, New Haven, CT, United States

- Computer 11 3533. Neurological Study of Mouse Model of Fetal Alcohol Spectrum Disorders Using Advanced Imaging Techniques Van Nguyen¹, Suyinn Chong², Karine Mardon¹, Quang Tieng¹, Graham Galloway¹, Nyoman Kurniawan¹ ¹Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia; ²Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia
- Computer 12 3534. Monkeys with Six Months of Alcohol Self-Administration Have Disrupted White Matter Microstructure Indicated by Decreased Fractional Anisotropy Xiaojie Wang¹, Sarah Plat¹, Molly McGinnis¹, Kathleen A. Grant¹, Christopher D. Kroenke¹ ¹Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, United States
- Computer 13 3535. Integration of Neural Networks Activated by Amphetamine in Females with Different Estrogen Levels: A Functional Imaging Study in Awake Rats. Dan Madularu¹, Jason R. Yee², William M. Kenkel², Kelsey A. Moore², Praveen Kulkarni², Waqqas M. Shams¹, Craig F. Ferris², Wayne G. Brake¹ 'Concordia University, Montreal, QC, Canada; 'Northeastern University, Boston, MA, United States
- Computer 14 3536. Treatment Length Effects of Methadone Maintenance on Brain fMRI Response to Cue-Elicited Craving in Former Heroin Addicts Hanyue Wang¹, ², Yarong Wang³, Qiang Li⁴, Dongsheng Zhang⁴, Lina Wang⁴, Jia Zhu⁴, Wei Li⁴, Chongjun Zhang⁵, Jiajie Chen⁴, Wei Wang⁴

¹Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi₁⁻ an, Shan Xi, China; ²Clinic, Air Force Equipment Academy, Beijing, China; ³Radiology, Tangdu Hospital, the Fourth Military Medical University, Xi₁⁻ an, Shan Xi, China; ⁴Radiology, Tangdu Hospital, the Fourth Military Medical University, Shan Xi, China; ⁵Clinic, Air Force Equipment Academy, Beijing, China

Computer 15 3537. Acute Effect of Methadone Maintenance Dose on Cerebral Blood Flow in Heroin Users Under Methadone Maintenance Treatment

Chien-Yuan Eddy Lin¹,², I-Hsiao Yang³,⁴, Hsiu-Ling Chen³,⁴, Meng-Chang Tsai⁵, Pei-Chin Chen³,⁴, Meng-Hsiang Chen³,⁴, Wei-Che Lin³,⁴

¹GE Healthcare, Taipei, Taiwan; ²GE Healthcare China, Beijing, China; ³Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; ⁴Chang Gung University College of Medicine, Kaohsiung, Taiwan; ⁵Department of psychiatry, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan

Computer 16 3538. Reduction of Functional Connectivity in Adolescents Prenatally Exposed to Alcohol

Bing Ji¹, ², *Zhihao Li¹*, ³, *Claire Coles*⁴, *Julie A Kable*⁴, *Renjie Zhang*², *Xiaoping Hu*¹ ¹Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA, United States; ²School of Optical Electrical and Computer Engineering, University of Shanghai for Science & Technology, Shanghai, China; ³Institute of affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong, China; ⁴Psychiatry and behavioral Science, Emory University, Atlanta, GA, United States

Computer 17 3539. Longitudinal Changes of Functional Connectivity with Amygdala and Prefrontal Cortex in Adolescents Prenatally Exposed to Cocaine

Zhihao Li¹, ², *Claire Coles*³, *Mary Ellen Lynch*³, *Xiaoping Hu*¹ ¹Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, GA, United States; ²Institute of Affective and Social Neuroscience, Shenzhen University, Shenzhen, Guangdong, China; ³Psychiatry and Behavioral Science, Emory University, Atlanta, GA, United States

Computer 18 3540. Multivariate Classification of Placebo Versus Drug in Fibromyalgia Patients Scott Peltier¹, Eric Ichesco², Richard Harris² ¹Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States; ²Anesthesiology, University of Michigan, Ann Arbor, MI, United States

Computer 19 3541. Altered Brain Functional Connectivity in MC4R Rs12970134 Related Obesity in Young Chinese HAN Adults Baohui Lou¹, ², Min Chen, ²³, Xiaojie Luo⁴ ¹Graduate School of Peking Union Medical College, Beijing, China; ²Beijing Institute of Geriatrics, Beijing Hospital, Beijing, China; ³Graduate School of Peking Union Medical College, Beijing, China; ⁴Department of Radiology, Beijing Hospital, Beijing, China

Computer 20 3542. Mu-Opioid Receptor Related Changes in the Mouse Brain Connectome Mapped Via Resting-State Functional and Diffusion Weighted MRI

Anna E. Mechling^{1,2}, Tanzil Arefin¹, ³, Hsu-Lei Lee¹, Thomas Bienert¹, Marco Reisert¹, Sami Ben Hamida⁴, Jürgen Hennig¹, Dominik v. Elverfeldt¹, Brigitte Kieffer⁵, Laura-Adela Harsan¹

¹Medical Physics, University Medical Center Freiburg, Freiburg, B-W, Germany; ²Faculty of Biology, University of Freiburg, Freiburg, B-W, Germany; ³Bernstein Center for Computational Neuroscience, University of Freiburg, Freiburg, B-W, Germany; ⁴Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, Alsace, France; ⁵Douglas Research Centre, Montreal, Quebec, Canada

Computer 21 3543. Neurobiological Assessment of Stress-Induced Sleep Disturbance in a Rat Model Using *In Vivo* Proton Magnetic Resonance Spectroscopy at 9.4 T: Potential Relevance to Insomnia *Do-Wan Lee¹*, ², *Chul-Woong Woo²*, *Sang-Tae Kim²*, *Choong Gon Choi³*, *Bo-Young Choe¹*, *Dong-Cheol Woo²* ¹Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul, Korea; ²Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea; ³Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea

Computer 22 3544. Altered Regional Brain and Subjective Sleep Deficits in Chronic Primary Insomnia: a Resting-State fMRI Study with ALFF

Computer 23 3545.	A Multimodal Approach to Identify and Localize Complex Pathological Processes Affecting Tissue Microstructure in Neuropsychiatric SLE Ece Ercan ¹ , Carson Ingo ¹ , Cesar Magro Checa ² , Mark van Buchem, Andrew Webb ¹ , Itamar Ronen ¹ ¹ C. J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands; ² Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands					
Electronic Po Psychosis	Tuesday 11:00-12:00					
Computer 25 3546	¹ H MRS Study of Metabolic Alternations in Schizonbrenia at 7T					
ISMAM MERIT AWAOD magina cum laude	Zhongxu An ¹ , Sandeep Ganji ¹ , Katherine Borner ¹ , Ana Stan ² , Subroto Ghose ² , Carol Tamminga ² , Changho Choi ¹ ¹ Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ² Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, United States					
Computer 26 3547.	Abnormal Bioenergetics in the 1st Episode Schizophrenia, Preliminary Studied by the Magnetization Transfer 31P-MRS					
	<i>Fei Du¹, Cagri Yuksel¹, Scott Lukas¹, Bruce Cohen¹, Dost Ongur¹</i> ¹ McLean Hospital, Harvard Medical School, Belmont, MA, United States					
Computer 27 3548.	Three Shape Patterns of Subcortical Structures in Medication-Naïve First-Episode Schizophrenia Patients Revealed by Morphometric Descriptor and Cluster Analysis					
	¹ Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, China					
Computer 28 3549.	Enhanced Neurometabolic Activity and Neuroanatomical Changes in Visual Area of Rats Prenatally Exposed to MAM Parallel Schizophrenic Symptoms Gen Kaneko ¹ , Daniel Coman ¹ , Basavaraju G. Sanganahalli ¹ , Helen Wang ¹ , Peter Herman ¹ , Lihong Jiang ¹ , Jyotsna Rao ¹ , Stephanie M. Groman ² , Jane R. Taylor ² , Robin A. de Graaf ⁴ , Fahmeed Hyder ¹ , ³ ¹ Department of Diagnostic Radiology, Yale University, New Haven, CT, United States; ² Department of Psychiatry, Yale University, New Haven, CT, United States; ³ Department of Biomedical Engineering, Yale University, New Haven, CT, United States					
Computer 29 3550.	Adolescent Olanzapine Treated Rats Cause Long Term Reductions in Glutamate and GABA Levels in the Nucleus Accumbens – <i>In Vivo</i> Proton Magnetic Resonance Spectroscopy Study Su Xu ¹ , ² , Rao P. Gullapalli ¹ , ² , Douglas O. Frost ³ , ⁴ ¹ Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States; ² Core for Translational Research in Imaging @ Maryland, University of Maryland School of Medicine, Baltimore, MD, United States; ³ Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD, United States; ⁴ Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States					
Computer 30 3551.	Altered Cortical Microstructure in Schizophrenia: A Diffusional Kurtosis Imaging Study Mariana Lazar ¹ , Fernando Boada ¹ , Laura Miles ¹ , Dolores Malaspina ¹ , Oded Gonen ¹ ¹ New York University, New York, United States					
Computer 31 3552.	Combined Prenatal Immune Activation and Peri-Pubertal Stress Alters the Neurochemical Profile in the Mouse Cortex But Not Hippocampus Alberto Corcoba ¹ , ² , Sandra Giovanoli ³ , Mirko Schnider ² , Kim Q. Do ² , Rolf Gruetter ¹ , ⁴ , Urs Meyer ³ , Joao M.N. Duarte ¹ ¹ LIFMET, EPFL, Lausanne, Vaud, Switzerland; ² Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Lausanne, Vaud, Switzerland; ³ Physiology and Behavior Laboratory, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland; ⁴ Radiology, UNIL and UNIGE, Lausanne and Geneva, Vaud and Geneva, Switzerland					
Computer 32 3553.	Reduced Grey Matter Arteriolar Cerebral Blood Volume in Schizophrenia Jun Hua ¹ , ² , SeungWook Lee ³ , Nicholas I.S. Blair ³ , Allison Brandt ⁴ , Jaymin Patel ³ , Andreia V. Faria ¹ , Issel Anne L. Lim ¹ , ² , James J. Pekar ¹ , ² , Peter C. M. van Zijl ¹ , ² , Christopher A. Ross ⁴ , ⁵ , Russell L. Margolis ⁴ , ⁵					

¹Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; ⁴Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States; ⁵Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, United States; ⁵Department of Neur

Computer 33 3554. Enhanced Functional Connectivity Between Sub-Regions in the Thalamus and Cortex in Schizophrenia Patients Measured by Resting State BOLD fMRI at 7T

Jun Hua¹,², Nicholas I.S. Blair³, Ann Choe¹,², Anita Barber⁴, ⁵, Allison Brandt⁶, Issel Anne L. Lim¹, ², Feng Xu¹, ², James J. Pekar¹, ², Peter C. M. van Zijl¹, ², Christopher A. Ross, ⁴⁶, Russell L. Margolis, ⁴⁶ ¹Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; ⁴Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁴Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States;

- Computer 34 3555. Disrupted Small-World Networks in Never Treated Schizophrenia Patients with Long Illness Duration Li Yao¹, Wei Deng², Wenjing Zhang³, Yuan Xiao³, Fei Li³, Jieke Liu³, John A. Sweeney⁴, Qiyong Gong³, Su Lui³ ¹Huaxi MR Research Center, Chengdu, Sichuan, China; ²Department of Psychiatry, Stat Key Lab of Biotherapy, West China Hospital of Sichuan University, Sichuan, China; ³Huaxi MR Research Center, Chengdu, Sichuan, China; ⁴UT Southwestern Medical Center, TX, United States
- Computer 35 3556. Multi-Modal Pattern Recognition: An Application to Schizophrenia. Orla M. Doyle¹, Brandon Whitcher², ³, Steven C.R. Williams¹, Mitul A. Mehta¹, Stephen M. Lawrie⁴ ¹Dept of Neuroimaging, IoPPN, King's College London, London, United Kingdom; ²Clinical & Translational Imaging, Pfizer, Cambridge, MA, United States; ³Dept of Mathematics, Imperial College London, London, United Kingdom; ⁴Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
- Computer 36 3557. Effects of DISC1 Genes on Clinical Symptoms and Thalamic Radiation in Patients with Schizophrenia: A Tract-Based Diffusion Spectrum Imaging Analysis

Hsu-Hwa Tseng¹, ², Su-Chun Huang², Chih-Min Liu³, Tzung-Jeng Hwang³, Hai-Gwo Hwu³, Yung-Chin Hsu², Yu-Chun Lo², Yu-Jen Chen², Wen-Yih Isaac Tseng²
 ¹School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; ²Center for Optoelectronic Biomedicine,

School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; ²Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan; ³Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan

Computer 37 3558. Acute Impact of Antipsychotic Treatment on Patient with Schizophrenia: A Tract-Based Automatic Analysis (TBAA) with Diffusion Spectrum Imaging (DSI). Su-Chun Huang¹, Chih-Min Liu², Tzung-Jeng Hwang², Hai-Gwo Hwu², Yung-Chin Hsu¹, Yu-Chun Lo¹, Yu-Jen Chen¹, Wen-Yih Isaac Tseng¹, ³ ¹Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan; ²Department of Psychiatry,

¹Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan; ²Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; ³Molecular Imaging Center, National Taiwan University, Taipei, Taiwan

Computer 38 3559. Widespread Decrease of Fractional Anisotropy in Never Treated Schizophrenia Patients with Disease Duration Over 5 Years Yuan Xiao¹, Wei Deng², Huaiqiang Sun¹, Wenjing Zhang¹, Li Yao¹, Jia Liu¹, Min Wu¹, Chandan Shah¹, Qiyong Gong¹, Su Lui¹

¹Department of Radiology, West China Hospital of Sichuan University, Huaxi Magnetic Resonance Research Ctr., Chengdu, Sichuan, China; ²Department of Psychiatry, State Key Laboratory of Biotherapy, Chengdu, Sichuan, China

Computer 39 3560. Elevated Levels of Myo-Inositol and Choline in the Associative Striatum of Antipsychotic-Naïve Patients with First Episode Psychosis

Eric Plitman¹, ², *Camilo de la Fuente-Sandoval³*, *Pablo León-Ortiz³*, *Francisco Reyes-Madrigal³*, *Gladys Gómez-Cruz³*, *Shinichiro Nakajima¹*, ⁴, *Philip Gerretsen¹*, ⁵, *M Mallar Chakravarty⁶*, ⁷, *Sofia Chavez¹*, ⁵, *Jun Ku Chung¹*, ², *Fernando Caravaggio¹*, ², *Yusuke Iwata¹*, ⁴, *Danielle Uy¹*, *Gary Remington¹*, ⁵, *Ariel Graff-Guerrero¹*, ⁵

¹Centre for Addiction and Mental Health, Toronto, Ontario, Canada; ¹Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; ³Instituto Nacional de Neurología y Neurocirugía, Mexico; ⁴Neuropsychiatry, Keio University School of Medicine,

Japan; ⁵Psychiatry, University of Toronto, Toronto, Ontario, Canada; ⁶Douglas Mental Health University Institute, Montreal, Quebec, Canada; ⁷Psychiatry, McGill University, Montreal, Quebec, Canada

Computer 40 3561. Multi-Contrast Z-Score Comparison Discriminates Patients with Psychiatric Disorders from Controls

Aziz M. Ulug¹,², Mehmed Ozkan², Peter B. Kingsley³, Ivana De Lucia¹, Azim Celik⁴, Pamela DeRosse⁵,⁶, Anil Malhotra⁵,⁶, Philip R. Szeszko⁵,⁶

¹Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, United States; ²Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey; ³North Shore University Hospital, Manhasset, NY, United States; ⁴GE Healthcare, Antalya, Turkey; ⁵Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, United States; ⁶Psychiatry Research, Zucker Hillside Hospital, North Shore-LIJ Health System, , NY, United States

Computer 41 3562. Lower Glutathione Levels in the Anterior Cingulate Cortex of Patients with Schizophrenia: A Preliminary 3T 1H-MRS Study

Napapon Sailasuta¹, Yusuke Iwata¹, Shinichiro Nakajima¹, Sofia Chavez¹, Fernando Caravaggio¹, Eric Plitman¹, Vincenzo De Luca¹, Jun Ku Chung¹, Philip Gerretsen¹, Gary Remington¹, Ariel Graff-Guerrero¹ ¹The Centre for Addiction and Mental Health, toronto, ON, Canada

Computer 42 3563. Lateralization of Glx and GABA Metabolic Changes in Anterior Cingulate for Ultra High Risk Schizophrenia Patients.

Petr Menschikov¹, Natalia Semenova¹, ², Maxim Ublinskii³, Dmitry Kupriyanov⁴, Irina Lebedeva⁵, Maria Omelchenko⁵, Tolibjon Akhadov³

¹N.N. Semenov Institute of Chemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation; ²N.M. Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Moscow, Russian Federation; ³Children's Clinical and Research Institute of Emergency Surgery and Trauma, Moscow, Russian Federation; ⁴Philips Healthcare Russia, Moscow, Russian Federation; ⁵National Mental Health Research Centre of the Russian Academy of Medical Sciences, Moscow, Russian Federation

Computer 43 3564. N-Acetyl-Aspartyl-Glutamate in First-Episode Psychosis

Anouk Marsman¹, Subechhya Pradhan¹, Candice Ford², Ashley Lloyd², Teppei Tanaka², Akira Sawa², Peter B. Barker¹ ¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States

Computer 44 3565. Altered White Matter Tract Integrity in Drug-Naïve and Chronic Schizophrenia Patients: A Study Using Automatic Tract-Specific Analysis of the Whole Brain

Chen-Hao Wu^l, ², *Yu-Jen Chen²*, *Yun-Chin Hsu²*, *Yu-Chun Lo²*, *Tzung-Jeng Hwang³*, *Hai-Gwo Hwu³*, *Chung-Ming Chen¹*, *Wen-Yih Isaac Tseng¹*, ²

¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, Taiwan, ²Center for Optoelectronic Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; ³Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan

Computer 45 3566. Intrinsic Brain Abnormalities in Violent Offenders with Schizophrenia: A Resting-State Functional MRI Study Ming Zhou¹, Xinyu Hu¹, Junmei Hu², Qi Liu¹, Lizhou Chen¹, Qiyong Gong¹, Xiaoqi Huang¹ ¹West China Hospital of Sichuan University, Huaxi MR Research Center, Chengdu, Sichuan, China; ²Sichuan University, School of Basic Science and Forensic Medicine, Sichuan, China

Computer 46 3567. Shared and Distinct Functional Network Connectome Abnormality in Deficit and Non-Deficit Schizophrenia Miao Yu^l, Xiangrong Zhang^l, ², Xiaowei Tang³, Zhengjia Dat⁴, Xiang Wang⁵, Xiaobin Zhang³, Weiwei Sha³, Shuqiao Yao⁵, Yong He⁴, Zhijun Zhang¹ ¹Department of Neuropsychiatry Affiliated ZhongDa Hospital of Southeast University, Nanjing, JiangSu, China; ²Department of Geriatric Psychiatry, Nanjing Brain Hospital Affiliated to Nanjing Medical University, JiangSu, China; ³Department of Psychiatry, Wutaishan Hospital of Yangzhou, JiangSu, China; ⁴State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; ⁵Medical Psychological Institute of the Second Xiangya Hospital, Central South University, HuNan, China

Computer 47 3568. Clinical Correlations of Fornix Are Disparate in First Episode and Chronic Patients with Schizophrenia: A Tract-Based Diffusion Spectrum Imaging Analysis Yan-Lin Chiu¹, ², Su-Chun Huang², Chih-Min Liu³, Tzung-Jeng Hwang³, Hai-Gwo Hwu³, Yung-Chin Hsu², Yu-Chun Lo², Yu-Jen Chen², Wen-Yih Isaac Tseng², ⁴

¹School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; ²Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, Taipei, Taiwan; ³Department of Psychiatry, National Taiwan University Hospital, Taipei, Taiwan; ⁴Molecular Imaging Center, National Taiwan University, Taipei, Taiwan

Computer 48 3569. Corticostriatal Connectivity in Violent Offenders with Schizophrenia

Xinyu Hu¹, Yi Liao², Lizhou Chen², Lei Li², Ming Zhou², Qi Liu², Junmei Hu³, Qiyong Gong², Xiaoqi Huang² ¹Huaxi MR Research Center (HMRRC), Department of Radiology,West China Hospital of Sichuan University, Chengdu, Sichuan , China; ²Huaxi MR Research Center (HMRRC), Department of Radiology,West China Hospital of Sichuan University, Chengdu, Sichuan, China; ³School of Basic Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, China

Electronic Poster

Neurovascular - Stroke Exhibition Hall Tuesday 11:00-12:00 Computer 49 3570. Hypertension Induced Change of Retina and Optic Tract in SHR Qian Wang¹, ², Yunxia Li¹, ³, Eric R. Muir¹, Qiang Shen¹, Shiliang Huang¹, Timothy Q. Duong¹ ¹Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ²Xiang Ya School of Medicine, Central South University, Changsha, China; ³Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China

Computer 50 3571. Task-Dependent Neurovascular Uncoupling in Moyamoya Disease Erin L. Mazerolle¹, Yuhan Ma², David Sinclair², G Bruce Pike¹ ¹University of Calgary, Calgary, Alberta, Canada; ²McGill University, Montreal, Quebec, Canada

Computer 51 3572. Influence of a Severe Internal Carotid Artery Stenosis on Diffusion and Perfusion Values in Acute Stroke Patients

Philipp Kaesemann¹, Götz Thomalla², Bastian Cheng², Andras Treszl³, Jens Fiehler⁴, Nils Daniel Forkert⁵ ¹Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Department of Neurology, University Medical Center Hamburg-Eppendorf, Germany; ³Department of Medical Biometrics and Epidemiology, University Medical Center Hamburg-Eppendorf, Germany; ⁴Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Germany; ⁴Department of Radiology and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada

Computer 52 3573. To Study Chronic Hypobaric Hypoxia Induced Metabolic Alteration in Rat Brain Using High Resolution NMR Spectroscopy

Sunil Koundal¹, ², Sonia Gandhi¹, Tanzeer kaur², Subash Khushu¹ ¹NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences (INMAS), New Delhi, Delhi, India; ²Department of Biophysics, Panjab University, Chandigarh, India

Computer 53 3574. Understanding the Interplay Different MRI Methods Have as White Matter Changes Longitudinally in the Cuprizone Mouse Model

Vanessa L. Palmer¹, Sheryl L. Herrera², Jonathan D. Thiessen³, ⁴, Shenghua Zhu⁵, Richard Buist⁶, Xin-Min Li⁷, Marc R. Del Bigio⁸, Melanie Martin⁹, ¹⁰

¹Biomedical Engineering, University of Manitoba, Winnipeg, Manitoba, Canada; ²Physics & Astronomy, University of Mantioba, Winnipeg, Manitoba, Canada; ³Imaging Program, Lawson Health Research Institute, London, Ontario, Canada; ⁴Medical Biophysics, Western University, London, Ontario, Canada; ⁵Pharmacology & Therapeutics, University of Mantioba, Winnipeg, Manitoba, Canada; ⁶Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ⁷Psychiatry, University of Alberta, Edmonton, Alberta, Canada; ⁸Pathology, University of Mantioba, Winnipeg, Manitoba, Canada; ⁹Physics, University of Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada; ¹⁰Biomedical Engineering, Physics & Astronomy, Pharmacology & Therapeutics, Radiology, University of Mantioba, Winnipeg, Manitoba, Canada

Computer 54 3575. Imaging of Saccular Intracranial Aneurysms with T1W-VISTA Black-Blood Sequence

Haikun Qi¹, Peng Liu², Hansen Li¹, Huijun Chen¹ ¹Department of Biomedical Engineeing, School of Medicine, Tsinghua University, Beijing, China; ²Department of Neurosurgical,

¹Department of Biomedical Engineeing, School of Medicine, Tsinghua University, Beijing, China; ²Department of Neurosurgio Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Beijing, China

Computer 55 3576. Transgenic Mouse Model Recapitulates Brain Pathophysiology of Sickle Cell Disease

Lisa M. Gazdzinski¹, Lindsay S. Cahill¹, Yu-Qing Zhou¹, Albert KY Tsui², ³, Gregory MT Hare², ³, Andrea Kassner⁴, ⁵, John G. Sled¹, ⁶

¹Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; ²Department of Anaesthesia, St. Michael's Hospital, Toronto, Ontario, Canada; ³Keenan Research Centre for Biomedical Science, University of Toronto, Ontario, Canada; ⁴Department of Medical Imaging, University of Toronto, Ontario, Canada; ⁵Department of Physiology and Experimental Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; ⁶Department of Medical Biophysics, University of Toronto, Ontario, Canada

Computer 56 3577. Diffusion Lesion Characteristics After Thrombolysis Treatment in Ischemic Stroke

Venkata Veerendra Nadh Chebrolu¹, Dattesh Shanbhag¹, Patrice Hervo², Marc-Antoine Labeyrie³, Catherine Oppenheim³, Rakesh Mullick⁴

¹Medical Image Analysis Lab, GE Global Research, Bangalore, Karnataka, India; ²GE Healthcare, Buc, France; ³Centre Hospitalier, Sainte-Anne, Paris, France; ⁴Diagnostics & Biomedical Technologies, GE Global Research, Bangalore, Karnataka, India

Computer 57 3578. A Study on Brain-Behaviour Functional Relations in Areas Affected Due to Ischemic Stroke Using Diffusion MRI

J. Mitra¹, P. Bourgeat¹, J. Fripp¹, O. Salvado¹, B. Campbell², S. Palmer³, P. Goodin³, A. Connelly³, ⁴, S. Rose¹, L. Carey³, ⁴, the START Program Team⁵

¹Australian e-Health & Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia; ²Department of Radiology, The Melbourne Brain Centre at the Royal Melbourne Hospital, VIC, Australia; ³The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia; ⁴La Trobe University, Bundoora, VIC, Australia; ⁵http://www.START.csiro.au, VIC, Australia

Computer 58 3579. Vessel Wall Edge Enhancement in High Resolution 3D Turbo Spin Echo Imaging Sinyeob Ahn¹, Henrik Haraldsson², ³, Chengcheng Zhu², ³, John Grinstead⁴, David Saloner², ³, Gerhard Laub¹ ¹Siemens Healthcare, San Francisco, CA, United States; ²Radiology, Veterans Affairs Medical Center, San Francisco, CA, United States; ³Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; ⁴Siemens Healthcare, Portland, OR, United States

Computer 59 3580. Middle Cerebral Artery Plaques in Recent Small Subcortical Infarction on 3D High-Resolution Black Blood MRI at 3.0T

Lei Zhang¹, Jianping Jia², Yiu-Cho Chung¹, Qi Yang³, Xin Liu¹, Ying Han², Xiaodong Zou² ¹Paul C. Lauterbur Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academic of Sciences, Shenzhen, Guangdong, China; ²Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China; ³Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China

Computer 60 3581. Aberrant Regional Homogeneity Related to Cognitive Impairment in Subcortical Stroke Patients: A Resting-State fMRI Study

Cheng-Yu Peng¹, Ying Cui¹, Deng-Ling Zhao¹, Yun Jiao¹, Shenghong Ju¹, Gao-Jun Teng¹ ¹Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospita, Nanjing, Jiangsu, China

Computer 61 3582. Characterization of Carotid Plaque Composition Using *Ex-Vivo* Magnetic Resonance Imaging at 7T and Histopathology

*Rosario Lopez-Gonzalez*¹, Sin Yee Foo², William M. Holmes³, William Stewart⁴, Keith Muir⁵, Barrie Condon, George Welch⁶, Kirsten Forbes⁷

¹Clinical Physics and Bioengineering, NHS, Glasgow, United Kingdom; ²School of Medicine, University of Glasgow, Glasgow, United Kingdom; ³GEMRIC, Institute of Neuroscience and Psychology, Glasgow, United Kingdom; ⁴Neuropathology, NHS, Glasgow, United Kingdom; ⁵Division of Clinical Neurosciences, University of Glasgow, Glasgow, United Kingdom; ⁶Vascular Surgery, NHS, Glasgow, United Kingdom; ⁷Institute of Neurological Sciences, NHS, Glasgow, United Kingdom

Computer 62 3583. Accurately Measured Collateral Perfusion in Stroke Patients Using Multi-TI Arterial Spin-Labeling *Tianyi Qian¹, Zhiwei Zuo², Josef Pfeuffer³, Yuehua Pu⁴, Penggang Qiao², Liping Liu⁴, Gongjie Li²* ¹MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ²Radiology, Affiliated hospital of Academy of Military Medical Sciences, Beijing, China; ³Application Development, Siemens Healthcare, Erlangen, Germany; ⁴Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

Computer 63 3584. The Dynamics of Cerebrovascular Reactivity Shown with Transfer Function Analysis James Duffin¹, ², Olivia Sobczyk³, David J. Mikulis³, ⁴, Joseph A. Fisher¹, ²

¹Department of Physiology, University of Toronto, Toronto, Ontario, Canada; ²Department of Anaesthesia and Pain Management, University Health Network, Toronto, Ontario, Canada; ³Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; ⁴Joint Department of Medical Imaging and the Functional Neuroimaging Laboratory, University Health Network, Toronto, Ontario, Canada

- Computer 64 3585. Investigation of Global Effect of Ischemic Stroke Based on Oxygen Extraction Fraction Estimation *Lijuan Zhang^l*, *Caiyun Shi^l*, *Chunxiang Jiang^l*, *Li Yi²*, *Guoxi Xie^l*, *Xiaojing Long^l*, *Yang Liu²* ¹SIAT, Chinese Academy of Sciences, Shenzhen, Guangdong, China; ²Peiking University Shenzhen Hospital, Guangdong, China
- Computer 65 3586. Assessment of Cerebral Perfusion in Ischemia Patients Using Multi-TI ASL and DSC Liu Chunming¹, Xu Liang¹, Dong Longchun¹, Zuo Panli², Pfeuffer Josef², Liu Jun¹ ¹Department of radiology, Tianjin union medicine centre, Tianjin, China; ²Siemens Healthcare, MR Collaborations NE Asia, Beijing, China; ³Siemens Healthcare, Application Development, Berlin, Germany
- Computer 66 3587. Quantitative Study of Oedema in Acute Stroke: A Protocol for Water Content Mapping Ana-Maria Oros-Peusquens¹, Omid Nikoubashman², Johannes Lindemeyer¹, Markus Zimmermann¹, Martin Wiesmann², N. Jon Shah¹ ¹Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, Juelich, Germany; ²Faculty of Medicine, Department of Neurology, RWTH Aachen University, Aachen, Germany
- Computer 67 3588. Non-Enhanced Hybrid Arterial Spin Labeling MRA for Assessment of the Cervical Carotid and Vertebral Arteries in Patients with Suspected/ Known Cerebral Ischemia: Preliminary Clinical Experience Dinesh Gooneratne¹, Yuliya Perchyonok¹, ², Greg Fitt¹, Andrew Kemp³, Tim Spelman⁴, Shivraman Giri⁵, Davide Piccini⁶, Robert R. Edelman⁷, Marion Simpson⁸, Helen Dewey⁸, ⁹, Geraldine Ng⁸, Ioannis Koktzoglou⁷, Ruth P. Lim¹, ² ¹Radiology department, Austin Hospital, Melbourne, Victoria, Australia; ²Melbourne University, Victoria, Australia; ³Austin Hospital, Victoria, Australia; ⁴Burnet Institute, Victoria, Australia; ⁵Siemens Healthcare USA, PA, United States; ⁶Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI, Lausanne, Switzerland; ⁷NorthShore University HealthSystem, IL, United States; ⁸Neurology Department, Austin Hospital, Victoria, Australia; ⁹Neurology Department, Eastern Health, Victoria, Australia
- Computer 68 3589. Cerebral Amyloid Angiopathy Patients Exhibit Cortical Gray Matter Atrophy But Not Hypoperfusion Randall B. Stafford¹,², Cheryl R. McCreary,²³, Anna Charlton¹, Angela Zwiers¹, X Rachel Wang¹,², Ikreet Cheema,²⁴, Saima Batool¹,², Zahinoor Ismail¹,⁵, Bradley G. Goodyear,²³, Richard Frayne,²³, Eric E. Smith¹,³ ¹Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; ²Seaman Family MR Research Centre & Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada; ³Radiology, University of Calgary, Calgary, AB, Canada; ⁴Neuroscience, University of Calgary, Calgary, AB, Canada; ⁵Mathison Centre for Mental Health Research & Education, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Computer 69 3590. Correlation of Quantitative Susceptibility Mapping in Cerebral Cavernous Malformations with Clinical Features

Huan Tan¹, Abdul Ghani Mikati¹, Lingjiao Zhang¹, Tian Liu², Yi Wang³, Robert R. Edelman⁴, ⁵, Gregory A. Christoforidis¹, Issam A. Awad¹

¹Surgery, University of Chicago, Chicago, IL, United States; ²MedImageMetric LLC, New York, NY, United States; ³Weill Cornell Medical College, New York, NY, United States; ⁴NorthShore University HealthSystem, Evanston, IL, United States; ⁵Northwestern University Feinberg School of Medicine, Chicago, IL, United States

Computer 70 3591. Exercise Intensity Modulates the Change in Cerebral Blood Flow Following Aerobic Exercise in Chronic Stroke: A PCASL Study

Andrew D. Robertson¹, David E. Crane¹, A. Saeed Rajab¹, ², Walter Swardfager¹, ³, Susan Marzolini¹, ³, Laura E. Middleton, ³⁴, Bradley J. MacIntosh¹, ²

¹Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada; ²Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; ³Toronto Rehabilitation Institute, University Health Network, University of Toronto, Toronto, ON, Canada; ⁴University of Waterloo, Department of Kinesiology, Waterloo, ON, Canada

Computer 71 3592. MRI Characterizations of Region Specific White Matter Hyperintensities and Vertebral Artery Stenosis Liya Wang¹,², Adrian Lam³, John Oshinski², Xiaodong Zhong⁴, Chad A. Holder², Felicia Goldstein⁵, Diana Ge², Hui Mao¹,² ¹Laboratory of Functional-Molecular Imaging and Nanomedicine, Emory University School of Medicine, Atlanta, GA, United States; ²Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States; ³Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; ⁴MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, United States; ⁵Neurology, Emory University School of Medicine, Atlanta, GA, United States

Computer 72 3593. Reduced Visual Cortex Perfusion Without Volume Loss in Mild to Moderate Hypertension

Diandian Huang¹, Jing Zhang¹, Ting Wang¹, Yanhua Li², Bensheng Qiu³, Xiaoxuan He³, Zhenyu Zhou⁴, Bing Wu⁴, Lin Ma¹, Xin Lou¹

¹Department of Radiology, Chinese PLA General Hospital, Beijing, China; ²Department of cardiology, Chinese PLA General Hospital, Beijing, China; ³Department of Electronic Science and Technology, University of Science and Technology of China, Anhui, China; ⁴MR Research Center, GE Health care, Beijing, China

Electronic Poster

Neurovascular Disease

Exhibition Hall Tuesday 11:00-12:00

Computer 73 3594. Connectivity and Perfusion Analyses with Simultaneous MultiSlice (SMS) Resting-State fMRI Thomas Christen¹, Samantha Holdsworth¹, Hesamoddin Jahanian¹, Hua Wu², Kangrong Zhu³, Adam Kerr³, Matthew J. Middione⁴, Robert F. Dougherty², Michael Moseley¹, Greg Zaharchuk¹ ¹Department of Radiology, Stanford University, Stanford, CA, United States; ²Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States; ³Department of Electrical Engineering, Stanford University, Stanford, CA, United States; ⁴Applied Sciences Laboratory West, GE Healthcare, Menlo Park, CA, United States

Computer 74 3595.	Quantification of Local Blood Oxygen Saturation by MRI to Distinguish Ischemic Core from Penumbra in Experimental Stroke <i>Ligia SIMOES BRAGA BOISSERAND¹</i> , ² , <i>Benjamin LEMASSON¹</i> , <i>Lydiane HIRSCHLER¹</i> , ² , <i>Violaine HUBERT¹</i> , <i>Anaïck MOISAN¹</i> , <i>Emmanuel BARBIER¹</i> , ² , <i>Chantal REMY¹</i> , ² , <i>Olivier DETANTE¹</i> , ²					
Computer 75 3596.	Clinical Value of Post-Contrast Vessel Wall Imaging with MSDE for Patients with Cerebral Arteriovenous Malformation Akira Kunimatsu ¹ , Yasushi Watanabe ² , Mitsuharu Miyoshi ³ , Kouhei Kamiya ¹ , Masaki Katsura ² , Harushi Mori ¹ , Hiroyuki Kabasawa ³ , Kuni Ohtomo ¹ ¹ Department of Radiology, The University of Tokyo, Tokyo, Japan; ² Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan; ³ GE Healthcare, Tokyo, Japan					
Computer 76 3597.	Neuroplasticity for Spontaneous Functional Recovery After Neonatal Hypoxic Ischemic Injury <i>Won Beom Jung</i> ^{1, 2} , <i>Geun Ho Im</i> ^{1, 2} , <i>Sun Young Chae</i> ³ , <i>Yong Hee Han</i> ^{1, 2} , <i>Jung Hee Lee</i> ^{1, 3} ¹ Department of Radiology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea; ² Center for Molecular and Cellular Imaging Samsung Biomedical Research Institute, Seoul, Korea; ³ Samsung Advanced Institute of Health Science and Technology Sungkyunkwan University, Seoul, Korea					
Computer 77 3598.	Cerebral Blood Flow and Vascular Reactivity in Progressive Hypertension <i>Yunxia Li^l</i> , ² , <i>Qiang Shen^l</i> , <i>Shiliang Huang^l</i> , <i>Wei Li^l</i> , <i>Eric R. Muir^l</i> , <i>Justin Alexander Long^l</i> , <i>Timothy Q. Duong^l</i> ¹ Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ² Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China					
Computer 78 3599.	A Simultaneous Acquisition Method for T2* Weighted and PC-MRA Images					

Yeji Han', Eung Yeop Kim², Yeon Chul Ryu², Jun-Young Chung² ¹Department of Biomedical Engineering, Gachon University, Incheon, Korea; ²Radiology, Gachon University Gil Medical Center, Incheon, Korea; ³Neuroscience Research Institute, Gachon University, Incheon, Korea

Computer 79 3600. MRI Investigation of Cerebrovascular Reactivity and Neurovascular Coupling in Chronic Hypertension *Yunxia Li^l*, ², *Shiliang Huang^l*, *Qiang Shen^l*, *Eric R. Muir^l*, *Timothy Q. Duong^l* ¹Research Imaging Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States; ²Department of Neurology, Tongji Hospital, Tongji University, Shanghai, China

Computer 80 3601. Measuring the Time Characteristic of the BOLD Cerebrovascular Reactivity Response to a Step Hypercapnic Stimulus.

Julien Poublanc¹, Adrian Crawley¹, Olivia Sobczyk², Gaspard Montandon¹, Kevin Sam¹, Daniel Mandell¹, Lakshmikumar Venkatraghavan³, James Duffîn³, David Mikulis¹, Joseph Fisher³ ¹Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada; ²Institute of Medical Sciences, Ontario, Canada; ³Department of Anaesthesia and Physiology, University Health Network, Toronto, Ontario, Canada

Computer 81 3602. The Alterations of Functional Brain Network and Its Relationship to Cognitive Decline in Patients with Carotid Stenosis: A Resting-State fMRI Study

Pei-Shan Ho¹,², Ting-Yu Chang³, Meng-Yang Ho⁴, Chang-Wei Wu⁵, Kuo-Lun Huang³, Ho-Fai Wong⁶, Tsong-Hai Lee³, Ho-Ling Liu⁷,⁸

¹Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; ²Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; ³Department of Neurology and Stroke Center, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taoyuan, Taiwan; ⁴Department of Occupational Therapy, Chang Gung University, Taoyuan, Taiwan; ⁵Graduate Institute of Biomedical Engineering, National Central University, Taoyuan, Taiwan; ⁶Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan; ⁷Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States; ⁸Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan

Computer 82 3603. Hybridized Arterial Spin Labeled MR Angiography in the Evaluation of Carotid Artery Stenosis in Patients with Suspected Stroke: Preliminary Analysis and Comparison to Gadolinium-Enhanced MR Angiography Kai Xu^l, LeRoy Stromberg^l, David Rusinak^l, Stephen Futterer^l, Shivraman Giri^l, James Carr^l, Robert Edelman^l, Ioannis Koktzoglou², Jeremy Collins^l ¹Radiology, Northwestern University, Chicago, IL, United States; ²Radiology, NorthShore University HealthSystem, Evanston, IL, United States

Computer 83 3604. Perfusion Imaging: Bolus Truncation Alters Penumbral Status of Acute Stroke Patients. Using a Vascular Model Reduces This Effect

Irene Klærke Mikkelsen¹, Lars Riisgaard Ribe¹, Leif Østergaard¹ ¹Center for functionally integrative neuroscience, Aarhus University, Aarhus, Denmark

Computer 84 3605. Optimization of Tuning Parameters for NESTA Algorithm in Reconstruction of 3D TOF-MRA Yasutaka Fushimi¹, Koji Fujimoto¹, Tomohisa Okada¹, Akira Yamamoto¹, Takayuki Yamamoto¹, Tai Akasaka¹, Kei Sano², Toshiyuki Tanaka², Kaori Togashi¹ ¹Kyoto University Graduate School of Medicine,, Kyoto, Japan; ²Department of Systems Science, Kyoto University Graduate School of Informatics, Kyoto, Japan

Computer 85 3606. Accelerating TOF MRA in Clinical Practice Using Sparse MRI with Variable Poisson Density Sampling Aurelien F. Stalder¹, Yutaka Natsuaki², Michaela Schmidt¹, Xiaoming Bi², Michael O. Zenge³, Mariappan Nadar⁴, Peter Speier¹, Peter Schmitt¹, Gerhard Laub² ¹Siemens Healthcare, Erlangen, Germany; ²Siemens Healthcare, CA, United States; ³Siemens Healthcare, NY, United States; ⁴Siemens Corporate Technology, NJ, United States

Computer 86 3607. Association of Middle Cerebral Artery Steno-Occlusion with Intraplaque Hemorrhage with Acute Cerebral Infarction: A Magnetic Resonance Imaging Study Huilin Zhao¹, Jinnan Wang², Xiaosheng Liu¹, Xihai Zhao³, Chun Yuan⁴, Jianrong Xu¹ ¹Radiology, Renji hospital, Shanghai Jiaotong University, Shanghai, China; ²Philips Research North America, NY, United States; ³Biomedical Engineering & Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; ⁴University of Washington, WA, United States

Computer 87 3608. Snapshot MR-OEF for Simultaneous Imaging of Tissue Oxygenation and CVR Charles G. Cantrell¹, Parmede Vakil¹, Timothy J. Carroll¹ ¹Biomedical Engineering, Northwestern University, Chicago, IL, United States

Computer 88 3609. Quantitative MRI of Brain Perivascular Space Kejia Cai¹, ², Rongwen Tain¹, ², Sandhitsu Das³, Frederick C. Damen¹, ², Yi Sui², ⁴, Shika Dammala⁵, Paul Yushkevich³, Tibor Valyi-Nagy⁶, Mark A. Elliott³, X. Joe Zhou¹, ²

¹Radiology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; ²Center for MR Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States; ³Radiology, School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; ⁴Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ⁵Biology, University of Illinois at Chicago, Chicago, IL, United States; ⁶Neuropathology, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States

Computer 89 3610. Hemodynamic Etiology of Stroke Risk in Children with Sickle Cell Anemia

Przemyslaw Kosinski¹, Paula Croal², Jackie Leung², Andrea Kassner, ²³ ¹Institute of Medical Science, The University of Toronto, Toronto, Ontario, Canada; ²Physiology & Experimental Medicine, The Hospital for Sick Children, Ontario, Canada; ³Medical Imaging, The University of Toronto, Toronto, Ontario, Canada

Computer 90 3611. Predicting Recovery from Stroke Using Baseline Imaging Biomarkers of Structural Connectome Disruption Amy Kuceyeski¹, Babak B. Navi², Hooman Kamel², Norman Relkin², Ashish Raj³, Joan Toglia⁴, Costantino Iadecola². Michael O'Dell

¹Radiology and the Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States; ²Neurology and the Brain and Mind Research Institute, Weill Cornell Medical College, NY, United States; ³Radiology and the Brain and Mind Research Institute, Weill Cornell Medical College, NY, United States; ⁴Rehabilitation Medicine, Weill Cornell Medical College, NY, United States

Computer 91 3612. The Effects of Methylene Blue on Autophagy and Apoptosis in MRI-Defined Normal Tissue, Ischemic Penumbra and Ischemic Core

Zhao Jiang¹, Lora Talley Watts¹, Shiliang Huang¹, Pavel Rodriguez¹, Qiang Shen¹, Timothy Duong¹ ¹Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States

Computer 92 3613. pH-Weighted Imaging in Diabetes Mellitus Suffering Acute Cerebral Ischemic Stroke

Zhuozhi Dai¹,², Yanlong Jia², Gen Yan², Fei Duan², Gang Xiao³, Zhiwei Shen⁴, Hongfu Sun¹, Alan H. Wilman¹, Renhua Wu²,⁴

¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; ²Medical Imaging, 2nd Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China; ³Math and Information Technology, Hanshan Normal University, Guangdong, China; ⁴Provincial Key Laboratory of Medical Molecular Imaging, Guangdong, China

Computer 93 3614. 3-Tesla MRI Non-Contrast Vessel Wall Imaging in Young, Healthy Adults and Moyamoya Patients Daniel F. Arteaga¹, Manus J. Donahue¹, ², Carlos C. Faraco⁷, Taylor L. Davis¹, Jeroen Hendrikse³, Lori C. Jordan², Jeroen C.W. Siero³, Allison O. Scott¹, Megan K. Strother¹ ¹Radiology, Vanderbilt University, Nashville, TN, United States; ²Neurology, Vanderbilt University, Nashville, TN, United States; ³University Medical Center Utrecht, Utrecht, Netherlands

Computer 94 3615. Non-Invasive Identification of Crossed Cerebellar Diaschisis Following Cerebral Ischemic Stroke Using Combined Measures of Cerebrovascular Reactivity, Cerebral Blood Flow, and Wallerian Degeneration Carlos C. Faraco¹, Manus J. Donahue¹,², Cari L. Buckingham¹, Fei Ye³, Lori C. Jordan², Daniel F. Arteaga¹, Megan K. Strother¹ ¹Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States; ²Department of

Neurology, Vanderbilt University Medical Center, Nashville, TN, United States; ³Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN, United States

Computer 95 3616. Compromised Cerebrovascular Reactivity Is Reversible in Patients with Carotid Artery Stenosis: A BOLD MRI Study

Jian Hui-Shan¹,², Chang Ting-Yu¹, Huang Kuo-Lun¹, Chang Yeu-Jhy¹, Chang Chien-Hung¹, Wai Yau-Yau³, Yeh Chih-Hua³, Lee Tsong-Hai¹, Liu Ho-Ling⁴,

¹Department of Neurology and Stroke Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; ²Department of Biomedical Engineering and Environmental Sciences, Tsing Hua University, Hsinchu, Taiwan; ³Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan: ⁴Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; 5Department of Imaging Physics, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States

Computer 96 3617. GRE Vs. PWI for Hemorrhage and Intravascular Clot Detection: A Retrospective Analysis of the DEFUSE2, **EPITHET and SENSE 3 Datasets**

Shalini A. Amukotuwa¹, ², Fernando Calamante², Stephen M. Davis³, Gregory W. Albers⁴, Roland Bammer¹, ⁵ ¹Department of Radiology, Stanford University, Stanford, CA, United States; ²The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia; ³Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia; ⁴Department of Neurology, Stanford University, Stanford, CA, United States; ⁵on behalf of the EPITHET, , DEFUSE2, and SENSE3 investigators, United States

Electronic Poster

Non-Cartesian, Multiband & Parallel Imaging

Exhibition	n Hall	Tuesday 13:30-14:30
Computer 1	3618.	Self-Calibrated Radial Sampling Parallel Imaging Reconstruction with Iterative K-X Estimation <i>Yi-Cheng Hsu¹, Ying-Hua Chu¹, Fa-Hsuan Lin¹</i> ¹ Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
Computer 2	3619.	Effective Rank for Automated Parallel Imaging Regularization Stephen F. Cauley ¹ , ² , Kawin Setsompop ¹ , ² , Lawrence Wald ¹ , ² , Jonathan R. Polimeni ¹ , ² ¹ Athinoula A. Martinos Center for Biomedical Imaging, MGH/HST, Charlestown, MA, United States; ² Dept. of Radiology, Harvard Medical School, Boston, MA, United States
Computer 3	3620.	Squashing the G-Factor: Ultra High Scan Acceleration Factors in Reduced Field of Excitation Imaging <i>Ronald Mooiweer¹, Alessandro Sbrizzi¹, Alexander Raaijmakers¹, Cornelis A. T. van den Berg¹, Peter R. Luijten¹, Hans</i> <i>Hoogduin¹</i> ¹ UMC Utrecht, Netherlands
Computer 4	3621.	Accelerated CEST MRI Using Parallel Imaging Acquisition of Golden-Angle Radial Ordering Scheme and Compressed Sensing Reconstruction Jinsuh Kim ¹ , Casey P. Johnson ² , Dingxin Wang ³ , Philip Zhe Sun ⁴ ¹ University of Iowa, Iowa City, IA, United States; ² University of Iowa, IA, United States; ³ Siemens Medical Solutions USA, Inc., Minneapolis, MN, United States; ⁴ Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States
Computer 5	3622.	kp-GRAPPA: A Self-Calibrated Reconstruction Scheme for 3D Multi-Phase Respiratory Cine <i>Cihat Eldeniz¹, Wolfgang Rehwald², Brian Dale³, Yasheng Chen¹, Hongyu An¹</i> ¹ University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ² Siemens Healthcare, Malvern, PA, United States; ³ Siemens Healthcare, Cary, NC, United States
Computer 6	3623.	Pyramidal Representation of Block Hankel Structured Low Rank Matrix (PRESTO) for High Performance Parallel MRI Kyong Hwan Jin ¹ , Dongwook Lee ¹ , Jong Chul Ye ¹ ¹ Dept. of Bio and Brain Engineering, KAIST, Daejeon, Korea
Computer 7	3624.	An Image Domain Low Rank Model for Calibrationless Reconstruction of Images with Slowly Varying Phase Evan Levine ¹ , ² , Brian Hargreaves ² ¹ Electrical Engineering, Stanford University, Stanford, CA, United States; ² Radiology, Stanford University, Stanford, CA, United States
Computer 8	3625.	Parallel Imaging Acceleration Beyond Coil Limitation Using a K-Space Variant Low-Rank Constraint on Correlation Matrix

Yu Y. Li¹

¹Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States

Computer 9 3626. GRAPPA-Accelerated Coronary MRA Benefits from an Outer Volume Suppressing 2D-T₂-Prep Andrew J. Coristine¹,², Jérôme Yerly,²³, Matthias Stuber,²³

¹Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, VD, Switzerland; ²CardioVascular Magnetic Resonance (CVMR) research centre, Centre for Biomedical Imaging (CIBM), Lausanne, VD, Switzerland; ³Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, VD, Switzerland

Computer 10 3627. CASI-SENSE: A Novel Reconstruction Strategy for 3D Single Breath-Hold Isotropic Cine Imaging

Nils Nothnagel¹, Rodrigo Fernandez-Jiménez², Gonzalo Lopez-Martin², Manuel Desco³, Valentin Fuster², Borja Ibañez², Javier Sánchez-González¹

¹Philips Healthcare Spain, Madrid, Spain; ²Atherothrombosis in Experimental Imaging, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; ³Departamento de Bioingeniería e Ingeniería Aerospacial, Universidad Carlos III, Madrid, Spain

Computer 11 3628. Pseudo-Polar Trajectories Achieve High Acceleration Rates with High Image Fidelity: Experiments at 3T and 7T

Ali Ersoz¹, L Tugan Muftuler², ³

¹Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ²Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ³Center for Imaging Research, Medical College of Wisconsin, Milwaukee, WI, United States

Computer 12 3629. UTE MRI Versus Dual-Energy CT for Imaging Different Kidney Stones Types *El-Sayed H. Ibrahim¹*, ², *Robert Pooley²*, *Mellena Bridges²*, *Joseph Cernigliaro²*, *James Williams³*, *William Haley²* ¹University of Michigan, Ann Arbor, MI, United States; ²Mayo Clinic, Jacksonville, FL, United States; ³Indiana Unicersity, IN, United States

Computer 13 3630. SAR Reduced Neuro-Imaging at 7T Using Radial GRASE Melisa Okanovic¹, Robert Trampel², Martin Blaimer¹, Felix Breuer¹, Peter Michael Jakob¹, ³ ¹MRB Research Center for Magnetic-Resonance-Bavaria, Würzburg, Bavaria, Germany; ²Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany; ³Experimental Physics 5, University of Würzburg, Bavaria, Germany

Computer 14 3631. Fast Isotropic Banding-Free BSSFP Imaging Using 3D Dynamically Phase-Cycled Radial BSSFP (3D DYPR-SSFP)

Thomas Benkert¹, Philipp Ehses², ³, Martin Blaimer¹, Peter Jakob, ¹⁴, Felix Breuer¹ ¹Research Center Magnetic Resonance Bavaria, Würzburg, Bavaria, Germany; ²Department for Neuroimaging, University of Tübingen, Tübingen, Baden-Württemberg, Germany; ³High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Baden-Württemberg, Germany; ⁴Experimental Physics 5, University of Würzburg, Bavaria, Germany

Computer 15 3632. A Self-Calibrated Through-Time Radial GRAPPA Method

¹ *Department of Biomedical Engineering*, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Siemens Healthcare USA, Inc., Chicago, IL, United States; ³Department of Radiology, Case Western Reserve University, Cleveland, OH, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University, Cleveland, OH, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University, Cleveland, OH, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁶Department of Biomedical Engineering, Johns Hopkins University School

- Computer 16 3633. Random Delayed Spirals for Compressive Sensing Cine MRI *Giuseppe Valvano¹*, ², *Nicola Martini²*, *Dante Chiappino²*, *Luigi Landini¹*, ², *Maria Filomena Santarelli*, ²³ ¹Department of Information Engineering, University of Pisa, Pisa, PI, Italy; ²Fondazione G. Monasterio CNR-Regione Toscana, Massa, MS, Italy; ³Institute of Clinical Physiology, CNR, Pisa, PI, Italy
- Computer 17 **3634.** Navigator Echo Collection for Sliding Interleaved Cylinder Acquisition Kie Tae Kwon¹, Adam B. Kerr¹, Dwight G. Nishimura¹ ¹Stanford University, Stanford, CA, United States

Computer 18 3635. 3D MP-RAGE with Distributed Spirals Dinghui Wang¹, Zhiqiang Li¹, James G. Pipe¹ ¹Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ, United States

Computer 19 3636. Modulo-Prime Spoke (MoPS) Interleaving for K-Space Segmented Radial Acquisition Strategies *Keigo Kawaji¹, Hui Wang², Sui-Cheng Wang, ¹³, Akiko Tanaka⁴, Takeyoshi Ota⁴, Roberto M. Lang¹, Amit R. Patel¹ ¹Medicine, Section of Cardiology, The University of Chicago, Chicago, IL, United States; ²Philips Medical Systems, Cleveland, OH, United States; ³Biomedical Engineering, Northwestern University, Evanston, IL, United States; ⁴Surgery, The University of Chicago, Chicago, IL, United States*

Computer 20 3637. A Simple BOLD Contrast Model Based on Functional Activation Pattern and K-Space Trajectory Vimal Singh¹, David Ress² ¹Electrical Engineering, University of Texas at Austin, Austin, TX, United States; ²Neuroscience, Baylor College of Medicine, Hosuton, TX, United States

Computer 21 3638. Tiny Golden Angles: A Small Surrogate for the Radial Golden Angle Profile Order stefan Wundrak¹,², Jan Paul¹, Johannes Ulrici², Erich Hell², Volker Rasche¹ 'Um University, Ulm, Baden-Württemberg, Germany; ²Sirona Dental Systems, Bensheim, Hessen, Germany

Computer 22 3639. Fast Non-Cartesian Reconstruction with Pruned Fast Fourier Transform Frank Ong¹, Martin Uecker¹, Wenwen Jiang², Michael Lustig¹ ¹Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United States; ²Bioengineering, UC Berkeley/UCSF, Berkeley, CA, United States

Computer 23 3640. Accelerated Multiband SSFP Imaging with Controlled Aliasing in Parallel Imaging and Integrated-SSFP (CAIPI-ISSFP)

*Thomas Boyd Martin*¹, ², *Yi Wang*², *Steen Moeller*³, *Kyung Sung*⁴, *Danny JJ. Wang*² ¹Biomedical Physics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States; ²Neurology, University of California Los Angeles, Los Angeles, CA, United States; ³Center for Magnetic Resonance Research, University of Minnesota, MN, United States; ⁴Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States

Computer 24 3641. In-Vivo Fully Phase-Encoded Magnetic Resonance Imaging in the Presence of Metal Using Multiband RF Excitation

Nathan S. Artz¹, ², Curtis N. Wiens¹, Matthew R. Smith¹, Diego Hernando¹, Alexey Samsonov¹, Scott B. Reeder¹, ³
¹Department of Radiology, University of Wisconsin, Madison, WI, United States; ²Department of Radiological Sciences, Saint Jude Children's Research Hospital, Memphis, TN, United States; ³Department of Medical Physics, University of Wisconsin, Madison, WI, United States

Electronic Poster

Fat Water Separation

Exhibition Hall Tuesday 13:30-14:30

Computer 25 3642. Can High-Resolution T1W 3-Dimensional (3D) Gradient Recalled Echo (GRE) with 2-Point Dixon Derived Fat-Water Separation (FLEX) Replace Conventional T1W Turbo Spin-Echo (TSE) Imaging for Assessment of Prostate Cancer?

Karim B. Samji¹, ², Abdulmohsen Alrashed¹, ², Wael M. Shabana¹, ², Matthew DF McInnes¹, ², Nicola Schieda¹, ² ¹Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada; ²University of Ottawa, Ottawa, ON, Canada

Computer 26 3643. Water-Fat Separation with a Dual-Echo Two-Point Dixon Technique for Pencil Beam Navigator Echo *Yuji Iwadate¹, Kunihiro Miyoshi², Masanori Ozaki², Hiroyuki Kabasawa¹* ¹Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan; ²MR Engineering, GE Healthcare Japan, Tokyo, Japan

Computer 27 3644. Hepatic Fat Quantification for Suspected NAFLD Patients Using 3 Different Methods: HISTO, 3D Multi-Echo GRE DIXON and Invasive Liver Biopsy Wei Wang¹, Xiuzhong Yao¹, Hongmei Yan², Hua Bian², Xiaodong Zhong³, Radhouene Neji⁴, Caixia Fu⁵, Hui Liu⁶, Dehe Weng⁵, Ignacio Vallines⁶, Mengsu Zeng¹

¹Radiology Department, Zhongshan Hospital, Fudan University, Shanghai, China; ²Endocrinology Department, Zhongshan Hospital, Fudan University, Shanghai, China; ³MR collaborations, Siemens Healthcare, Atlanta, GA, United States; ⁴MR collaborations,

Siemens Healthcare, Frimley,, Camberley, United Kingdom; ⁵Application Department, Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong, China; ⁶MR collaborations, Siemens Healthcare, Shanghai, China

Computer 28	3645.	Two-Point Dixon with Single Species Domination Assumption <i>Kang Wang¹, Ken-Pin Hwang², Zachary Slavens³, Ersin Bayram²</i> ¹ Global Applications and Workflow, GE Healthcare, Madison, WI, United States; ² Global Applications and Workflow, GE Healthcare, Houston, TX, United States; ³ MR Engineering, GE Healthcare, Waukesha, WI, United States							
Computer 29	3646.	Robust Two-Point Dixon Water/fat Separation Using Graph Cut Algorithm Dong Zhou ¹ , Jianwu Dong ² , Pascal Spincemaille ¹ , Ashish Raj ¹ , Martin Prince ¹ , Yi Wang ¹ ¹ Weill Cornell Medical College, New York, NY, United States; ² Tsinghua University, Beijing, China							
Computer 30	3647.	Olefinic Fat Suppression in Skeletal Muscle DTI with Combined 6- And 2-Point Dixon Jedrzej Burakiewicz ¹ , Melissa T. Hooijmans ¹ , Erik H. Niks ² , Jan J.G.M. Verschuuren ² , Andrew G. Webb ¹ , Hermien E. Kan ¹ ¹ Department of Radiology, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands; ² Department of Neurology, Leiden University Medical Center, Leiden, Zuid Holland, Netherlands							
Computer 31	3648.	Dixon Imaging with Golden Angle Stack of Stars Acquisition Jan Hendrik Wülbern ¹ , Mariya Doneva ¹ , Holger Eggers ¹ , Christian Stehning ¹ , Peter Börnert ¹ ¹ Philips Research Europe, Hamburg, Germany							
Computer 32	3649.	A Novel Partial Averaging Approach for Reducing Motion Ghosting in Dixon TSE Gabriele Beck ¹ , Alan Huang ¹ , Gert van Ijperen ¹ , Lars van Loon ¹ , Marko Ivancevic ¹ ¹ Philips Healthcare, Best, Netherlands							
Computer 33	3650.	Dixon Fat Suppression for Off-Resonant Water Imaging of Superparamagnetic Iron Oxide Nanoparticles Dirk Krüger ¹ , Silvia Lorrio González ¹ , René M. Botnar ¹ ¹ Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom							
Computer 34	3651.	A Fast Water-Fat Separation Method Using Multi Echo Time Encoding and Nonlinear Least Squares Estimation JaeJin Cho ¹ , Changheun Oh ² , Kinam Kwon ² , HyunWook Park ² ¹ Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Chungcheong, Korea; ² Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Chungcheong, Korea							
Computer 35	3652.	Water-Fat Separation Using a Locally Low-Rank Enforcing Reconstruction <i>Felix Lugauer¹, Dominik Nickel², Jens Wetzl¹, Berthold Kiefer², Joachim Hornegger¹</i> ¹ Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; ² Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Germany							
Computer 36	3653.	Multi-Scale Graph Cut Algorithm for Water/fat Separation Johan Berglund ¹ ¹ Karolinska Institutet, Stockholm, Sweden							
Computer 37	3654.	Chemical Shift Encoding-Based Water-Fat Imaging of Skeletal Muscle in the Presence of Fat Resonance Shift and Phase Errors Stefan Ruschke ¹ , Holger Eggers ² , Hendrik Kooijman ³ , Pia M. Jungmann ¹ , Axel Haase ⁴ , Ernst J. Rummeny ¹ , Thomas Baum ¹ , Dimitrios C. Karampinos ¹ ¹ Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Bayern, Germany; ² Philips Research, Hamburg, Germany; ³ Philips Healthcare, Hamburg, Germany; ⁴ Zentralinstitut für Medizintechnik, Technische Universität München, Garching, Bayern, Germany							

Computer 38 3655. Accelerating Water-Fat Separation for Intragastric Fat Distribution with a Signal Model-Based Dictionary Dian Liu¹, Jelena Curcic¹, ², Andreas Steingoetter¹, ², Sebastian Kozerke¹ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland

Computer 39 3656. Fat Water Separation and Field Map Estimation with Multiresolution Region Growing Algorithm *Chuanli Cheng*¹, ², *Chao Zou*¹, *Hairong Zheng*¹, *Xin Liu*¹ ¹Paul C. Lauterbur Biomedical Imaging Research Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China; ²University of Chinese Academy of Sciences, Beijing, China

Computer 40 3657. Addressing Phase Errors in Quantitative Water-Fat Imaging at 3 T Using a Time-Interleaved Multi-Echo Gradient-Echo Acquisition Stefan Ruschke¹, Holger Eggers², Hendrik Kooijman³, Thomas Baum¹, Marcus Settles¹, Axel Haase⁴, Ernst J. Rummeny¹, Dimitrios C. Karampinos¹ ¹Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Bayern, Germany; ²Philips Research, Hamburg, Germany; ³Philips Healthcare, Hamburg, Germany; ⁴Zentralinstitut für Medizintechnik, Technische Universität München, Garching, Bayern, Germany

Computer 41 3658. Time-Domain Calibration of Fat Signal Dephasing from Multi-Echo STEAM Spectroscopy for Multi-Gradient-Echo Imaging Based Fat Quantification *M. Dominik Nickel¹, Stephan A.R. Kannengiesser¹, Berthold Kiefer¹* ¹MR Applications Development, Siemens Healthcare, Erlangen, Germany

Computer 42 3659. An Efficient Chemical-Shift Encoded Imaging for Liver Fat Quantification *Abraam S. Soliman¹, ², Charles A. McKenzie, ¹³* ¹Biomedical Engineering, University of Western Ontario, London, Ontario, Canada; ²Robarts Research Institute, Imaging Research Laboratories, London, Ontario, Canada; ³Medical Biophysics, University of Western Ontario, London, Ontario, Canada

Computer 43 3660. Spectrally-Presaturated Modulation (SPM): An Efficient Fat Suppression Technique for STEAM-Based Cardiac Imaging Sequences Ahmed Fahmy¹, El-Sayed H. Ibrahim², Nael Osman³ ¹Cairo University, Cairo, Egypt; ²University of Michigan, Ann Arbor, MI, United States; ³Johns Hopkins University, Baltimore, MD, United States

Computer 44 3661. T1 Corrected Fat Quantification Using a Dual Flip Angle Acquisition and Joint Fit Reconstruction Xiaoke Wang¹, Diego Hernando², Scott B. Reeder², ³ ¹Biomedical Engineering, University of Wisconsin, Madison, WI, United States; ²Radiology, University of Wisconsin, Madison, WI, United States; ³Medical Physics, University of Wisconsin, Madison, WI, United States

Computer 45 3662. Self-Navigated 3D Whole Heart Coronary MRI with VARPRO Fat-Water Separation Davide Piccini¹, ², Peter Kellman³, Diego Hernando⁴, Simone Coppo², Gabriele Bonanno², Matthias Stuber² ¹Advanced Clinical Imaging Technology, Siemens Healthcare, Lausanne, Switzerland; ²Department of Radiology, University Hospital (CHUV) and University of Lausanne (UNIL) / Center for Biomedical Imaging (CIBM), Lausanne, Switzerland; ³Laboratory of Cardiac Energetics, National Institutes of Health/NHLBI, Bethesda, MD, United States; ⁴Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States

Computer 46 3663. Thermal Noise Propagation in Water-Fat Imaging and Fat Fraction Measurement Weiyi Chen¹, Krishna S. Nayak¹ ¹Electrical Engineering, University of Southern California, Los Angeles, CA, United States

Computer 47 3664. Rapid Isotropic Shoulder MRI Using 3D SPACE with Incoherent Undersampling and Iterative Reconstruction Esther Raithel¹, Gaurav Thawait², Shadpour Demehri², Shivani Ahlawat², Heiko Meyer¹, Wesley Gilson³, Jan Fritz² ¹Healthcare Sector, Siemens AG, Erlangen, Bavaria, Germany; ²Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ³Siemens Healthcare USA, Baltimore, MD, United States

Computer 48 3665. Triglyceride Content and Fatty Acid Composition in Mice: Quantification with 7.0T MRI

Benjamin Leporq¹, Simon Auguste Lambert¹,², Francois Cauchy¹,³, Imane Boucenna⁴, Pierre Colinart⁴, Maxime Ronot¹,⁵, Valerie Vilgrain¹,⁵, Valerie Paradis¹,⁶, Bernard Edgar Van Beers¹,⁵ ¹Center of research on inflammation, Paris 7 University; INSERM U1044, Paris, France; ²BHF Centre of Excellence, Division of Imaging Sciences and Biomedical Engineering, King's College London King's Health Partners, St. Thomas' Hospital, London, United Kingdom; ³Department of HPB and liver transplantation, Beaujon University hospital Paris Nord, Clichy, France; ⁴Matière et systèmes complexes, Paris 7 University; CNRS UMR 7057, Paris, France; ⁵Department of Radiology, Beaujon University hospital Paris Nord, Clichy, France; ⁶Department of Pathology, Beaujon University hospital Paris Nord, Clichy, France

Electronic P	oster
Motion Corr	ection
Exhibition Hall	Tuesday 13:30-14:30
Computer 49 3666.	Reverse Retrospective Motion Correction Benjamin Zahneisen ¹ , Aditya Singh ² , Michael Herbst ² , Thomas Ernst ² ¹ Stanford University, Stanford, CA, United States; ² University of Hawaii, HI, United States
Computer 50 3667.	Non Rigid-Body Motion Detection Using Single 6-DOF Data from Skin Based Markers for Brain Imaging <i>Aditya Singh¹, Brian Keating¹, Benjamin Zahneisen¹, Michael Herbst¹, Thomas Ernst¹</i> ¹ John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, United States
Computer 51 3668.	Evaluation of TrackDOTS Potential to Perform Motion Tracking and Dynamic Shimming José P. Marques ¹ , Daniel Gallichan ¹ ¹ CIBM, EPFL, Lausanne, Vaud, Switzerland
Computer 52 3669.	Camera Placement for Optical Prospective Motion Correction: Mechanical Tolerance Analysis Julian Maclaren ¹ , Murat Aksoy ¹ , Benjamin Zahneisen ¹ , Roland Bammer ¹ ¹ Department of Radiology, Stanford University, Stanford, CA, United States
Computer 53 3670.	Tracking Motion and Resulting Field Fluctuations Using ¹⁹ F NMR Field Probes <i>Martin Eschelbach¹, Yu-Chun Chang¹, Jonas Handwerker², Jens Anders², Anke Henning¹, ³, Klaus Scheffler¹</i> ¹ High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tuebingen, BW, Germany; ² Institute of Microelectronics, University of Ulm, Ulm, BW, Germany; ³ Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
Computer 54 3671.	Motion Estimation from Noise Intrinsic Correlation Between RF Channels (MECHANICS) Enhao Gong ¹ , Qiyuan Tian ¹ , Jennifer A. McNab ² , John Pauly ¹ ¹ Electrical Engineering, STANFORD UNIVERSITY, Stanford, CA, United States; ² Radiology, STANFORD UNIVERSITY, Stanford, CA, United States
Computer 55 3672.	Optimizing a Highly-Accelerated FatNav for High-Resolution Motion-Correction Daniel Gallichan ¹ , José P. Marques ² , Rolf Gruetter ¹ , ³ ¹ CIBM, EPFL, Lausanne, Vaud, Switzerland; ² Dept. of Radiology, University of Lausanne, Vaud, Switzerland; ³ Depts. of Radiology, Universities of Lausanne and Geneva, Vaud, Switzerland
Computer 56 3673.	Quantitative Framework for Prospective Motion Correction Evaluation Nicolas Pannetier ¹ , ² , Theano Stavrinos ² , Peter Ng ² , Michael Herbst ³ , ⁴ , Maxim Zaitsev ⁴ , Karl Young ¹ , Gerald Matson, ¹² , Norbert Schuff ⁴ , ² ¹ Radiology, UCSF, San Francisco, CA, United States; ² VAMC, San Francisco, CA, United States; ³ Radiology, JABSOM, Honolulu, HI, United States; ⁴ Radiology, University Medical Center Freiburg, Freiburg, Germany
Computer 57 3674 .	Motion Navigation Using Non-Linear Gradient Fields <i>Emre Kopanoglu¹, Gigi Galiana¹, Robert Todd Constable¹</i> ¹ Diagnostic Radiology, Yale University, New Haven, CT, United States

Computer 58 3675. Removal of EPI Ghosts in the Presence of Prospective Motion Correction Murat Aksoy¹, Julian Maclaren¹, Eric Peterson¹, Roland Bammer¹ ¹Radiology, Stanford University, Stanford, CA, United States

Computer 59 3676. Simultaneous MPRAGE and Non-Contrast MRA with Prospective Motion Correction Using Volumetric Navigators

John W. Grinstead¹, Himanshu Bhat², M. Dylan Tisdall³, Andre van der Kouwe³, William Rooney⁴, Gerhard Laub² ¹Siemens Healthcare, Portland, USA, United States; ²Siemens Healthcare, USA, United States; ³A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, MA, United States; ⁴Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States

Computer 60 3677. A Novel Profile/View Ordering (NINJA-STAR) for High-Resolution 3D Volumetric T1 Mapping

Sui-Cheng Wang¹, ², Amit R. Patel², Akiko Tanaka³, Hui Wang⁴, Xiang Zhu⁵, Dianwen Zhang⁶, Takeyoshi Ota³, Roberto M. Lang², Keigo Kawaji²

¹Biomedical Engineering, Northwestern University, Evanston, IL, United States; ²Medicine, Section of Cardiology, The University of Chicago, Chicago, IL, United States; ³Surgery, The University of Chicago, Chicago, IL, United States; ⁴Philips Medical Systems, Cleveland, OH, United States; ⁵College of Information and Electrical Engineering, and College of Economics & Management, China Agricultural University, Beijing, China; ⁶Imaging Technology group, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States

Computer 61 3678. MRI of the Moving TMJ Using Contour Fitting in the Correlation Matrix (CoFi-CoMa) Stefan Wundrak¹, ², Jan Paul¹, Johannes Ulrici², Erich Hell², Margrit-Ann Geibel¹, Volker Rasche¹ ¹Ulm University, Ulm, Baden-Württemberg, Germany; ²Sirona Dental Systems, Bensheim, Hessen, Germany

Computer 62 3679. Estimating Dynamic 3D Abdominal Motion for Radiation Dose Accumulation Mapping Using a PCA-Based Model and 2D Navigators

Bjorn Stemkens¹, *Rob HN Tijssen¹*, *Baudouin Denis de Senneville²*, ³, *Jan JW Lagendijk¹*, *Cornelis A.T. van den Berg¹* ¹Department of Radiotherapy, UMC Utrecht, Utrecht, Netherlands; ²Image Science Institute, UMC Utrecht, Utrecht, Netherlands; ³IMB, UMR 5251 CNRS/University of Bordeaux, Bordeaux, France

Computer 63 3680. Prospective Respiratory Motion Gating Using a Flexible External Tracking Device Robin Simpson¹, Benjamin Knowles¹, Marius Menza¹, Michael Herbst¹, ², Cris Lovell-Smith¹, Maxim Zaitsev¹, Bernd Jung³ ¹Medical Physics, University Medical Centre, Freiburg, Germany; ²John A. Burns School of Medicine, HI, United States; ³University Hospital of Bern, Switzerland

Computer 64 3681. Motion Detection Improvement of Pencil Beam Navigator Echo with Gradient Reversal Method *Yuji Iwadate¹, Kunihiro Miyoshi², Masanori Ozaki², Hiroyuki Kabasawa¹* ¹Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan; ²MR Engineering, GE Healthcare Japan, Tokyo, Japan

Computer 65 3682. Motion Robust Abdominal Imaging with Complementary Poisson-Disc Sampling and Retrospectively Reduced View-Sharing Evan Levine¹, ², Shreyas Vasanawala², Brian Hargreaves², Manojkumar Saranathan² ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States

Computer 66 3683. 5DMRI of Moving Organs

Zarko Celicanin¹, Oliver Bieri¹ ¹Radiological Physics, University of Basel Hospital, Basel, Switzerland

Computer 67 3684. Free-Breathing, Self-Navigated RUFIS Lung Imaging with Motion Compensated Image Reconstruction Anne Menini¹, Vladimir Golkov¹, ², Florian Wiesinger¹ ¹DIBT, GE Global Research, Garching b. München, Germany; ²Department of Computer Science, Technical University Munich, Garching b. München, Germany

Computer 68 3685. Improved Motion Compensated Reconstruction for 3D Abdominal MRI Using a Self-Navigated Non-Rigid Motion Model

Gastao Cruz¹, *David Atkinson²*, *Tobias Schaeffter¹*, *Claudia Prieto¹* ¹Division of Imaging Sciences & Biomedical Engineering, King's College London, London, United Kingdom; ²Centre for Medical Imaging, University College London, London, United Kingdom

Computer 69 3686. Simple Motion Correction Strategy Reduces Respiratory-Induced Motion Artifacts for K-T Accelerated CMR Perfusion Imaging

Wei Huang¹, Yang Yang², Xiao Chen², Michael Salerno¹, ³ ¹Medicine, University of Virginia, Charlottesville, VA, United States; ²Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ³Radiology, University of Virginia, Char

Computer 70 3687. Cylindrical Labeling Inversion Pulse for Reduction of Cardiac/Pulsatile Motion Artifacts in Contrast-Enhanced Breast/Thoracic MRI

Masami Yoneyama¹, Masanobu Nakamura¹, Makoto Obara¹, Tomoyuki Okuaki¹, Tetsuo Ogino¹, Yuriko Suzuki¹, Yuriko Ozawa², Takashi Tabuchi², Satoshi Tatsuno², Ryuji Sashi², Marc Van Cauteren¹ ¹Philips Electronics Japan, Tokyo, Japan; ²Yaesu Clinic, Tokyo, Japan

Computer 71 3688. A Fast and Novel Groupwise-Non-Rigid Registration Methodology for Freezing Motion in DCE-MRI KS Shriram¹, Dattesh D. Shanbhag², Sheshadri Thiruvenkadam², Venkata Veerendranadh Chebrolu², Sandeep N.

Gupta³, Rakesh Mullick⁴

¹Biomedical Signal Analysis Laboratory, GE Global Research, Bangalore, Karnataka, India; ²Medical Image Analysis Laboratory, GE Global Research, Bangalore, Karnataka, India; ³Clinical Systems & Signal Processing, GE Global Research, Niskayuna, NY, United States; ⁴Diagnostics & Biomedical Technologies, GE Global Research, Bangalore, Karnataka, India

Computer 72 3689. Time-Resolved Fetal Cardiac MRI Using Compressed Sensing and Metric Optimized Gating Christopher W. Roy¹, Mike Seed², ³, Christopher K. Macgowan¹, ³

Christopher W. Roy', Mike Seed', ', Christopher K. Macgowan', ' ¹Medical Biophysics and Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ²Labatt Family Heart Centre, Division of Cardiology, Department of Paediatrics, The Hospital for Sick Children, Ontario, Canada; ³Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada

Electronic Poster

Quantitative & Model-based Image Reconstruction

Exhibition Hall Tuesday 13:30-14:30

Computer 73 3690. Fast Aortic Input Function Extraction at High Temporal Resolution for DCE-MRI Umit Yoruk¹, ², Manojkumar Saranathan¹, Tao Zhang¹, Brian A. Hargreaves¹, Shreyas S. Vasanawala¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²Electrical Engineering, Stanford University, Stanford, CA, United States

Computer 74 3691. Improving Temporal Resolution in fMRI Using Low-Rank Plus Sparse Matrix Decomposition Vimal Singh¹, David Ress², Ahmed Tewfik¹ ¹Electrical Engineering, University of Texas at Austin, Austin, TX, United States; ²Baylor College of Medicine, Houston, TX, United States

Computer 75 3692. A Variational Approach for Coil-Sensitivity Estimation for Undersampled Phase-Sensitive Dynamic MRI Reconstruction

Matthias Schloegl¹, Martin Holler², Kristian Bredies², Rudolf Stollberger¹ ¹Institute of Medical Engineering, Graz University of Technology, Graz, Styria, Austria; ²Department of Mathematics and Scientific Computing, University of Graz, Graz, Styria, Austria

Computer 76 3693. Real Time Phase Contrast MRI with Radial K-Space Sampling with Golden Angle Ratio and Block Wise Low Rank Constraint

Hassan Haji-Valizadeh¹, Elwin Bassett², Ganesh Adluru³, Edward DiBella⁴, Daniel Kim⁴

¹Radiology, University of Utah, Salt lake city, UT, United States; ²University of Utah, UT, United States; ³Ucair, Radiology, Salt lake city, UT, United States; ⁴Ucair, Radiology, UT, United States

- Computer 77 3694. Simultaneous Quantification of Intravascular Blood T_1 and T_2 with Multiple-Readout TRUST (MTRUST) Zachary B. Rodgers¹, Felix W. Wehrli¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States
- Computer 78 3695. Compressed Sensing Reconstruction of Prospectively Under-Sampled Cardiac Diffusion Tensor MRI Darryl McClymont¹, Irvin Teh¹, Hannah Whittington¹, Jurgen Schneider¹ ¹University of Oxford, Oxford, Oxfordshire, United Kingdom
- Computer 79 3696. Quantitative ¹⁹F MR Molecular Imaging with B₁-Mapping Compensation Matthew Goette¹, ², Shelton Caruthers¹, Gregory Lanza¹, Samuel Wickline¹ ¹Cardiology, Washington University in St. Louis, St. Louis, MO, United States; ²Pediatric Radiology, Texas Children's Hospital, Houston, TX, United States
- Computer 80 3697. 19F MRI Quantification Using B1 Correction Ina Vernikouskaya¹, Alexander Pochert², Volker Rasche¹ ¹Internal Medicine II, University Hospital of Ulm, Ulm, Baden-Wuerttemberg, Germany; ²Inorganic Chemistry II, University of Ulm, Ulm, Baden-Wuerttemberg, Germany
- Computer 81 3698. Spline Temporal Basis for Improved Pharmacokinetic Parameter Estimation in SENSE DCE-MRI Mai Le¹, Jeffrey A. Fessler¹ ¹University of Michigan, Ann Arbor, MI, United States

Computer 82 3699. PRAIRIE: Accelerating MR Parameter Mapping Using Kernel-Based Manifold Learning and Pre-Imaging *Yihang Zhou¹*, *Chao Shi¹*, *Yanhua Wang¹*, *Jingyuan Lyu¹*, *Leslie Ying¹*, ² ¹Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ²Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ³Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ³Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ⁴Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ⁴Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ⁴Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ⁴Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ⁴Department of Biomedical Engineering, State University of New York at B

Computer 83 3700. In Vivo Pulse Sequence Design for Acceleration of T2 Mapping Using Compressed Sensing with Patch-Based Low-Rank Penalty Dongwook Lee¹, Sunghong Park¹, Chuan Huang², Eung Yeop Kim³, Jong Chul Ye¹ ¹KAIST, Daejeon, Korea; ²Harvard Medical School, Boston, United States; ³Department of Radiology, Gachon University Gil Hospital, Incheon, Korea

Computer 84 3701. Automatic Tissue Decomposition Using Nonnegative Matrix Factorization for Noisy MR Magnitude Images Daeun Kim¹, Joong Hee Kim², Justin P. Haldar¹ ¹Department of Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ²Department of Neurology, Washington University, St. Louis, MO, United States

- Computer 85 3702. Model-Based Compressed Sensing Method Using Weighted Data Consistency Coeffcient Jinseong Jang¹, Taejoon Eo¹, Dosik Hwang¹ ¹Electrical and Electronic Engineering, Yonsei University, Seoul, Korea
- Computer 86 3703. Fast Non-Local Means Reconstruction for Multi-Contrast Compressed Sensing Kourosh Jafari-Khouzani¹, Berkin Bilgic¹, Jayashree Kalpathy-Cramer¹, Kawin Setsompop¹ ¹Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Computer 87 3704. A Fast Look-Locker Imaging Technique for Quantitative Tissue Oximetry Rohini Vidya Shankar¹, Vikram D. Kodibagkar¹ ¹Biomedical Engineering, Arizona State University, Tempe, AZ, United States

Computer 88 3705. The Comprehensive Contrast-Enhanced Neuro Exam *R. Marc Lebel¹, ², Yi Guo³, Yinghua Zhu³, Sajan Goud Lingala³, Richard Frayne², Linda B. Andersen², Jacob Easaw⁴, <i>Krishna S. Nayak³* ¹GE Healthcare, Calgary, Alberta, Canada; ²Radiology, University of Calgary, Calgary, Alberta, Canada; ³Electrical Engineering, University of Southern California, Los Angeles, CA, United States; ⁴Oncology, University of Calgary, Calgary, Alberta, Canada

Computer 89 3706. Direct Parametric Reconstruction from (K, T)-Space Data in Dynamic Contrast Enhanced MRI Nikolaos Dikaios¹, Shonit Punwani², David Atkinson² ¹Centre of Medical Imaging, UCL, London, United Kingdom; ²Centre of Medical Imaging, UCL, Greater London, United Kingdom

Computer 90 3707. Multi-Contrast Reconstruction Using Neural Network for Higher Acceleration Kinam Kwon¹, Dongchan Kim¹, Hyunseok Seo¹, Jaejin Cho¹, Hyunwook Park¹ ¹KAIST, Guseong-dong, Daejeon, Korea

Computer 91 3708. Multi-Contrast, Parametric and Artifact-Free Images Reconstructed from Gradient-Echo and Spin-Echo (GRASE) Imaging Data Using Projection Onto Convex Sets Based Multiplexed Sensitivity Encoding (POCSMUSE)

Mei-Lan Chu¹,², *Hing-Chiu Chang¹*, *Koichi Oshio³*, *Nan-kuei Chen¹* ¹Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States; ²Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ³Department of Diagnostic Radiology, Keio University School of Medicine, Japan

Computer 92 3709. DELTAMap: A Web Enabled Multi-Parameter-Multi-Time-Point Analysis Tool for Imaging Biomarker Discovery

Chandan Kumar Aladahalli¹, Dattesh D. Shanbhag², Venkata Veerendranadh Chebrolu², Patrice Hervo³, Sandeep N. Gupta⁴, Rakesh Mullick⁵

¹Biomedical Signal Analysis Laboratory, GE Global Research, Bangalore, Karnataka, India; ²Medical Image Analysis Laboratory, GE Global Research, Bangalore, Karnataka, India; ³GEHC, Buc, France; ⁴Clinical Systems and Signal Processing, GE Global Research, Niskayuna, NY, India; ⁵Diagnostics & Biomedical Technologies, GE Global Research, Bangalore, Karnataka, India

Computer 93 3710. A Fast Reconstruction Algorithm for Accelerated Multi-Contrast MRI Itthi Chatnuntawech¹, Berkin Bilgic², Adrian Martin¹, ³, Kawin Setsompop², ⁴, Elfar Adalsteinsson¹, ⁵ ¹MIT, Cambridge, MA, United States; ²A. A. Martinos Center for Biomedical Imaging, MA, United States; ³Universidad Rey Juan Carlos, Mostoles, Madrid, Spain; ⁴Harvard Medical School, MA, United States; ⁵Harvard-MIT Heath Sciences and Technology, MA, United States

- Computer 94 3711. Accelerated MR Parameter Mapping Using Robust Model-Consistency Reconstruction *Alexey Samsonov¹* ¹University of Wisconsin, Madison, WI, United States
- **Computer 95 3712. Spin TomogrAphy in Time Domain: The MR-STAT Project** Alessandro Sbrizzi¹, Annette van der Toorn¹, Hans Hoogduin¹, Peter R. Luijten¹, Cornelis A. van den Berg¹ ¹UMC Utrecht, Utrecht, Netherlands
- Computer 96 3713. High Resolution T1 Mapping Within Seconds: Model-Based Reconstruction Without Regularization Volkert Roeloffs¹, Xiaoqing Wang¹, Tilman Sumpf¹, Jens Frahm¹ ¹Biomedizinische NMR Forschungs GmbH, Max Planck Institute for Biophysical Chemistry, Göttingen, Niedersachsen, Germany

Electronic Poster

Artifacts & Correction I

Exhibition Hall Tuesday 14:30-15:30

Computer 1 3714. Phantom Study for Boundary Artifact Reduction in MREPT Sungmin Cho¹, Joonsung Lee², Jaewook Shin¹, Min-Oh Kim¹, Dong-Hyun Kim¹ 'Yonsei University, SeodaemunGu, Seoul, Korea; ²Severance Hospital, Seoul, Korea Computer 2 3715. Eliminating Image Shading in 3D FSE with Hybrid RF Moran Wei^l, Weiwei Zhang^l, Yongchuan Lai^l, Bing Wu^l ¹GE Healthcare, Beijing, China

Computer 3 3716. Cardiac Susceptibility Bite Mark Artifact: Resolving the Conflict Candice A. Bookwalter¹, Samir D. Sharma¹, Scott B. Reeder¹, ² ¹Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

```
Computer 4 3717. A Noval Method of Correcting Off-Center Errors for Radial Acquisition with Arbitrary Angle.

Ming Yang<sup>1</sup>, Haikun Qi<sup>2</sup>, Shuo Zhang<sup>3</sup>, Guang Qiang Geng<sup>4</sup>, Chen Guang Zhao<sup>4</sup>, Huijun Chen<sup>2</sup>, Feng Huang<sup>4</sup>

<sup>1</sup>Philips Healthcare, Suzhou, Jiangsu, China; <sup>2</sup>Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; <sup>3</sup>Philips

Healthcare, Singapore; <sup>4</sup>Philips Healthcare, Suzhou, Jiangsu, China
```

Computer 5 3718. Designing a Hyperbolic Secant Excitation Pulse to Reduce Signal Dropout in 2D Gradient Echo Imaging at 7T Stephen James Wastling¹, Mark Symms², Mauro Costagli³, ⁴, Laura Biagi³, ⁴, Mirco Cosottini³, ⁵, Gareth John Barker¹, Michela Tosetti³, ⁴ ¹Department of Neuroimaging, King's College London, London, United Kingdom; ²GE Healthcare, Pisa, Italy; ³Imago7, Pisa, Italy; ⁴IRCCS Stella Maris, Pisa, Italy; ⁵Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy

- Computer 6 3719. Non-Cartesian MR Image Reconstruction with Integrated Gradient Nonlinearity and Off Resonance Correction Shengzhen Tao¹, Joshua D. Trzasko¹, Yunhong Shu¹, John Huston III¹, Paul T. Weavers¹, Matt A. Bernstein¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States
- Computer 7 **3720.** Partial Fourier Homodyne Reconstruction with Non-Iterative, Integrated Gradient Nonlinearity Correction Shengzhen Tao¹, Joshua D. Trzasko¹, Paul T. Weavers¹, Yunhong Shu¹, John Huston III¹, Matt A. Bernstein¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States
- Computer 8 3721. Adaptive Averaging of Non-Identical Image Series in the Wavelet Space Henrik Marschner¹, André Pampel¹, Harald E. Möller¹ Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Sachsen, Germany
- Computer 9 3722. Real-Time Concomitant Gradient Field Correction. Kevin Perkins¹, ², Reeve Ingle², Juan Santos², Galen Reed², Ken Johnson², William Overall² ¹BYU, Provo, UT, United States; ²HeartVista, Menlo Park, Ca, United States

Computer 10 3723. Effective Removal of Aliasing Artifacts in Interleaved Diffusion Weighted EPI Using Integrated 2D Nyquist Correction and Multiplexed Sensitivity Encoded Reconstruction Hing-Chiu Chang¹, Nan-Kuei Chen¹ ¹Brain Imaging and Analysis Center, Duke University Medical Center, Durham, NC, United States

- Computer 11 3724. A Generic Referenceless Phase Combination (GRPC) Method: Application at High and Ultra-High Fields Francesco Santini¹, Carl Ganter², Philipp Ehses³, Klaus Scheffler³, Oliver Bieri¹ ¹Radiological Physics, University of Basel Hospital, Basel, Switzerland; ²Department of Diagnostic Radiology, Klinikum rechts der Isar, Munich, Germany; ³Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Computer 12 3725. Automatic Identification of Motion in Mulitshot MRI Using Convolutional Neural Networks Shayan Guhaniyogi¹, Mei-Lan Chu¹, Nan-Kuei Chen¹ ¹Brain Imaging and Analysis Center, Duke University, Durham, NC, United States

Computer 13 3726.	An Efficient MR Inhomogeneity Corrector Using Regularized Entropy Minimization <i>Bo Zhang¹, Hans Peeters², Ad Moerland², Helene Langet¹, Niccolo Stefani³</i> ¹ Philips Research, Suresnes, France; ² Philips Healthcare, Netherlands; ³ Philips Healthcare, OH, United States							
Computer 14 3727.	A Regularly Structured 3D Printed Grid Phantom for Quantification of MRI Image Distortion Maysam Mahmood Jafar ¹ , Christopher Dean ² , Malcolm J. Birch ¹ , Marc E. Miquel ¹ ¹ Medical Physics, Barts Health NHS Trust, London, United Kingdom; ² Radiotherapy, Barts Health NHS Trust, London, United Kingdom							
Computer 15 3728.	Noise-Compensated Bias Correction of MRI Via a Stochastically Fully-Connected Conditional Random Field Model Ameneh Boroomand ¹ , Mohammad Javad Shafiee, ¹ , Alexander Wong ¹ , Farzad Khalvati ² , Paul Fieguth ¹ , Masoom Haider ³ ¹ System Design Engineering, University of Waterloo, Waterloo, Ontario, Canada; ² Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ³ Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada							
Computer 16 3729.	Combination of Integrated Slice-Specific Dynamic Shimming and Pixel-Wise Unwarping of Residual EPI Distortions <i>Alto Stemmer¹, Berthold Kiefer¹</i> ¹ Healthcare, Siemens AG, Erlangen, Germany							
Computer 17 3730.	Reduced Eddy Current Induced Artifact in 7T Single Shot Diffusion Weighted Echo Planar Imaging Se-Hong Oh ¹ , Mark J Lowe ¹ ¹ Imaging Institute, Cleveland Clinic Foundation, Cleveland, OH, United States							
Computer 18 3731.	Spatio-Temporal Artifact Correction of Multi-Dimensional Spectroscopic Imaging Data <i>Brian Burns¹</i> , <i>Neil Wilson²</i> , <i>M. Albert Thomas²</i> , ³ ¹ Department of Bioengineering, UCLA, Los Angeles, CA, United States; ² Medical Physics, IDP, UCLA, Los Angeles, CA, United States; ³ Department of Radiology, UCLA, Los Angeles, CA, United States							
Computer 19 3732.	Compressed Sensing Reconstruction with Higher-Order Off-Resonance Correction Using the Cross-Sampling and the Time-Segmented Method <i>Daiki Tamada¹, Katsumi Kose¹</i> ¹ Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan							
Computer 20 3733.	Title: A Fast Algorithm to Correct Excitation Profile in Zero Echo Time (ZTE) Imaging <i>Cheng Li¹, Jeremy F. Magland¹, Alan C. Seifert¹, Felix W. Wehrli¹</i> ¹ Laboratory for Structural NMR Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States							
Computer 21 3734.	Regularized Inversion of Metallic Implant Susceptibility from B0 Field Maps <i>Xinwei Shi¹, Daehyun Yoon², Kevin Koch³, Brian Hargreaves²</i> ¹ Electrical Engineering, Stanford University, Stanford, CA, United States; ² Radiology, Stanford University, CA, United States; ³ Radiology, Medical College of Wisconsin, WI, United States							
Computer 22 3735.	Phantom-Based Iterative Estimation of MRI Gradient Nonlinearity Joshua Trzasko ¹ , Shengzhen Tao ¹ , Jeffrey Gunter ¹ , Yunhong Shu ¹ , John Huston III ¹ , Matt Bernstein ¹ ¹ Mayo Clinic, Rochester, MN, United States							
Computer 23 3736.	Gradient Unwarping for Phase Imaging Reconstruction <i>Paul Polak¹, Robert Zivadinov¹, ², Ferdinand Schweser¹, ²</i> ¹ Department of Neurology, Buffalo Neuroimaging Analysis Center, State University of New York at Buffalo, Buffalo, NY, United States; ² Molecular and Translational Imaging Center, MRI Center, Clinical and Translational Research Center, Buffalo, NY, United States							

Computer 24 3	737. Ad	lvanced Intrinsic	Correction	of System	Delavs	for Radia	l Trajectories
---------------	---------	-------------------	------------	-----------	--------	-----------	----------------

Martin Krämer¹, Jürgen R. Reichenbach¹

¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany

Electronic Poster

Image Processing & Segmentation

Exhibition Hall Tuesday 14:30-15:30

 Computer 25 3738. Whitening of Colored Noise in PROPELLER Using Iterative Regularized PICO Reconstruction *Jyh-Miin Lin¹*, Andrew Patterson², Hing-Chiu Chang³, Tzu-Chao Chuang⁴, Hsiao-Wen Chung⁵, Jonathan H. Gillard¹, *Martin J. Graves²* ¹Department of Radiolgoy, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ²Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom; ³Brain Imaging and Analysis Center, Duke University Medical Center, NC, United States; ⁴Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, Taiwan; ⁵Department of Electrical Engineering, National Taiwan University, Taiwan, Taiwan

Computer 26 3739. Improved Contrast-To-Noise Levels for MS Lesion Detection on CSF-Suppressed Heavily T₂-Weighted Imaging Vanessa Wiggermann¹,², Enedino Hernández Torres²,³, Anthony Traboulsee,³⁴, David K.B. Li²,⁴, Alexander Rauscher²,³ ¹Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; ²Radiology, University of British Columbia, Vancouver, BC, Canada; ³UBC MRI Research Centre, Vancouver, BC, Canada; ⁴Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada

Computer 27 3740. Cerebral Glioma Grading Using Bayesian Network with Features Extracted from Multi-Modality MRI Jisu Hu #¹, Wenbo Wu #², Bin Zhu #², Huiting Wang², Renyuan Liu², Xin Zhang², Ming Li², Yongbo Yang³, Jing Yan⁴, Fengnan Niu⁵, Chuanshuai Tian², Kun Wang², Haiping Yu², Weibo Chen⁶, Suiren Wan^{*1}, Yu Sun^{*1}, Bing Zhang^{*2} ¹The Laboratory for Medical Electronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China; ²Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ³Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ⁴Department of Oncology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ⁵Department of Pathology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ⁶Philips Healthcare, Shanghai, China

Computer 28 3741. Improving the Spatial Resolution and SNR of Rat Brain T2-Weighted MR Images: Application of a Super-Resolution Method

Eric Van Reeth¹, Michael Sdika¹, Sophie Gaillard¹, Pierre-Hervé Luppi², Paul-Antoine Libourel², Olivier Beuf⁴ ¹Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Villeurbanne, Rhone, France; ²Centre de Recherche en Neurosciences de Lyon; Inserm U1028 - CNRS UMR5292, Lyon, Rhone, France

Computer 29 3742. Support Vector Regression Based Denoising for MRI Image Di Zhao¹ ¹The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States

- Computer 30 3743. NICePype: A Web-Based Pipeline Manager for Processing Neuroimaging Data Based on Nipype. Dirk K. Müller¹, René Küttner¹, Ralf Hannig¹, Thomas Frank¹, Juliane Müller¹, Michael Marxen¹ ¹Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, 01187, Germany
- Computer 31 3744. Challenges of 3D Printing from MRI Data: Our Experience with a Kidney Tumor Model Nicole Wake¹, ², William Huang³, Todd Pietila⁴, Hersh Chandarana¹ ¹The Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, United States; ²The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, United States; ³Department of Urology, New York University School of Medicine, New York, United States; ⁴Materialise USA, Plymouth, MI, United States
- Computer 32 3745. Super-Resolved Enhancing and Edge Deghosting for Spatiotemporally Encoded Single-Shot MRI Lin Chen¹, Shuhui Cai¹, Congbo Cai², Zhong Chen¹
¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China; ²Department of Communication Engineering, Xiamen University, Xiamen, Fujian, China

Computer 33 3746. A Fast Patch-Based Approach for Pseudo-CT Generation from MRI T1-Weighted Images: A Potential Solution for PET/MR Attenuation Correction

Angel Torrado-Carvajal¹, ², Eduardo Alcain³, Joaquin L. Herraiz², ⁴, Antonio S. Montemayor³, Juan A. Hernandez-Tamames¹, ², Elfar Adalsteinsson⁵, ⁶, Larry L. Wald, ⁶⁷, Norberto Malpica¹, ² ¹Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain; ²Madrid-MIT M+Vision Consortium, Madrid, Spain; ³Dept. of Computer Science, Universidad Rey Juan Carlos, Mostoles, Madrid, Spain; ⁴Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁵Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁶Harvard-MIT Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, United States; ⁷Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States

Computer 34 3747. THOMAS: Thalamus Optimized Multi-Atlas Segmentation

Jason Su¹, ², Thomas Tourdias³, Manojkumar Saranathan², Brian K. Rutt² ¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Neuroradiology, Bordeaux University Hospital, Bordeaux, France

Computer 35 3748. Prostate DWI Co-Registration Via Maximization of Hybrid Statistical Likelihood and Cross-Correlation for Improved ADC and Computed Ultra-High B-Value DWI Calculation Daniel S. Cho¹, Farzad Khalvati², Alexander Wong¹, David A. Clausi¹, Masoom Haider²

¹Systems Design Engineering, University of Waterloo, Waterloo, Ontario, Canada; ²University of Toronto, Ontario, Canada

Computer 36 3749. Model the Single-Venule fMRI Signal at the Millisecond Scale *Yi He^l*, ², *Kun Zhang*³, *Xin Yu^l*, ² ¹Research Group of Translational Neuroimaging and Neural Control, High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Graduate School of Neural Information Processing, University of Tuebingen, Tuebingen, Baden-Wuerttemberg, Germany; ³Department of Empirical Inference, Max Planck Institute of Intelligent System, Tuebingen, Germany

Computer 37 3750. Automatic Computation of Normalized Brain Volume on 3D T1-Weighted MRI Scans Without Registration to Standard Space

*Elizabeth Wicks*¹, *Jason P.C. Chiu*¹, *Lisa Y.W. Tang*¹, ², *Kevin Lam*¹, *Andrew Riddehough*¹, *David K.B. Li*¹, ², *Anthony Traboulsee*¹, *Roger Tam*¹, ²

¹MS/MRI Research Group, Division of Neurology, University of British Columbia, Vancouver, BC, Canada; ²Dept. of Radiology, University of British Columbia, BC, Canada

Computer 38 3751. An Automatic Classificator Based on Local Fractal Features for the Identification of Cortical Malformations *Alberto De Luca¹, ², Denis Peruzzo³, Fabio Triulzi⁴, Filippo Arrigoni³, Alessandra Bertoldo¹* ¹Department of Information Engineering, University of Padova, Padova, PD, Italy; ²Department of Neuroimaging, Scientific Institute, IRCCS "Eugenio Medea", Bosisio Parini, LC, Italy; ³Department of Neuroimaging, Scientific Institute, IRCCS "Eugenio Medea", Bosisio Parini, LC, Italy; ⁴Neuroradiology department, Scientific Institute, IRCCS "Cà Granda" - Ospedale Maggiore Policlinico, Milan, MI, Italy

Computer 39 3752. Comparison of ³He MRI and CT Image-Based Ventilation Using Deformable Image Registration Bilal A. Tahir¹, ², Helen Marshall², Matthew Q. Hatton¹, Jim M. Wild², Rob H. Ireland¹, ² ¹Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom; ²Academic Unit of Academic Radiology, University of Sheffield, South Yorkshire, United Kingdom

Computer 40 3753. Improving T₂^{*} Mapping Accuracy by Spatially Adaptive Non Local Means Noise Filtering *Till Huelnhagen¹*, *Andreas Pohlmann¹*, *Thoralf Niendorf¹*, ² ¹Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine (MDC), Berlin, Germany; ²Experimental and Clinical Research Center, a joint cooperation between the Charite Medical Faculty and the Max-Delbrueck Center, Berlin, Germany

Electronic Poster

Computer 41 3754. Accurate Bone Marrow Extraction from T1-W Images and ADC-Maps in Patients with Metastatic Cancer: A Texture-Based Segmentation Approach

Parmida Moradi Birgani¹,², Anahita Fathi Kazerooni¹,², Hamidreza Haghighatkhah³, Pedram Fadavi⁴, Mohsen Shojaei Moghaddam⁵, Meghdad Ashtivani⁶, Hamidreza Saligheh Rad¹,²

¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ³Department of Radiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; ⁴Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran; ⁵Imaging Center, Payambaran Hospital, Tehran, Iran; ⁶Department of Medical Physics and Biomedical Engineering, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran; ⁶Department of Medical Physics and Biomedical Engineering, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran

Computer 42 3755. Human Thalamic Structure Segmentation with Universal SHape Interpolation Using the Radon Transform (USHIRT)

Peter Adany¹, In-Young Choi¹,², Erica Sherry¹, Phil Lee¹,³

¹Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; ²Neurology, University of Kansas Medical Center, Kansas City, KS, United States; ³Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States

Computer 43 3756. Image Hessian Based Automatic Cranium Segmentation for Blackbone and Silenz MRI

Max W.K. Law¹, Jing Yuan¹, Gladys G. Lo², Oi Lei Wong¹, Abby Y. Ding¹, Siu Ki Yu¹ ¹Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong; ²Department of Diagnostic and Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong

Computer 44 3757. Imiomics: Bringing –omics to Whole Body Imaging: Examples in Cross Sectional Interaction Between Whole-Body MRI and Non-Imaging Data

Joel Kullberg¹, Lars Johansson¹, Lars Lind², Håkan Ahlström¹, Robin Strand¹ ¹Radiology, Uppsala University, Uppsala, Sweden; ²Medical Sciences, Uppsala University, Uppsala, Sweden

Computer 45 3758. Creating 3D Heart Models of Children with Congenital Heart Disease Using Magnetic Resonance Imaging Danielle F. Pace¹, Polina Golland¹, David Annese², Tal Geva², ³, Andrew J. Powell², ³, Mehdi H. Moghart², ³ ¹Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, United States; ²Department of Cardiology, Boston Children's Hospital, Boston, MA, United States; ³Department of Pediatrics, Harvard Medical School, Boston, MA, United States

Computer 46 3759. Venous Segmentation Using Gaussian Mixture Models and Markov Random Fields Phillip G. D. Ward¹, ², Nicholas J. Ferris², ³, Amanda C. L. Ng², ⁴, David G. Barnes¹, ⁵, David L. Dowe¹, Gary F. Egan², ⁶, Parnesh Raniga² ¹Clayton School of Information Technology, Monash University, Clayton, Victoria, Australia; ²Monash Biomedical Imaging, Monash

University, Clayton, Victoria, Australia; ³Monash Imaging, Monash Health, Clayton, Victoria, Australia; ⁴Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ⁵Monash eResearch Centre, Monash University, Victoria, Australia; ⁶School of Psychology and Psychiatry, Monash University, Victoria, Australia;

Computer 47 3760. Consistency of Commonly Applied Vessel Segmentation Methods for Magnetic Resonance Venography Phillip G. D. Ward¹, ², Parnesh Raniga², Nicholas J. Ferris², ³, Amanda C. L. Ng, ²⁴, David G. Barnes¹, ⁵, David L. Dowe¹, Elsdon Storey⁶, Robyn L. Woods⁷, Gary F. Egan², ⁸ ¹Clayton School of Information Technology, Monash University, Clayton, Victoria, Australia; ²Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; ³Monash Imaging, Monash Health, Clayton, Victoria, Australia; ⁴Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria, Australia; ⁵Monash eResearch Centre, Monash University, Victoria, Australia; ⁶Department of Medicine, Monash University, Victoria, Australia; ⁷Department of Epidemiology & Preventive Medicine, Monash University, Melbourne, Australia; ⁸School of Psychology and Psychiatry, Monash University, Victoria, Australia

Computer 48 3761. Consistency of Intensity-Based Density Value Assignment for Bone Voxels for MR-Only Simulation in Radiation Therapy Planning

Michael Helle¹, Nicole Schadewaldt¹, Heinrich Schulz¹, Marloes Frantzen-Steneker², Christian Stehning¹, Uulke van der Heide², Steffen Renisch¹

¹Philips Research, Hamburg, Germany; ²Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands

Electronic Poster	
Artifacts & Correction	Π

 Exhibition Hall
 Tuesday 14:30-15:30

 Computer 49
 3762.
 Improved Spoiling Efficiency in Dynamic RF-Spoiled Imaging by Ghost Phase Modulation and Temporal Filtering Jon-Fredrik Nielsen¹, Douglas C. Noll¹

 Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States

 Computer 50
 3763.
 RF Amplifier Nonlinearity Correction for Multiband RF Pulses Kangrong Zhu¹, Robert F. Dougherty², Matthew J. Middione³, Hua Wu², Greig Scott¹, John M. Pauly¹, Adam B. Kerr¹

 'Electrical Engineering, Stanford University, Stanford, CA, United States; ²Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States; ³Applied Sciences Laboratory West, GE Healthcare, Menlo Park, CA, United States

 Computer 51
 3764.
 Highly Dynamic K₁-Points to Minimize the B₁⁺ Inhomogeneity Effects in T₂-Weighted Imaging at 7T Florent Eggenschwiler^J, Kieran R. O'Brien², Daniel Gallichan¹, Rolf Gruetter¹, ², Jose P. Marques³

 'Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Vaud, Switzerland; ²Department of Radiology, University of Geneva, Geneva, Switzerland; ³Department of Radiology, University of Lausanne, Lausanne, Vaud, Switzerland

Computer 52 3765. B1 Correction in SPatiotemporal ENcoding (SPEN) MRI Rita Schmidt¹, Jean-Noel Hyacinthe², Andrea Capozzi³, Nikolas Kunz⁴, Rolf Gruetter⁴, ⁵, Arnaud Comment³, Lucio Frydman¹, Mor Mishkovsky⁶ ¹Chemical Physics, Weizmann Institute of Science, Rehovot, Israel; ²School of health, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland; ³Institute of the Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁴Center of biomedical imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁶Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁶Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁶Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁶Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁶Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Computer 53 3766. Correction of Macroscopic Field Inhomogeneities in 3D Quantitative Gre Imaging Based on Nonlinear Phase Model and SNR Mapping

*Chemseddine Fatnassi*⁷, ², *Rachid Boucenna*¹, *Michael Betz*¹, *Habib Zaidi*³ ¹Radio-oncology, Hirslanden Lausanne, Lausanne, vaud, Switzerland; ²Faculty of biology and Medicine, UNIL, Lausanne, vaud, Switzerland; ³Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland

Computer 54 3767. B0 Map Reconstruction Via Exploiting Active Shimming Information and Its Application on Distortion Correction for EPI Kun Zhou¹, Wei Liu¹, Nan Xiao¹

¹Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong, China

Computer 55 3768. Variable Flip Angle Design for Balanced SSFP Transient State Imaging to Improve HP ¹³C MRI

Hong Shang¹, ², Peder E.Z. Larson¹, ², Galen Reed³, Eugene Milshteyn¹, ², Cornelius von Morze¹, Frank Ong⁴, Jeremy W. Gordon¹, Jonathan I. Tamir⁴, Daniel B. Vigneron¹
 ¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²UCSF-UC Berkeley Graduate Program in Bioengineering, San Francisco/Berkeley, CA, United States; ³HeartVista, Menlo Park, CA, United States; ⁴Electrical Engineering and

Computer 56 3769. An Optimized Region Growing Algorithm for Phase Correction in MRI Jong Bum Son¹, John Hazle¹, Jingfei Ma¹ ¹Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States

Computer Science, UC Berkeley, Berkeley, CA, United States

Computer 57 3770. Dynamic Distortion Correction with Standard Single-Echo EPI: Development of the Method for Multi-Channel Coils at 7T and Accuracy in the Presence of Substantial Motion. Barbara Dymerska¹, Benedikt Poser², Markus Barth³, Siegfried Trattnig¹, Simon Daniel Robinson¹

¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Psychology and Neuroscience, Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands; ³Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia

Computer 58 3771. Simulation Techniques for Susceptibility Optimisation of Field Probes *Wieland A. Worthoff¹, Stefan Schwan¹, Johannes Lindemeyer¹, N. Jon Shah¹, ²* ¹Institute of Neuroscience and Medicine, Forschungszentrum Jülich GmbH, Jülich, Germany; ²Faculty of Medicine, Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany

Computer 59 3772. Single Echo EPI Sequence with Dynamic Distortion Correction: Minimization of Errors Due to Motion and Breathing. Barbara Dymerska¹, Benedikt Poser², Wolfgang Bogner¹, Eelke Visser³, Korbinian Eckstein¹, Pedro Cardoso¹, Roland Beisteiner¹, ⁴, Markus Barth⁵, Siegfried Trattnig¹, Simon Daniel Robinson¹ ¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Psychology and Neuroscience, Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands; ³FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; ⁴Department of Neurology, Medical University of Vienna, Vienna, Austria; ⁵Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia

- Computer 60 3773. Physiological Artifact Suppression in Multi-Shot Data Using Covariance-Map-Enhanced Navigator Correction Jacco A. de Zwart¹, Peter van Gelderen¹, Jeff H. Duyn¹ ¹Advanced MRI, LFMI, NINDS, National Institutes of Health, Bethesda, MD, United States
- Computer 61 3774. Suppression of Artifacts in Compressed Sensing Cine MRI Shinji Kurokawa¹, Yoshitaka Bito², Hisaaki Ochi¹ ¹Central Research Laboratory, Hitachi, Ltd., Kokubunji-shi, Tokyo, Japan; ²Hitachi Medical Corporation, Kashiwa-shi, Chiba, Japan
- Computer 62 3775. Artifact Associated with Fat Suppression in Spin-Echo EPI Yasha Khatamian¹, J. Jean Chen¹ ¹Rotman Research Institute, Toronto, Ontario, Canada
- Computer 63 3776. Closed-Form Solution Concomitant Field Correction Method for Echo Planar Imaging on Head-Only Asymmetric Gradient MRI System Shengzhen Tao¹, Joshua D. Trzasko¹, Yunhong Shu¹, Paul T. Weavers¹, Seung-Kyun Lee², Matt A. Bernstein¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²GE Global Research, Niskayuna, NY, United States
- Computer 64 3777. Gibbs-Ringing Artifact Removal Based on Local Subpixel-Shifts Elias Kellner¹, Bibek Dhital¹, Valerij G. Kiselev¹, Marco Reisert¹ ¹Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
- Computer 65 3778. A Hexagonal Spoiler Gradient Scheme Improves the Transition to Steady State in Spoiled Gradient Echo Sequences Aaron T. Hess¹, Matthew D. Robson¹ ¹Oxford Centre for Clinical Magnetic Resonance Research (OCMR), Oxford, Ox, United Kingdom
- Computer 66 3779. FSE Cusp Artifact Removal Using Novel Saturation Method Yongchuan Lai¹, Weiwei Zhang¹, Baogui Zhang¹, Bing Wu¹ ¹GE Healthcare, Beijing, China

Computer 67 3780. Distortion Correction Using Simulated Point-Spread Functions Genevieve M. LaBelle¹, Brad P. Sutton², ³ ¹Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ²Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States; ³Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, IL, United States;

Computer 68 3781. Reference-Free Distortion Correction for EPI by Flipped K-Space Segments (DICOFLIP)

Marco Reisert¹, Michael Herbst¹,² ¹Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Department of Radiology, John A. Burns School of Medicine, Honolulu, Hawai, United States

Computer 69 3782. Ghost Correction for EPI at Gradient Insert System Guoxiang LIU¹, Takashi UEGUCHI¹ ¹CiNet, National Institute of Information and Communications Technology, Suita, Osaka, Japan

Computer 70 3783. 3D Mapping of Geometric Distortion Using Static and Moving Table Acquisitions for Radiotherapy Treatment **Planning Applications**

Amy Walker^{1,2}, Gary Liney, ¹², Lois Holloway, ¹², Jason Dowling³, David Rivest-Henault³, Peter Metcalfe^{1, 2} ¹Center for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia; ²Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia; ³Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Brisbane, Queensland, Australia

Computer 71 3784. Compensation of Artifacts from Eddy Current and Transient Oscillation in Balanced Steady-State Free Precession

Hyun-Soo Lee¹, Seung Hong Choi², Sung-Hong Park¹ ¹Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea; ²Department of Radiology, Seoul National University College of Medicine, Seoul, Korea

Computer 72 3785. Performance Comparison of Analytical Solutions for BSSFP Signal Demodulation

Michael N. Hoff¹, Jalal B. Andre¹, Oing-San Xiang² ¹Radiology, University of Washington, Seattle, WA, United States; ²Physics, University of British Columbia, Vancouver, British Columbia, Canada

Electronic Poster Reconstruction of Dynamic Data

Exhibition Hall Tuesday 13:30-15:30

Computer 73 3786. A Parallel Algorithm for Compressed Sensing Dynamic MRI Reconstruction Loris Cannelli¹, Paolo Scarponi¹, Gesualdo Scutari¹, Leslie Ying¹ ¹Electrical Engineering, University at Buffalo, Buffalo, NY, United States

Computer 74 3787. Reconstruction Strategies for Pure 2D Spatiotemporal MRI Albert Jang¹,², Alexander Gutierrez³, Di Xiao², Curtis A. Corum¹, Vuk Mandic⁴, Jarvis Haupt², Michael Garwood¹ ¹Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ²Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, United States; ³Department of Mathematics, University of Minnesota, Minneapolis, MN, United States; ⁴School of Physics and Astronomy, Department of Physics, University of Minnesota, Minneapolis, Minneapolis, MN, United States

Computer 75 3788. Accelerated Real Time Cardiac CINE Using Kernel PCA Based Spatio-Temporal Denoising Muhammad Usman¹, Claudia Prieto¹ ¹Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom

Computer 76 3789. POCS-Based Reconstruction of Multiplexed Sensitivity Encoded MRI (POCSMUSE): A General Algorithm for **Reducing Motion-Related Artifacts**

Mei-Lan Chu¹,², Hing-Chiu Chang¹, Hsiao-Wen Chung², Trong-Kha Truong¹, Mustafa R. Bashir³, Nan-kuei Chen¹,³ ¹Brain Imaging and Analysis Center, Duke University, Durham, NC, United States; ²Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; ³Department of Radiology, Duke University Medical Center, Durham, NC, United States

Electronic Poster		
Computer 77 3790.	Application-Specific Compressed Sensing for Improved Spatial and Temporal Resolution of Intracranial CE MRA Julia V. Velikina ¹ , Alexey A. Samsonov ¹ Medical Physics, University of Wisconsin - Madison, Madison, WI, United States	
Computer 78 3791.	Novel Sparse Model and Reconstruction for Dynamic Contrast-Enhanced MRI <i>Qiu Wang¹, Boris Mailhe¹, Robert Grimm², Marcel Dominik Nickel², Kai Tobias Block³, Hersh Chandarana³, Mariappan S. Nadar¹</i> ¹ Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, United States; ² MR Application & Workflow Development, Siemens Healthcare, Erlangen, Germany; ³ Department of Radiology, New York University School of Medicine, New York, NY, United States	
Computer 79 3792.	Validation of Reduced View-Sharing Compressed Sensing Reconstruction for DCE-MRI with Variable Flip Angle Acquisition Evan Levine ¹ , ² , Bruce Daniel ² , Brian Hargreaves ² , Manojkumar Saranathan ² ¹ Electrical Engineering, Stanford University, Stanford, CA, United States; ² Radiology, Stanford University, Stanford, CA, United States	
Computer 80 3793.	An Application of Compressed Sensing for Improved Temporal Fidelity in DCE Breast MRI Courtney K. Morrison ¹ , Roberta M. Strigel, ¹² , Kang Wang ³ , James H. Holmes ³ , Alexey Samsonov ² , Frank R. Korosec, ¹² , Julia Velikina ¹ ¹ Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ² Radiology, University of Wisconsin-Madison, Madison, WI, United States; ³ Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States	
Computer 81 3794.	Improved Image Quality of Time Resolved Contrast Enhanced MRA Using Compressed Sensing, Parallel Imaging and Singular Value Threshold Yijing Wu ^l , Kevin M. Johnson ^l , Patrick A. Turski ² , Kai Niu ^l , YinSheng Li ^l , GuangHong Chen ^l , Chuck A. Mistretta ^l ¹ Medical Physics, University of Wisconsin, Madison, WI, United States; ² Radiology, University of Wisconsin, Madison, WI, United States	
Computer 82 3795.	Adaptive Dynamic MRI Reconstruction Exploiting 3-D Spatiotemporal Non-Local Low Rank and Block-Wise Correlation Zivi Wang ¹ , Sheng Fang ¹ , Hua Guo ¹ ¹ Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China	
Computer 83 3796.	Increasing Spatial Resolution of Real-Time Cardiac Cine MRI Using Radial K-Space Undersampling with Golden Angle Ratio and Block-Wise Low Rank Contraint Elwin Bassett ¹ , ² , Ganesh Adluru ² , Promporn Suksaranjit ³ , Brent D. Wilson ³ , Edward VR DiBella ² , Daniel Kim ² ¹ Physics, University of Utah, Salt Lake City, UT, United States; ² UCAIR, Radiology, University of Utah, Salt Lake City, UT, United States; ³ Cardiology, Internal Medicine, University of Utah, Salt Lake City, UT, United States	
Computer 84 3797.	Low Latency Reconstruction of Free-Breathing Real-Time Cardiac Cine with VISTA and SENSE Samuel T. Ting ¹ , Rizwan Ahmad ¹ , Ning Jin ² , Juliana Serafim da Silveira ¹ , Orlando P. Simonetti ¹ ¹ The Ohio State University, Columbus, OH, United States; ² Siemens Healthcare, Chicago, IL, United States	
Computer 85 3798.	Comparison of a Multiple Free-Breathing Prescans (MFP) Method of Coil Sensitivity Calibration Against TGRAPPA During Free-Breathing Myocardial First-Pass Perfusion <i>Merlin J. Fair¹</i> , ² , <i>Peter D. Gatehouse¹</i> , ² , <i>Peter Drivas²</i> , <i>David N. Firmin¹</i> , ²	

¹NHLI, Imperial College London, London, United Kingdom; ²NIHR Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom

Computer 86 3799. Evaluation of the Errors in the Measured Dynamic Contrast Enhancement with TWIST View Sharing Using a **Novel Simulation Strategy** *Yuan Le¹, Marcel Dominik Nickel², Randall Kroeker³, Christian Geppert², Bruce Spottiswoode³, Chen Lin¹*

¹Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, United States; ²Siemens Healthcare, Erlangen, Bavaria, Germany; ³Siemens Medical Solutions, NC, United States

Computer 87 3800.	Non-Segmented Free-Breathing Cardiac Imaging Using Low-Rank Matrix Completion with a K-Space Variant Constraint Yu Y. Li ¹ ¹ Radiology, Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
Computer 88 3801.	Dual Projected Background Nulling Compressed Sensing for Robust Separation of Dynamic Contrast-Enhanced Angiograms Suhyung Park ¹ , Eung Yeop Kim ² , Jaeseok Park ³ ¹ Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Gyeong Gi-Do, Korea; ² Department of Radiology, Gachon University Gil Medical Center, Incheon, Korea; ³ Biomedical Imaging and Engineering Lab., Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon, Gyeong Gi-Do, Korea
Computer 89 3802.	Utilizing 3D Spatiotemporally Encoded Imaging from a Different Perspective <i>Jaekyun Ryu¹, Jang-Yeon Park¹</i> ¹ Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, Gyungki-do, Korea
Computer 90 3803.	Feasibility Test of Non-Iterative Reconstruction for High Spatiotemporal Resolution DCE <i>Zhifeng Chen¹, Ming Yang², Liyi Kang³, Ling Xia³, Feng Liu⁴</i> ¹ Zhejiang University, Hangzhou, Zhejiang, China; ² Philips Healthcare, Jiangsu, China; ³ Zhejiang University, Zhejiang, China; ⁴ The University of Queensland, Queensland, Australia
Computer 91 3804.	Highly Accelerated Dynamic Imaging Reconstruction Using Low Rank Matrix Completion and Partial Separability Model Jingyuan Lyu ^l , Yihang Zhou ^l , Ukash Nakarmi ^l , Leslie Ying ^l , ² ¹ Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, United States; ² Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY, United States
Computer 92 3805.	Accelerated Breath-Hold Liver Imaging Using Additional Information from Free-Breathing Acquisitions <i>Feiyu Chen¹</i> , ² , <i>Feng Huang³</i> , <i>Dan Zhu¹</i> , <i>Jia Ning¹</i> , <i>Huijun Chen¹</i> ¹ Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China; ² Electrical Engineering, Stanford University, Stanford, CA, United States; ³ Philips Healthcare (Suzhou). Co. Ltd, Jiangsu, China
Computer 93 3806.	Respiratory Phase Compressed Sensing Reconstruction Using Highly Under-Sampled Stack-Of-Stars Radial Acquisition Bo Li ¹ , ² , Cihat Eldeniz ¹ , Jue Zhang ² , ³ , Jing Fang ² , ³ , Hongyu An ¹ ¹ Biomedical Research Imaging Center, Department of Radiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ² College of Engineering, Peking University, Beijing, China; ³ Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
Computer 94 3807.	Free Breathing CINE with Low Rank Aided Manifold Smoothness Regularization Sunrita Poddar ¹ , John D. Newell ² , Mathews Jacob ¹ ¹ Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States; ² Radiology, University of Iowa, IA, United States
Computer 95 3808.	Accelerating Dynamic MRI Via Tensor Subspace Learning Morteza Mardani ¹ , Leslie Ying ² , Georgios B. Giannakis ³ ¹ University of Minnesota, Falcon Heights, MN, United States; ² Buffalo University, NY, United States; ³ University of Minnesota, Minneapolis, MN, United States
Computer 96 3809 .	Improving Low-Rank Plus Sparse Decomposition of Dynamic MRI Using Short Temporal Snippets Esben Plenge ¹ , Tal Shnitzer ¹ , Michael Elad ¹

511

¹Technion - Israel Institute of Technology, Haifa, Israel

Electron	ic Po	ster
Cancer:	Pre	clinical Studies of Animal Models
Exhibition	Hall	Tuesday 16:00-17:00
Computer 1	3810.	Radiation Induced Hypoxia in TRAMP Tumor Detected Using BOLD MRI <i>Yu-Chun Lin¹, Gigin Lin¹, Chun-Chieh Wang², Jiun-Jie Wang³</i> ¹ Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Linkou, Taiwan, Taiwan; ² Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taiwan; ³ Department of Medical Imaging and Radiological Sciences, Chang Gung University, Yaoyuan, Taiwan
Computer 2	3811.	Biomarkers of Aggressive Breast Cancer Revealed by Combining Magnetic Resonance Spectroscopic Imaging and Mass Spectrometric Imaging
		Lu Jiang ¹ , Kamila Chughtai ² , Tiffany Greenwood ¹ , Zaver M. Bhujwalla ¹ , Venu Raman ¹ , Gert Eijkel ² , Ron Heeren ² , Kristine Glunde ¹ ¹ Department of Radiology, Johns Hopkins University School of Medic, BALTIMORE, MD, United States; ² FOM-Institute AMOLF, Amsterdam, Netherlands
Computer 3	3812.	<i>In Vivo</i> Lactate T ₁ and T ₂ Relaxation Times in Preclinical Cancer Models – Absolute Quantification of Tumor Lactate Ellen Ackerstaff ¹ , H. Carl LeKaye ¹ , Natalia Kruchevsky ¹ , Kristen L. Zakian ¹ , Nirilanto Ramamonjisoa ¹ , Ekaterina Moroz ¹ , Inna S. Serganova ¹ , Ronald G. Blasberg ¹ , Jason A. Koutcher ¹ ¹ Memorial Sloan Kettering Cancer Center, New York, NY, United States
Computer 4	3813.	Comparison of APT- And NOE-CEST in Rat Glioma at 7 T– Potentials for Tumor Characterization and Detection of Tumor Cell Infiltration Mona Salehi Ravesh ¹ , Monika Huhndorf ² , Amir Moussavi ¹ , Kristin Koetz ¹ , Judith Becker ¹ , Kirsten Hattermann ³ , Susann Boretius ¹ ¹ Clinic of Radiology and Neuroradiology, Section Biomedical Imaging, Kiel, Schleswig-Holstein, Germany; ² Department of Radiology and Neuroradiology, Schleswig-Holstein, Germany; ³ Christian-Albrechts-University of Kiel, Anatomical Institute, Schleswig-Holstein, Germany
Computer 5	3814.	cPLA2IVA Inhibition in Basal-Like Breast Cancer: Reduced Tumor Growth with Metabolic, Vascular and Gene Expression Changes Hanna Maja Tunset ¹ , Eugene Kim ¹ , Jana Cebulla ¹ , Muhammad Riyas Vettukattil ¹ , Astrid Jullumstrø Feuerherm ² , Berit Johansen ² , Tone Frost Bathen ¹ , Siver Andreas Moestue ¹ ¹ MR Cancer Group, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; ² Avexxin AS, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
Computer 6	3815.	Spectroscopic Imaging with Hyperpolarized [1- ¹³ C]pyruvate Shows an Elevated Lactate/pyruvate Ratio in Contrast Enhancing and Non-Enhancing Brain Tumors of Orthotopic Patient-Derived Xenograft Models of Glioblastoma. <i>Richard Mair¹</i> , ² , <i>Alan Wright¹</i> , <i>Kieren Allinson³</i> , <i>Tiago Rodrigues¹</i> , <i>Colin Watts²</i> , <i>Kevin Brindle¹</i> ¹ CRUK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ² Division of Neurosurgery, University of Cambridge, Cambridgeshire, United Kingdom; ³ Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridgeshire, United Kingdom
Computer 7	3816.	Magnetization Transfer Imaging in a Mouse Model of Orthotopic Pancreatic Cancer Amir Moussavi ¹ , Kristin Koetz ¹ , Sanjay Tiwari ¹ , Susann Boretius ¹ ¹ Section Biomedical Imaging, Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel, Germany
Computer 8	3817.	<i>In Vivo</i> Monitoring of Enzyme Activity in a Transgenic Breast Cancer Model with Hyperpolarized C-13 Metabolic Activity Decomposition MRSI

Zihan Zhu^l, ², Peter J. Shin^l, ², Christine Leon Swisher³, Peder E.Z. Larson^l, ², Hsin-Yu Chen^l, ², Hong Shang^l, ², Eugene Milshteyn^l, ², Robert A. Bok^l, Andrei Goga⁴, Daniel B. Vigneron^l, ²

¹Department of Radiology and Biomedical Imaging, University of California, San Francsico, San Francisco, CA, United States; ²UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA, United States; ³Massachusetts General Hospital and Harvard Medical School, MA, United States; ⁴Department of Cell and Tissue Biology, University of California, San Francsico, San Francisco, CA, United States

Computer 9 3818. Multi-Parametric MpMRI to Characterize Brain and Bone Metastases in Disseminated Breast Cancer Natalie Julie Serkova¹, Diana M. Cittelly¹, Kendra M. Huber¹, Carol A. Sartorius¹ ¹University of Colorado Anschutz Medical Center, Aurora, CO, United States

Computer 10 3819. Source-Based Nosologic Imaging of Response to Therapy in Pre-Clinical Glioblastoma Sandra Ortega-Martorell¹, ², Ivan Olier³, Teresa Delgado-Goñi⁴, Magdalena Ciezka, ²⁵, Ana Paula Candiota², ⁵, Margarida Julià-Sapé², ⁵, Martí Pumarola, ²⁵, Paulo Lisboa¹, Carles Arús, ²⁵ ¹Liverpool John Moores University, Liverpool, Merseyside, United Kingdom; ²Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Cerdanyola del Vallès, Spain; ³The University of Manchester, Manchester, United Kingdom; ⁴The Institute of Cancer Research, London, United Kingdom; ⁵Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain

Computer 11 3820. Evaluation of Metronomic Chemotherapy in a Mouse Model Using DCE-MRI and DWI Melanie Freed¹, ², Kerryanne Winters¹, ², Jin Zhang¹, ², Sungheon G. Kim¹, ² ¹Center for Advanced Imaging Innovation and Research (CAI2R), Dept. Radiology, NYU School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Dept. Radiology, NYU School of Medicine, New York, NY, United States

Computer 12 3821. Molecular MR Imaging of Micrometastasis of Breast Cancer Zhuxian Zhou¹, Mohammed Qutaish¹, Zheng Han¹, Rebecca Schur¹, David Wilson¹, Zheng-Rong Lu¹ ¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States

Electronic Poster

Cancer: Clinical & Preclinical Studies on New Contrast Mechanisms

College of Wisconsin, Milwaukee, WI, United States

Exhibition Hall Tuesday 16:00-17:00

Computer 13 3822. MRI-Based Measurement of Tissue O₂ Scott C. Beeman¹, Ying-Bo Shui², John A. Engelbach¹, Joseph J.H. Ackerman¹, ³, Joel R. Garbow¹ ¹Radiology, Washington University, Saint Louis, MO, United States; ²Ophthalmology, Washington University, Saint Louis, MO, United States; ³Chemistry, Washington University, Saint Louis, MO, United States

Computer 14 3823. In Vivo MRI-Based 3-D Printed Molds and Individualized Tissue Sectioning Apparatuses Improve MRI-Histopathologic Co-Registration in Brain Cancer Patients Alexander E. Salmon¹, Brian J. Pellatt, Nikolai J. Mickevicius², Elizabeth J. Cochran³, Peter S. LaViolette⁴ ¹Neuroscience, Medical College of Wisconsin, Milwaukee, WI, United States; ²Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ³Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Radiology, Medical

Computer 15 3824. Gadolinium-Free Extracellular MR Contrast Agent for Tumor Imaging Joris Tchouala Nofiele¹, Inga E. Haedicke², Yong Le Zhu², Xiao-an Zhang², Hai-Ling Margaret Cheng, ¹³ ¹Hospital for Sick Children, Toronto, Ontario, Canada; ²Chemistry, University of Toronto, Toronto, Ontario, Canada; ³Institute of Biomaterials & Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

Electronic Poster

Breast Cancer: Technical

Exhibition	Hall	Tuesday	16.00-17.00
EXIIIDITIOII	пап	Tuesuay	10.00-17.00

Computer 16 3825. Monitoring Gas-Induced Haemodynamic Changes in the Breast with BOLD Contrast

Tess Catherwood¹, Andrew Patterson¹, Martin Graves¹, Reem Bedair¹, Roie Manavaki¹, Mary McLean², John Griffiths², Fiona Gilbert¹

¹Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, Cambridgeshire, United Kingdom; ²Cancer Research UK Cambridge Institute, Cambridge, Cambridgeshire, United Kingdom

Computer 17 3826. Quantitative Assessment of Procedure Success in MR-Guided Breast Biopsy Exams Xiaofeng Liu¹, E Morris², Robert Darrow¹, Ileana Hancu¹ ¹GE Global Research, Niskayuna, NY, United States; ²Memorial Sloan Kettering Cancer Center, NY, United States

Computer 18 3827. Accurate Discrimination of Benign and Malignant Breast Cancer in Suspicious Tumors Based on Semi-Quantitative DCE-MRI Employing Support Vector Machine

Saeedeh Navaei Lavasani¹,², Masoomeh Gity³, Mahnaz Nabil, ¹⁴, Anahita Fathi Kazerooni¹,², Hamidreza Saligheh Rad¹,²

¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ³Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ⁴Department of Statistics, Tarbiat Modares University, Tehran, Iran

Computer 19 3828. Evaluation of Benign and High-Risk, Nonmalignant Breast Lesions, Assessed as False-Positive at Contrast-Enhanced (CE) MRI Using DW Imaging and CE MR Imaging Features

Sunitha B. Thakur¹, Jung Hun Oh², Milans Soledad², Harini Veeraraghavan², Merlin M. Gnanasigamani², Elizabeth J. Sutton², Joseph O. Deasy², Elizabeth A. Morris² ¹Memorial Sloan Kettering Cancer Center, New York, NY, United States; ²Memorial Sloan Kettering Cancer Center, NY, United States

Computer 20 3829. Accurate Segmentation of Breast Lesions Based on Wavelet Kinetics: Comparison with Semi-Quantitative Features

Saeedeh Navaei Lavasani¹, ², Masoomeh Gity³, Anahita Fathi Kazerooni¹, ², Hamidreza Saligheh Rad¹, ² ¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Medical Physics and Biomedical Engineering, School of Medical Sciences, Tehran, Iran; ³Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ³Department of Radiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Computer 21 3830. Fast Bilateral Breast Coverage with High Spectral and Spatial Resolution (HiSS) MRI at 3T Milica Madvad¹ William A Waiss¹ Hirowski Aba¹ Cillian M Navstaad¹ Olufiamilano L Olonada² Mar

Milica Medved¹, William A. Weiss¹, Hiroyuki Abe¹, Gillian M. Newstead¹, Olufunmilayo I. Olopade², Maryellen L. Giger¹, Gregory S. Karczmar¹ ¹Department of Radiology, University of Chicago, Chicago, IL, United States; ²Department of Medicine, University of Chicago,

'Department of Radiology, University of Chicago, Chicago, IL, United States; 'Department of Medicine, University of Chicago, Chicago, IL, United States

Computer 22 3831. Prediction of Neoadjuvant Therapy Response Using Multiparametric MRI at 3T

Lenka Minarikova¹, Wolfgang Bogner¹, Katja Pinker-Domenig², Thomas Helbich², Siegfried Trattnig¹, Stephan Gruber¹

¹MRCE, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria

Computer 23 3832. Fat Suppression Techniques for High Resolution Breast DCE MRI at 7 Tesla: A Qualitative and Quantitative Comparison

Tijl Â. van der Velden¹, Alexander M. Th. Schmitz¹, Kenneth G.A. Gilhuijs¹, Wouter B. Veldhuis¹, Peter R. Luijten¹, Vincent O. Boer¹, Dennis W.J. Klomp¹ ¹Radiology, University Medical Center Utrecht, Utrecht, Netherlands

Computer 24 3833. Statistical Assessment of Diffusion Weighted Signal Decay in Breast Cancer Tumors at 3T: Mono-Exponential or Bi-Exponential?

Jing Yuan¹, Gladys G. Lo², Oi Lei Wong¹, Helen H.L. Chan², Abby Y. Ding¹, Ting Ting Wong³, Polly S.Y. Cheung³ ¹Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China; ²Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China; ³Breast Care Center, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China

Electronic I	'oster
Cancer: Pr	ostate Cancer
Exhibition Hal	Tuesday 16:00-17:00
Computer 25 383	Impact of Temporal Resolution on Diagnostic Performance of Quantitative DCE-MRI of Prostate Cancer: Evaluation Using a Novel Golden-Angle Radial Compressed-Sensing Sequence and Single Contrast Injection Nainesh Parikh ¹ , Justin Ream ² , Tobias Block ³ , Weisheng Xu ⁴ , Hersh Chandarana ² , Li Feng ³ , Samir Taneja ³ , Andrew Rosenkrantz ² ¹ Radiology, NYU School of Medicine, New York, NY, United States; ² Radiology, NYU School of Medicine, New York, NY, United States; ³ Radiology, Center for Advanced Imaging Innovation and Research NYU School of Medicine, New York, NY, United States; ⁴ Pathology, NYU School of Medicine, New York, NY, United States; ⁵ Urologic Oncology, NYU School of Medicine, New York, NY, United States
Computer 26 383:	5. Unsupervised Quality Control of Prostate MRSI Using Non Negative Matrix Factorization Nassim Tayari ¹ , Anca R. Croitor Sava ² , Diana M. Sima ² , Sabine Van Huffel ² , Arend Heerschap ¹ ¹ Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands; ² Department of Electrical Engineering, Katholieke Universiteit Leuven, Leuven, Belgium
Computer 27 383	 Development of Quantitative Multi-Parametric MRI Models for Prostate Cancer Assessment Using Registered Correlative Pathology Gregory J. Metzger¹, Chaitanya Kalavagunta¹, Stephen C. Schmechel², Patrick J. Bolan¹, Badrinath Konety³, Benjamin Spilseth⁴, Christopher A. Warlick³, Joseph S. Koopmeiners⁵ ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Department of Pathology, University of Washington, WA, United States; ³Department of Urologic Surgery, University of Minnesota, Minneapolis, MN, United States; ⁴Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ⁵Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States; ⁵Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States;
Computer 28 383	7. Computer Aided Quantitative Analysis of T2-Weighted Prostate MR Images Kai Zhao ¹ , Chengyan Wang ² , Juan Hu ¹ , Xiaodong Zhang ¹ , Jue Zhang ² , Xiaoying Wang ¹ ¹ Department of Radiology, Peking University First Hospital, Beijing, China; ² College of Engineering, Peking University, Beijing, China
Computer 29 383	3. Intraprostatic Lipid Spectroscopic Imaging of the Prostate Cancer Xin Li ^l , Jackilen Shannon ^l , Mark G. Garzotto ^l , ² , Chris Amling ^l , William J. Woodward ^l , George Thomas ^l , Elizabeth Dacey ^l , ² , Xiaohua Wang ^l , ² , Paige Farris ^l , Wesley Stoller ² , Ann Martinez Acevedo ^l , Amy Palma ^l , Manoj K. Sammi ^l , William D. Rooney ^l , Fergus V. Coakley ^l , Jonathan Q. Purnell ^l ¹ Oregon Health & Science University, Portland, OR, United States; ² Portland VA Medical Center, Portland, OR, United States
Computer 30 383	D. Zone Specific ADC + DCE-MRI Composite Maps to Aid in the Detection and Evaluation of Prostate Cancer Naira Muradyan ¹ , Osama Elbuluk ² , Baris Turkbey ² , Sandeep Sankinent ² , Maria J. Merino ³ , Senthil Periaswamy ¹ , Marcelino Bernardo ² , Francois Cornud ⁴ , Peter L. Choyke ² ¹ iCAD, Inc., Nashua, NH, United States; ² Molecular Imaging Program, NCI, NIH, Bethesda, MD, United States; ³ Laboratory of Pathology, NCI, NIH, Bethesda, MD, United States; ⁴ Tourville Imaging Centre, Paris, France
Computer 31 384	Performance of High B-Value DWI in Identifying High Risk Prostate Cancer Patients Francesca Mertan ¹ , ² , Harsh K. Agarwal, ²³ , Sandeep Sankineni ² , Marcelino Bernardo ² , ⁴ , Dagane Daar ² , ⁴ , Maria Merino ² , Bradford Wood ² , Peter Pinto ² , Peter L. Choyke ² , Baris Turkbey ² ¹ Grove City College, Grove City, PA, United States; ² National Institutes of Health, Bethesda, MD, United States; ³ Philips Research NA, Briarcliff Manor, NY, United States; ⁴ Leidos Biomedical Research Inc., Frederic National Laboratory for Cancer Research, Frederick, MD, United States

Computer 32 3841. Hyperpolarized Lactate Production Correlates with Gleason Grade in Patient-Derived Tissues of Prostate Cancer

Renuka Sriram¹, Mark Van Criekinge¹, Justin DeLos Santos¹, Daniel B. Vigneron¹, Robert Bok¹, Donna Peehl², Kayvan Rahimi Keshari³, John Kurhanewicz¹ ¹University of California, San Francisco, San Francisco, CA, United States; ²Stanford University, CA, United States; ³Memorial Sloan Kettering Cancer Center, NY, United States

Computer 33 3842. Development of a Screening MRI Protocol for the Detection of Prostate Cancer: Initial Experience

Shivani Pahwa¹, Robert Abouassaly², Yun Jiang³, Karin Herrmann⁴, ⁵, Raj Paspulati, ⁵⁶, William Tabayoyong⁷, Soham Shah⁷, Brian Minnillo⁷, Gregory MacLennan⁷, Mark Griswold¹, ⁸, Lee Ponsky, ⁵⁹, Vikas Gulani, ⁵¹⁰ ¹Radiology, Case Western Reserve University, Cleveland, OH, United States; ²University Hospitals, OH, United States; ³Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ⁴Radiology, University Hospitals, OH, United States; ⁵CWRU School of Medicine, OH, United States; ⁶UH Case Medical Center, OH, United States; ⁹Urology, University Hospitals, OH, United States; ¹⁰Radiology, UH Case Medical Center, OH, United States; ¹⁰

Computer 34 3843. Small Field-Of-View Single-Shot EPI-DWI of the Prostate: Evaluation of Spatially-Tailored Two-Dimensional Radiofrequency Excitation Pulses

Daniel Hausmann¹, Nils Rathmann¹, Metin Sertdemir¹, Philipp Riffel¹, Anja Weidner¹, Stephan Kannengiesser², John N. Morelli³, Stefan O. Schoenberg¹, Ulrike I. Attenberger¹

¹Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Germany, Mannheim, Baden-Württemberg, Germany; ²MR Applications Development, Siemens Healthcare, Erlangen, Germany; ³Department of Radiology, St. John's Medical Center, Tulsa, OK, United States

Computer 35 3844. The ADC Ratio of Tumour to Normal Prostate as a Robust Method for Quantifying Diffusion Weighted Imaging of the Prostate

Tristan Barrett¹, Andrew N. Priest, Edward M. Lawrence¹, Debra Goldman², Vincent J. Gnanapragasam³, Evis Sala⁴, Ferdia A. Gallagher¹

¹Radiology, Cambridge University Hospitals, Cambridge, Cambridgeshire, United Kingdom; ²Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, United States; ³Urology, Cambridge University Hospitals, Cambridge, Cambridgeshire, United Kingdom; ⁴Radiology, Memorial Sloan Kettering Cancer Center, New York, United States

Computer 36 3845. Investigation of Reduced FOV CEST in Probing Prostate Cancer

Chunmei Li¹, Bing Wu², Min Chen¹ ¹Beijing Hospital, Beijing, China; ²GE healthcare China, Beijing, Beijing, China

Computer 37 3846. Prostate Diffusion Distortion Correction with Restriction Spectrum Imaging

Rebecca Rakow-Penner¹, Nathan White¹, Daniel Margolis², J. Kellogg Parsons³, Natalie Schenker-Ahmed¹, Joshua Kuperman¹, Hauke Bartsch¹, Hyung Choi², William Bradley¹, Ahmed Shabaik⁴, Jiaoti Huang⁵, Michael Liss⁶, Leonard Marks⁷, Christopher Kane³, Robert Reiter⁷, Steven Raman², David Karow¹, Anders Dale¹ ¹Radiology, University of California San Diego, San Diego, CA, United States; ²Radiology, University of California Los Angeles, Los Angeles, CA, United States; ³Urology, University of California San Diego, San Diego, CA, United States; ⁴Pathology, University of California San Diego, CA, United States; ⁶Urology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States; ⁷Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States; ⁷Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States; ⁷Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States; ⁷Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of Texas Health Science Center San Antonio, San Antonio, TX, United States; ⁷Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States; ⁶Urology, University of California Los Angeles, CA, United States;

Computer 38 3847. Discriminating Low-Grade from High-Grade Peripheral Zone Prostate Cancer by Multiparametric MRI: A Multicenter Study

Marnix C. Maas¹, Geert J.S. Litjens, ¹², Alan J. Wright³, Masoom A. Haider⁴, Katarzyna J. Macura⁵, Kirsten M. Selnæs⁶, Daniel J.A. Margolis⁷, Thomas Helbich⁸, Berthold Kiefer⁹, Jurgen J. Fütterer¹, Tom W.J. Scheenen¹ ¹Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, GLD, Netherlands; ²Pathology, Radboud University Medical Center, Nijmegen, GLD, Netherlands; ³Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom; ⁴Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada; ⁵Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States; ⁶Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; ⁷Radiology, UCLA David Geffen School of Medicine, Los Angeles, CA, United States; ⁸Biomedical Imaging and Image-guided Therapy, Medical University Vienna - General Hospital Vienna, Vienna, Austria; ⁹Siemens AG Healthcare, Erlangen, Germany

Computer 39 3848. Quantitative Differentiation of Prostate Cancer from Normal Peripheral Zone Using Magnetic Resonance Fingerprinting (MRF) and Diffusion Mapping

Chaitra Badve^T, Alice Yu², Shivani Pahwa³, Matthew Rogers², Yun Jiang⁴, Yiying Liu⁵, Mark Schluchter⁵, Lee Ponsky⁶, ⁷, Mark Griswold⁴, Vikas Gulani, ¹³

¹Radiology, University Hospitals, Cleveland, OH, United States; ²School of Medicine, Case Western Reserve University, Cleveland, OH, United States; ³Radiology, Case Western Reserve University, Cleveland, OH, United States; ⁴Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ⁵Biostatistics, Case Western Reserve University, Cleveland, OH, United States; ⁶Urology, University Hospitals, Cleveland, OH, United States; ⁷Urology, Case Western Reserve University, Cleveland, OH, United States; ⁶Urology, University Hospitals, Cleveland, OH, United States; ⁷Urology, Case Western Reserve University, Cleveland, OH, United States; ⁸Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case Western Reserve University, Cleveland, OH, United States; ⁹Urology, Case W

Computer 40	3849.	Evaluation of the Diagnostic Differentiation of Prostate Cancer from Benign Prostate Hyperplasia Using Intra- Voxel Incoherent Motion MR Imaging <i>Meiyu Sun¹, Ailian Liu¹, Ye Li¹, Lihua Chen¹, Qingwei Song¹, Bin Xu¹, Ziheng Zhang²</i> ¹ the first affiliated hospital of Dalian Medical University, Dalian, Liaoning, China; ² GE healthcare China, Beijing, China
Computer 41	3850.	The Role of Multiparametric MRI in Detection of Prostate Cancer in Patients with Total Serum Prostate Specific Antigen Levels of 4-10 Ng/mL: A Prospective Cohort Study Rui Wang ¹ , Juan Hu ¹ , Yuanyuan Jiang ¹ , Xiaoying Wang ¹ ¹ Radiology, Peking university first hospital, Beijing, China
Computer 42	3851.	Saturation Duration and Power Optimization for APT MRI of Prostate Cancer <i>Harsh K. Agarwal¹, ², Jochen Keupp³, Marcelino Bernardo², Baris Turkbey², Peter L. Choyke²</i> ¹ Philips Research NA, Briarcliff Manor, NY, United States; ² National Institutes of Health, Bethesda, MD, United States; ³ Philips Research Laboratories, Hamburg, Germany
Computer 43	3852.	Correlation Between Diameter of Prostate Cancer Foci on Multiparametric Prostate MRI and Whole Mount Histopathology: Stratified by PI-RADS and Gleason Score <i>Pooria Khoshnoodi¹, Nelly Tan¹, Daniel J. A. Margolis¹, Wei-Chan Lin¹, Somrach Thamtorawat¹, David Y. Lu², Jiaoti</i> <i>Huang², Robert E. Reiter³, Steven S. Raman¹</i> ¹ Radiology, University of California, Los Angeles, Los Angeles, CA, United States; ² Pathology, University of California, Los

Computer 44 3853. Diagnostic Accuracy of NaF PET-MRI in Differentiating Bone Metastases from Benign Bone Lesions in Metastatic Prostate Cancer. Taylor Stone¹, Luis Beltran² ¹New York University, New York, NY, United States; ²New York University, NY, United States

Angeles, Los Angeles, CA, United States; ³Urology, University of California, Los Angeles, Los Angeles, CA, United States

Computer 45 3854. Combined MR Volumetry and Diffusion Weighted Imaging to Better Predict Clinically Significant Prostate Cancer on MRI/Ultrasound Fused Guided Biopsy? Stephanie Nougaret¹, Nicola L. Robertson¹, Evis Sala¹, Hedvik Hricak¹, Behfar Ehdaie², Hebert A. Vargas¹ ¹Radiology department, Memorial Sloan Kettering Cancer Center, New York, NY, United States; ²Urology department, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Computer 46 3855. Clinical Application of 3D High Resolution Multi-Shot Diffusion-Weighted MRI in Prostate Cancer Patients Undergoing Active Surveillance Protocol for Low-Risk Prostate Cancer Christopher Nguyen¹, ², Ali-Reza Sharif-Afshar³, Zhaoyang Fan¹, Sidney Wilson², Xiaoming Bi⁴, Lucas Payor⁵, Rola Saouaf⁸, Hyung Kim³, Debiao Li¹, ²

¹Biomedical Imaging Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States; ²Bioengineering, University of California Los Angeles, Los Angeles, CA, United States; ³Surgery / Urology, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ⁴Siemens Healthcare, Los Angeles, CA, United States; ⁵Radiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States

Electronic Poster

Tumor Therapy Responses: Preclinical & Clinical (except Brain Tumor)

Exhibition Hall Tuesday 16:00-17:00

Computer 49 3856. Constrained Multi-Agent Tracer-Kinetic Modeling to Assess Tumor Vascular Changes Induced by DMXAA Treatment

Igor Jacobs¹, *Stefanie Hectors¹*, *Gustav Strijkers¹*, ², *Klaas Nicolay¹*, *Matthias Schabel³*, ⁴ ¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands; ³Advanced Imaging Research Center, Oregon Health and Science University, Portland, OR, United States; ⁴Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States Computer 50 3857. Micro-Vascular Effects of Photodynamic Therapy in Tumors Evaluated with Dynamic Contrast-Enhanced MRI Tom Schreurs¹, ², Stefanie Hectors¹, Igor Jacobs¹, Holger Grüll¹, ³, Gustav Strijkers¹, ², Klaas Nicolay¹ ¹Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands; ³Oncology Solutions, Philips Research, Eindhoven, Netherlands

Computer 51 3858. Multiparametric MRI Analysis for the Evaluation of MR-Guided High Intensity Focused Ultrasound Treatment Stefanie Hectors¹, Igor Jacobs¹, Edwin Heijman², Jochen Keupp³, Monique Berben², Gustav Strijkers¹, ⁴, Holger Grüll¹, ², Klaas Nicolay¹ ¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Oncology Solutions, Philips Research Europe, Eindhoven, Netherlands; ³Tomographic Imaging Systems, Philips Research Europe, Hamburg, Germany; ⁴Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands

Computer 52 3859. Prediction of Treatment Response and Tumor Recurrence Using MR Elastography Kay Pepin¹, Steven Ansell², Richard L. Ehman³, Kiaran McGee³ ¹Graduate School, Mayo Clinic, Rochester, MN, United States: ²Hematology, Mayo Clinic, MN, United States: ³Ra

¹Graduate School, Mayo Clinic, Rochester, MN, United States; ²Hematology, Mayo Clinic, MN, United States; ³Radiology, Mayo Clinic, MN, United States

Computer 53 3860. Metabolic Imaging of Early Tumor Therapy

Charles S. Springer¹,², Xin Li³, Mohan L. Jayatilake⁴, Martin M. Pike,²³, William D. Rooney³, Rosalie C. Sears,²⁵, Wei Huang,²³

¹Advanced Imaging Research Center, Oregon Health & Science University, Portland, Or, United States; ²Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States; ³Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ⁴Radiography and Radiotherapy, University of Peradeniya, Peradeniya, Sri Lanka; ⁵Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, United States

Computer 54 3861. Immunocytokine Facilitation of Natural Killer Cells Accumulation in Tumors

Naomi S. Sta Maria¹, Samuel R. Barnes¹, David Colcher², Andrew A. Raubitschek², Russell E. Jacobs¹ ¹Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States; ²Cancer Immunotherapeutics & Tumor Immunology, City of Hope, Duarte, CA, United States

Computer 55 3862. Whole Body MDixon MRI in Multiple Myeloma: Quantitative Derived Parameters Changes Following Chemotherapy

Arash Latifoliojar¹, Margaret Hall-Craggs², Alan Bainbridge², Stuart Taylor¹, Kwee Yong¹, Neil Rabin², Matthew Benger², Liam Watson², Michelle Siu², Shonit Punwani¹ ¹University College London, London, United Kingdom; ²University College London Hospital, London, United Kingdom

Computer 56 3863. DCE-MRI Kinetic Model and Curve Pattern Analyses for Predicting Response and Survivals in Osteosarcoma Patients

Junyu Guo¹, *Wilburn E. Reddick¹* ¹Radiological Sciences, St Jude Children's Research Hospital, Memphis, TN, United States

Computer 57 3864. Predicting Response to Sunitinib Second-Line Therapy in Gastrointestinal Stromal Tumors Using Non-Gaussian Diffusion MRI

Yi Sui¹, ², *Lei Tang³*, *Kejia Cai²*, ⁴, *Shun-Yu Gao³*, *Frederick C. Damen²*, ⁴, *Ying-Shi Sun³*, *Xiaohong Joe Zhou²*, ⁵ ¹Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ²Center for MR Research, University of Illinois Hospital & Health Sciences System, Chicago, IL, United States; ³Radiology, Peking University Cancer Hospital & Institute, Beijing, China; ⁴Radiology, University of Illinois Hospital & Health Sciences System, Chicago, IL, United States; ⁵Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois Hospital & Health Sciences System, Chicago, IL, United States;

Computer 58 3865. DCE-MRI Assessment of Soft-Tissue Sarcoma Response to Preoperative Therapy

Wei Huang¹, Megan L. Holtorf¹, Aneela Afzal¹, Yiyi Chen¹, Brooke R. Beckett¹, Christopher W. Ryan¹ ¹Oregon Health & Science University, Portland, OR, United States

Computer 59 3866. Feasibility of Performing Weekly Intravoxel Incoherent Motion DW-MRI and Monitoring Anatomical and Functional Changes in Nasopharynx Tumors During Chemoradiation Therapy Yonggang Lu¹, Nancy Lee¹, Vaois Hatzoglou¹, Nadeem Riaz¹, Joseph O. Deasy¹, Amita Shukla-Dave¹

¹Memorial Sloan-Kettering Cancer Center, NEW YORK, United States

Computer 60 3867. The Diagnostic Performance of Hybrid FDG-PET/MR Compared to FDG-PET/CT in Adult Lymphoma Patients

*Alexander R. Guimaraes*¹, ², *Wendy Atkinson*³, *Ephraim Hochberg*⁴, *Jeremy Abramson*⁵, *Onofrio Catalano*², *Bruce R. Rosen*², *Ciprian Catana*²

¹Radiology, Oregon Health Sciences University, Portland, OR, United States; ²Radiology, Martinos Center for Biomedical imaging, Charlestown, MA, United States; ³Radiology, Martinos Center for Biomedical imaging, Charlesown, MA, United States; ⁴Medicine, Massachusetts General Hospital, Boston, MA, United States; ⁵Medicine, Massachusetts General Hospital, MA, United States

Computer 61 3868. Spontaneous R2* Fluctuations for Non-Invasive Detection of Cyclic Hypoxia in Head and Neck Squamous Cell Carcinoma Xenografts

Rafal Panek¹, Lauren C.J. Baker, Liam Welsh¹, Carol Box, Suzanne A. Eccles, Kate L. Newbold¹, Kevin J. Harrington¹, Maria A. Schmidt¹, Martin O. Leach¹, Simon P. Robinson ¹Royal Marsden NHS FT and Institute of Cancer Research, Sutton, Surrey, United Kingdom

Computer 62 3869. Effects of Acquisition Time Variation on DCE-MRI Prediction of Breast Cancer Therapy Response

Andy J. Kaempf¹, Yiyi Chen¹, Alina Tudorica¹, Stephen Y-C Chui¹, Arpana Naik¹, Karen Y. Oh¹, Nicole Roy¹, Megan L. Troxell¹, Aneela Afzal¹, Megan L. Holtorf¹, Mohan Jayatilake¹, Wei Huang¹ ¹Oregon Health & Science University, Portland, OR, United States

Computer 63 3870. Effects of AIF Variations on DCE-MRI Prediction of Breast Cancer Therapy Response Aneela Afzal¹, Alina Tudorica¹, Yiyi Chen¹, Stephen Y-C Chui¹, Arpana Naik¹, Megan L. Troxell¹, Kathleen A. Kemmer¹, Karen Y. Oh¹, Nicole Roy¹, Megan L. Holtorf¹, Xin Li¹, Wei Huang¹ ¹Oregon Health & Science University, Portland, OR, United States

Electronic Poster

Cancer: Other, Original Research

Exhibition Hall Tuesday 16:00-17:00

Computer 64 3871. Using UTE Images for Bone/air Segmentation: Applications for Radiation Therapy Weili Zheng¹, Joshua P. Kim¹, Indrin J. Chetty¹, Carri K. Glide-Hurst¹ ¹Radiation Oncology, Henry Ford Health System, Detroit, MI, United States

Electronic Poster

Tumor Perfusion & PermeabilityApplications

Exhibition Hall Tuesday 16:00-17:00

Computer 65 3872. Evaluating Sources of Uncertainty on DCE-MRI Parameter Estimates When Using Different AIFs

Mihaela Rata¹, Matthew R. Orton¹, Christina Messiou¹, Helen Young², Nandita de Souza¹, David J. Collins¹, Martin O. Leach¹

¹Radiotherapy and Imaging Department, CR-UK and EPSRC Cancer Imaging Centre, Institute of Cancer Research and Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ²Early Clinical Development,, AstraZeneca,, Macclesfield, Cheshire, United Kingdom

Computer 66 3873. Classical and Knowledge-Based Pharmacokinetic Model Selection Techniques in Analysis of Dynamic Contrast Enhanced MRI Studies: Performance and Bias Comparison

Hassan Bagher-Ebadian¹, ², Mohammadreza Mohammadian-Behbahani³, ⁴, Azimeh Noorizadeh Vahed Dehkordi³, ⁵, James R. Ewing, ²⁶, Alireza Kamali-Asl³, Siamak P. Nejad-Davarani⁷, Hamed Moradi⁸, Stephen Brown, ²⁹, Brent Griffith¹⁰, Ali S. Arbab¹¹, Tom Mikkelsen¹², Lisa Scarpace¹², Hamid Soltanian-Zadeh¹, ¹³ ¹Radiology and Research Administration, Henry Ford Hospital, Detroit, MI, United States; ²Physics, Oakland University, Rochester,

¹Radiology and Research Administration, Henry Ford Hospital, Detroit, MI, United States; ²Physics, Oakland University, Rochester, MI, United States; ³Nuclear Engineering, Shahid Beheshti University, Tehran, Iran; ⁴Nuclear Engineering, Amir-Kabir University of Technology, Tehran, Iran; ⁵Nuclear Engineering, Najaf Abad Branch, Islamic Azad University, Isfahan, Iran; ⁶Neurology, Henry Ford Hospital, Detroit, MI, United States; ⁷Neurology, Henry Ford Hospital, MI, Iran; ⁸Nuclear Engineering, Shiraz University, Shiraz, Fars, Iran; ⁹Radiation Oncology, Henry Ford Hospital, Detroit, MI, United States; ¹⁰Radiology, Henry Ford Hospital, Detroit, MI,

United States; ¹¹GRU Cancer Center, Georgia Regents University, Atlanta, GA, United States; ¹²Neurosurgery, Henry Ford Hospital, Detroit, MI, United States; ¹³CIPCE, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

- Computer 67 3874. Dynamic Contrast Enhanced Magnetic Resonance Imaging Evaluates Therapeutic Mechanism of Nab-Paclitaxel in Pancreatic Cancer Patient Derived Xenograft Mouse Models. Hyunki Kim¹, Sharon Samuel¹, Marie Warren¹, Guihua Zhai¹, William Grizzle¹, Denise Oelschlager¹, Pedro Lopez-Casas², Manuel Hidalgo², Joy Kovar³, Kurt Zinn¹, Donald Buchsbaum¹ ¹University of Alabama at Birmingham, Birmingham, AL, United States; ²Spanish National Cancer Research Center, Madrid, Spain; ³LI-COR Biosciences, NE, United States
- Computer 68 3875. Dynamic Contrast Enhanced MRI Detection of a Central Defect in Clear Cell Renal Cell Carcinoma Correlates with a Tumor Scar and Lower Tumor Proliferation Rate

Yue Zhang¹, Payal Kapur², ³, Qing Yuan¹, Ananth Madhuranthakam¹, ⁴, Ingrid Carvo⁵, Sabina Signoretti⁵, Ivan Dimitrov⁶, Yin Xi¹, Katherine Wicks¹, Jeffrey Cadeddu, ¹³, Vitaly Margulis³, James Brugarolas⁷, ⁸, Ivan Pedrosa¹, ⁴ ¹Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ²Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁵Pathology, Brigham and Women's Hospital, Boston, MA, United States; ⁶Philips Medical Systems, Cleveland, OH, University of Texas Southwestern Medical Center, Dallas, TX, University of Texas Southwestern Medica

Computer 69 3876. Measurements of Spontaneous R2* Fluctuations for Acute Hypoxia Detection in Head and Neck Cancer Rafal Panek¹, Liam Welsh¹, Maria A. Schmidt¹, Kate L. Newbold¹, Kee Wong¹, Angela M. Riddell¹, Dow-Mu Koh¹, Alex Dunlop¹, Dualta Mcquaid¹, Shreerang A. Bhide¹, Kevin J. Harrington², Christopher M. Nutting², Georgina Hopkinson³, Cheryl Richardson³, Simon P. Robinson, Martin O. Leach¹ ¹Royal Marsden NHS FT and Institute of Cancer Research, Sutton, Surrey, United Kingdom; ²Royal Marsden NHS FT and Institute of Cancer Research, London, United Kingdom; ³Royal Marsden NHS FT, London, United Kingdom

Electronic Poster

Cancer: Other Cancers

Exhibition Hall Tuesday 16:00-17:00

 Computer 70 3877. Evaluation of Renal Masses Using Multiparametric MRI: Correlation with Histopathology Durgesh Kumar Dwivedi¹, ², Girdhar Singh Bora³, Rajeev Kumar³, Sanjay Sharma⁴, Sanjay Thulkar⁴, Siddhartha Datta Gupta⁵, Naranamangalam Raghunathan Jagannathan²
 ¹Radiodiagnosis, King George's Medical University, Lucknow, U.P., India; ²NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Urology, All India Institute of Medical Sciences, New Delhi, Delhi, India; ⁴Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India; ⁵Pathology, All India Institute of Medical Sciences, New Delhi, Delhi, India

Computer 71 3878. Multi-Parametric Whole Body MRI in Paediatric Lymphoma; a Comparison with Reference Standard PET-CT Arash Latifoltojar¹, Paul Humphries², Stuart Taylor¹, Ananth Shankar², Stephen Daw², Shonit Punwani¹ ¹University College London, London, United Kingdom; ²University College London Hospital, London, United Kingdom

Electronic Poster

Breast Cance	r Clinical
Exhibition Hall	Tuesday 16:00-17:00
Computer 73 3879.	Clinical Evaluation of TWIST DIXON Sequence with Flexible View Sharing for Breast DCE MRI: Can Initial
	Uptake Phase Provide Accurate Diagnosis <i>Yuan Le¹, Hal D. Kipfer¹, Shadie S. Majidi¹, Brian Dale², Marcel Dominik Nickel³, Randall Kroeker², Elisabeth Weiland³, Chen Lin¹ ¹Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, United States; ²Siemens Medical Solutions, NC, United States; ³Siemens Healthcare, Erlangen, Bavaria, Germany</i>

Computer 74 3880. Assessment of the Correlation Between ADC Values and Oncotype DX Score in Estrogen-Receptor Positive, Lymph Node Negative, Breast Cancers Sunitha B. Thakur¹, Manuela Durando², Milans Soledad³, Elizabeth J. Sutton², Dilip Giri², Elizabeth A. Morris² ¹Memorial Sloan Kettering Cancer Center, New York, NY, United States; ²Memorial Sloan Kettering Cancer Center, NY, United States; ³Memorial Sloan Kettering Cancer Center, New YORK, NY, United States

Computer 75 3881. Multi-Parametric Longitudinal Study for the Evaluation of Tumor Heterogeneity in Breast Cancer Patients Using Simultaneous MRSI & DWI Techniques

Naranamangalam R. Jagannathan¹, Khushbu Agarwal¹, Uma Sharma¹, Smriti Hari², Vurthaluru Seenu³, Rajinder Parshad³

¹Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, Delhi, India;

Computer 76 3882. Implementation of Multiparametric Magnetic Resonance Imaging with High-Resolution Dynamic Contrast-Enhanced and Diffusion-Weighted Magnetic Resonance Imaging at 7T Improves the Assessment of Breast Tumors: A Feasibility Study

Katja Pinker¹, Pascal Baltzer¹, Wolfgang Bogner², Doris Leithner¹, Siegfried Trattnig², Olgica Zaric², Peter Dubsky³, Rupert Bartsch⁴, Zsuzsanna Bago-Horvath³, Stephan Gruber², Michael Weber¹, Thomas H. Helbich¹ ¹Dept. of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria; ²Dept. of Biomedical Imaging and Image-guided Therapy, MR Centre of Excellence, Medical University of Vienna, Vienna, Austria; ³Dept. of Surgery, Medical University of Vienna, Vienna, Austria; ⁴Dept. of Internal Medicine, Division of Oncology, Medical University of Vienna, Austria

- Computer 77 3883. Registration of Multiparametic Breast MRI Lawrence Kenning¹, Martin Pickles¹, Lindsay Turnbull¹ ¹Centre for MR Investigations, Hull York Medical School at University of Hull, Hull, United Kingdom
- Computer 78 3884. Multi-Parametric MRI in Evaluating Pre-And Post-Menopausal ER Positive Breast Cancer Elizabeth O'Flynn¹, David Collins¹, James D'Arcy¹, Maria Schmidt¹, Nandita deSouza¹ ¹CRUK Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
- Computer 79 3885. Assessment of Pathologic Complete Response of Breast Cancer with Different Molecular Subtypes After Neoadjuvant Chemotherapy with Dynamic Contrast-Enhanced MR Imaging Yuan Jiang^l, Naishan Qin^l, Xiaoying Wang^l, Li Guo^l ¹Radiology Department, Peking University First Hospital, Beijing, China
- Computer 80 3886. Optimization of Quantitative MRI Background Parenchymal Enhancement Metrics to Predict Breast Cancer Risk Cheng-Liang Liu¹, Savannah C. Partridge¹, Diana L. Lam¹, Constance D. Lehman¹, Habib Rahbar¹ ¹Department of Radiology, University of Washington, Seattle, WA, United States

Computer 81 3887. Clinical Utility of Sequential DWI in Studying Tumor Margins as an Aid to Breast Conservation Surgery Naranamangalam R. Jagannathan¹, Khushbu Agarwal¹, Rani G. Sah¹, Uma Sharma¹, Smriti Hart², Vurthaluru Seenu³, Rajinder Parshad³ ¹Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, Delhi, India; ²Department of Radiodiagnosis, All India Institute of Medical Sciences, New Delhi, Delhi, India; ³Department of Surgical Disciplines, All India Institute of Medical Sciences, New Delhi, India; ³Department of Surgical Disciplines, All India

Computer 82 3888. Evaluation of the Efficiency of DTI Anisotropy Indices to Detect Breast Cancer Edna Furman-Haran¹, Dov Grobgeld², Noam Nissan², Myra Feinberg-Shapiro³, Tania Zehavi³, Zvi Kaufman³, Hadassa Degani² ¹Department of Biological Services, The Weizmann Institute of Science, Rehovot, Israel; ²Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel; ³Meir Medical Center, Kfar Saba, Israel

Computer 83 3889. A Preliminary Study of Diffusion Kurtosis Imaging for Assessment of Breast Lesions Shiteng Suo¹, Fang Cheng¹, He Wang², Jia Hua¹, Jianrong Xu¹ ¹Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China, China; ²Philips Research Chinia, Shanghai, China, China

Computer 84 3890. Improved Diagnostic Performance of 3T Breast MRI Using Perfusion-Adjusted ADC Values Niloufar Fozouni¹, Cheng-Liang Liu¹, Habib Rahbar¹, Constance D. Lehman¹, Savannah C. Partridge¹ ¹Department of Radiology, University of Washington, Seattle, WA, United States

Computer 85 3891. Intravoxel Incoherent Motion MRI May Reveal Microvascular Variation of Fibroglandular Tissues in Breast Cancer

Jing Yuan¹, Gladys G. Lo², Oi Lei Wong¹, Helen H.L. Chan², Abby Y. Ding¹, Ting Ting Wong³, Polly S.Y. Cheung³ ¹Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China; ²Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China; ³Breast Care Center, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong, China

Computer 86 3892. Intralesional Characteristics of Correlated 18-Fluorodeoxyglucose PET and Intravoxel Incoherent Motion Parameters in Locally Advanced Breast Cancer

Jason Ostenson¹, Linda Moy¹, Sungheon G. Kim¹, Amy Melsaether¹, Komal Jhaveri², Christian Geppert³, David Faul³, Francisco Esteva², Sylvia Adams², Freya Schnabel⁴, Kimberly Jackson¹, Joon Lee¹, Christopher Glielmi³, Gene Young Cho¹, ⁵, Thorsten Feiweier⁶, Eric E. Sigmund¹

¹Department of Radiology, NYU Langone Medical Center, New York, NY, United States; ²Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY, United States; ³Siemens Medical Solutions, New York, NY, United States; ⁴Department of Surgery, NYU Langone Medical Center, New York, NY, United States; ⁵Sackler Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, United States; ⁶Siemens AG, Erlangen, Germany

Computer 87 3893. Initial Results of the Application of a Modified TWIST Sequence with Flexible View Sharing in Breast DCE-MRI

Yuan Le^{l} , Hal D. Kipfer^l, Marcel Dominik Nickel², Randall Kroeker³, Stephanie P. Holz^l, Elisabeth Weiland², Chen Lin^{l}

¹Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN, United States; ²Siemens Healthcare, Erlangen, Bavaria, Germany; ³Siemens Medical Solutions, NC, United States

Electronic F	Poster		
Cancer: Ot	Cancer: Others		
Exhibition Hall	Tuesday 16:00-17:00		
Computer 88 3894	2. 2HG Metabolic Profiling Analysis Based on 13C-NMR Spectroscopy with Stable13C-Labeled Isotope Hyeon-Man Baek ¹ , ² , Youngjae Jeon ¹ , Jooyun Kim ¹ , Mirim Bang ¹ ¹ Center for MR Research, Korea Basic Science Institute, Ochang, Chungbuk, Korea; ² Department of Bio-Analytical Science, University of Science & Technology, Daejeon, Chungnam, Korea		
Computer 89 389	5. Evaluation of PET/MR and DWI in Malignant Lymphoma: Initial Results in 17 Patients <i>Chiara Giraudo¹, Michael Weber¹, Markus Raderer², Georgios Karanikas¹, Marius Erik Mayerhoefer¹</i> ¹ Departments of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ² Internal Medicine I, Medical University of Vienna, Vienna, Austria		
Computer 90 3890	5. Automated Planning of Scan Geometry in Follow-Up Prostate MRI Examinations Peter Mazurkewitz ¹ , Daniel Bystrov ¹ , Peter Koken ¹ , Torbjoern Vik ¹ , Julien Sénégas ¹ ¹ Philips Research Laboratories, Hamburg, Germany		
Computer 91 389'	7. DCE-MRI of Prostate Cancer: Perfusion Quantification with Tofts Model Vs. Shutter-Speed Model. Initial Experience. Cecilia Besa ¹ , Guido Jajamovich ² , Adnan Ali ³ , Wei Huang ⁴ , Kenneth Haines ⁵ , Ash Tewari ³ , Bachir Taouli ¹ Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; ² icahn School of Medicine at Mount Sinai, NY, United States; ³ Urology, Icahn School of Medicine at Mount Sinai, NY, United States; ⁴ Radiology, Oregon Health & Science University, Portland, OR, United States; ⁵ Pathology, Icahn School of Medicine at Mount Sinai, NY, United States		

Computer 92 3898. The Effect of Groupwise Elastic Registration in Discrimination of Benign and Malignant Ovarian Cancers by **Pharmacokinetic Parameters** Elaheh Kia¹,², Anahita Fathi Kazerooni¹,², Saeedeh Navaei Lavasani¹,², Alireza Ahmadian², Hamidreza Saligheh

Rad¹, ² ¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Electro	nic Po	ster
Preclini	cal fN	IRI
Exhibition	n Hall	Tuesday 17:00-18:00
Computer 1	3899.	Quantification of Changes in Resting State Connectivity in Monkey SI Cortex Following Spinal Cord Injury Arabinda Mishra ¹ , Feng Wang ¹ , John C. Gore ¹ , Chen Min Li ¹ ¹ Radiology, Vanderbilt University, Nashville, TN, United States
Computer 2	3900.	Neurophysiological and Neuroenergetic Basis of Spontaneous BOLD Signal Fluctuations in Resting-State fMRI Connectivity Mans
		Peter Herman ¹ , Basavaraju G. Sanganahalli ¹ , Daniel Coman ¹ , Hal Blumenfeld ² , Lihong Jiang ¹ , Douglas L. Rothman ¹ , ³ , Fahmeed Hyder ¹ , ³
		¹ Diagnostic Radiology, Yale University, New Haven, CT, United States; ² Neurobiology, Yale University, New Haven, CT, United States; ³ Biomedical Engineering, Yale University, New Haven, CT, United States
Computer 3	3901.	Default Mode Network Abnormality in ADHD Rat Model Sheng-Min Huang ¹ , Wei-Cheng Lee ¹ , Kung-Chu Ho ² , Fu-Nien Wang ¹ ¹ Department of Biomedical Engineering & Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; ² Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
Computer 4	3902.	Anesthesia Level Modulate Brain Activity and Connections in Monkey Zhentao Zuo ¹ , Xudong Zhao ¹ , Yifan Miao ² , Shuo Shen ¹ , Zuxiang Liu ¹ , Yuanye Ma ¹ ¹ Chinese Academy of Sciences, Institute of Biophysics, Beijing, China; ² State Key lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
Computer 5	3903.	Deep Anesthesia Provokes Dissimilar Resting State Connectivities in ADHD Rat Model and Normal Control Sheng-Min Huang ¹ , Wei-Cheng Lee ¹ , Kung-Chu Ho ² , Fu-Nien Wang ¹ ¹ Department of Biomedical Engineering & Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; ² Nuclear Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
Computer 6	3904.	Predicting Dogs' Training Ease and Behavior Using Their Neural Responses to Discriminative Odors <i>Tuo Shi¹, Oleg Pustovyy², Yun Wang¹, Paul Waggoner³, Ronald Beyers¹, Jessica Fleming⁴, Paul Hammond⁴, Edward Morrison², Thomas S. Denney Jr.^{1, 5}, Vitaly Vodyanoy², Gopikrishna Deshpande^{1, 5} ¹AU MRI Research Center, Dept. of Electrical & Computer Engineering, Auburn University, Auburn, AL, United States; ²Dept. of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL, United States; ³Canine Detection Research Institute, Auburn University, Auburn, AL, United States; ⁴iK9 LLC, Auburn, AL, United States; ⁵Dept. of Psychology, Auburn University, Auburn, AL, United States;</i>
Computer 7	3905.	Auditory Cortex Modulates the Midbrain Response Selectivity to Behaviorally Relevant Sounds Jevin W. Zhang ¹ , ² , Patrick P. Gao ¹ , ² , Shu-Juan Fan ¹ , ² , Dan H. Sanes ³ , Ed X. Wu ¹ , ² ¹ Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; ² Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China; ³ Center for Neural Science, New York University, New York, NY, United States
Computer 8	3906.	Deep Brain Stimulation of the Rodent Nucleus Accumbens Recruits Subcortical Limbic Networks <i>Daniel Albaugh</i> ¹ , ² , <i>Garret Stuber</i> ³ , <i>Yen-Yu Ian Shih</i> ⁴ ¹ Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ² Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ³ Department of Psychiatry, University

of North Carolina at Chapel Hill, Chapel Hill, NC, United States; ⁴BRIC, Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

Computer 9 3907. Auditory and Visual Cortices Differentially Modulate Auditory Responses in the Midbrain Patrick P. Gao¹,², Jevin W. Zhang¹,², Shu-Juan Fan¹,², Dan H. Sanes³, Ed X. Wu¹, ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, HKSAR, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, HKSAR, China; ³Center for Neural Science, New York University, New York, NY, United States

Computer 10 3908. High Pulse Rate Acoustic Stimulation Reduces fMRI Responses in the Auditory Thalamus and Cortex of **Chronic Noise Exposed Rats** Condon Lau¹, Jevin W. Zhang², Ed X. Wu² ¹Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong SAR, Hong Kong; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong, SAR, Hong Kong

Computer 11 3909. Dose-Dependent Effects of Sevoflurane on Temporal Distribution of BOLD Responses to Somatosensory **Stimulation in Rats**

Tomokazu Tsurugizawa¹,², Yukari Takahashi¹, Akihiko Kitamura, ¹³, Fusao Kato¹ ¹Jikei University School of Medicine, Tokyo, Japan; ²NeuroSpin/CEA, Gif-sur-Yvette, Essone, France; ³Ajinomoto Co. Inc., Kawasaki, Japan

Computer 12 3910. 500 Ms Temporal and 750 µm Spatial Inplane Resolution for Whole-Brain fMRI Applications in the Macaque at

Dávid Z. Balla¹, Rolf Pohmann¹, Shajan G¹, Philipp Ehses¹, Arno Nauerth², Thomas Steudel¹, Yusuke Murayama¹, Axel Oeltermann¹, Matthias H. Munk¹, Hellmut Merkle¹, Michael Beyerlein¹, Henry C. Evrard¹, Nikos K. Logothetis¹, Klaus Scheffler¹

¹Max Planck Insitute for Biological Cybernetics, Tübingen, Germany; ²Bruker Biospin GmbH, Ettlingen, Germany

Electronic Poster		
fMRI Methoo	ls	
Exhibition Hall	Tuesday 17:00-18:00	
Computer 13 3911.	Accelerated Neonatal fMRI Using Multiband EPI	
	Anthony N. Price ¹ , ² , Lucilio Cordero-Grande ¹ , ² , Shaihan J. Malik ¹ , ² , Maryam Abaei ¹ , Tomoki Arichi ¹ , Emer J.	
	Hughes ¹ , Daniel Rueckert ³ , A. David Edwards ¹ , Joseph V. Hajnal ¹ , ²	
	¹ Centre for the Developing Brain, King's College London, London, United Kingdom; ² Division of Imaging Sciences & Biomedical	
	Engineering, King's College London, London, United Kingdom; ³ Biomedical Image Analysis Group, Imperial College London,	

Computer 14 3912. Comparison of Multi-Band Multi-Echo and Multi-Echo at 3T

London, United Kingdom

Vincent Jansen¹, Rasim Boyacioglu¹, Jenni Schulz¹, David G. Norris¹, ² ¹Radboud University, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands; ²University Duisburg-Essen, Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany

Computer 15 3913. Local EPI Distortion Induced by Blue Light Delivery in the Naïve Brain: Implications for Optogenetic fMRI

Russell W. Chan¹,², Alex T.L. Leong, ¹², Joe S. Cheng¹,², Victor B. Xie¹,², Partick P. Gao¹,², Aaron Mok², Kevin K. Tsia², Ed X. Wu¹,²

¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China

Computer 16 3914. Combined Echo Volumar Imaging (EVI) and Localized Excitation for Motion Insensitive Fetal fMRI

Rita G. Nunes¹, ², Giulio Ferrazzi¹, Anthony Price¹, Matthew Fox¹, Christina Malamateniou¹, Mary Rutherford¹, Joseph Hajnal¹, ³

¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Instituto de Biofisica e Engenharia Biomedica, Universidade de Lisboa, Lisbon, Portugal; ³Division of Imaging and Sciences and Biomedical Engineerin, King's College London, London, United Kingdom

Computer 17 3915. Whole Brain BOLD Functional MRI in the Presence of Metallic Orthodontic Braces

Yuankui Wu¹, ², David Woods³, Moshe T. Stern⁴, Nicholas I.S. Blair⁵, Raag D. Airan⁶, James J. Pekar¹, ⁷, Peter C. M. van Zijl¹, ⁷, Jun Hua¹, ⁷

¹Neurosection, Div. of MRI Research, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ³Department of Orthodontics and Pediatric Dentistry, University of Maryland School of Dentistry, Baltimore, MD, United States; ⁴Department of Orthodontics and Pediatric Dentistry, University of Maryland, Baltimore, MD, United States; ⁵Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States; ⁶Div. of Neuroradiology, Dept. of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁷F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States;

- Computer 18 3916. Acceleration of Task-Based fMRI Using K-T FASTER Mark Chiew¹, Nadine N. Graedel¹, Stephen M. Smith¹, Karla L. Miller¹ ¹FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Computer 19 3917. Demonstration of Recovery of Signal Loss at 7T in Gradient Echo EPI Using Tailored-RF Pulses

Catarina Rua¹, Stephen James Wastling², Mauro Costagli³, Laura Biagi⁴, Mark Roger Symms⁵, Alberto del Guerra¹, Mirco Cosottini¹, ³, Michela Tosetti³, ⁴, Gareth John Barker² ¹University of Pisa, Pisa, Italy; ²Neuroimaging, King's College London, London, United Kingdom; ³IMAGO7 Foundation, Pisa, Italy; ⁴IRCCS Stella Maris, Pisa, Italy; ⁵GE Healthcare, Pisa, Italy

- Computer 20 3918. MR Inverse Imaging at 7T Has Higher Spatial Resolution Than at 3T *Ying-Hua Chu¹*, Alexandre Vignaud², Ruo-Ning Sun¹, Christophe Pallier³, Wen-Jui Kuo⁴, Denis Le Bihan², Fa-Hsuan Lin¹
 ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²CEA\DSV\I2BM\Neurospin\UNIRS, Gif sur Yvette, France; ³CEA\DSV\I2BM\Neurospin\UNICOG, Gif sur Yvette, France; ⁴Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
- Computer 21 3919. Fast Functional MRI Using Inverse Imaging with Dynamic Off-Resonance Artifacts Correction *Ruo-Ning Sun¹*, Yi-Cheng Hsu¹, Ying-Hua Chu¹, Shang-Yueh Tsai², Wen-Jui Kuo³, Fa-Hsuan Lin¹ ¹Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; ²Institute of Applied Physic, National Chengchi University, Taipei, Taiwan; ³Institute of Neuroscience, National Yang Ming University, Taipei, Taiwan
- Computer 22 3920. PEAK-EPI: Feasibility and Benefits of K-T-Undersampled EPI Acquisition and PEAK-GRAPPA Reconstruction in fMRI Rebecca Ramb¹, Pierre Levan¹, Jürgen Hennig¹ ¹Department of Radiology, Medical Physics, University Medical Center, Freiburg, Germany
- Computer 23 3921. A Quantitative Analysis of fMRI Induced Phase Changes Using Averaged-BOSS (A-BOSS) Mahdi Khajehim¹, Abbas Nasiraei Moghaddam¹, ², Gholam-Ali Hossein-Zadeh, ²³, Thomas Martin⁴, Danny JJ Wang⁴ ¹BME, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; ²School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; ³ECE, University of Tehran, Tehran, Iran; ⁴Neurology, UCLA, Los Angeles, CA, United States
- Computer 24 3922. Method for Epileptogenic Focus Localization Using BOLD Signal Complexity Analysis Vânia Tavares¹, André Santos Ribeiro¹, ², Carlos Capela³, Luís Cerqueira⁴, Hugo Alexandre Ferreira¹ ¹Institute of Biophysics and Biomedical Engineering, Faculy of Sciences of the University of Lisbon, Lisboa, Portugal; ²Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom; ³Department of Neurology, Centro Hospitalar Lisboa Central, Lisbon, Portugal; ⁴Department of Neuroradiology, Centro Hospitalar Lisboa Central, Lisbon, Portugal

Computer 25 3923. Fuzzy General Linear Model for Functional Magnetic Resonance Imaging Alejandro Veloz¹,², Luis Hernandez-Garcia³, Hector Allende², Claudio Moraga⁴, Rodrigo Salas¹, Steren Chabert¹

¹Biomedical Engineering School, Universidad de Valparaiso, Valparaiso, Chile; ²Department of Informatics, Universidad Tecnica Federico Santa Maria, Valparaiso, Chile; ³Functional Magnetic Resonance Imaging Laboratory, University of Michigan, Ann Arbor, MI, United States; ⁴European Centre for Soft-Computing, Mieres, Spain

- Computer 26 3924. Sodium fMRI Detects Grey and White Matter Activations: Neuronal Firing or Blood Volume Change? Frank Riemer¹, ², Bhavana S. Solanky¹, Xavier Golay², Egidio U. D'Angelo³, Claudia A. M. Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, Institute of Neurology, University College London, London, United Kingdom; ²Department of Brain Repair and Rehabilitation, Queen Square MS Centre, Institute of Neurology, University College London, London, United Kingdom; ³Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, Italy
- Computer 27 3925. Investigating Somatotopy in SI and SII with High Resolution Multiband fMRI at 7T Rosa Sanchez Panchuelo¹, Keren Yang¹, Martin Buehrer², Richard Bowtell¹, Susan Francis¹ ¹University of Nottingham, Nottingham, United Kingdom; ²Gyrotools, Zurich, Switzerland
- Computer 28 3926. The Neural Basis for the Age-Related Positivity Effect in Language Processing Sachiko Kiyama¹, Mitsunobu Kunimi¹, Katsuo Tamaoka², Rinus Verdonschot³, Toshiharu Nakai¹ ¹National Center for Geriatrics and Gerontology, Ohbu, Aichi, Japan; ²Nagoya University, Nagoya, Aichi, Japan; ³Osaka University, Osaka, Japan
- Computer 29 3927. Investigating Digit Representation and Tactile Attention in SI/SII with a Novel Paradigm Rosa Sanchez Panchuelo¹, Keren Yang¹, Martin Buehrer², Miles Humberstone³, Susan Francis¹ ¹University of Nottingham, Nottingham, United Kingdom; ²Gyrotools, Zurich, Switzerland; ³Nottingham University Hospitals Trust, Nottingham, United Kingdom
- Computer 30 3928. Improved Detection of Olfactory fMRI BOLD Signal with Through-Plane Phase Precompensated Spectral-Spatial Pulses

*Christopher Thomas Sica*¹, *Prasanna Karunanayaka*¹, *Jeff Vesek*², *Jianli Wang*¹, *Qing X. Yang*¹, ³ ¹Radiology, Penn State College of Medicine, Hershey, PA, United States; ²Molecular Biology, Penn State College of Medicine, Hershey, PA, United States; ³Neurosurgery, Penn State College of Medicine, Hershey, PA, United States

Computer 31 3929. A Simple Approach to Reducing Session-Dependent Behavioural Effects in Multi-Session fMRI Studies Nicholas G. Dowell¹, Eleanor Denny¹ ¹Brighton and Sussex Medical School, Falmer, Brighton, United Kingdom

Computer 32 3930. Overlapping Functional Networks Subserving Single-Digit Multiplication

Joe S. Cheng¹, ², Iris Y. Zhou¹, ³, Mengye Lyu¹, ³, Ed X. Wu¹, ³ ¹Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, China

Electronic Poster

fMRI: Bold Physiology & Multimodal Imaging

- Exhibition Hall Tuesday 17:00-18:00
- Computer 24 3931. Change of Venous Susceptibility Upon Visual Activation: 3D Multi-Echo GRE Vs. GRE-EPI Functional QSM *PINAR SENAY ÖZBAY¹*, ², *Cristina Rossi¹*, *Geoffrey Warnock³*, *Felix Kuhn³*, *Klaas Paul Prüssmann²*, *Daniel Nanz¹* ¹Department of Radiology, University Hospital Zürich, Zürich, Switzerland; ²Institute of Biomedical Engineering, ETH Zürich, Zürich, Switzerland; ³Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland

Computer 25 3932. Independent Component Analysis (ICA) of Functional QSM

PINAR SENAY ÖZBAY¹,², Cristina Rossi¹, Geoffrey Warnock³, Felix Kuhn³, Burak Akin⁴, Klaas Paul Prüssmann⁵, Daniel Nanz¹

¹Department of Radiology, University Hospital Zürich, Zürich, Switzerland; ²Institute of Biomedical Engineering, ETH Zürich, Zürich, Switzerland; ³Department of Nuclear Medicine, University Hospital Zürich, Zürich, Switzerland; ⁴Medical Physics, University Medical Center, Freiburg, Germany; ⁵Institute of Biomedical Engineering, ETH Zürich, Sürich, Switzerland

Computer 26 3933.	Impaired Cerebrovascular in Obese Children with Obstructive Sleep Apnea Compared to Healthy Controls
ISMRM MERIT AWARD	Junseok Kim ¹ , ² , Jackie Leung ² , Indra Narang ² , Paula Louise Croal ² , Andrea Kassner, ¹²
mugni tum tutte	¹ University of Toronto, Toronto, ON, Canada; ² Hospital for Sick Children, Toronto, ON, Canada

- Computer 27 **3934.** Stability of Tissue Model Parameters: Using the Full Analytical Solution or the Asymptotic Approximation? Sebastian Domsch¹, Sebastian Weingärtner¹, Jascha Zapp¹, Lothar R. Schad¹ ¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Baden-Württemberg, Germany
- Computer 28 3935. Separating the Magnitude and Temporal Responses in a BOLD-Based CO2 Hypercapnia Leads to Improved Inter-Session Reliability as Well as Characterization of Hemodynamic Impairment: A Clinical Multi-Cohort Study David E. Crane¹, Anoop Ganda¹, David J. Mikulis², Sandra E. Black¹, Bradley J. MacIntosh¹

¹Sunnybrook Research Institute, Toronto, ON, Canada; ²Toronto Western Hospital, Toronto, ON, Canada

Computer 29 3936. Regional and State-Dependent Properties of M for High-Field Calibrated fMRI in Rat Brain Christina Y. Shu¹, Daniel Coman², Basavaraju G. Sanganahalli², Helen Wang², Christoph Juchem², Peter Herman², Fahmeed Hyder¹, ² ¹Biomedical Engineering, Yale University, New Haven, CT, United States; ²Diagnostic Radiology, Yale University, CT, United States

Computer 30 3937. Quantitative β Mapping for High-Field Calibrated fMRI in Rat Brain Christina Y. Shu¹, Douglas Rothman¹, ², Basavaraju G. Sanganahalli³, Daniel Coman³, Peter Herman³, Fahmeed Hyder¹, ³ ¹Biomedical Engineering, Yale University, New Haven, CT, United States; ²Diagnostic Radiology, Yale University, New Haven,, CT, United States; ³Diagnostic Radiology, Yale University, New Haven, CT, United States

Computer 31 3938. Imaging Cerebrovascular Reserve Using Combined ASL Blood Flow and BOLD: A Study Using Acetazolamide Challenge in Patients with Chronic Stenosis of Major Arteries Degiang Qiu¹, Junjie Wu¹, Fadi Nahab², Seena Dehkharghani¹ ¹Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States; ²Neurology, Emory University, GA, United States

Computer 32 3939. Oxygen Saturation Changes During Hyperoxic and Hypercapnic Stimuli Measured by Near Infrared Spectroscopy (NIRS) Cerebral Oximetry Hannah Hare¹, Daniel Bulte¹ ¹FMRIB, University of Oxford, Oxford, Oxfordshire, United Kingdom

Computer 33 3940. High Resolution Cerebral Metabolic Rate of Oxygen (CMRO2) Using Quantitative Susceptibility Mapping (QSM) and an Oxygen Extraction Fraction (OEF) Constraint Jingwei Zhang¹,², Thanh D. Nguyen², Pascal Spincemaille², Tian Liu³, Dong Zhou², Ajay Gupta², Yi Wang¹,² ¹Biomedical Engineering, Cornell University, New York, United States; ²Radiology, Weill Cornell Medical College, New York, United States; ³Medimagemetric, LLC, NY, United States

Computer 34 3941. Towards High-Quality Simultaneous EEG-fMRI Acquisitions at 7 Tesla: Detection and Reduction of EEG Artifacts Due to Head Motion in B0 João Jorge¹, ², Frédéric Grouiller³, Wietske van der Zwaag⁴, Rolf Gruetter¹, Patrícia Figueiredo² ¹Laboratory for Functional and Metabolic Imaging, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ²Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal; ³Biomedical Imaging Research Center, University of Geneva,

Geneva, Switzerland; ⁴Biomedical Imaging Research Center, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Psychotherapy, Central Institute of Mental Health Ma, Medical Faculty Mannheim / Heidelberg University, Mannheim, Germany

Computer 35 3942. Resting-State Alterations in EEG-fMRI Coupling in Adults with Attention-Deficit/hyperactivity Disorder Lars Michels¹, ², Steffen Bollmann², Diego Manuel Baur², Anthony Schläpfer³, Maya Schneebelt³, Carmen Ghisleni², Peter Klaver², ⁴, Daniel Brandeis³, ⁵, Ruth O'Gorman²
¹Institute of Neuroradiology, University Hospital Zurich, Switzerland; ²Center for MR-Research, University Children's Hospital, Zurich, Switzerland; ³Department of Child and Adolescent Psychiatry University of Zürich, University of Zurich, Zurich, Switzerland; ⁴Institute of Psychology, University of Zurich, Zurich, Switzerland; ⁵Department of Child & Adolescent Psychiatry and

Computer 36 3943. Removing the Gradient Artefact Caused by 3D EPI in Simultaneous EEG-fMRI Experiments Using a Gradient Model Fit.

Muhammad E H Chowdhury¹, Karen J. Mullinger¹, ², Glyn S. Spencer¹, Richard Bowtell¹ ¹SPMIC, School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom; ²BUIC, School of Psychology, University of Birmingham, Birmingham, United Kingdom

Computer 37 **3944.** Do fMRI Resting State Networks Have True High Frequency Electrical Correlates of Neural Dynamics? *Yun Wang¹, Gopikrishna Deshpande¹, ²* ¹AU MRI Research Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL, United States; ² Department of Psychology, Auburn University, Auburn, AL, United States

Computer 38 3945. Ballistocardiogram Artefact Correction Taking Into Account Background Physiological Signal Preservation in Simultaneous EEG-fMRI

Rodolfo Abreu¹, Marco Leite¹, ², Alberto Leal³, Patrícia Figueiredo¹ ¹Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon,

Portugal; ²Department of Clinical and Experimental Epilepsy and The Wellcome Trust Centre for Neuroimaging, University College London Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom; ³Centro de Investigação e Intervenção Social and Department of Neurophysiology, Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal

Computer 39 3946. Interactively Computing and Visualizing Functional and Structural Brain Connectivity in Real-Time Maxime Chamberland¹, Michaël Bernier¹, David Fortin², Kevin Whittingstall³, Maxime Descoteaux⁴ ¹Nuclear Medecine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; ²Neurosurgery, Université de Sherbrooke, Sherbrooke, Québec, Canada; ³Diagnostic Radiology, Université de Sherbrooke, Sherbrooke, Sherbrooke, Québec, Canada; ⁴Computer science, Université de Sherbrooke, Sherbrooke, Quebec, Canada

Computer 40 3947. Evaluation of a Cerebral-Blood-Volume (CBV) Pharmaco-MRI (PhMRI) Assay Utilizing Low (0.1mg/70kg) and High (0.2mg/70kg) Dose Buprenorphine Infusion and a Novel USPIO Contrast Agent (Ferumoxytol) in Healthy Human Subjects.

Richard Baumgartner¹, Arie Struyk², Jeff Evelhoch², Cynthia Gargano², Francheska Colon Gonzalez², Haiying Liu¹, Ruben Declercq³, Hans Verheyden³, Ingeborg Heirman³, Hans De Pla⁴, Griet Van Lancker⁴, Sofie Van den Abeele⁴, Adelheid Hollebosch⁴, Brant Delafontaine⁴, Luc Van Bortel⁴, Rik Achten⁴, Patricia Clement⁴, Pieter Vandemaele⁴, Dai Feng¹, Sofia Apreleva¹

¹Merck and Co, Rahway, NJ, United States; ²Merck and Co, PA, United States; ³Merck and Co, Belgium; ⁴Ghent University, Belgium

Electronic Poster Functional Connectivity Materials & Applications

Exhibition Hall Tuesday 16:00-17:00

Computer 42 3948. Aberrant Brain Resting-State Functional Connectivity in Patients with Obstructive Sleep Apnea

Bumhee Park¹, Jose A. Palomares¹, Mary A. Woo², Daniel W. Kang³, Paul M. Macey², Frisca L. Yan-Go⁴, Ronald M. Harper⁵, Rajesh Kumar¹, ⁶

¹Anesthesiology, University of California at Los Angeles, Los Angeles, CA, United States; ²School of Nursing, University of California at Los Angeles, Los Angeles, CA, United States; ³Medicine, University of California at Los Angeles, Los Angeles, CA, United States; ⁴Neurology, University of California at Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, Los Angeles, Los Angeles, Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, Los Angeles, CA, United States; ⁶Radiological Sciences, University of California at Los Angeles, CA, United States; ⁶Radiological Sciences; ⁶Radiol

Computer 43 3949. Development of the Relationship Between the Default Mode Network and Frontal Task-Positive Areas in Preterm Newborns: A RS-fMRI Study.

Elisa Marchetta¹,², Sara Cirillo¹, Pasquale Della Rosa³, Silvia Pontesilli¹, Andrea Falini¹,⁴, Graziano Barera⁵, Cristina Baldoli¹,⁴, Paola Scifo⁶,⁷

¹Neuroradiology Dept., San Raffaele Hospital, Milan, -, Italy; ²University of Milano-Bicocca, Milan, -, Italy; ³Institute of Molecular Bioimaging and Physiology, CNR, Segrate, -, Italy; ⁴Vita-Salute San Raffaele University, Milan, -, Italy; ⁵Division of Neonatology, Pediatrics Dept, San Raffaele Hospital, Milan, -, Italy; ⁶Nuclear Medicine Dept., San Raffaele Hospital, Milan, -, Italy; ⁷CERMAC, San Raffaele Hospital, Milan, -, Italy

Computer 44 3950. Functional Connectivity Changes of Dentate Nucleus in Autism Spectrum Disorders: A Resting-State fMRI Study.

Giusy Olivito¹, ², Maria Leggio¹, ², Fiorenzo Laghi³, Roberto Baiocco³, Anna Maria Tedesco¹, Silvia Clausi¹, Chiara Mastropasqua⁴, Marco Molinari⁵, Mara Cercignani, ⁴⁶, Marco Bozzali⁴

¹Ataxia Research Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy, Italy; ²Department of Psychology, Faculty of Medicine and Psychology, University of Rome "Sapienza", Rome, Italy, Italy; ³Department of Developmental and Social Psychology, Faculty of Medicine and Psychology, University of Rome "Sapienza", Rome, Italy, Italy; ⁴Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy, Italy; ⁵Neurological and Spinal Cord Injury Rehabilitation, Department A, IRCCS Santa Lucia Foundation, Rome, Italy, Italy; ⁶Clinical Imaging Science Center (CISC), Brighton and Sussex Medical School, Brighton, Sussex, United Kingdom

Computer 45 3951. The Impact of White Matter Hyperintensities on Brain Functional Connectivity in Amnestic Mild Cognitive Impairment Patients.

Mario Torso¹, Chiara Mastropasqua¹, Giovanni Giulietti¹, Laura Serra¹, Giusy Olivito², ³, Elisa Tuzzi¹, Barbara Spanò¹, Carlo Caltagirone⁴, ⁵, Mara Cercignani⁶, Marco Bozzali¹

¹Neuroimaging Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy; ²Ataxia research Laboratory, Santa Lucia Foundation, IRCCS, Rome, Italy; ³Department of psychology, University of Rome Sapienza, Rome, Italy; ⁴Department of Clinical and Behavioural Neurology, Santa Lucia Foundation, IRCCS, Rome, Italy; ⁵Department of Neuroscience, University of Rome 'Tor Vergata', Rome, Italy; ⁶CISC, Brighton & Sussex Medical School, Brighton, Sussex, United Kingdom

Computer 46 3952. Observing the Activity Change of the Baseline Brain in Benign Essential Blepharospasm with Fractional Amplitude of Low-Frequency Fluctuation

Mingfei Ni¹, Weiwei Wang¹, Ziheng Zhang², Qingwei Song¹, Ailian Liu¹, Yanwei Miao¹ ¹Radiology Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; ²GE Healthcare China, Beijing, China

Computer 47 3953. Altered Resting State Functional Connectivity in Hypothyroidism Subash Khushu¹, Sadhana Singh¹, Mukesh Kumar¹, Shilpi Modi¹, Prabhjot Kaur¹, L Ravi Shankar² ¹NMR Research Centre, INMAS, DRDO, Delhi, India; ²Thyroid Research Centre, INMAS, DRDO, Delhi, India

Computer 48 3954. Functional Connectivity MRI Can Distinguish Experimental Pain from the Resting State with Seed ROI in the Posterior Insula, But Not the Anterior Insula

Keith M. Vogt¹, James W. Ibinson²

¹Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States; ²Center for Pain Research, Dept of Anesthesiology, University of Pittsburgh, Pittsburgh, PA, United States

Computer 49 3955. Resting-State Functional Network Abnormalities in Major Depressive Disorder with Self-Harm: A Connectome Analysis

Zhen-Hui Li¹,², Vincent Chin-Hung Chen³, Ming-Chou Ho⁴, Jun-Cheng Weng¹,² ¹Department of Biomedical Sciences, Chung Shan Medical University Hospital, Taichung, Taiwan; ²School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; ³Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan; ⁴Department of Psychology, Chung Shan Medical University, Taichung, Taiwan

Computer 50 3956. Relationship Between Visual Functional Connectivity and Duration of Blindness Depends on Onset of Visual Deprivation

Matthew C. Murphy¹, Amy C. Nau¹, Christopher Fisher¹, Seong-Gi Kim², ³, Joel S. Schuman¹, ⁴, Kevin C. Chan¹, ⁴ ¹Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, United States; ²Departments of Biological Sciences and Global Biomedical Engineering, Sungkyunkwan University, Suwon, Korea; ³Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ⁴Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States

Computer 51 3957. Dynamic Changes in Whole-Brain Functional Connectivity During Story Listening

Gloria Castellazzi¹,², Fulvia Palesi,²³, Ahmed T. Toosy⁴, Stefania Bruno⁵, Egidio D'Angelo,²⁶, Claudia A.M. Wheeler-Kingshott⁷

¹Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, PV, Italy; ²Brain Connectivity Center, C. Mondino National Neurological Institute, Pavia, PV, Italy; ³Department of Physics, University of Pavia, Pavia, PV, Italy;
 ⁴Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ⁵Overdale Hospital, Jersey, England, United Kingdom; ⁶Department of Brain and Behavioral Sciences, University of Pavia, PV, Italy; ⁷NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom;

Computer 52 3958. Wavelet Coherence Analysis of Functional Connectivity Within Default Mode Network Employing Simultaneous MultiSlice (SMS) Resting-State fMRI Hesamoddin Jahanian¹, Samantha Holdsworth¹, Thomas Christen¹, Hua Wu², Kangrong Zhu³, Adam Kerr³, Mathew J. Middione⁴, Robert F. Dougherty², Michael Moseley¹, Greg Zaharchuk¹ ¹Department of Radiology, Stanford University, Stanford, CA, United States; ²Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States; ³Department of Electrical Engineering, Stanford University, Stanford, CA, United

States; ⁴Applied Sciences Laboratory West, GE Healthcare, Menlo Park, CA, United States

Computer 53 3959. Dynamic Wavelet Coherence Maps and Frequency-Dependent Connectivity Strength in Default Mode Network Hsu-Lei Lee¹, Jakob Assländer¹, Pierre LeVan¹, Jürgen Hennig¹ ¹Medical Physics, University Medical Center Freiburg, Freiburg, BW, Germany

Computer 54 3960. Default Mode Network Activity During Spontaneous Movement Events Francisca Marie Tan¹,², Karen Mullinger¹, Yaping Zhang², David Siu-Yeung Cho², Susan Francis¹, Penny Gowland¹ ¹Sir Peter Mansfield Imaging Centre, The University of Nottingham, Nottinghamshire, United Kingdom; ²Department of Electrical and Electronic Engineering, The University of Nottingham Ningbo China, Ningbo, Zhejiang, China

Computer 55 3961. Alterations in Regional Homogeneity of Resting-State Brain Activity in Patients with Chronic Prostatitis/Chronic Pelvic Pain Syndrome Yan Bai¹, Carlos Torres², Peng Liu³, Xuejuan Yang³, Dapeng Shi⁴, Jie Tian⁵, Meiyun Wang⁴ ¹Department of Radiology, Henan Provincial People₁⁻'s Hospital, Zhengzhou, Henan, China; ²Division of Neuroradiology, Department of Radiology, University of Ottawa, Ottawa, ON, Canada; ³School of Life Sciences and Technology, Xidian University, Shaanxi, China; ⁴Department of Radiology, Henan Provincial People₁⁻'s Hospital, Zhengzhou, Henan, China; ⁵Institute of Automation, Chinese Academy of Sciences, Beijing, China

Computer 56 3962. Investigation of Local Brain Activity Changes in Restless Legs Syndrome Using Regional Homogeneity: A Preliminary Study

Yong Zhang¹, Kang-An Li², Yun-Cheng Wu², Qian Jiang¹, Zhenyu Zhou³, Gui-Xiang Zhang² ¹GE Healthcare China, Shanghai, China; ²Shanghai First People's Hospital, Shanghai, China; ³GE Healthcare China, Beijing, China

Computer 57 **3963.** An Exploration of Task Based fMRI in Neonates Using Echo-Shifting to Allow Acquisition at Longer TE Without Loss of Temporal Efficiency *Giulio Ferrazzi¹*, *Rita G. Nunes¹*, ², *Tomoki Arichi¹*, *Maryam Abaei¹*, *Emer Hughes¹*, *Anthony Price¹*, *Joseph Hajnal¹*, ³ ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Instituto de Biofisica e Engenharia Biomedica,

¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Instituto de Biofisica e Engenharia Biomedica, Universidade de Lisboa, Lisbon, Portugal; ³Division of Imaging and Sciences and Biomedical Engineering, King's College London, London, United Kingdom

Computer 58 3964. Analysis of Functional Connectivity by Local Bold Signal Variance Gregory Kirk¹, Rasmus Birn², Andrew Alexander³ ¹Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin, Madison, Madison, Wi, United States; ²Psychiatry, University of Wisconsin, Madison, Madison, Mi, United States; ³University of Wisconsin, Madison, Madison, WI, United States

Computer 59 3965. Functional Connectivity Assessment Using R2* Resting-State Functional MRI Venkata Veerendra Nadh Chebrolu¹, Suresh Joel¹, Brice Fernandez², Ek Tsoon Tan³, Luca Marinelli³, Dattesh Shanbhag¹, Radhika Madhavan¹, Rachel Connett⁴, Ajit Shankaranarayanan⁴, John Schenck⁵ ¹Medical Image Analysis Lab, GE Global Research, Bangalore, Karnataka, India; ²GE Healthcare, Muenchen, Germany; ³MRI Laboratory, GE Global Research, NY, United States; ⁴GE Healthcare, CA, United States; ⁵MRI Technologies & Systems, GE Global Research, NY, United States

Computer 60 3966. 3D Hybrid Radial-Cartesian Sampling for Improved Resting State fMRI Using K-T FASTER

Mark Chiew¹, Nadine N. Graedel¹, Jennifer A. McNab², Stephen M. Smith¹, Karla L. Miller¹ ¹FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom; ²Radiology, Stanford University, CA, United States

Computer 61 3967. Characterization of Whole-Brain Dynamic Connectivity Patterns Using Simultaneous MultiSlice (SMS) Resting-State fMRI

Hesamoddin Jahanian¹, Samantha Holdsworth¹, Thomas Christen¹, Hua Wu², Kangrong Zhu³, Adam Kerr³, Matthew J. Middione⁴, Robert F. Dougherty², Michael Moseley¹, Greg Zaharchuk¹

¹Department of Radiology, Stanford University, Stanford, CA, United States; ²Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States; ³Department of Electrical Engineering, Stanford University, Stanford, CA, United States; ⁴Applied Sciences Laboratory West, GE Healthcare, Menlo Park, CA, United States

Computer 62 3968. Hierarchical Parcellation Using Discrete Morse Theory of Whole-Brain High-Resolution Resting-State 7T fMRI Data

Afonso Dias¹, Marta Bianciardi², Sandro Nunes¹, Rodolfo Abreu¹, Juliana Rodrigues¹, L. Miguel Silveira³, Lawrence L. Wald², Patricia Figueiredo¹

¹Institute for Systems and Robotics and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal; ²Department of Radiology, A.A. Martinos Center for Biomedical Imaging, MGH and Harvard Medical School, Boston, MA, United States; ³INESC-ID and Department of Electrical and Computer Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Electronic Poster

Lung/Mediastinum/Hyperpolarized Gas Imaging

Exhibition Hall Wednesday 10:00-11:00

Computer 1 3969. Chemical Exchange Saturation Transfer (CEST) Imaging for Thoracic Oncology: Preliminary Experience for Characterization of Thoracic Nodule and Mass

Yoshiharu Ohno¹, ², Masao Yui³, Cheng Ouyang⁴, Mitsue Miyazaki⁴, Hisanobu Koyama⁵, Shinichiro Seki⁵, Katsusuke Kyotani⁶, Yoshiko Ueno⁵, Takeshi Yoshikawa¹, ², Sumiaki Matsumoto¹, ², Kazuro Sugimura⁵ ¹Advanced Biomedical Imaging Research, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ²Division of Functional and Diagnostic Imaging Research, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ³Toshiba Medical Systems Corporation, Tochigi, Japan; ⁴Toshiba Medical Research Institute USA, IL, United States; ⁵Division of Radiology, Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ⁶Center for Radiology and Radiation Oncology, Kobe University Hospital, KObe, Hyogo, Japan

Computer 2 3970. Automated Registration-Segmentation Pipeline to Generate Lobar Ventilation Measurements in Diffuse and Localized Bronchiectasis

Sarah Svenningsen¹, ², Fumin Guo¹, ³, Roya Etemad-Rezai⁴, David G. McCormack⁵, Grace Parraga¹, ² ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada; ⁴Department of Medical Imaging, The University of Western Ontario, London, Ontario, Canada; ⁵Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

Computer 3 3971. Investigation of the Dependence of Measured Lung T₁ on TE Using UTE

Simon MF Triphan¹, ², Bertram J. Jobst¹, Felix A. Breuer², Mark O. Wielpuetz¹, Claus Peter Heussel³, Hans-Ulrich Kauczor¹, Juergen Biederer¹, ⁴, Peter M. Jakob, ²⁵ ¹Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany; ²Research Centre Magnetic Resonance Bavaria e.V., Wuerzburg, Germany; ³Dept. of Radiology, Thoraxklinik Heidelberg, Heidelberg, Germany; ⁴Radiologie Darmstadt, Darmstadt, Germany; ⁵Experimental Physics 5, University of Wuerzburg, Germany

Computer 4 3972. Intratracheal Manganese-Enhanced MRI (MEMRI) at Very Low Dose: an Effective Approach for Lung Tumor Detection

Andrea Bianchi¹, Oliviero G. Gobbo², Sandrine Dufort³, Lucie Sancey⁴, François Lux⁴, Olivier Tillement⁴, Jean-Luc Coll³, Yannick Crémillieux¹

¹Centre de Résonance Magnétique des Systèmes Biologiques, University of Bordeaux, Bordeaux, France; ²Trinity College Dublin, School of Biochemistry and Immunology, Dublin, Ireland; ³IAB-INSERM, UJF U 823, Grenoble, France; ⁴ILM UMR 5306, University Lyon 1, Lyon, France

Computer 5 3973. Evaluation of a Novel Whole Lung 3D Dynamic OE-MRI Protocol in Healthy Subjects

Jose L. Ulloa¹, ², Alexandra R. Morgan¹, ², Geoff JM Parker¹, ² ¹Bioxydyn Ltd, Manchester, United Kingdom; ²Centre for Imaging Sciences, University of Manchester, Manchester, United Kingdom

Computer 6	3974.	High-Resolution ZTE MR Imaging of Emphysematous Lungs in Rats Andrea Bianchi ¹ , Marta Tibiletti ² , David Kind ¹ , Andrea Vögtle ¹ , Michael Neumaier ¹ , Thomas Kaulisch ¹ , Volker Rasche ² , Detlef Stiller ¹ ¹ Targeting Discovery Research, In vivo imaging laboratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Baden-Württemberg, Germany; ² Core Facility Small Animal MRI, Ulm University, Baden-Württemberg, Germany
Computer 7	3975.	On the Estimation of the Alveolar Size in the Human Lung Using Proton MRI <i>Flavio Carinci¹</i> , ² , <i>Felix A. Breuer¹</i> , <i>Peter M. Jakob¹</i> , ² ¹ Research Center Magnetic Resonance Bavaria (MRB), Würzburg, Bayern, Germany; ² Department of Experimental Physics 5, University of Würzburg, Würzburg, Bayern, Germany
Computer 8	3976.	Oxygen-Enhanced Ventilation Mapping of Whole Lungs Using 3D UTE at 3T <i>Crystal E. Harrison¹, Masaya Takahashi¹, Robert E. Lenkinski¹, Ananth J. Madhuranthakam¹</i> ¹ Radiology and Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States
Computer 9	3977.	Optimized Ultra-Short Echo Time Breathhold 3D Lung Imaging Neville D. Gai ¹ , Robert Evers ¹ , Harsh Agarwal ² , Ashkan Malayeri ¹ , David Bluemke ¹ ¹ Radiology & Imaging Sciences, NIH, Bethesda, MD, United States; ² Philips Research N.A., Briarcliff Manor, NY, United States
Computer 10	3978.	Three-Dimensional Oxygen-Enhanced Human Lung MRI Using Ultra-Fast Balanced Steady-State Free Precession Orso Pusterla ¹ , Grzegorz Bauman ¹ , Gregor Sommer ² , Christoph Jud ³ , Philippe C. Cattin ³ , Oliver Bieri ¹ ¹ Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland; ² Clinic of Radiology and Nuclear Medicine, Department of Radiology, University of Basel Hospital, Basel, Switzerland; ³ Medical Image Analysis Center (MIAC), University of Basel Hospital, Basel, Switzerland
Computer 11	3979.	Breath-Held 3D Radial MRI for Simultaneous Assessment of Lung Structure and Function for Detection of Pulmonary Embolism Laura C. Bell ¹ , Peter Bannas ² , Kevin M. Johnson ² , Grzegor Bauman ³ , Sean B. Fain ¹ , ² , Thomas M. Grist ¹ , ² , Scott K. Nagle ¹ , ² ¹ Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ² Department of Radiology, University of Wisconsin - Madison, Madison, WI, United States; ³ Department of Radiology, University of Basel Hospital, Basel, Switzerland
Computer 12	3980.	Quantitative Gd-DOTA-Based Aerosol Deposition in Asthmatic and Emphysematous Rats Using UTE-MRI Hongchen Wang ¹ , Catherine Sebrié ¹ , Sébastien Judé ² , Anne Maurin ² , Stéphanie Rétif ³ , Marilyne Le Mée ³ , Rose-Marie Dubuisson ¹ , Georges Willoquet ¹ , Khaoula Bouazizi-Verdier ¹ , Luc Darrasse ¹ , Geneviève Guillot ¹ , Xavier Maître ¹ , Ludovic de Rochefort ¹ ¹ Imagerie par Résonance Magnétique Médicale et Multi-Modalités (UMR8081) IR4M, CNRS, Univ. Paris-Sud, Orsay, France; ² Centre de Recherches Biologiques CERB, Baugy, France; ³ Centre d'Imagerie du Petit Animal CIPA, CNRS-TAAM UPS44, Orléans, France
Computer 13	3981.	What Can Multiple B-Value ³He MRI Tell Us About Lung Micro-Structure in Healthy Elderly Never-Smokers? <i>Gregory Paulin</i> ¹ , ² , <i>Alexei Ouriadov</i> ¹ , ² , <i>Khadija Sheikh</i> ¹ , ² , <i>David G. McCormack</i> ³ , <i>Grace Parraga</i> ¹ , ²

Gregory Paulin', ², Alexei Ouriadov', ², Khadija Sheikh', ², David G. McCormack³, Grace Parraga¹, ² ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

- Computer 14 3982. Dual-Nuclei ¹⁹F-¹H MRI for Studying Administration and Clearance of Perfluorooctane in Rat Lungs Maya Khalifé¹, Hongchen Wang¹, Lizheng Qiu¹, Catherine Sebrié¹, Ludovic De Rochefort¹ ¹IR4M (Imagerie par Résonance Magnétique Médicale et Multi-Modalités), Université Paris-Sud, CNRS, UMR8081, Orsay, France
- Computer 15 3983. Second-Order Texture Analysis of Hyperpolarized ³He MRI Beyond the Ventilation Defect Damien Pike¹, ², Dante Capaldi¹, ², Sarah Ashley Mattonen², Fumin Guo¹, ³, Aaron Ward², David McCormack⁴, Grace Parraga¹, ²

¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Graduate Program in Biomedical Engineering, The University of Western Ontario, London, Ontario, Canada; ⁴Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

Computer 16 3984. Parallel Imaging for Short Breath Hold Times in Perfluorinated Gas Imaging of the Lung Hal Cecil Charles¹, Randall W. Jones², Ahmed F. Halaweish³, Maureen D. Ainslie¹ ¹Radiology, Duke Image Analysis Laboratory, Duke University Medical School, Durham, NC, United States; ²ScanMed, Omaha, NE, United States; ³Currently at Siemens Healthcare, MN, United States

Computer 17 3985. Numerical Simulations of Xenon Diffusive Exchange in Human Lung Tissue and Capillaries Using Geometrical Models Based on Histology Sections Neil James Stewart¹, Juan Parra-Robles¹, Jim Michael Wild¹ ¹Academic Unit of Radiology, University of Sheffield, Sheffield, South Yorkshire, United Kingdom

Computer 18 3986. MRI Measurements of Regional Ventilation Heterogeneity: Ventilation Defect Clusters Dante Capaldi¹,², Khadija Sheikh¹,², Sarah Svenningsen¹,², Damien Pike¹,², David G. McCormack³, Grace Parraga¹,

¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Division of Respirology, Department of Medicine, The University of Western Ontario, London, Ontario, Canada

Computer 19 3987. Imaging Ventilator-Induced Alveolar Overdistension with Hyperpolarized Xenon Diffusion MRI Yi Xin¹, Hooman Hamedani¹, Maurizio Cereda², Sarmad Siddiqui¹, Mehrdad Pourfathi¹, Harrilla Profka¹, Stephen Kadlecek¹, Justin Clapp¹, Masaru Ishii¹, ³, Rahim R. Rizi¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States; ³Otolaryngology, Johns Hopkins University, MD, United States

Computer 20 3988. Single Breath-Hold, Whole Lung Morphometry with Hyperpolarized ³He Using Parallel Imaging *Yulin V. Chang¹, James D. Quirk¹, Mario Castro², Dmitriy A. Yablonskiy¹* ¹Radiology, Washington University in St. Louis, St. Louis, MO, United States; ²Medicine, Washington University in St. Louis, St. Louis, MO, United States

Computer 21 3989. Functional MRI Ventilation Discriminates Well-Controlled Asthmatic and Healthy Subjects: Sensitivity, Specificity and Comparison with FEV₁ Sarah Svenningsen¹,², Bastiaan Driehuys³, David G. McCormack⁴, Grace Parraga¹,² ¹Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; ²Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada; ³Department of Radiology, Duke University, Durham, NC, United States; ⁴Division of Respirology, Department of Medicine, The University of Western Ontario, Canada

Computer 22 3990. Pulmonary Time Constant of Oxygen Consumption Evaluated by Hyperpolarized ¹²⁹Xe MR Haidong Li¹, Zhiying Zhang¹, Xiuchao Zhao¹, Xianping Sun¹, Chaohui Ye¹, Xin Zhou¹ ¹National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China

- Computer 23 3991. Measurement of P_AO₂ with Hyperpolarized ¹²⁹Xe: Correction for Signal Decay Due to Gas Exchange. Iga Muradyan¹, Samuel Patz¹, Mikayel Dabaghyan², Mirko Hrovat², James P. Butler¹ ¹Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; ²Mirtech, Inc., Brockton, MA, United States
- Computer 24 3992. Bronchodilatation Effect on Alveolar Oxygen Partial Pressure and Gas Exchange Rate of Asthma Patients: First Results of Clinical Study Maxim Terekhov¹, Ursula Wolf², Klaus K Gast², Christian Hoffmann², Sergei Karpuk³, Christian Mrozek³, Christoph Dueber², Laura Maria Schreiber¹

¹Radiology Department, Section of Medical Physics, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany; ²Radiology Department, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany; ³Institute of Physics, Johannes Gutenberg University, Mainz, Germany

Electronic Poster				
Body DWI, Technical Development & Contrast				
Exhibition Hall	Wednesday 10:00-11:00			
Computer 25 3993.	Improved Lesion Detection in Regions with Strong Susceptibility Using IShim-WBDWI as Compared to 3D- Shimming WBDWI Haibo Zhang ¹ , Huadan Xue ¹ , Hui Liu ² , Stemmer Alto ³ , Kannengiesser Stephan ³ , Kiefer Berthold ⁴ , Zhengyu Jin ¹ ¹ Radiology, Peking Union Medical College Hospital, Beijing, China; ² NEA MR Collaboration, Siemens Ltd., China, Shanghai, China; ³ Healthcare, Siemens AG, Erlangen, Germany; ⁴ Radiology, Siemens, Erlangen, China			
Computer 26 3994.	Accelerated, Segmented Diffusion-Weighted Imaging in the Prostate Achieves High Resolution, Speed and Geometric Fidelity Pelin Aksit Ciris ¹ , ² , Jr-yuan George Chiou ¹ , ² , Andriy Fedorov ¹ , ² , Clare M. Tempany-Afdhal ¹ , ² , Bruno Madore ¹ , ² , Stephan E. Maier ¹ , ² ¹ Brigham and Women's Hospital, Boston, MA, United States; ² Harvard Medical School, Boston, MA, United States			
Computer 27 3995.	Diffusion Imaging of Mouse Kidney with Oscillating Gradients: Feasibility Study <i>Hua Li¹, Feng Wang¹, Xiaoyu Jiang¹, Junzhong Xu¹, John C. Gore¹</i> ¹ Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States			
Computer 28 3996 .	Comparison Between Whole-Body Coronal and Axial DWI Performed During PET-MR <i>Piotr Obara¹, Valentina Taviani¹, Andreas Loening¹, Andrei Iagaru¹, Brian Hargreaves, Shreyas Vasanawala</i> ¹ Radiology, Stanford Hospital, Stanford, CA, United States			
Computer 29 3997.	Concurrent Chemoradiotherapy-Induced Pelvic Bone Marrow Changes Based on Intravoxel Incoherent Motion MR Imaging in Patients with Cervical Cancer: Initial Findings Jian He ^l , Bin Zhu ^l ¹ Department of Radiology, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China			
Computer 30 3998.	 Evaluation of Pseudo-Hepatic Anisotropy Artifact in Liver Intravoxel Incoherent Motion (IVIM) Based on Clustering Technique Oi Lei Wong¹, ², Gladys Goh Lo³, Jing Yuan⁴, Wai Kit Chung³, Max W. K. Law⁴, Benny W. H. Ho³, Michael D. Noseworthy, ²⁵ ¹Department of Medical Physics and Applied Radiation Science, McMaster University, Hamilton, Ontario, Canada; ²Imaging Research Center, St.Joseph's Healthcare, Hamilton, Ontario, Canada; ³Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong, China; ⁴Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China; ⁵Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada 			
Computer 31 3999 .	Time-SLIP Non-Contrast MR Hepatic Arteriography: Comparison with Contrast-Enhanced CT Arteriography <i>Takeshi Yoshikawa¹, Yoshiharu Ohno¹, Katsusuke Kyotani², Saori Sato³, Yoshimori Kassai³, Hisanobu Koyama⁴,</i> <i>Keitaro Sofue⁴, Kazuro Sugimura⁴</i> ¹ Advanced Biomedical Imaging Research Center, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ² Center for Radiology and Radiation Oncology, Kobe University Hospital, Kobe, Hyogo, Japan; ³ Toshiba Medical Systems Corporation, Otawara, Tochigi, Japan; ⁴ Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan			
Computer 32 4000.	Non-Contrast-Enhanced MR Arteriography with Balanced Steady-State Free-Precession Sequence and Time- Spatial Labeling Inversion Pulses: Visualization of the Left Gastric Vein with Information of Flow Direction to Predict Developing Esophageal Varices Akihiro Furuta ¹ , Hiroyoshi Isoda ¹ , Tsuyoshi Ohno ¹ , Rikiya Yamashita ¹ , Shigeki Arizono ¹ , Aki Kido ¹ , Koji Fujimoto ¹ , Naotaka Sakashita ² Kaori Togashi ¹			

Naotaka Sakashita², Kaori Togashi⁴ ¹Kyoto University Graduate School of Medicine, Kyoto, Japan; ²Toshiba Medical Systems Corporation, Otawara, Tochigi, Japan

Computer 33 4001. Evaluation of B-Value Distributions for Monoexponential Model of Prostate Cancer Diffusion-Weighted Imaging Using B Values Up to 2000 S/mm²: A Repeatability Study on Region of Interest Level

Harri Merisaari¹, Jussi Toivonen², Marko Pesola³, Pekka Taimen⁴, Peter J. Boström⁵, Tapio Pahikkala², Hannu J. Aronen³, Ivan Jambor³

¹Turku PET Centre, University of Turku, Turku, Finland; ²Department of Information Technology, University of Turku, Turku, Finland; ³Department of Diagnostic Radiology, University of Turku, Turku, Finland; ⁴Department of Pathology, Turku University Hospital, Turku, Finland; ⁵Department of Urology, Turku University Hospital, Turku, Finland

Computer 34 4002. Evaluation of Liver Fibrosis with Intravoxel Incoherent Motion MR Imaging: An Experimental Study in Rat Model

Caiyuan Zhang¹, Yanfen Cui², Yong Zhang³, Dengbin Wang² ¹Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai , China; ²Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ³MR Research, GE healthcare, Shanghai, China

Computer 35 4003. Isotropic 3D MR Cholangiopancreatography (MRCP) Imaging in Breath-Hold Using SPARSE-SENSE Acceleration

Hersh Chandarana¹, ², Annie Wang¹, Akio Yoshimoto¹, Alampady Shanbhogue¹, Mary Bruno¹, Tiejun Zhao³, Esther Raithel⁴, Ricardo Otazo¹, ²

¹Radiology, Center for Biomedical Imaging, NYU School of Medicine, New York, NY, United States; ²Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ³Siemens Medical Solutions, New York, NY, United States; ⁴Siemens AG, Healthcare, Erlangen, Germany

Computer 36 4004. Quantitative BOLD Imaging at 3T: Temporal Changes Within Hepatocellular Carcinoma Following Oxygen Challenge

Andrew J. Patterson¹, Andrew N. Priest¹, David J. Bowden¹, Martin J. Graves¹, David J. Lomas¹ ¹Department of Radiology, Addenbrooke's Hospital & University of Cambridge, Cambridge, England, United Kingdom

Computer 37 4005. In Vitro Imaging of Kidney Stones in Pig Kidneys with Ultra-Short Echo-Time MRI

El-Sayed H. Ibrahim¹,², Robert Pooley², Joseph Cernigliaro², Mellena Bridges², Jamie Giesbrandt², James Williams³, William Haley²

¹University of Michigan, Ann Arbor, MI, United States; ²Mayo Clinic, Jacksonville, FL, United States; ³Indiana Unicersity, IN, United States

Computer 38 4006. Modeling of the Spatio-Temporal Distribution of Pulmonary Ventilation Via Perfluoropropane Gas Enhanced MRI

Brian J. Soher¹, Ahmed F. Halaweish², H. Cecil Charles¹ ¹Duke University Medical Center, Durham, NC, United States; ²Siemens Healthcare, MN, United States

Computer 39 4007. The Value of Gd-EOB-DTPA Enhanced MR Imaging in Characterizing Cirrhotic Nodules with Atypical Enhancement in Gd-DTPA Enhanced MRI Imaging

*Yi-Chun Wang*¹, ², *Wen-Pei Wu*², ³, *Cheng-In Hoi*², *Chen-Te Chou*, ²³, *Ran-Chou Chen*, ²⁴ ¹Radiology, taoyuan general hospital ministry of health and welfare, Taiwan, Taoyuan, Taiwan; ²Biomedical Imaging and Radiological Science, National Yang-Ming Medical University, Taipei, Taiwan; ³Radiology, Chang-Hua Christian Hospital, Taiwan; ⁴Radiology, Taipei city Hospital, Taiwan, Taipei, Taiwan

Computer 40 4008. Diffusion Tensor Imaging and Multiparametric Mapping of Experimental Acute and Chronic Kidney Disease at 7T

Jutta Janke¹, Gunnar Schley², Michael Uder¹, Kai-Uwe Eckardt², Carsten Willam², Tobias Bäuerle¹ ¹Institute of Radiology, University Hospital Erlangen, Erlangen, Germany; ²Nephrology and Hypertensiology, University Hospital Erlangen, Erlangen, Germany

Computer 41 4009. Measurement of Body Fat Composition in Chick Embryos Using a 7T MRI

Qun Zhao¹, ², *Houchun H. Hu³*, *Qingying Meng¹*, *Forrest Goodfellow*, ²⁴, *Steve Stice*, ²⁴ ¹Bioimaging Research Center, University of Georgia, Athens, GA., United States; ²Regenerative Bioscience Center, University of Georgia, Athens, GA., United States; ³Dept. of Radiology, Phoenix Children's Hospital, Phoenix, AZ, United States; ⁴Department of Animal & Dairy Science, University of Georgia, GA., United States

Computer 42 4010. Non-Invasive Assessment of Fibrosis and Inflammation in Rat Kidney Models with Diffusion-Weighted MRI

Lindsey Alexandra Crowe¹, Iris Friedli¹, Christian Vesin², Lena Berchtold³, Pierre-Yves Martin⁴, Sophie de Seigneux⁴, Jean-Paul Vallée¹

¹Division of Radiology / Faculty of Medicine, Geneva University Hospital, Geneva, Switzerland; ²Division of Cell Physiology and Metabolism, Geneva University Hospital, Geneva, Switzerland; ³Division of General Internal Medicine, Geneva University Hospital, Geneva, Switzerland; ⁴Division of Nephrology, Geneva University Hospital, Geneva, Switzerland

Computer 43 4011. DW-MRI Evaluation of the Serial Changes of Diffusion and Microperfusion in Adriamycin Induced Renal Injury Rat

Haoran Sun¹, Huanhuan Wu², Ziheng Zhang³ ¹Radiology, Tianjin Medical University Hospital, Tianjin, China; ²Tianjin Medical University Hospital, China; ³MR Research China, GE Healthcare, Shanghai, China

Computer 44 4012. Quantification of Intrapancreatic Fat (IPF) Using 1H-MR Spectroscopy and Multi-Echo Dixon: A Feasibility Study

Annelise M. Silva¹, ², Anshuman Panda³, Raul Pannala⁴, Vijay P. Singh⁴, Krutika Patel⁴, Vishnu T. Kommineni⁴, Teresa Wu⁵, Yinlin Fu⁵, Alvin C. Silva³

¹Research, Mayo Clinic , Phoenix, AZ, United States; ²Arizona State University, Tempe, AZ, United States; ³Radiology, Mayo Clinic, Phoenix, AZ, United States; ⁴Gastroenterology, Mayo Clinic, Phoenix, AZ, United States; ⁵School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States

Computer 45 4013. Examining Intrauterine Growth Restriction Due to Placental Insufficiency in Fetal Guinea Pigs in Utero Using MRI

Kevin J. Sinclair¹, Lanette J. Friesen-Waldner¹, Colin M. McCurdy¹, Curtis N. Wiens², Trevor P. Wade¹, ³, Barbra de Vrijer⁴, Timothy RH Regnault⁴, ⁵, Charles A. McKenzie¹, ³

¹Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ²Radiology, University of Wisconsin, Madison, WI, United States; ³Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; ⁴Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada; ⁵Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada

Computer 46 4014. Assessing Renal Ischemia/reperfusion Injury in Mice Using Time-Dependent BOLD and DTI at 9.4T Dong-Cheol Woo¹, Do-Wan Lee¹, Nayoung Kim¹, Chul-Woong Woo¹, Sang-Tae Kim¹, Jeong-Kon Kim¹, Kyungwon Kim¹, Youyol Song¹, Hyun-Kwon Ha¹, Jin Seong Lee¹ ¹Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea

Computer 47 4015. High-Resolution Abdominal Diffusion-Weighted Imaging Based on Multi-Shot and Multiplexed Sensitivity Encoded Echo-Planar Imaging

Hing-Chiu Chang¹, Arnaud Guidon², Dan Xu³, Lloyd Estkowski⁴, Ersin Bayram⁵, Mei-Lan Chu¹, ⁶, Mustafa R. Bashir¹, Allen W. Song¹, Nan-kuei Chen¹

¹Duke University Medical Center, Durham, NC, United States; ²Global MR Applications and Workflow, GE Healthcare, Boston, MA, United States; ³Global MR Applications and Workflow, GE Healthcare, Waukesha, WI, United States; ⁴Global MR Applications and Workflow, GE Healthcare, Menlo Park, CA, United States; ⁵Global MR Applications and Workflow, GE Healthcare, Houston, TX, United States; ⁶National Taiwan University, Taipei, Taiwan, Taiwan

Computer 48 4016. Simultaneous Multislice Accelerated Free-Breathing Diffusion-Weighted Imaging of the Liver at 3T

Chika C. Obele¹, Christopher Glielmi², Justin Ream¹, Ankur Doshi¹, Naomi Campbell¹, ³, Cheung Hoi Zhang¹, James Babb¹, Himanshu Bhat⁴, Hersh Chandarana¹

¹Radiology, NYU Scool of Medicine and NYU Langone Medical Center, New York, NY, United States; ²Siemens HealthCare, New York, NY, United States; ³Radiology, Memorial Sloan Ketteringý, NY, United States; ⁴Siemens Healthcare, Charlestown, MA, United States

Electronic Poster			
Renal, Adrenal & Male Pelvis			
Exhibition	Hall	Wednesday 10:00-11:00	
Computer 49	4017.	Assessment of Diabetic Nephropathy in Mouse Models: GlucoCEST Feng Wang ¹ , ² , David Kopylov ³ , Zhongliang Zu ¹ , ² , Keiko Takahashi ⁴ , ⁵ , John C. Gore ¹ , ² , Raymond C. Harris ⁴ , ⁵ , Takamune Takahashi ⁴ , ⁵ , C. Chad Quarles ¹ , ² ¹ Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ² Institute of Imaging Sciences, Vanderbilt University, TN, United States; ³ Drexel University, PA, United States; ⁴ Vanderbilt O'Brien Mouse Kidney Physiology and Disease Center, Vanderbilt University, TN, United States; ⁵ Division of Nephrology and Hypertension, Vanderbilt University, TN, United States	
Computer 50	4018.	Sodium Quantification of Transplanted Kidney Using Dual-Tuned Proton/sodium MRI <i>Chan Hong Moon¹, Alessandro Furlan², Jung-Hwan Kim², Tiejun Zhao³, Ron Shapiro⁴, Kyongtae Ty Bae²</i> ¹ University of Pittsburgh, Pittsburgh, PA, United States; ² University of Pittsburgh, PA, United States; ³ Siemens Medical Solutions, PA, United States; ⁴ Thomas E. Starzl Transplantation Institute, PA, United States	
Computer 51	4019.	Diffusion Kurtosis Imaging of Transplanted Kidneys: Preliminary Results <i>Yanjun Li¹, Yuan Xie¹, Yong Zhang², Dandan Zheng³, Guangming Lu¹</i> ¹ Medical Imaging, Jingling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; ² GE healthcare China, Shanghai, China; ³ GE healthcare China, Beijing, China	
Computer 52	4020.	Optimizing Dose and Imaging Parameters in MR Renography for Quantitative Measurement of Renal Function Jeff L. Zhang ¹ , Christopher C. Conlin ¹ , Kristi Carlston ¹ , Daniel Kim ¹ , Glen Morrell ¹ , Kathryn Morton ¹ , Vivian S. Lee ¹ ¹ Radiology, University of Utah, Salt Lake City, UT, United States	
Computer 53	4021.	Optimization for Non-Contrast Enhanced MRA of Renal Artery at 3T: Evaluation of BBTI with Consideration of Renal Blood Velocity Yasuhisa Kurata ¹ , Aki Kido ¹ , Koji Fujimoto ¹ , Kayo Kiguchi ¹ , Kyoko Takakura ¹ , Kaori Togashi ¹ ¹ Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan	
Computer 54	4022.	Modification of EGFR Formulas Using Estimates of Fat-Infiltration from MRI: A Preliminary Study in	
		Christopher C. Conlin ¹ , Jeff L. Zhang ¹ , Glen Morrell, ¹² , Kristi Carlston ¹ , Tom Greene ³ , Kathryn A. Morton ² , Vivian S. Lee ¹ , ² ¹ Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States; ² Department of Radiology, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, Salt Lake City, UT, United States; ³ Internal Medicine, Salt Lake City, UT, United States; ³ Internal Me	
Computer 55	4023.	MRI- R2* Relaxometry for Assessment of Kidney Iron Accumulation as a Cause of Renal Dysfunction in Patients with Sickle Cell Disease (SCD) Sarah Keller ¹ , Bjoern Schoennagel ¹ , Zhiyue Jerry Wang ² , Regine Grosse ³ , Peter Nielsen ⁴ , Gerhard Adam ¹ , Roland Fischer ¹ , Jin Yamamura ¹ ¹ Diagnostic and Interventional Radiology, University Medicine Hamburg Eppendorf, Hamburg, Germany; ² Radiology, Children's Medical Center Dallas, Dallas, TX, United States; ³ Pediatric Hematology and Oncology, University Medicine Hamburg Eppendorf, Hamburg, Germany; ⁴ Institute of Biochemistry and Molecular Biology, Center of Experimental Medicine, Hamburg, Germany	
Computer 56	4024.	An Apparatus for <i>In Vivo</i> Simultaneous Oxygen Probe Measurements During Renal BOLD MRI in a Porcine Model Joshua Kaggie ¹ , Vivian S. Lee ¹ , Robb Merrill ¹ , Glen Morrell ¹ ¹ Utah Center for Advanced Imaging Research, Radiology, University of Utah, Salt Lake City, UT, United States	
Computer 57	4025.	Preliminary Study of BOLD-MRI in Early Detection of the Renal Hypoxia in Diabetes Junjie Ren ¹ , Shengzhang Ji ¹ , Chunxia Li ¹ , Weidong Su ¹ , Chunqing Song ¹ , Lijun Qiu ¹ , Donghong Xu ¹ , Hao Wang ¹ , Queenie Chan ² , Yu Zhang ³ ¹ The 4th center hospital of TianJin, Tianjin, China; ² Philips Healthcare, Hongkong, China; ³ Philips Healthcare, Beijing, China	

Computer 58 4026. Early Changes in Renal Hypoxia Following Iodinated Contrast: Need for Real-Time Monitoring

Lu-Ping Li¹, ², Jing Lu, ²³, Tammy Franklin⁴, ^Ying Zhou⁵, Richard Solomon⁶, Pottumarthi V. Prasad, ²⁴ ¹Department of Radiology / Center for Advanced Imaging, Northshore University Healthsystem, Evanston, IL, United States; ²Pritzker School of Medicine, University of Chicago, CL, United States; ³Department of Obstetrics and Gynecology, Northshore University Healthsystem, Evanston, IL, United States; ⁴Department of Radiology / Center for Advanced Imaging, Northshore University Healthsystem, Evanston, IL, United States; ⁵Center for Clinical & Research Informatics, Northshore University Healthsystem, Evanston, IL, United States; ⁶Nephrology, University of Vermont, VT, United States

Computer 59 4027. The Influence of Vibration Frequency and Imaging Plane on Stiffness Measurements in Renal Magnetic Resonance Elastography

Gavin Low¹, ², Nicola Eve Owen³, Ilse Joubert¹, Andrew J. Patterson¹, Martin J. Graves¹, Graeme J.M. Alexander³, David J. Lomas¹

¹Radiology, Addenbrooke's Hospital, Cambridge, England, United Kingdom; ²University of Alberta, Edmonton, Alberta, Canada; ³Hepatology & Gastroenterology, Addenbrooke's Hospital, Cambridge, England, United Kingdom

Computer 60 4028. Preclinical Magnetic Resonance Fingerprinting: Taking Advantage of Inherent Resistance to Motion Artifacts *Ying Gao¹*, *Yong Chen²*, *Dan Ma¹*, *Yun Jiang¹*, *Katherine M. Dell³*, *Mitchell L. Drumm³*, ⁴, *Mark A. Griswold¹*, ², *Chris A. Flask*, ¹², *Lan Lu²*, ⁵ ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve

¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States; ³Pediatrics, Case Western Reserve University, Cleveland, OH, United States; ⁴Genetics, Case Western Reserve University, Cleveland, OH, United States; ⁵Urology, Case Western Reserve University, Cleveland, OH, United States

Computer 61 4029. Texture Analysis in the Characterisation of Ovarian Lesions: Use of Synthetic Minority Oversampling Peter Gibbs¹, Martine Dujardin¹, Lindsay Turnbull¹ ¹Centre for MR Investigations, University of Hull, Hull, East Yorkshire, United Kingdom

Computer 62 4030. Preoperative Sentinel Lymph Node Diagnosis with Interstitial MR Lymphography in Cervical Cancer: A Pilot Study

zhengyang zhou¹, Haiping yu¹, Ying Hong², Jing Fang² ¹Radiology, Affiliated Drum Tower Hospital,School of Medicine,Nanjing University,China, Nanjing, Jiangsu, China; ²Gynecology, Affiliated Drum Tower Hospital,School of Medicine,Nanjing University,China, Nanjing, Jiangsu, China

Computer 63 4031. Feasibility of T2*-Weighted Image(T2*W) in the Assessment of Non-Perfused Volume (NPV) Inside Uterine Fibroids Response to MR-Guided High Intensity Focused Ultrasound (HIFU) Ablation

Jintang Ye¹, Jing Liu¹, Juan Wei², Bilgin Keserci³, Jianhua Zhang⁴, Xuedong Yang¹, Rong Rong¹, Ying Zhu¹, Queenie Chan⁵, Xiaoying Wang¹

¹Department of Radiology, Peking University First Hospital, Beijing, China; ²Philips Research China, Shanghai, China; ³MR Therapy Clinical Science, Philips Healthcare, Seoul, Korea; ⁴Philips (China) Investment Co., Ltd, Beijing, China; ⁵MR Clinical Science, Philips Healthcare, Hongkong, China

Computer 64 4032. Gradient Echo Signal Decays in Gynecological Cancers Require a Gaussian Augmentation of the Mono-Exponential (GAME) Model: Preliminary Evaluation Post External Beam Radiation Therapy at 3T Pelin Aksit Ciris¹, ², Robert V. Mulkern, ²³, Mukund Balasubramanian, ²³, Antonio L. Damato, ²⁴, Ravi T. Seethamraju⁵, Janice Fairhurst¹, Ferenc A. Jolesz¹, ², Clare M. Tempany-Afdhal¹, ², Ehud Schmidt¹, ², Akila N. Viswanathan, ²⁴ ¹Brigham and Women's Hospital, Boston, MA, United States; ²Harvard Medical School, Boston, MA, United States; ³Boston Children's Hospital, Boston, MA, United States; ⁴Dana-Farber Cancer Institute, Boston, MA, United States; ⁵Siemens Healthcare, MA, United States

Computer 65 4033. A Simple and Clinically Applicable Decision Tree for Accurate Classification of Complex Adnexal Masses Based on Quantitative DCE-MRI

Mahnaz Nabil¹, ², *Anahita Fathi Kazerooni¹*, ³, *Hamidreza Haghighatkhah⁴*, *Sanam Assili¹*, *Hamidreza Saligheh Rad¹*, ³ ¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Department of Statistics, Tarbiat Modares University, Tehran, Iran; ³Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; ⁴Department of Radiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Computer 66	4034.	Reproducibility of Diffusional Kurtosis Imaging Measurement in Uterine Cervix In Vivo
		Xiang Zheng ¹ , Xisheng Cao ¹ , Youping Xiao ¹ , Yunbin Chen ¹ , Weibo Chen ²
		¹ Radiology Department, Fujian Provincial Cancer Hospital, Fuzhou, Fujian, China; ² Philips Healthcare, Shanghai, China

- Computer 67 4035. Faster MR Imaging of Cervical and Endometrial Carcinoma Through a Limited Sequence Protocol Based on High-Resolution, Free-Breathing, Post-Contrast 3D SPGR Imaging with Comparison to Standard Care Stephanie T. Chang¹, Andreas M. Loening¹, Marcus T. Alley¹, Shreyas S. Vasanawala¹ ¹Dept. of Radiology, Stanford University, Stanford, CA, United States
- Computer 68 4036. Advanced Cervical Cancer: Quantitative Assessment of Early Response with Intravoxel Incoherent Motion Diffusion-Weighted Magnetic Resonance Imaging After Neoadjuvant Chemotherapy Yanchun Wang¹, Daoyu Hu¹ ¹Tongji Hospital Tongji Medical College, Wuhan, Hubei, China
- Computer 69 4037. A Comparison Study of Intravoxel Incoherent Motion (IVIM) Based DWI and Pharmacokinetics Analysis Based Dynamic Contrast Enhanced MRI in Case of Cervical Cancer Yan Zhou¹, Jianyu Liu¹, Wei He¹, Yang Shen¹, Weidan Lu¹, Huici Zhu¹, Lizhi Xie², Zhenyu Zhou² ¹Peking University Third Hospital, Beijing, China; ²GE Healthcare, Beijing, China
- Computer 70 4038. Modelling Diffusion-Weighted MRI Data from Primary and Metastatic Ovarian Tumours Jessica M. Winfield¹, Nandita M. deSouza¹, ², Andrew N. Priest³, Jennifer C. Wakefield², Charlotte Hodgkin³, Susan Freeman³, Matthew R. Orton², David J. Collins¹, ² ¹MRI, Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ²CRUK Cancer Imaging Centre, Institute of Cancer Research, Sutton, Surrey, United Kingdom; ³Department of Radiology, Addenbrooke's Hospital, Cambridge, United Kingdom

Computer 71 4039. Non-Invasive Assessment of Fibrosis and Inflammation in the Whole Kidney of CKD Patients by Diffusion-Weighted Imaging with Readout-Segmented EPI Iris Friedli¹, Lindsey Alexandra Crowe¹, Lena Berchtold², Solange Moll³, Karine Hadaya⁴, Thomas De Perrot¹, Pierre-Yves Martin⁴, Sophie De Seigneux⁴, Jean-Paul Vallée¹ ¹Division of Radiology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Geneva, Switzerland; ²Division of Internal Medicine, Faculty of Medicine, Geneva University Hospital, University of Geneva, Geneva, Switzerland; ³Division of Pathology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland; ⁴Division of Nephrology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland; ⁴Division of Nephrology, Faculty of Medicine, Geneva University Hospital, University of Geneva, Switzerland;

Computer 72 4040. Introvoxel Incoherent Motion (IVIM) with Multi-B Values DWI in the Diagnosis and Grading of Cervical Cancer Yan Zhou¹, Jianyu Liu¹, Wei He¹, Yang Shen¹, Weidan Lu¹, Huici Zhu¹, Dandan Zheng², Ziheng Zhang² ¹Peking University Third Hospital, Beijing, China; ²GE Healthcare, Beijing, China

Electronic Poster

Thermometry & Thermotherapy			
Exhibition Hall	Wednesday 10:00-11:00		
Computer 73 4041.	MR-ARFI for the Quantification of Tissue Elastic Properties <i>Tetiana Dadakova¹, Ali Caglar Özen¹, Axel Joachim Krafft¹, Jurgen Fütterer², Martijn Hoogenboom², Jürgen Walter Jenne³, Erik Dumont⁴, Christakis Damianou⁵, Jan Gerrit Korvink⁶, Michael Bock¹ ¹Department of Radiology - Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Department of Radiology and Nuclear medicine, Radboud University Medical Center, Nijmegen, Netherlands; ³Fraunhofer MEVIS, Bremen, Germany; ⁴Image Guided Therapy, Pessac, France; ⁵Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus; ⁶Department of Microsystems Engineering (IMTEK), University of Freiburg, Freiburg, Germany</i>		
Computer 74 4042.	Acoustic Radiation Force Imaging (ARFI) Based on Fast Spin Echo Yuval Zur ¹		

¹GE Healthcare, Tirat Carmel, Israel

Computer 75 4043.	Dynamic 3D MR Acoustic Radiation Force Imaging for Tissue Property Estimation <i>Joshua Thomas de Bever¹, ², Henrik Odéen, ²³, Dennis L. Parker, ²⁴</i> ¹ School of Computing, University of Utah, Salt Lake City, UT, United States; ² Utah Center for Advanced Imaging Research, Salt Lake City, UT, United States; ³ Department of Physics, University of Utah, Salt Lake City, UT, United States; ⁴ Department of Radiology, University of Utah, Salt Lake City, UT, United States
Computer 76 4044.	Temperature and Thermal Dose Analysis Associated with Acoustic Radiation Force from High Intensity Focused Ultrasound in Phantom for Viscoelasticity Measurement Jiming Zhang ¹ , Amol Pednekar ² , Pei-Herng Hor ³ , Raja Muthupillai ¹ ¹ Diagnostic and Interventional radiology, CHI St Lukes' Health, Houston, TX, United States; ² Philips Healthcare, TX, United States; ³ Physics, University of Houston, Houston, TX, United States
Computer 77 4045 .	Real-Time MR Thermometry Feedback Control for Prostate Hyperthermia with a Commercial HIFU System <i>Eugene Ozhinsky¹, Vasant A. Salgaonkar², Chris J. Diederich², Viola Rieke¹</i> ¹ Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ² Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
Computer 78 4046.	Pre-Clinical Head-Mounted MRgFUS Device for Large Animals <i>Robb Merrill¹, Henrik Odeen¹, Emilee Minalga¹, J. Rock Hadley¹, Dennis Parker¹, Allison Payne¹</i> ¹ Radiology, University of Utah, Salt Lake City, UT, United States
Computer 79 4047.	Investigating the Utility of Diffusion-Weighted Imaging (DWI) for Monitoring Treatment Efficacy During MR Guided High Intensity Focused Ultrasound (MRgHIFU) Therapy in Bone Applications Sharon L. Giles ¹ , Jessica M. Winfield ² , Ian Rivens ³ , David J. Collins ² , Gail R. ter Haar ³ , Nandita M. deSouza ² ¹ MRI Unit, Royal Marsden Hospital, Sutton, Surrey, United Kingdom; ² CRUK Cancer Imaging Centre, The Institute of Cancer Research, Sutton, Surrey, United Kingdom; ³ Therapeutic Ultrasound, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
Computer 80 4048.	Clinical Feasibility of Motion Compensation for MR-Based Thermometry for Treatment in the Head and Neck Region Using Magnetic Resonance-Guided Focused Ultrasound Samuel Pichardo ¹ , ² , Justin Lee ³ , Kullervo Hynynen ⁴ ¹ Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada; ² Electrical Engineering & Physics, Lakehead University, Thunder Bay, Ontario, Canada; ³ Odette Cancer Centre, Toronto, Ontario, Canada; ⁴ Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
Computer 81 4049.	The Changes of Uterine Fibroids' Diffusion and Perfusion Status After MR-Guided HIFU Ablation Evaluated from IVIM MR Imaging with Different B-Values Combination Jia Liu ¹ , Bilgin Keserci ² , Juan Wei ³ , Queenie Chan ⁴ , Yu Zhang ⁵ , Rong Rong ¹ , Xiaoying Wang ¹ ¹ Radiology, Peking University First Hospital, Beijing, China; ² Philips Healthcare, Seoul, Korea; ³ Philips Research China, Shanghai, China; ⁴ Philips Healthcare, Hong Kong, China; ⁵ Philips Healthcare, Beijing, China
Computer 82 4050.	MRI Guided High Intensity Focused Ultrasound (HIFU) of Visceral Fat in Overweight Rats Patrick Winter ¹ , Matthew Lanier ¹ , Ari Partanen ² , Charles Dumoulin ¹ ¹ Radiology, Cincinnati Children's Hospital, Cincinnati, OH, United States; ² Clinical Science MR Therapy, Philips Healthcare, Andover, MA, United States
Computer 83 4051.	MR-Guided High Intensity Focused Ultrasound for Ablated Kidney: MR Perfusion Assessment and Microscopic Characterization Maythem Saeed ¹ , Loi Do ¹ , Mark W. Wilson ¹ , Roland Krug ¹ ¹ Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, Ca, United States
Computer 84 4052.	Localized Hyperthermia in Rodent Models Using a MRI-Compatible High-Intensity Focused Ultrasound System

Chenchen Bing¹, Joris Nofiele¹, Robert Staruch, ¹², Yonatan Chatzinoff⁴, Michele Harbeson³, Danny Maples³, Jerry Malayer³, Samuel Pichardo⁴, Ashish Ranjan³, Rajiv Chopra¹
¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ²Clinical Sites Research Program, Philips Research North Amarica, Briarcliff Manor, NY, United States; ³Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States; ⁴Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada

- Computer 85 4053. MR Thermometry in *In-Vitro* Flows Waltraud B. Buchenberg¹, Florian Wassermann², Sven Grundmann², Bernd Jung³, Robin Simpson¹ ¹Dept. of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²Center of Smart Interfaces, Technische Universität Darmstadt, Darmstadt, Germany; ³Institute of Diagnostic, Interventional and Pediatric Radiology, University Hospital, Bern, Switzerland Computer 86 4054. A New Time Shifted Fast Spin Echo Thermometry Sequence Yuval Zur¹ ¹GE Healthcare, Tirat Carmel, Israel Computer 87 4055. Proton Resonance Shift Based Temperature Mapping with Field Monitoring David O. Brunner¹, Simon Gross¹, Lars Kasper¹, Bertram J. Wilm¹,², Christoph Barmet¹,², Klaas P. Pruessmann¹ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Skope Magnetic Resonance Technologies LLC, Zurich, Switzerland Computer 88 4056. T1-Based MR Thermometry Close to Metal Hans Weber¹, Daehyun Yoon¹, Valentina Taviani¹, Kim Butts Pauly¹, ², Brian A. Hargreaves¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²Bioengineering, Stanford University, Stanford, CA, United States Computer 89 4057. Feasibility of Temperature Imaging of Knee Joint Cartilage Under Thermal Therapy Using Water Proton **Resonance Frequency Shift** Atsushi Shiina¹, Kenji Takahashi², Jiro Nakano³, Kagayaki Kuroda¹ ¹Graduate School of Engineering, Tokai University, Hiratsuka, Kanagawa, Japan; ²Department of Orthopaedic Surgery, Nippon Medical School, Bunkyo, Tokyo, Japan; ³School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan Computer 90 4058. Direct Virtual Coil (DVC) for Bone Tumor Temperature Mapping Yuxin Hu¹, Shuo Chen², Bingyao Chen³, Jiafei Yang³, Xing Wei³, Shi Wang², Kui Ying² ¹Tsinghua University, Beijing, China; ²Engineering Physics, Tsinghua University, Beijing, China; ³Department of Orthopedics, First Affiliated Hospital of PLA General Hospital, Beijing, China Computer 91 4059. Real-Time Online Reconstruction of 3D MR Thermometry Data for MRgFUS Applications Henrik Odéen¹,², John Roberts¹, Joshua de Bever¹,³, Dennis L. Parker magna cum laude ¹Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, United States; ³School of Computing, University of Utah, Salt Lake City, UT, United States Computer 92 4060. Improving the Referenceless MR Thermometry Using Adaptive ROI Changjun Tie¹, Chao Zou¹, Xin Liu¹ ¹Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China Computer 93 4061. Simultaneous T2 Mapping in Near-Field Subcutaneous Fat Layer and PRFS Temperature Mapping in the Target Region Using Fast Interleaved Sequences to Monitor MR-HIFU Sonication Jochen Keupp¹, Steffen Weiss¹, Jaakko Tolo², Holger Gruell³, ⁴, Edwin Heijman³ ¹Philips Research, Hamburg, Germany; ²Philips Healthcare, Helsinki, Finland; ³Philips Research, Eindhoven, Netherlands; ⁴Eindhoven University of Technology, Eindhoven, Netherlands
- Computer 94 4062. Multivoxel Proton Magnetic Resonance Spectroscopy for Non-Invasive Thermometry: Improvements in Spectral Quality Using SemiLASER with GRE Shim Candace C. Fleischer¹,², Deqiang Qiu³, Xiaodong Zhong⁴, Hui Mao³, John N. Oshinksi³, Xiaoping Hu¹,², Seena Dehkharghani³

¹Biomedical Imaging Technology Center, Emory University, Atlanta, GA, United States; ²Biomedical Engineering, Emory University, Atlanta, GA, United States; ³Radiology and Imaging Sciences, Emory University Hospital, Atlanta, GA, United States; ⁴MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, United States

Computer 95	4063.	Feasibility and Functionality of Quantitative Real-Time Monitoring During MRI-Guided Percutaneous Cryoablation Jonathan Scalera ¹ , Gary P. Zientara ² , Kumal Tuncali ¹ ¹ Brigham and Women's Hospital, Boston, MA, United States; ² US Army Research Institute of Environmental Medicine, Natick, MA,
		United States
Computer 96	4064.	MRI Temperature Mapping of NIR Absorbing Gold Nanoparticles Mediated Photothermal Therapy <i>Dong-Hyun Kim¹</i> , ² , <i>Ken Zhao¹</i> , <i>Daniele Procissi¹</i> , <i>Andrew Gordon¹</i> , <i>Weiguo Li¹</i> , <i>Andrew C. Larson¹</i> , ² ¹ Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; ² R.H. Lurie Cancer Center, Chicago, IL, United States
Electron	nic Po	ster
Hepatob	oiliary	Y I
Exhibition	Hall	Wednesday 11:00-12:00
Computer 1	4065.	Quantitative Magnetic Resonance Elastography of Solid Pancreatic Masses
		Yu Shi', He An', Qiyong Guo', Richard L. Ehman', Kevin J. Glaser' ¹ Department of radiology, Shengjing hospital of china medical university, Shenyang, Liaoning, China; ² Department of Radiology, Mayo Clinic, Rochester, MN, United States
Computer 2	4066.	The Comparison of Gd-EOB-DTPA Enhanced-Magnetic Resonance Imaging and Magnetic Resonance Elastography for the Detection and Staging of Hepatic Fibrosis Chang In Hail Way Pai Way ² Vi Chun Wang ³ Chan To Chay ² Pan Chay Chap ⁴
		¹ Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan, Taiwan; ² Department of Radiology, Chang-Hua Christian Hospital, Taiwan, Taiwan; ³ Department of Radiology, Taoyuan general hospital ministry of health and welfare, Taiwan, Taiwan; ⁴ Department of Radiology, Taipei City Hospital, Taiwan, Taiwan
Computer 3	4067.	MR Elastography of the Liver: Qualitative and Quantitative Comparison of GRE and EPI Sequences. <i>Temel Kaya Yasar¹, Cecilia Besa¹, Jad Bou Ayache¹, Octavia Bane¹, Maggie Fung², Bachir Taouli¹</i> ¹ Icahn School of Medicine at Mount Sinai, New York, NY, United States; ² GE Healthcare, New York, NY, United States
Computer 4	4068.	Prospective Comparison of MR Elastography and US Acoustic Radiation Force Impulse for Evaluation of Hepatic Fibrosis
		<i>Chen-Te Chou', *, Wen-Pei Wu*, Yt-Jun Wang*, Ran-Chou Chen*, *</i> ¹ Radiology, Chang-Hua Christian hospital, Chang-Hua, Taiwan; ² Biomedical Imaging and Radiological Sciences, National Yang- Ming University, Taipei, Taiwan, Taiwan; ³ Radiology, Taipei City Hospital, Taipei, Taiwan, Taiwan
Computer 5	4069.	Multi-Model Direct Inversion Algorithms at 3.0T MR Elastography of the Liver: Comparison with Conventional Multi-Scale Algorithm
		¹ Radiology, Fukuoka University, Fukuoka, Japan; ² GE Healthcare, Tokyo, Japan; ³ Mayo Clinic, Minessota, United States
Computer 6	4070.	Detection of Cytoplasmic Lipid Within Neuroendocrine Tumors of the Pancreas on Chemical Shift MRI YOSHIHIKO FUKUKURA ¹ , Koji Takumi ¹ , Toshikazu Shindo ¹ , Tomokazu Umanodan ¹ , Aya Umanodan ¹ , Junichi Ideue ¹ , Hiroto Hakamada ¹ , Kiyohisa Kamimura ¹ , Masanori Nakajo ¹ , Takashi Yoshiura ¹ ¹ Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
Computer 7	4071.	Repeatability of Measurement of Liver T1, T2 and PDFF by Multi-TR, Multi-TE Single Breath-Hold ¹ H MR Spectroscopy.
		Gavin Hamilton', Michael S. Middleton', William M. Haufe', Jonathan C. Hooker', Yesenia Covarrubias', Rohit Loomba ² , Claude B. Sirlin ¹

¹Department of Radiology, UC San Diego, San Diego, CA, United States; ²Department of Medicine, UC San Diego, San Diego, CA, United States

Computer 8 4072. Proton Density Fat Fraction and Liver Water and Fat T2 as Measured by Multi-TR, Multi-TE ¹H MRS Compared to Multi-TE ¹H MRS. *Gavin Hamilton¹*, Michael S. Middleton¹, Alexandra N. Schlein¹, Catherine A. Hooker¹, Lisa Clark¹, Rohit Loomba², Claude B. Sirlin¹ ¹Department of Radiology, UC San Diego, San Diego, CA, United States; ²Department of Medicine, UC San Diego, San Diego, CA, United States

Computer 9 **4073.** Whole Liver Fat Quantification in Pediatric Patients with NonAlcoholic Fatty Liver Disease (NAFLD) Xiaodong Zhong¹, Jie Deng², ³, Brian M. Dale⁴, Cynthia K. Rigsby², ³, Mark H. Fishbein⁵ ¹MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, United States; ²Department of Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States; ³Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; ⁴MR R&D Collaborations, Siemens Healthcare, Cary, NC, United States; ⁵Division of Gastroenterology, Hepatology, and Nutrition, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States

Computer 10 4074. Optimization of the Fat Fraction and T2* Measurements in Mice at 4.7T with the IDEAL Algorithm Roberto Salvati¹, ², Pierre-Antoine Eliat³, Orlando Musso, ⁴, Christine Perret⁵, Eric Hitti¹, ², Marie Sicard, ⁴, Herve Saint-Jalmes¹, ², Giulio Gambarota¹, ² ¹LTSI, Université de Rennes 1, Rennes, France; ²INSERM, UMR 1099, Rennes, France; ³PRISM-Biosit CNRS UMS 3480, Université de Rennes 1, INSERM UMS 018, Rennes, France; ⁴Institut National de la Santé et de la Recherche Médicale, Unit 991, Liver Metabolisms and Cancer, Rennes, France; ⁵Oncogenèse de l'épithélium digestif, INSERM UMRS 1016, Institut Cochin, Paris, France

Computer 11 4075. MRI-R2* Relaxometry for Cardiac, Pancreatic and Hepatic Iron Assessment in Patients with Hereditary Hemochromatosis

Sarah Keller¹, Bjoern Schoennagel¹, Zhiyue Jerry Wang², Regine Grosse³, Peter Nielsen⁴, Gerhard Adam¹, Roland Fischer¹, Jin Yamamura¹

¹Diagnostic and Interventional Radiology, University Medicine Hamburg Eppendorf, Hamburg, Germany; ²Radiology, Children's Medical Center Dallas, Dallas, TX, United States; ³Pediatric Hematology and Oncology, University Medicine Hamburg Eppendorf, Hamburg, Germany; ⁴Institute of Biochemistry and Molecular Biology, Center of Experimental Medicine, Hamburg, Germany

Computer 12 4076. Repeatability of MRI-Based Liver Fat and Iron Quantification Using a Multistep Adaptive Fitting Algorithm *Keitaro Sofue*¹, ², *Xiaodong Zhong*³, *Marcel Dominik Nickel*⁴, *Brian Marshall Dale*⁵, *Mustafa Rifaat Bashir*¹ ¹Radiology, Duke University Medical Center, Durham, NC, United States; ²Radiology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan; ³Siemens Healthcare, Atlanta, GA, United States; ⁴Siemens Healthcare, Erlangen, Germany; ⁵Siemens Healthcare, Morrisville, NC, United States

Computer 13 4077. Correcting the Influence of Iron on Steatosis Measurements Peter A. Hardy^l, Jimmy Lee^l ¹Radiology, University of Kentucky, Lexington, KY, United States

Computer 14 4078. Liver R2* Value from Multi-Echo IDEAL at 3.0 T: A Potential Biomarker for Adjusting IV Iron Dose and Anemia Management Practices on Maintenance Hemodialysis Patients Bing Wu^l, Xinhuai Wu^l, Wenbo Zhang², Dandan Zheng³, Mingmei Ge^l, Xiao Li^l, Yingkui Zhang³ ¹Radiology Dept., Beijing Military General Hospital, Bejing, Beijing, China; ²Nephrology Dept., Beijing Military General Hospital, Beijing, Beijing, China; ³GE Healthcare China, Beijing, China

Computer 15 4079. Liver Iron Content Determination Using GRE and Signal Intensity Ratio Analysis in MR Systems from Different Vendors Arthur Peter Wunderlich¹,², Meinrad Beer¹, Peter Bernhardt³, Holger Cario⁴, Vinzenz Hombach³, Reinhard Meier¹, Wolfgang Rottbauer³, Stefan Andreas Schmidt¹, Volker Rasche³ ¹Clinic for Diagnostic and Interventional Radiology, Univ.-Clinic Ulm, Ulm, Germany; ²Section for Experimental Radiology, Univ.-Clinic Ulm, Ulm, Germany; ³Clinic for Internal Medicine II - Cardiology, Univ.-Clinic Ulm, Ulm, Germany; ⁴Clinic for Pediatrics, Univ.-Clinic Ulm, Ulm, Germany

- Computer 16 4080. Pancreatic Iron: A Future Major Organ in Iron Overload Diseases The Role of R2*-Relaxometry Jin Yamamura¹, Sarah Keller¹, Björn Schönnagel¹, Regine Grosse², Zhiyue Jerry Wang³, Peter Nielsen⁴, Gerhard Adam¹, Roland Fischer¹, ⁵ ¹Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ³Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; ⁴Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁵Department of Radiology, Children's Hospital & Research Center Oakland, Oakland, CA, United States
- Computer 17 4081. Fast ¹H-MRS Measurement of Pancreatic Fat Content in a Single Breath-Hold Ronald Ouwerkerk¹, Ahmed M. Gharib¹ ¹The Biomedical and Metabolic Imaging Branch, NIDDK/NIH, Bethesda, MD, United States
- Computer 18 4082. Quantification of Hepatic and Myocellular Glycogen After Two Days of Diet and Activity Standardization: A ¹³C MRS Reproducibility Study in Individuals with Type 1 Diabetes and Matched Healthy Controls *Tania Buehler¹, Lia Bally², Ayse Sila Dokumaci¹, Christoph Stettler², Chris Boesch¹* ¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital Bern, Bern, Switzerland
- Computer 19 4083. Extramedullary Hematopoiesis Is Associated with a Thalassaemia Intermedia-Like Pattern of Myocardial and Liver Iron Loading in Regularly Polytransfused Thalassaemia Patients Antonella Meloni¹, Paolo Ricchi², Paolo Preziosi³, Vincenzo Positano¹, Maria Chiara Resta⁴, Gennaro Restaino⁵, Antonino Vallone⁶, Maria Giovanna Neri¹, Graziella Filati⁷, Anna Pietrapertosa⁸, Petra Keilberg¹, Alessia Pepe¹ ¹CMR Unit, Fondazione G. Monasterio CNR-Regione Toscana, Pisa, Italy; ²UOSD Centro per le Microcitemie, AORN Cardarelli, Napoli, Italy; ³U.O.C. Diagnostica per Immagini e Interventistica, Policlinico "Casilino", Roma, Italy; ⁴Struttura Complessa di Radiologia, OSP. SS. Annunziata ASL Taranto, Taranto, Italy; ⁵Istituto di Radiologia, Università Cattolica del Sacro Cuore, Campobasso, Italy; ⁶Istituto di Radiologia, Az. Osp. "Garibaldi" Presidio Ospedaliero Nesima, Catania, Italy; ⁷Pediatria, Ospedale "G. Da Saliceto", Piacenza, Italy; ⁸Policlinico di Bari, Servizio Regionale Talassemie, Bari, Italy
- Computer 20 4084. Measuring the Unsaturation Index in Red and Yellow Bone Marrow Using ¹H MR Spectroscopy Alessandra Bierwagen¹, ², Bettina Nowotny¹, ², Julia Szendroedi¹, ³, Karsten Müssig¹, ³, Michael Roden¹, ³, Jesper Lundbom¹, ² ¹Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University, Duesseldorf, Germany; ²German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Duesseldorf, Germany; ³Department of Endocrinology and Diabetology, University Hospital Duesseldorf, Germany
- Computer 21 4085. Magnetic Resonance Spectroscopy of Breast Cancer Using the SLIM Technique Initial Results Patrick J. Bolan¹,², Steen Moeller¹, Gregory J. Metzger¹,², Michael Garwood¹,², Douglas Yee²,³, Michael T. Nelson¹,²</sup> ¹Radiology, University of Minnesota, Minneapolis, MN, United States; ²Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; ³Medicine, University of Minnesota, Minneapolis, MN, United States
- Computer 22 4086. Investigation of 3D Lava-Flex in Fat Fraction Estimation for Patients with Hepatic Iron-Overloading *Tianyong Xu¹*, *Qian Jiang¹*, *Bing Wu¹*, *Kai Xu²*, *Zhenyu Zhou¹* ¹GE Healthcare China, Beijing, China; ²The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Computer 23 4087. Visualization of Pancreas in Rats Using Clinical MRI and CT: From in Situ to In Vivo Ting Yin¹, Walter Coudyzer², Ronald Peeters², Yewei Liu¹, Marlein M. Cona¹, Yuanbo Feng¹, Jie Yu², Steven Dymarkowski², Raymond Oyen², Yicheng Ni¹, ² ¹Theragnostic Laboratory, KULeuven, Leuven, Flemish Brabant, Belgium; ²Department of Radiology, KULeuven, Leuven, Flemish Brabant, Belgium

Computer 24 4088. Pitfalls of the Piggyback

Marina-Portia Anthony¹, Stuart Bentley-Hibbert¹, Anuradha S. Shenoy-Bhangle¹, Elizabeth Hecht¹, Benjamin Samstein², Martin R. Prince¹ ¹Abdominal Division, Department of Radiology, Columbia University Medical Center, New York, NY, United States; ²Department of Surgery, Columbia University Medical Center, New York, NY, United States

Electronic Poster		
Hepatobiliary II		
Exhibition	Hall	Wednesday 11:00-12:00
Computer 25	4089.	Non-Gated Single Breath-Hold MR Cholangiopancreatography (MRCP) with 3D BSSFP: Comparison with Respiratory Gated 3D FSE Abirochi Vamamoto ¹ Hinchi Matoho ¹ Vuji Shintani ¹ Dajij Uchiyamo ¹ Soigo Voshida ¹ Kataumi Nehamung ¹² Mitauo
		<i>Miyazaki³</i> ¹ Radiology, Tobata Kyoritsu Hospital, Kitakyusyu, Fukuoka, Japan; ² Radiology, Hikari Central Hospital, Hikari, Yamaguchi, Japan; ³ Toshiba Medical Research Institute USA. Vernon Hills, IL, United States
Computer 26	4090.	Intravoxel Incoherent Motion MR Imaging in Evaluation of Focal Malignant Liver Masses: Compare with Apparent Diffusion Coefficient Jinrong QU ¹ , Xiang Li ¹ , lifeng wang ¹ , Junpeng Luo ¹ , Cuicui Liu ¹ , Hailiang Li ¹ ¹ Radiology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, HENAN, China
Computer 27	4091.	Postprandial Changes of Secretory Flow of Pancreatic Juice in the Main Pancreatic Duct: Evaluation with Cine Dynamic MRCP and a Spatially Selective Inversion Recovery (IR) Pulse Kazuya Yasokawa ¹ , Akira Yamamoto ¹ , Tsutomu Tamada ¹ , Akihiko Kanki ¹ , Atsushi Higaki ¹ , Yasufumi Noda ¹ , Katsuyoshi Ito ¹ ¹ Radiology, Kawasaki Medical School, Kurashiki, Okayama, Japan
Computer 28	4092.	Primary Study of MR Diffusion Tensor Imaging in Hepatocellular Carcinomas <i>xinghui li¹, xiaoming zhang², jiani hu³</i> ¹ Department of Radiology, Affiliated Hospital of North Sichuan Medical College, nanchong, sichuan, China; ² Department of Radiology, Affiliated Hospital of North Sichuan Medical College, sichuan, China; ³ Department of Radiology, Wayne State University,, MI, United States
Computer 29	4093.	Differentiation of Malignant Thrombus from Bland Thrombus of the Portal Vein in Patients with Cirrhosis: Application of Intravoxel Incoherent Motion Diffusion-Weighted MR Imaging Eun-Suk Cho ¹ , Dahye Lee ¹ , Jeong-Sik Yu ¹ ¹ Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea
Computer 30	4094.	Diffusion Tensor Imaging (DTI) in Liver Fibrosis with Minimal Confounding Effect of Hepatic Steatosis <i>Yunjung Lee^l, Hyeonjin Kim^l, ²</i> ¹ Radiology, Seoul National University Hospital, Seoul, Korea; ² Biomedical Sciences, Seoul National University, Seoul, Korea
Computer 31	4095.	Characterize Hepatocellular Carcinoma with IVIM-DWI and DCE-MRI in Combination: Preliminary Experience <i>Lifen Xie¹</i> , ² , <i>Changhong Liang¹</i> , <i>Zaiyi Liu¹</i> , <i>Queenie Chan³</i> , <i>Yingjie Mei⁴</i> ¹ Department of Radiology, Guangdong Academy of Medical Sciences/Guangdong General Hospital, Guangzhou, Guangdong, China; ² Southern Medical University, Guangzhou, Guangdong, China; ³ Philips Healthcare, HK, China; ⁴ Philips Healthcare, Guangzhou, Guangdong, China
Computer 32	4096.	Diffusion-Weighted Imaging in Autoimmune Pancreatitis: Which Variable Is Most Useful for Differentiation from Pancreatic Cancer? Yasunari Fujinaga ¹ , Masaaki Takahashi ¹ , Akira Fujita ¹ , Sachie Fujita ¹ , Shin Yanagisawa ¹ , Hideaki Hamano ² , Shigeyuki Kawa ³ , Masumi Kadoya ¹ ¹ Department of Radiology, Shinshu University, School of Medicine, Matsumoto, Nagano, Japan; ² Department of Gastroenterology, Shinshu University Hospital, Matsumoto, Nagano, Japan; ³ Center for Health, Safety, and Environmental Management, Shinshu University, Matsumoto, Nagano, Japan
Computer 33	4097.	Correlation of Diffusion Weighted Imaging and Apparent Diffusion Coefficient Values of Pancreatic Ductal Adenocarcinoma (PDAC) with Clinicopathological Features and Overall Survival.

John J. Hermans¹, Deniece Riviere¹, Marnix Maas¹, Monica Van Zanten², Tanya Bisseling³, Martin Gotthardt¹, Kees Van Laarhoven⁴

¹Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ²Pathology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ³Gastroenterology and Hepatology, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands; ⁴Surgery, Radboud University Medical Center, Nijmegen, Gelderland, Netherlands;

- Computer 34 4098. Reproducibility of ADC in Colorectal Liver Metastases at 3T: A Cross-Vendor Evaluation Sabrina Doblas¹, Philippe Garteiser¹, Vincent Barrau², ³, Magaly Zappa¹, ², Valérie Vilgrain¹, ², Bernard E. Van Beers¹, ² ¹U1149 - CRI, INSERM, Paris, France; ²Radiology, Beaujon Hospital, Clichy, France; ³CCN, Saint-Denis, France
- Computer 35 4099. Histogram Analysis of Apparent Diffusion Coefficient in Differentiating Pancreatic Adenocarcinoma and Neuroendocrine Tumor

YOSHIHIKO FUKUKURA¹, Toshikazu Shindo¹, Tomokazu Umanodan¹, Tomoyuki Okuaki², Koji Takumi¹, Aya Umanodan¹, Junichi Ideue¹, Hiroto Hakamada¹, Kiyohisa Kamimura¹, Masanori Nakajo¹, Takashi Yoshiura¹ ¹Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan; ²Philips Healthcare, Tokyo, Japan

- Computer 36 4100. Qualitative and Quantitative Assessment of Intrahepatic Cholangiocarcinoma Using Diffusion Weighted Imaging with Histopathologic Correlation: Preliminary Results from a Bi-Center Series. Sara C. Lewis¹, Shingo Kihira¹, Cecilia Besa², Hongfa Zhu³, Swan Thung³, Kartik Jhavert⁴, Bachir Taouli⁵ ¹Radiology, Mount Sinai Medical Center, New York, NY, United States; ²Translational and Molecular Imaging Institute, Mount Sinai Medical Center, New York, NY, United States; ³Pathology, Mount Sinai Medical Center, New York, NY, United States; ⁴Radiology, University Health Network Mt. Sinai and Womens' College Hospital, Toronto, Ontario, Canada; ⁵Radiology, Translational and Molecular Imaging Institute, Mount Sinai Medical Center, New York, NY, United States
- Computer 37 4101. Intra-Session and Inter-Session Repeatability of Diffusion Tensor Measurement in Normal Human Liver *Oi Lei Wong¹*, *Gladys Goh Lo²*, *Wing Wa Li²*, *Jing Yuan³*, *Raymond Lee²*, *Michael D. Noseworthy⁴* ¹Department of Medical Physics and Applied Radiation Science, McMaster University, Hamilton, Ontario, Canada; ²Department of Diagnostic & Interventional Radiology, Hong Kong Sanatorium & Hospital, Hong Kong, China; ³Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, Hong Kong, China; ⁴Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada
- Computer 38 4102. Pilot Study of Liver Metastases Imaging with Administration of Ferumoxytol Young Kon Kim^l, ², Peng Hu^l, Daniel Margolis^l, Steven Raman^l, David Lu^l, J. Paul Finn^l, Kyunghyun Sung^l ¹Radiological Sciences, University of California, Los Angeles, Los Angeles, CA, United States; ²Radiology, Samsung Medical Center, Seoul, Korea
- Computer 39 4103. Gadoxetic Acid Enhanced MRI for Diagnosis of Focal Nodular Hyperplasia and Hepatocellular Adenoma: A Systematic Review. Matthew DF McInnes¹, ², Rebecca M. Hibbert¹, Joao Inacio¹, Nicola Schieda¹ ¹Radiology, University of Ottawa, Ottawa, Ontario, Canada; ²Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Computer 40 4104. Feasibility of 10-Minute Delayed Hepatocyte Phase Imaging with 30° Flip Angle in Gd-EOB-DTPA-Enhanced MRI for Detection of Hepatocellular Carcinoma, Compared to 20-Minute Delayed Hepatocyte Phase Imaging Inhwan Jeon¹, Dahye Lee¹, Eun-Suk Cho¹, Jeong-Sik Yu¹ ¹Radiology, Yonsei University College of Medicine, Gangnam Severance Hospital, Seoul, Korea
- Computer 41 4105. Multiple Flip Angle Measurement to Quantify Hepatic Uptake of Gadoxetic Acid in MRI Alexander Ciritsis¹, Daniel Truhn¹, Nils Krämer¹, Christiane K. Kuhl¹ ¹Department of Diagnostic and Interventional Radiology, RWTH University Hospital Aachen, Aachen, NRW, Germany

Computer 42 4106. Intra-Individual Crossover Comparison of Dose of Gadoxetic Acid for Liver MRI: Parameter Optimization and Quantitative Relaxometry in Normal Volunteers Utaroh Motosugi^l, ², Peter Bannas^l, ³, Diego Hernando^l, Mahdi Salmani Rahimi⁴, ⁵, James H. Holmes⁶, Scott B. Reeder^l, ⁷ ¹Radiology, University of Wisconsin, Madison, WI, United States; ²Radiology, University of Yamanashi, Chuo-shi, Yamanashi, Japan; ³Radiology, University Hospital Hamburg-Eppendorf, Humburg, Germany; ⁴Biomedical Engineering, University of Wisconsin, Madison, WI, United States; ⁵Radiology, Stanford University, Stanford, Calfornia, United States; ⁶SGlobal MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ⁷Medical Physics, University of Wisconsin, Madison, WI, United States;

Computer 43 4107. LI-RADS Lexicon for MR Imaging: Interreader Variability Based on the Major Features in Patients with Liver Cirrhosis Induced by HBV Infection

Ke Wang¹, Xiaochao Guo¹, Xuedong Yang¹, Xiaoying Wang¹ ¹Radiology Department, Peking University First Hospital, Beijing, China

Computer 44 4108. Prospective Radiology-Pathology Correlation of DCE-MRI Derived Parameters as Quantitative Biomarker of Vascularity and Fibrosis in Pancreatic Cancer

Michael Z. Liu¹, Sachin Jambawalikar¹, Helen R. Remotti¹, Stuart W. Weisberg¹, Pascal Spincemaille², Henry Rusinek³, Artem V. Mikheev³, Martin Prince¹, Donald Garmon¹, Yanghee Woo¹, John Chabot¹, Elizabeth M. Hecht¹ ¹Columbia University, New York, NY, United States; ²Cornell University, NY, United States; ³New York University, NY, United States

Computer 45 4109. Free-Breathing Dynamic Contrast MR Imaging Using DISCO with Navigator Technique for the Pancreatobiliary Regions

Takayuki Masui^l, Motoyuki Katayama^l, Yuji Iwadate², Naoyuki Takei², Kang Wang³, Dan Rettmann³, Kimihiko Sato^l, Kei Tsukamoto¹, Kenichi Mizuki¹, Maho Hayashi¹, Masayoshi Sugimura¹ ¹Radiology, Seirei Hamamatsu General Hospital, Hamamatsu, Shizuoka, Japan; ²Global MR Applications and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan; ³Global MR Applications and Workflow, GE Healthcare, WI, United States

Computer 46 4110. Respiratory Motion-Resolved Compressed Sensing Reconstruction of Free-Breathing Radial Acquisition for Improved Dynamic Liver MRI with Hepatobiliary Contrast Agent

Hersh Chandarana¹, ², Li Feng¹, ³, Justin Ream¹, Annie Wang¹, James Babb¹, Kai Tobias Block¹, ³, Mary Bruno¹, Daniel K. Sodickson¹, ³, Ricardo Otazo¹, ³

¹Radiology, Center for Biomedical Imaging, NYU School of Medicine, New York, NY, United States; ²Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States; ³Radiology, Center for Advanced Imaging Innovation and Research (CAI2R), NYU School of Medicine, New York, NY, United States

Computer 47 4111. Application of Golden Angle Radial 3D Gradient Echo with K-Space Weighted Image Contrast (KWIC) for Motion-Insensitive Hepatic Arterial-Phase Imaging: Initial Experience

Puneet Sharma¹, Kevin Johnson², Alto Stemmer³, Bobby Kalb¹, Diego R. Martin¹ ¹Medical Imaging, University of Arizona, Tucson, AZ, United States; ²Siemens Healthcare, Tucson, AZ, United States; ³Siemens Healthcare, Erlangen, Germany

Computer 48 4112. Dynamic Contrast Enhanced-MRI of the Liver Using Automated Navigator Tracker and Prospective Navigator Correction

Takao Goto¹, Shiro Ozaki², Yuji Iwadate³, Kunihiro Miyoshi¹, Koji Uchida⁴, Hajime Kitagaki⁴, Hiroyuki Kabasawa³ ¹MR Engineering, GE Healthcare, Hino-shi, Tokyo, Japan; ²Shimane University Hospital, Izumo-shi, Shimane, Japan; ³Global MR Applications and Workflow, GE Healthcare, Hino-shi, Tokyo, Japan; ⁴Department of Radiology, Shimane University Faculty of Medicine, Izumo-shi, Shimane, Japan

Electronic Poster Gastrointestinal MRI, Diabetes, Nutrition, Metabolism, Hepatobiliary

Exhibition Hall Wednesday 11:00-12:00

Computer 49 4113. Mapping Murine Diabetic Nephropathy: QMT, CEST and Fat Imaging

Feng Wang¹,², Ke Li¹,², Keiko Takahashi³,⁴, E. Brian Welch¹,², Zhongliang Zu¹,², Daniel Gochberg¹,², Raymond C. Harris³,⁵, C. Chad Quarles¹,², Takamune Takahashi³,⁵, John C. Gore¹,²
 ¹Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ²Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, United States; ³Vanderbilt O'Brien Mouse Kidney Physiology and Disease Center, Vanderbilt University, The Vanderbilt University, Nashville, TN, United States; ³Vanderbilt O'Brien Mouse Kidney Physiology and Disease Center, Vanderbilt University, The Vanderbilt University, Nashville, TN, United States; ³Vanderbilt O'Brien Mouse Kidney Physiology and Disease Center, Vanderbilt University, The Vanderbilt University, Nashville, TN, United States; ³Vanderbilt O'Brien Mouse Kidney Physiology and Disease Center, Vanderbilt University, The Vanderbilt University, Nashville, TN, United States; ³Vanderbilt O'Brien Mouse Kidney Physiology and Disease Center, Vanderbilt University, The Vanderbilt University, Nashville, TN, United States; ³Vanderbilt University, Nashville, TN, United States; ⁴Di the States; ⁴Dithe States; ⁴Dithe States; ⁴Dit

TN, United States; ⁴Division of Nephrology and Hypertension, Vanderbilt University, TN, United States; ⁵Division of Nephrology and Hypertension, Vanderbilt University, TN, United States

Computer 50 4114. Effects of a Western Diet on Fetal Organ Development and Fat Deposition Using MRI of Fetal Guinea Pigs *Kevin J. Sinclair¹, Lanette J. Friesen-Waldner¹, Colin M. McCurdy¹, Curtis N. Wiens², Trevor P. Wade¹, ³, Barbra de <i>Vrijer⁴, Timothy RH Regnault⁴, ⁵, Charles A. McKenzie¹, ³* ¹Medical Biophysics, University of Western Ontario, London, Ontario, Canada; ²Radiology, University of Wisconsin, Madison, WI, United States; ³Robarts Research Institute, University of Western Ontario, London, Ontario, Canada; ⁴Obstetrics and Gynaecology, University of Western Ontario, London, Ontario, Canada; ⁵Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada

Computer 51 4115. Alterations in the Hepatic Lipid Profile of Mice Following Streptozotocin-Induced Diabetes Ana Francisca Soares¹, Hongxia Lei², Rolf Gruetter¹ ¹LIFMET, EPFL, Lausanne, Vaud, Switzerland; ²Radiology, University of Geneva, Geneva, Switzerland

Computer 52 4116. Quantification of Hepatic Blood Flow in Obese Patients Using 4D-Flow MRI

Alejandro Roldán-Alzate¹, Curtis N. Wiens¹, Kevin M. Johnson², Alan B. Mcmillan¹, Oliver Wieben¹, ², Claude Sirlin³, Scott B. Reeder¹, ²

¹Radiology, University of Wisconsin - Madison, Madison, WI, United States; ²Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ³Radiology, University of California San Diego, San Diego, CA, United States

Computer 53 4117. Bone Marrow Fat Behaves Differently from Abdominal Fat, Liver Fat and Serum Lipids After a Four-Week Calorie Restriction in Obese Women

Christian Cordes¹, Michael Dieckmeyer¹, Beate Ott², Jun Shen¹, Stefan Ruschke¹, Marcus Settles¹, Claudia Eichhorn², Jan S. Bauer¹, Hendrik Kooijman³, Ernst J. Rummeny¹, Thomas Skurk², Thomas Baum¹, Hans Hauner², Dimitrios C. Karampinos¹

¹Diagnostic and Interventional Radiology, Technische Universität München, München, Germany; ²Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, München, Germany; ³Phillips Healthcare, Hamburg, Germany

Computer 54 4118. Relationship Between Liver Proton Density Fat Fraction and R2* in the Absence of Iron Overload

Diego Hernando¹, William M. Haufe², Catherine A. Hooker², Alexandra Schlein², Tanya Wolfson³, Nathan S. Artz¹, ⁴, Scott B. Reeder¹, ⁵, Claude B. Sirlin²

¹Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Radiology, University of California, San Diego, San Diego, CA, United States; ³Computational and Applied Statistics Laboratory, University of California, San Diego, San Diego, CA, United States; ⁴Radiological Sciences, Saint Jude Children's Research Hospital, Memphis, TN, United States; ⁵Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Computer 55 4119. Optimization of Ectopic Lipids Determination in Kidneys by MRS and Preliminary Results in Obese Diabetic Patients.

Gaëlle Diserens¹, Maryam Seif⁴, Laila Yasmin Mani², Daniel Fuster², Christoph Stettler³, Chris Boesch¹, Bruno Vogt², Peter Vermathen¹

¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Dept. Nephrology, Hypertension and Clinical Pharmacology, University Hospital Of Bern, Bern, Switzerland; ³Division of Endocrinology, Diabetes and Clinical Nutrition, Inselspital Bern, Bern, Switzerland

Computer 56 4120. Modulation of Ectopic Fat and SCD Activity During Weight Loss Interventions in High Saturated Fat Diet Induced Obese Rats by *In-Vivo* MRS and LC-MS

Venkatesh Gopalan¹, Navin Michael², S S. Lee¹, Yaligar J¹, Bhanu Prakash KN¹, S Sendhil Velan¹ ¹Singapore Bio-Imaging Consortium, BioMedical Sciences Institutes, Singapore, Singapore, Singapore Institute for Clinical Sciences, Singapore, Singapore

Computer 57 4121. Modulation of the Abdominal and Hepatic Fat by Adipose-Specific Fat-Storage Inducing Transmembrane2 (FIT2) Protein

Jadegoud Yaligar¹, Bhanu Prakash KN¹, Brayn Tan², Swee Shean Lee¹, Venkatesh Gopalan¹, David Lawrence Silver², S Sendhil Velan¹

¹Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore, Singapore; ²Signature Research Program in Cardiovascular & Met, Duke-NUS Graduate Medical School Singapore, Singapore, Singapore

Computer 58 4122. Metabolic Adaptations Induced by Medium Chain Triglycerides in a Rat Model of Diabetes Measured by In Vivo Magnetic Resonance Spectroscopy

Lihong Jiang¹, Zejian Liu², Bei Wang¹, Greame Mason¹, ³, Douglas Rothman¹, Raimund Herzog² ¹Diagnostic Radiology, Yale University School of Medicine, New Haven, CT, United States; ²Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; ³Psychiatry, Yale University School of Medicine, New Haven, CT, United States

Computer 59 4123. Intranasal Insulin Improves Energy Metabolism in Humans Alessandra Bierwagen¹,², Sofiya Gancheva¹,², Chrysi Koliaki¹,², Peter Nowotny¹,², Jesper Lundbom¹,², Martin Heni³, ⁴, Andreas Fritsche³,⁴, Hans-Ulrich Häring³,⁴, Julia Szendroedi¹,⁵, Michael Roden¹,⁵ ¹Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research, Heinrich Heine University, Duesseldorf, Germany; ²German Center for Diabetes Research (DZD e.V.), Partner Düsseldorf, Duesseldorf, Germany; ³Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology and, Eberhard Karls University, Tübingen, Germany; ⁴Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Univer, Germany; ⁵Department of Endocrinology and Diabetology, University Hospital, Duesseldorf, Germany

Computer 60 4124. Non-Invasive Longitudinal Study of an MRI Biomarker for the Quantification of Colon Inflammation in a **Mouse Model of Colitis**

Andrea Bianchi¹, Teresa Bluhmki¹, Tanja Schoenberger², Andrea Vögtle¹, David Kind¹, Eric Kaaru¹, Michael Neumaier¹, Birgit Stierstorfer², Thomas Kaulisch¹, Detlef Stiller¹

¹Targeting Discovery Research, In vivo imaging laboratory, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Baden-Württemberg, Germany; ²Targeting Discovery Research, Target Validation Technologies, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Baden-Württemberg, Germany

Computer 61 4125. Diffusion-Weighted Magnetic Resonance Imaging for the Prediction of Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer.

Peter S.N. van Rossum¹,², Astrid L.H.M.W. van Lier¹, Marco van Vulpen¹, Onne Reerink¹, Steven H. Lin³, Richard van Hillegersberg², Jelle P. Ruurda², Gert J. Meijer¹, Irene M. Lips¹ ¹Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Surgery, University Medical

Center Utrecht, Utrecht, Netherlands; ³Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States

Computer 62 4126. Metastatic Hepatic Neuroendocrine Tumors: Correlation of Quantitative Diffusion and Dynamic Contrast **Enhanced MRI with Tumor Grade**

Cecilia Besa¹, Stephen Ward², Yong Cui³, Guido Jajamovich, Michelle Kim⁴, Bachir Taouli Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; ²Pathology, Icahn School of Medicine at Mount Sinai, NY, United States; ³Radiology, Peking University Cancer Hospital & Beijing Cancer Hospital, Beijing, China; ⁴Surgery, Icahn School of Medicine at Mount Sinai, NY, United States

Computer 63 4127. Reproducibility of Intravoxel Incoherent Motion Diffusion-Weighted Imaging in Small Bowel Crohn; s Disease Lianhua Huang¹, Yihao Guo², Yingjie Mei³, Lizhi Zhou⁴, Zeyu Zheng¹, Yanqiu Feng⁵, Xinying Wang⁶, Jie Feng¹, Chenggong Yan¹, Yikai Xu¹

¹Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; ²School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; ³Philips healthcare, Guangdong, China; ⁴Department of Biostatistics, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China; ⁵Guangdong Provincial Key Laborary of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; ⁶Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China

Computer 64 4128. Perianal Imaging in Pediatric IBD - 1.5T Versus 3T

Mary-Louise C. Greer¹,², Zehour Alsabban¹, Ryan Lo³, Rahim Moineddin⁴, Peter Church⁵, Thomas D. Walters, ³⁵, Jacob C. Langer, ³⁶, Anne Griffiths, ³⁵ ¹Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada; ²Medical Imaging, University of Toronto, Toronto, Toronto,

Ontario, Canada; ³University of Toronto, Ontario, Canada; ⁴Department of Family and Community Medicine, Dalla Lana School of Public Health University of Toronto, Ontario, Canada; ⁵Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Ontario, Canada; ⁶Division of General Surgery, The Hospital for Sick Children, Ontario, Canada

Electronic Poster

- Computer 65 4129. Experimental Stress Constricts Small Bowel and Increases Ascending Colon Volume in Healthy Subjects Susan E. Pritchard¹, Klara C. Garsed², Caroline L. Hoad¹, Melanie Lingaya³, R Banwait³, W Thongborisute³, E Roberts³, Carolyn Costigan¹, ³, Luca Marciani², ³, Robin C. Spiller², ³, Penny A. Gowland¹ ¹Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, Notts, United Kingdom; ²Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University Hospitals, Nottingham, Notts, United Kingdom; ³Nottingham Digestive Diseases Centre, School of Clinical Sciences, University of Nottingham, Nottingham, Notts, United Kingdom
- Computer 66 4130. The Application of 3.0T MR Intravoxel Incoherent Motion Imaging in Diagnosing of Rectal Carcinoma Lin Qiu¹, Xiang-ran Cai¹, Si-run Liu¹, You-zhen Feng, Chang-yu Guo² ¹Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; ²Medical Imaging Center, Centro Hospitalar Conde de São Januário, Macau, China
- Computer 67 4131. Preoperative Apparent Diffusion Coefficient Value of Gastric Cancer by Diffusion-Weighted Imaging: Correlations with Postoperative TNM Staging Zhengyang Zhou¹, Song Liu¹, Jian He¹, Wenxian Guan² ¹Radiology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; ²Gastrointestinal Surgery, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China;

Computer 68 4132. Apparent Diffusion Coefficient Value of Gastric Cancer by Diffusion-Weighted Imaging: Correlations with the Histologic Differentiation and Lauren Classification Zhengyang Zhou¹, Song Liu¹, Jian He¹, Wenxian Guan² ¹Radiology, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China; ²Gastrointestinal Surgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China

Computer 69 4133. Feasibility and Preliminary Experience of a Diffusional Kurtosis Model for Detection of Rectal Cancer cao xi sheng¹, chen yunbin¹,², cai linfeng¹, wei wei¹, hu chunmiao¹, chen weibo³ ¹Radiology, Fujian Provincial Cancer Hospital, FUZHOU, FUJIAN, China; ²Fujian Medical University, FUJIAN, China; ³Philips Healthcare, shanghai, China

Computer 70 4134. Accelerated 4D MRI for Investigating Release and Dispersion of an Ingested Drug Model Inside the Human Stomach

Vlad Ceregan¹, Jelena Curcic¹, ², Sebastian Kozerke¹, Andreas Steingoetter¹, ² ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland

Computer 71 4135. Prospective Evaluation of Contrast-Enhanced MRI for Non-Traumatic, Non-Appendicitis Acute Abdomen with Direct Comparison to MDCT

Candice A. Bookwalter¹, Michael D. Repplinger¹, ², Perry J. Pickhardt¹, Jessica B. Robbins¹, Timothy J. Ziemlewicz¹, Douglas Kitchin¹, ³, Scott B. Reeder¹, ⁴

¹Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States; ²Department of Emergency Medicine, University of Wisconsin-Madison, Madison, WI, United States; ³St. Mary's Hospitals, Madison, WI, United States; ⁴Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States

Computer 72 4136. Autocorrelation Analysis of Hepatic Fibrosis on MRI

Jonathan F. Brand¹, Lars R. Furenlid¹, ², Maria I. Altbach², Jean-Philippe Galons², Tulshi Bhattacharyya², Achuyt Bhattacharyya³, Ali Bilgin², ⁴, Zhitao Li⁴, Diego R. Martin²

¹College of Optical Sciences, University of Arizona, Tucson, AZ, United States; ²Department of Medical Imaging, University of Arizona, Tucson, AZ, United States; ³Department of Pathology, University of Arizona, Tucson, AZ, United States; ⁴Electrical and Computer Engineering, University of Arizona, Tucson, AZ, United States

Electronic Poster	
MR-Guided I	Inteventions
Exhibition Hall	Wednesday 11:00-12:00
Computer 73 4137.	Benefits, Limitations, and Improving the Future of MRI-Guided Endovascular Catheter Tracking Nicholas Whiting ¹ , Jingzhe Hu ¹ , ² , Pratip Bhattacharya ¹ ¹ Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; ² Department of Bioengineering, Rice University, Houston, TX, United States
Computer 74 4138.	Interventional MRI-Guided Local Delivery of Agents Into Swine Bile Duct Walls Using MR Compatible Needle- Integrated Balloon Catheter System Feng Zhang ¹ , Zhibin Bai ¹ , Yaoping Shi ¹ , Jianfeng Wang ¹ , Longhua Qiu ¹ , Yonggang Li ¹ , Xiaoming Yang ¹ ¹ Radiology, University of Washington, SEATTLE, WA, United States
Computer 75 4139.	MR-Guided Treatment of Low-Flow Vascular Malformations <i>Clifford R. Weiss¹, Daniel M. O'Mara², Paul A. DiCamillo², Di Xu³, Wesley D. Gilson⁴, Daniel A. Herzka³, Jonathan S. Lewin² ¹Vascular and Interventional Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ³Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; ⁴Siemens Healthcare USA, Baltimore, MD, United States</i>
Computer 76 4140.	MRI Compatible-3D Localization System for Real-Time Catheter Navigation <i>Olivia Garandeau¹, Maxime Bories¹, Fabrice Marquet¹, Remi Dubois², Pierre Jais³, Bruno Quesson¹</i> ¹ IHU Liryc/CRCTB Inserm U1045, University of Bordeaux, Pessac, Aquitaine, France; ² IHU Liryc/CRCTB Inserm U1045, ESPCI Paris Tech, Pessac, Aquitaine, France; ³ CHU bordeaux, Pessac, Aquitaine, France
Computer 77 4141.	<i>In Vivo</i> Assessment of Renal Artery Embolization Using a Magnetically Assisted Remote Controlled (MARC) Catheter Prasheel Lillaney ¹ , Aaron D. Losey ¹ , Alastair J. Martin ¹ , Bradford RH Thorne ¹ , Leland B. Evans ¹ , Vincent Malba ¹ , Maythem Saeed ¹ , Ronald Arenson ¹ , Steven W. Hetts ¹ ¹ Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
Computer 78 4142.	Imaging Assessment and Feasibility of a Hydrostatically Actuated Robotic System for Real-Time MRI-Guided Interventions Samantha Mikaiel ¹ , ² , Rashid Yasin ³ , Samuel Ross ⁴ , M. Wasil Wahi-Anwar ¹ , James Simonelli ³ , David Lu ² , Kyung Sung, ¹² , Tsu-Chin Tsao ³ , Holden H. Wu, ¹² ¹³ Biomedical Physics, University of California Los Angeles, Los Angeles, CA, United States; ² Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ³ Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, United States; ⁴ Santa Monica College, Santa Monica, CA, United States
Computer 79 4143.	Dynamic Scan Plane Control for Effective MRI-Guided Robotic Intervention Mahamadou Diakite ¹ , Steve Roys ¹ , Yeongjin Kim ² , Taehoon Shin ¹ , Mark J. Simard ³ , Jaydev P. Desai ² , Rao P. Gullapalli ¹ ¹ Center for Metabolic Imaging and Therapeutics, Depart. of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, United States; ² Mechanical Engineering, University of Maryland, College Park, MD, United States; ³ Neurosurgery, University of Maryland, School of Medicine, Baltimore, MD, United States
Computer 80 4144.	Tactics: An Open-Source Platform for Planning Stereotactic Surgery D. Adair ¹ , ² , K. S. Gomes ³ , Y. P. Starreveld ³ , ⁴ , Z. H.T. Kiss ³ , D. G. Gobbi ¹ , ⁴ ¹ Calgary Image Processing and Analysis Centre, Calgary, Alberta, Canada; ² Biomedical Engineering, University of Calgary, Calgary, Alberta, Canada; ³ Clinical Neuroscience and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ⁴ Atamai Inc., Calgary, Alberta, Canada

Computer 81 4145. MR Guided CED of a Novel Therapeutic for Parkinson's Disease: The Importance of Imaging Feedback Alastair J. Martin¹, Krystof Bankiewicz², John Bringas², Chad Christine³, Marin Thompson², Janine Beyer², Paul Larson²

¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²Neurological Surgery, UCSF, San Francisco, CA, United States; ³Neurology, UCSF, San Francisco, CA, United States

Computer 82 4146. Inducing Magnetic Torque Inside an MRI Scanner Using Pulsed Magnetic Gradients Magna cum laube ^{ISSUEM KEERT AWARD} Magnetic Torque Inside an MRI Scanner Using Pulsed Magnetic Gradients Alexandre Bigot¹, Maxime Latulippe¹, Charles Tremblay¹, Sylvain Martel¹ ^{INANOVODOTICS Laboratory, Polytechnique Montreal, Montreal, Quebec, Canada}

Computer 83 4147. Characterization of Thermochemical Ablation Injections Using ²³Na MRI Florian Maier¹, Erik N. K. Cressman², Moritz C. Berger¹, David Fuentes³, R. Jason Stafford³, Christopher J. MacLellan³, Reiner Umathum¹, Armin M. Nagel¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; ³Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States

- Computer 84 4148. Multinuclear (¹⁹F + ¹H) MRI at 3T Using an Internal Probe Shashank Sathyanarayana Hegde¹, Li Pan², Guan Wang¹, ³, Martin Radvany¹, Yingli Fu¹, Dara L. Kraitchman¹ ¹Radiology, Johns Hopkins University, Baltimore, MD, United States; ²Siemens Healthcare, Baltimore, MD, United States; ³Electrical and Computer Engineering, Johns Hopkins University, MD, United States
- Computer 85 4149. Near Infrared Optical Tomography at MR Resolution: Photo-Magnetic Imaging *Alex Luk^l*, *Yuting Lin²*, *David Thayer³*, *Seunghoon Ha^l*, *Gultekin Gulsen^l* ¹UC Irvine, Irvine, CA, United States; ²Harvard Medical School, MA, United States; ³UC Irvine Medical, Irvine, CA, United States
- Computer 86 4150. 3 Tesla MR-Guided Scalene Muscle Injections in Patients with Neurogenic Thoracic Outlet Syndrome Jan Fritz¹, Margaret W. Arnold², Holly Grunebach², Kendall Likes², Jonathan S. Lewin¹, Ying W. Lum² ¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States

Computer 87 4151. Localization of an HDR Brachytherapy Source Using MR Artifact Simulation and Phase-Only Cross Correlation

*Ellis Beld*¹, ², *Marinus A. Moerland*¹, *Job G. Bouwman*², *Frank Zijlstra*², *Jan J.W. Lagendijk*¹, *Max A. Viergever*², *Peter R. Seevinck*²

¹Department of Radiotherapy, University Medical Center Utrecht, Utrecht, Netherlands; ²Image Sciences Institute, University Medical Center Utrecht, Utrecht, Utrecht, Netherlands

Computer 88 4152. Automatic Fiducial Detection in T2 Weighted MRI in a Manifold Learning and Gaussian Mixture Modeling Framework

S. Ghose¹, J. Mitra¹, D. Rivest Henault¹, A. Fazlollahi¹, P. Stanwell², P. Greer³, P. Pichler³, J. Fripp¹, J. Dowling¹ ¹Australian e-Health Research Centre, CSIRO Digital Productivity Flagship, Herston, QLD, Australia; ²University of Newcastle, NSW, Australia; ³Department of Radiation Oncology, Calvary Mater Newcastle Hospital, NSW, Australia

Computer 89 4153. Exploring the Feasibility of the Coherent Half-FOV Replication Passive Tracking Technique for Controllable Susceptibility Devices in the Presence of Motion Justin Y.C. Lau¹, ², Jennifer Barry², William Dominguez-Viqueira² ¹Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada

- Computer 90 4154. Real-Time Tracking for MR-Guided Breast Biopsies: Dream or Reality? Robert D. Darrow¹, Mark Schneider², Eric W. Fiveland¹, Xiaofeng Liu¹, Ileana Hancu¹ ¹Global Research Center, GE, Niskayuna, NY, United States; ²NDI Ascension, Shelburne, VT, United States
- Computer 91 4155. Impact of B1 Field Inhomogeneity on DESPOT-Based T1 and T2 Mapping at 1.5T Yulia Shcherbakova¹, Cornelis A.T. van den Berg¹, Jan J.W. Lagendijk¹, Chrit T.W. Moonen¹, Lambertus W. Bartels¹ ¹Imaging Division, University Medical Center, Utrecht, Netherlands

```
Computer 92 4156. Carbon Fiber Needle for MRI-Guided Radiofrequency Ablation

Jijun Han<sup>l</sup>, Shuai Song<sup>l</sup>, Bensheng Qiu<sup>l</sup>

<sup>1</sup>University of Science and Technology of China, Hefei, Anhui, China
```

Computer 93 4157. Reducing Needle Induced Image Artifacts in Interventional MRI While Maintaining Soft Tissue Contrast Thomas Boyd Martin¹, ², Holden Wu¹, Danny JJ. Wang³, Kyung Sung² ¹Biomedical Physics Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, United States; ²Radiological Sciences, University of California Los Angeles, Los Angeles, CA, United States; ³Neurology, University of California Los Angeles, Los Angeles, CA, United States

Computer 94 4158. Susceptibility-Based Positive-Contrast MRI for Interventional Devices *Ying Dong¹, Guoxi Xie², Jim Xiuquan Ji¹* ¹Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, United States; ²Paul C. Lauterbur Research Center for Biomedical Imaging, Chinese Academy of Sciences, Shenzhen, Guangdong, China

Computer 95 4159. Modulation of Magnetic Susceptibility Markers with Laser-Induced Demagnetization of Nickel Nanoparticles *Hirad Karimi*¹, ², *William Dominguez-Viqueira*², *Charles H. Cunningham*¹, ² ¹Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada

Electronic Poster

Cartilage Imaging - Technical Developments

Exhibition Hall Wednesday 13:30-14:30

Computer 1 4161. Time Efficient and Quantitative Sodium Imaging at 7T Using Compressed Sensing Accelerated FID Spectroscopic Imaging Jetse van Gorp¹, Paul de Bruin², Peter Seevinck¹ ¹Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; ²Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, Netherlands

Computer 2 4162. Four-Fold Reduction in Scan Time for Skeletal Age Examination Enabled by Adaptive Compressed Sensing MRI

Yasuhiko Terada¹, Keiichiro Ishi¹, Daiki Tamada¹, Katsumi Kose¹, Taiki Nozaki², Yasuhito Kaneko², Ryo Miyagi², Hiroshi Yoshioka²

¹Institue of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki, Japan; ²Department of Radiological Sciences, University of California Irvine, Irvine, CA, United States

- Computer 3 4163. 10 Minute Isotropic MRI of the Knee Using Accelerated 3D SPACE with Incoherent Undersampling and Iterative Reconstruction: Comparison with Standard 2D TSE MRI Jan Fritz¹, Gaurav Thawait¹, Shivani Ahlawat¹, Shadpour Demehri¹, Heiko Meyer², Wesley Gilson³, Esther Raithel² ¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Healthcare Sector, Siemens AG, Erlangen, Bavaria, Germany; ³Siemens Healthcare USA, Baltimore, MD, United States
- Computer 4 4164. Improving Slice Resolution of Knee Imaging Using Multiband Slice Accelerated TSE Dingxin Wang¹, ², Chen Lin³, Abraham Padua⁴, Bruce Spottiswoode⁵, Jutta Ellermann², Edward Auerbach², Kamil Ugurbil², Kenneth Buckwalter³, Vibhas Deshpande⁶

Computer 96 4160. To Spoil or to Balance? a Comparison of the White Marker Phenomenon in Gradient Echo Pulse Sequences *Simon Reiβ^l, Axel Joachim Krafft^l, ², Klaus Düring³, Constantin von zur Mühlen⁴, Michael Bock^l* ¹Radiology - Medical Physics, University Medical Center Freiburg, Freiburg, Germany; ²German Cancer Consortium (DKTK), Heidelberg, Germany; ³MaRVis Medical GmbH, Hannover, Germany; ⁴Department of Cardiology and Angiology I, University Heart Center Freiburg, Germany

¹Siemens Healthcare, Minneapolis, MN, United States; ²CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ³Department of Radiology, University of Indiana, Indianapolis, IN, United States; ⁴Siemens Healthcare, Houston, TX, United States; ⁵Siemens Healthcare, Chicago, IL, United States; ⁶Siemens Healthcare, Austin, TX, United States

Computer 5 4165. Investigation of *In-Vivo* Relationship Between Cartilage Contact and Cartilage Quantitative MR Parameters *Fang Liu¹, Jarred Kaiser², Walter F. Block¹, ³, Darryl G. Thelen², ³, Richard Kijowski⁴* ¹Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, United States; ³Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; ⁴Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States

Computer 6 4166. A Comprehensive 7 Tesla MRI Protocol for Quantitative (T1-, T2-, T2*-Mapping) and Morphological Hip Cartilage Imaging

Andrea Lazik¹, ², Jens M. Theysohn¹, Stephan Orzada², Harald H. Quick², ³, Oliver Kraff² ¹Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, NRW, Germany; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, NRW, Germany; ³High Field and Hybrid MR Imaging, University Hospital Essen, Essen, NRW, Germany

Computer 7 4167. Quantitative Magnetic Resonance Imaging for Evaluation of ACL Injuries: a Pilot Multicenter Study

Keiko Amano¹, Valentina Pedoia², Drew A. Lansdown¹, Cory Wyatt², Narihiro Okazaki², Favian Su², Dragana Savic², Kimberly Amrami³, Matthew Frick, Joel Felmlee³, Matthew F. Koff⁴, Aaron Krych⁵, Hollis Potter⁴, C. Benjamin Ma¹, Scott Rodeo⁶, Xiaojuan Li², Sharmila Majumdar²

¹Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, United States; ²Department of Radiology, University of California, San Francisco, San Francisco, CA, United States; ³Department of Radiology, Mayo Clinic, MN, United States; ⁴Department of Radiology, Hospital for Special Surgery, NY, United States; ⁵Department of Orthopaedic Surgery, Mayo Clinic, MN, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of States; ⁶Department of Orthopaedic Surgery, Mayo Clinic, MN, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of States; ⁶Department of States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of States; ⁶Department of States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, Hospital for Special Surgery, NY, United States; ⁶Department of Orthopaedic Surgery, NY, United States; ⁶Department of Or

Computer 8 4168. A New 3D Isotropic T₁₀ Mapping Technique for *In Vivo* Human Knee Cartilage at 7T MRI

Guruprasad Krishnamo'orthy¹, Puneet Bagga¹, Ravi Prakash Reddy Nanga¹, Hari Hariharan¹, John Bruce Kneeland², Ravinder Reddy¹

¹Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ²Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States

Computer 9 4169. Cartilage Assessment in Femoroacetabular Impingement Using Bloch-Simulation-Based T2 Mapping at 3 T: Preliminary Validation Against Intra-Operative Findings

Noam Ben-Eliezer¹, ², Matthieu Guillemin¹, Akio Yoshimoto¹, Kai Tobias Block¹, ², Roy Davidovitch³, Thomas Youm³, Robert Meislin³, Michael Recht⁴, Daniel K. Sodickson¹, ², Riccardo Lattanzi¹, ² ¹Center for Biomedical Imaging, Department of Radiology, New York University Medical Center, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ³Department of Orthopedic Surgery, New York University Hospital for Joint Diseases, New York, NY, United States; ⁴Department of Radiology, New York University Langone Medical Center, New York, NY, United States

Computer 10 4170. Highly-Accelerated 3D T1rho Mapping of the Knee Using K-T SPARSE-SENSE Ding Xia¹, ², Li Feng¹, ³, Tiejun Zhao⁴, Ravinder R. Regatte¹, ² ¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine,, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine,, New York, NY, United States; ³Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ⁴Siemens Medical Solution USA. Inc, New York, NY, United States

- Computer 11 4171. High Isotropic, Balanced SSFP 3D Radial Imaging for Hip Joint Assessment at 3.0T Larry Hernandez¹, Habib Al saleh¹, Kevin Johnson¹, Walter F. Block¹, ², Richard Kijowski³ ¹Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States; ³Radiology, University of Wisconsin-Madison, Madison, WI, United States
- Computer 12 4172. T1p Voxel Based Relaxometry for the Local Evaluation of the Knee Cartilage Valentina Pedoia¹, Favian Su¹, Deepak Kumar¹, Richard Souza¹, Benjamin Ma¹, Xiaojuan Li¹, Sharmila Majumdar¹ ¹UCSF, San Francisco, CA, United States

- Computer 13 **4173.** Characterization of Knee Osteoarthritis Using Spatial Distribution of T1p Values: A Longitudinal Study *Aditi Guha¹, Deepak Kumar¹, Lorenzo Nardo¹, Richard Souza¹, Thomas Link¹, Xiaojuan Li¹, Sharmila Majumdar¹* ¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States
- Computer 14 4174. Characterization of Cartilage Using Diffusion Imaging and Correlation with T1p/T2 Relaxation Times: A Longitudinal Evaluation in Knee Osteoarthritis Aditi Guha^l, Cory Wyatt^l, Dimitrios Karampinos², Lorenzo Nardo¹, Thomas Link^l, Sharmila Majumdar^l ¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²Radiology, Technische Universität München, Munich, Germany
- Computer 15 4175. Evaluation of Multiband Slice-Accelerated TSE in Knee Joint MR Imaging Xiaona Li¹, Zhigang Peng¹, Pan-Li Zuo², Dingxin Wang³, Jianling Cui⁴ ¹the 3rd Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; ²Siemens Healthcare, Beijing, China; ³Siemens Medical Solutions USA, MN, Armenia; ⁴the 3rd Hospital of Hebei Medical University, Hebei, China
- Computer 16 4176. T2, DGEMRIC and GagCEST Cartilage Assessment in an *In Vivo* OA Canine Model Maria I. Menendez¹, Daniel Clark¹, Bianca Hettlich¹, Michael Knopp¹ ¹The Ohio State University, Columbus, OH, United States
- Computer 17 4177. A Robust Way to Make Good Contrast in the Deeper Layer of Articular Cartilage Using UTE Imaging Chanhee Lee¹, Jang-Yeon Park¹ ¹Biomedical Engineering, IBS Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, Gyeonggi, Korea

Computer 18 4178. Assessment of the Clinical Relevance of Triple-Echo Steady-State T2 Mapping in Articular Cartilage Vladimir Juras¹, ², Klaus Bohndorf⁴, Rahel Heule³, Claudia Kronnerwetter¹, Pavol Szomolanyi¹, ², Benedikt Hager¹, Oliver Bieri³, Siegfried Trattnig¹ ¹High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Imaging Methods, Institute of Measurement Science, Bratislava, Slovakia; ³Division of Radiological Physics, Department of Radiology, University of Basel Hospital, Basel, Switzerland

Computer 19 4179. Does Cartilage Transplantation Harm or Regenerate Adjacent Cartilage ? a Longitudinal Study *Alina Messner¹, Sebastian Apprich², Lukas Zak³, Pavol Szomolanyi¹, Siegfried Trattnig¹* ¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Orthopaedics, Medical University of Vienna, Austria; ³Department of Traumatology, Medical University of Vienna, Vienna, Austria

 Computer 20 4180. Optimization of Adiabatic T_{1p} and T_{2p} for Quantification of Articular Cartilage at 3T Victor Casula¹,², Mikko J. Nissi³,⁴, Joonas Autio³, Michaeli Shalom⁴, Silvia Mangia⁴, Edward Auerbach⁴, Jutta Ellermann⁴, Eveliina Lammentausta³, Miika T. Nieminen¹,³
 ¹Radiology, University of Oulu, Oulu, Finland; ²Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; ³Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland; ⁴Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, United States

- Computer 21 4181. Comparison of T1rho Imaging Between Spoiled Gradient Echo (SPGR) and Balanced Steady State Free Precession (B-FFE) Sequence of Knee Cartilage at 3 Tesla Taiki Nozaki¹, Yasuhito Kaneko¹, Hon J. Yu¹, Kayleigh Kaneshiro¹, Ran Schwarzkopf², Hiroshi Yoshioka¹ ¹Radiological Sciences, University of California, Irvine, Orange, CA, United States; ²Orthopaedic Surgery, University of California, Irvine, Orange, CA, United States
- Computer 22 4182. Cluster Analysis for T₂ and T_{1rho} Relaxation Times Using 3D Projection Maps of the Femoral Condyle in a Healthy and ACL-Injured Population Uchechukwuka Diana Monu¹, ², Brian A. Hargreaves, ²³, Caroline D. Jordan², ⁴, Garry E. Gold², ⁴, Emilv J. McWalter²

¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Electrical Engineering, Stanford University, Stanford, CA, United States; ⁴Bioegineering, Stanford University, Stanford, CA, United States

- Computer 23 4183. Assessment of Ankle Condition After Fixator Distraction for OA with T1ρ MRI: 8-10 Year Follow-Up Daniel R. Thedens¹, Mai P. Nguyen², Annunziato Amendola², Douglas R. Pedersen² ¹Radiology, University of Iowa, Iowa City, IA, United States; ²Orthopaedics and Rehabilitation, University of Iowa, Iowa City, IA, United States
- Computer 24 4184. Multiparametric MRI Assessment of Necrotic Epiphyseal Cartilage Induced by Transection of Cartilage Canal Blood Vessels in Goat Kids Luning Wang¹, Mikko J. Nissi², Ferenc Toth, Michael Garwood¹, Cathy Carlson, Jutta Ellermann¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Twin Cities, Minneapolis, MN, United States; ²Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Finland

Electr	onic Poster	
Dama	0 LITE	

Bone & UTE Exhibition Hall

Hall Wednesday 14:30-15:30

Computer 25 4185. Water-Selective 3D BSSFP Imaging of Biomaterials Promoting Bone Repair in Rats; Comparison with Micro-CT

Emeline Julie Ribot¹, Clément Tournier², Aurélien Julien Trotier¹, Didier Wecker³, Didier Letourneur⁴, Joelle Amédée², Sylvain Miraux¹

¹RMSB - UMR5536, CNRS - University Bordeaux, Bordeaux, France, Metropolitan; ²Biotis - U1026, INSERM - University Bordeaux, Bordeaux, France, Metropolitan; ³Bruker Biospin GmbH, Ettlingen, Germany; ⁴LRVT - UMR1148, INSERM - University Paris 7, Paris, France, Metropolitan

Computer 26 4186. 7T MRI of Trabecular Microarchitecture at the Distal Radius: How Bone Quality Varies at the Epiphysis, Metaphysis, and Diaphysis

Lindsay M. Griffin¹, Stephen Honig², Yinxiao Liu³, Cheng Chen³, Punam K. Saha³, Ravinder Regatte¹, Gregory Chang¹ Department of Radiology, New York University School of Medicine, New York, United States; ²Department of Medicine, New York University, NY, United States; ³University of Iowa, IA, United States

Computer 27 4187. MRI Study of the Changes of Perfusion and Fat Content in Radiation-Induced Bone Marrow Injury in Rats *kejun wang^l*, *Yunfei Zha^l*, *Hao Lei²* ¹Department Of Radiology, Renmin Hospital Of Wuhan University, Wuhan, Hubei, China; ²Wuhan Institute Of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China

Computer 28 4188. Significant Reduction in Scan Time for Ultra Short TE Imaging of the Knee Zhe Liu^l, Alexey Dimov^l, Jiang Du², Yi Wang³ ¹Biomedical Engineering, Cornell University, New York, United States; ²Radiology, University of California, San Diego, San Diego, CA, United States; ³Radiology, Weill Cornell Medical College, NY, United States

Computer 29 4189. Age Estimation in Adolescents and Young Adults Using MRI Data of the Manubrium Naira P. Martinez Vera¹, Johannes Höller¹, Bernhard Neumayer¹, Thomas Widek¹, Sabine Grassegger¹, ², Thomas Ehammer¹, Eva Scheurer¹, ², Martin Urschler¹ ¹Ludwig Boltzmann Institute for Clinical Forensic Imaging, Graz, Styria, Austria; ²Institute of Forensic Medical University of Graz, Graz, Styria, Austria

Computer 30 4190. The Value of BOLD-MRI in Early Diagnosis of Osteonecrosis of the Femoral Head in Patients with Steroid Treatment

Jing Li^l, Fei Yuan^l, Quan Zhang^l, Jun Zhao^l, Yu Zhang² ¹MRI Department, PingJin Hospital, He Dong District, TianJin, China; ²Philips Healthcare, Beijing, China

Computer 31 4191. Intermittent Parathyroid Hormone Treatment Reduces Scar Tissue Formation at the Proximity of Calvarial Grafts, Demonstrate by Collagen-Sensitive MRI Scanning Methods

Doron Cohn Yakubovich¹, Uzi Eliav², Gadi Pelled¹, ³, Dan Gazit¹, ³, Zulma Gazit¹, ³, Gil Navon² ¹Skeletal Biotech Laboratory, Hebrew University of Jerusalem, Jerusalem, Israel, Israel; ²School of Chemistry, Tel Aviv University, Tel Aviv, Israel, Israel; ³Department of Surgery and Cedars-Sinai Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States

Computer 32 4192. Bone Curvature Changes of the Knee in OA Subjects as on Detected on MRI Can Predict Who Will Progress to TKR in Five Years Time: Data from the OAI

Joshua Michael Farber¹, Jose Tamez-Pena², David Hunter³, Michael Hannon⁴, Saara Totterman⁵, Zhijie Wang, Robert Boudreau⁶, Kent Kowh⁷

 ¹Radiology, Qmetrics Technologies, Cincinnati, OH, United States; ²Imaging Sciences, Escuela de Medicina, Tec de Monterray, Monterray, Mexico; ³Rheumatology, Royal North Shore Hosp. and Northern Clinical Sch, Univ. of Sydney, Sydney, Australia;
 ⁴Epidemiology, Dept. of Epidemiology, Univ. of Pittsburgh, Pittsburgh, PA, United States; ⁵Radiology, Qmetrics Technologies, Rochester, NY, United States; ⁶Epidemiology, dept. of Epidemiology, Univ. of Pittsburgh, Pittsburgh, PA, United States;
 ⁷Rheumatology, The University of Arizona, Arthritis Center, Tuscon, AZ, United States

Computer 33 4193. Native 3T MRI for Skeletal Age Assessment of the Hand and Wrist: A Comparison of Two Methods

Sabine GRASSEGGER¹, ², Thomas EHAMMER¹, Thomas WIDEK¹, Andreas PETROVIC³, Pia BAUMANN⁴, Eva SCHEURER¹, ²

¹Ludwig Boltzmann Institute for Clinical-Forensic Imaging, Graz, Styria, Austria; ²Institute of Forensic Medical University of Graz, Graz, Styria, Austria; ³Institute of Medical Engineering, Graz University of Technology, Graz, Styria, Austria; ⁴University Centre of Legal Medicine, University of Lausanne, Lausanne, Vaud, Switzerland

Computer 34 4194. Relaxation Time Constants T1 and T2* of Bound and Free Water in Cortical Bone at 600 MHz and 700 MHz. Bainan Wu^l, Robert Nikolov², Hongda Shao², Jun Chen², Graeme Bydder², Maurizio Pellecchia^l, Jiang Du² ¹Sanford-Burnham Medical Research Institute, La Jolla, CA, United States; ²Radiology, University of California, San Diego, San Diego, CA, United States

Computer 35 4195. Knee Cartilage and Subchondral Bone Marrow Changes of Chronic Kidney Disease in a Rat Model Investigated by Quantitative MR Imaging

Chao-Ying Wang¹, Guo-Shu Huang², Shih-Wei Chiang, ²³, Yi-Chih Hsu², Ming-Huang Lin⁴, Hsiao-Wen Chung³ ¹Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan, Taiwan; ²Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Taiwan; ³Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Taiwan; ⁴Institute of Biomedical Sciences, Academic Sinica, Taipei, Taiwan, Taiwan

Computer 36 4196. Musculoskeletal MR-Imaging in Fracture Dating Katharina Baron¹, Bernhard Neumayer¹, Thomas Widek¹, Sylvia Scheicher¹, Eva Maria Hassler², Fritz Schick³, Eva Scheurer¹ ¹Ludwig Boltzmann Institute for Clinical-Forensic Imaging (LBI-CFI), Graz, Styria, Austria; ²Department of Radiology, Medical University of Graz, Styria, Austria; ³Diagnostic and Interventional Radiology, Eberhard-Karls-University Tübingen, Baden-Württemberg, Germany

 Computer 37 4197. Combined MicroCT-MicroMR Imaging in the Tridimensional Evaluation of Bone Regeneration Allegra Conti¹, Raffaele Sinibaldi¹, Sara Spadone¹, Tonino Traint², Giuliana Tromba³, Silvia Capuant⁴, Gian Luca Romani¹, ⁵, Stefania Della Penna¹, ⁵
 ¹Department of Neuroscience, Imaging and Clinical Sciences, G. D'Annunzio Univ. of Chieti and Pescara, Chieti, CH, Italy; ²Department of Stomatology and Biotechnologies, G. D'Annunzio Univ. of Chieti and Pescara, Chieti, CH, Italy; ³Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, TS, Italy; ⁴Physics Department, 'La Sapienza' University of Rome, Roma, RM, Italy; ⁵Institute for Advanced Biomedical Technologies (ITAB), G. D'Annunzio Univ. of Chieti and Pescara, Chieti, CH, Italy

Computer 38 4198. Comparison of Relaxation-Based NMR Methods for Quantifying Bound and Pore Bone Water Fractions *Alan C. Seifert¹, Suzanne L. Wehrli², Felix W. Wehrli¹* ¹University of Pennsylvania, Philadelphia, PA, United States; ²Children's Hospital of Philadelphia, Philadelphia, PA, United States

Computer 39 4199. Cortical Bone Porosity: A Novel MRI-Based Clinical Biomarker to Assess Cortical Bone Quality In Vivo Shahrokh Abbasi Rad¹,², Atena Akbari¹, Niloofar Tondro³, Mohsen Shojaee-Moghaddam³, Hamidreza Saligheh Rad¹,² ¹Quantitative MR Imaging and Spectroscopy Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran; ²Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran; ³Imaging Center, Payambaran Hospital, Tehran, Iran

Computer 40 4200. MRI of Intraneural Perineurioma: Review of 27 Cases with Histopathologic Correlation

Gavin McKenzie¹, Michelle Mauermann², Robert Spinner², Doris Wenger², Joel Felmlee², Shuji Nagata³, Benjami Howe², Kimberly Amrami²

¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Mayo Clinic, MN, United States; ³Kurume University School of Medicine, Kurume, Japan

Computer 41 4201. Microstructural Organization and Macromolecular Contents in Fibrous Tissues of Normal and Hypertensive Eyes with Diffusion Tensor Imaging and Magnetization Transfer Imaging

Leon C. Ho¹, ², Ian A. Sigal³, Ning-Jiun Jan³, Tao Jin¹, Ed X. Wu², Seong-Gi Kim, ¹⁴, Joel S. Schuman³, Kevin C. Chan¹, ³

¹Neuroimaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States; ²Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; ³Departments of Ophthalmology and Bioengineering, University of Pittsburgh, PA, United States; ⁴Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea

Computer 42 4202. Assessment of Extent and Activity of Musculoskeletal Involvement in Systemic Sclerosis Using Hybrid [18F]-FDG-PET/MRI

Marius Stefan Horger¹, Nina Schwenzer¹, Sergios Gatidis¹, Christian la Fougere², Konstantin Nikolaou¹, Alexander Walter Sauter, ¹³

¹Radiology, Eberhard-Karls-University Tuebingen, Tuebingen, Germany; ²Nuclear Medicine, Eberhard-Karls-University Tuebingen, Tuebingen, Germany; ³Radiology and Nuclear Medicine, University Hospital Basel, Tuebingen, Germany

Computer 43 4203. Characterizing the Blood Oxygen Level-Dependent Fluctuation in Musculoskeletal Tumors Using Functional Magnetic Resonance Imaging

Li-Sha Duan¹, Meng-Jun Wang¹, Feng Sun¹, Zhen-Jiang Zhao¹, Mei Xing¹, Yu-Feng Zang², Steven Louis³, Sheng-Jie Cui⁴, Han Zhang², Jianling Cui¹

¹Department of Radiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China; ²Center for Cognition and Brain Disorders and the Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang, China; ³Physics Department, Oakland University, Rochester, MI, United States; ⁴Department of Anatomy and Cell Biology, Wayne State University School of Medicine, East Canfield Avenue, Detroit, United States

Computer 44 4204. Quantitative Assessments of Facial Soft-Tissue Mobility by Means of Watershed Segmentation and Constrained Elastic Registration in Upright Accelerated 3D MRI

Marco Vicari¹, Stefan Heldmann², Hans Meine¹, Frank Hug³, Juergen Hennig⁴, Niklas Iblher³ ¹Fraunhofer MEVIS, Bremen, Germany; ²Fraunhofer MEVIS, Luebeck, Germany; ³Department of Plastic and Hand Surgery, University Medical Center Freiburg, Freiburg, Germany; ⁴Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany

Computer 45 4205. Protein MRI Contrast Agents (ProCAs) with Unique Capability in Early Detection and Molecular Imaging of Varies Types of Cancer

Jenny Yang¹, ², Jingjuan Qiao¹, Shenghui Xue¹, Fan Pu¹, Shanshan Tan¹, Jie Jiang¹, Anvi Patel¹, Zhi-ren Liu, ²³ ¹Chemistry Department, Georgia State University, Atlanta, GA, United States; ²Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States; ³Biology Department, Georgia State University, Atlanta, GA, United States

Computer 46 4206. MR Micro-Neurography in the Investigation of Amyloid-Related Neuropathy

Paolo F. Felisaz¹, Eric Y. Chang², Polesel Marco¹, Irene Carne³, Maugeri Giulia¹, Giovanni Palladini⁴, Obici Laura⁴, Giampaolo Merlini⁴, Baldi Maurizia⁵, Stefano Bastianello⁶, Fabrizio Calliada¹ ¹Radiology Department, University of Pavia, Pavia, Italy; ²Radiology Service, VA San Diego Healthcare System, San Diego, CA,

United States; ³Medical Physics Department, IRCCS Salvatore Maugeri Foundation, Scientific Institute of Pavia, Italy; ⁴Amyloid Research and Treatment Center, Scientific Institute Policlinico San Matteo, Pavia, Italy; ⁵Radiology Department, IRCCS Salvatore Maugeri Foundation, Scientific Institute of Pavia, Italy; ⁶Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

Computer 47 4207. UTE-Based Short-T2* Mapping and PLM Optical Imaging for Evaluating Disruption of Collagen Fibers in the Knee Cartilage Explants

Yongxian Qian¹, Ashley A. Williams², Constance R. Chu² ¹Qian's Lab for MRI, General Labs Cloud LLC, Pittsburgh, PA, United States; ²Orthopaedic Surgery, Stanford University, Redwood City, CA, United States

Electronic Poster

Translational MR Imaging of Musculoskeletal Physiology Exhibition Hall Wednesday 14:30-15:30 Computer 1 4209. Quantitative Susceptibility Mapping of Meniscus at 11.7T Qun He^l, Zhe Liu², Hongda Shao^l, Alexey Dimov², Graeme M. Bydder^l, Yi Wang², Jiang Du^l ¹Radiology, University of California, San Diego, CA, United States; ²Biomedical Engineering, Cornell University, Ithaca, NY, United States

Computer 2 4210. Using the Ratio of T1ρ and T2 MR Parameters to Examine the Relationship Between Anterior Cruciate Ligament (ACL) Abnormalities and Patellofemoral Cartilage Integrity Nathaniel E. Calixto¹, Lorenzo Nardo¹, Deepak Kumar², Richard B. Souza¹, Xiaojuan Li¹, Thomas M. Link¹, Sharmila Majumdar¹ ¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States:

¹Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States; ²Division of Physical Therapy, College of Health Professions, Medical University of South Carolina, Charleston, SC, United States

Computer 3 4211. MRI Evaluation of the Polyethylene Tibial Insert in Total Knee Arthroplasty Angela E. Li¹, Darryl B. Sneag¹, ², Alissa J. Burge¹, ², Shari T. Jawetz¹, ², Joseph D. Lipman³, Hollis G. Potter¹, ² ¹Radiology, Hospital for Special Surgery, New York, NY, United States; ²Weill Cornell Medical College, New York, NY, United States; ³Biomechanics, Hospital for Special Surgery, New York, NY, United States

Computer 4 4212. 3T MRI of Arthroplasty Implants Using Highly Undersampled SEMAC: 3T Versus 1.5T Intra-Subject Comparison

Jan Fritz¹, Gaurav Thawait¹, Shadpour Demehri¹, Shivani Ahlawat¹, Heiko Meyer², Wesley Gilson³, Esther Raithel², Mathias Nittka²

¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Healthcare Sector, Siemens AG, Bavaria, Germany; ³Siemens Healthcare USA, Baltimore, United States

Computer 5	4213.	MR Imaging of Knee Implants Using SEMAC at 3T
		TAO AI ¹ , Panli Zuo ² , Yiqi Hu ¹ , Mathias Nittka ³ , Liming Xia ¹
		¹ Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China;
		² Siemens Healthcare, MR Collaborations NE Asia, Beijing, China; ³ Siemens Healthcare, Germany, Erlangen, Germany

Computer 6 4214. Rapid Multiparametric Mapping Near Orthopedic Implants at 3T Using Plug & Play Parallel Transmission Martijn A. Cloos¹, Mary Bruno², Tiejun Zhao³, Leeor Alon², Riccardo Lattanzi², Danial K. Sodickson² ¹Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ³Siemens Medical Solutions USA Inc., Malvern, PA, United States

Computer 7 4215. Highly Accelerated SEMAC for MRI of Arthroplasty Implants: Comparison with Optimized TSE and Conventional SEMAC

Jan Fritz¹, Gaurav Thawait¹, Shadpour Demehri¹, Shivani Ahlawat¹, Heiko Meyer², Wesley Gilson³, Esther Raithel², Mathias Nittka²

¹Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ²Healthcare Sector, Siemens AG, Bavaria, Germany; ³Siemens Healthcare USA, Baltimore, United States

Computer 48 **4208.** Characterization of [¹⁸F]-FDG Uptake by Hybrid PET-MRI in Osteoarthritis of the Hip Audrey P. Fan¹, Feliks Kogan¹, Dawn Holley¹, Andrei Iagaru¹, Greg Zaharchuk¹, Garry E. Gold¹ ¹Radiology, Stanford University, Stanford, CA, United States

Electronic Poster

Computer 8 **4216.** Spectrum of Complications Demonstrated on MRI in Patients Who Undergo Revision Total Knee Arthroplasty Angela E. Li¹, Darryl B. Sneag¹, ², Alissa J. Burge¹, ², Shari T. Jawetz¹, ², Darius P. Melisaratos¹, ², Hollis G. Potter¹, ²</sup> ¹Radiology, Hospital for Special Surgery, New York, NY, United States; ²Weill Cornell Medical College, New York, NY, United States

Computer 9 4217. MR Neurography Using Robust Fat and Blood Suppressed Volumetric T2-Weighted Imaging Xinzeng Wang¹, Crystal E. Harrison¹, Yogesh K. Mariappan², Karthik Gopalakrishnan², Avneesh Chhabra¹, ³, Robert E. Lenkinski¹, ³, Ananth J. Madhuranthakam¹, ³ ¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ²Philips Innovation Campus, Philips Healthcare, Bangalore, Karnataka, India; ³Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States

- Computer 10 4218. Quantitative Ultrashort TE (UTE) Imaging Predicts Joint Health in Hemophilic Arthropathy Eric Y. Chang¹, Annette von Drygalski², Thomas J. Cramer², Sheronda Statum³, Jiang Du³, Christine B. Chung¹ ¹Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States; ²Department of Hematology/Oncology, University of California, San Diego Medical Center, San Diego, CA, United States; ³Department of Radiology, University of California, San Diego Medical Center, San Diego, CA, United States
- Computer 11 4219. Quantitative MR Imaging of the Temporomandibular Joint Disc Using UTE Karen Chi-Lynn Chen¹,², Reni Biswas², Sheronda Statum³, Won Bae², Eric Chang¹,², Christine Chung¹ ¹Radiology, Veterans Administration Healthcare System San Diego, San Diego, CA, United States; ²Radiology, University of California San Diego, San Diego, CA, United States; ³Radiology, University of California, San Diego, CA, United States
- Computer 12 4220. Reduced Magic Angle Effects Using Ultrashort Echo Time Magnetization Transfer (UTE-MT) for Quantification of Human Rotator Cuff Tendon Eric Y. Chang¹, Jiang Du², Reni Biswas², Betty Tran², Sheronda Statum², Won C. Bae², Christine B. Chung¹ ¹Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States; ²Department of Radiology, University of California, San Diego Medical Center, San Diego, CA, United States

Computer 13 4221. UTE T2* Decay Analysis of the Rabbit Supraspinatus Tendon at 7T Gerd Melkus¹, ², Greg O. Cron¹, ², Peder E. Larson³, Adnan Sheikh¹, ², Ian Cameron¹, ², Hakim Louati⁴, ⁵, Peter Lapner⁵, Tim Ramsay⁶, Guy Trudel⁴, ⁷ ¹Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada; ²Department of Radiology, University of Ottawa, Ottawa, ON, Canada; ³Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ⁴Bone and Joint Laboratory, University of Ottawa, ON, Canada; ⁵Division of Orthopaedic Surgery, The Ottawa Hospital, Ottawa, ON, Canada; ⁶Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada; ⁷Department of Medicine, University of Ottawa, ON, Canada

Computer 14 4222. Evaluation of the Glycosaminoglycan Content in Healthy and Degenerated Menisci with GagCEST at 3T Benedikt Hager¹, Vladimir Juras¹, ², Olgica Zaric¹, Vladimir Mlynarik¹, Stefan Zbyn¹, Pavol Szomolanyi¹, ², Siegfried Trattnig¹ ¹High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Slovakia

- Computer 15 4223. Rapid, High-Resolution, and Multi-Contrast Knee MRI of Short T₂ Tissues with Ultrashort TE Double-Echo Steady-State Akshay S. Chaudhari¹, ², Catherine J. Moran², Emily J. McWalter², Garry E. Gold, ¹², Brian A. Hargreaves, ¹² ¹Bioengineering, Stanford University, Palo Alto, CA, United States; ²Radiology, Stanford University, Palo Alto, CA, United States
- Computer 16 4224. Assessment of Degenerative Changes in Disc Endplates Using DCEMRI and T1ρ Volkan Emre Arpinar¹, L Tugan Muftuler¹, ² ¹Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States; ²Center for Imaging Research, Medical College of Wisconsin, WI, United States
- Computer 17 4225. Evaluation of the Applicability of IGagCESL and GagCEST on Both Cartilage and Disc at 3T Wen Ling¹, Nam Vo², Gwendolyn A. Sowa², James Kang³, Kyongtae Ty Bae¹

¹Radiology Department, University of Pittsburgh Medical Center, Pittsburgh, PA, United States; ²Department of Orthopedic Surgery, University of Pittsburgh Medical Center, PA, United States; ³Department of Orthopedic Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States

Computer 18 4226. Triple-Echo Steady State T2 Mapping and High Resolution Axonal Bundle Assessment of the Median Nerve in Healthy Volunteers and Patients with Carpal Tunnel Syndrome at 7Tesla

Georg Riegler¹, Gregor Drlicek¹, Claudia Kronnerwetter¹, Rahel Heule², Oliver Bieri², Benedikt Hager¹, Peter Bär¹, Siegfried Trattnig¹

¹MR Centre of Excellence, Dept. of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria; ²Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland

Computer 19 4227. A Fast Scanning Technique of MR Micro-Neurography Using the 3-Point-Dixon Method at 3T Paolo F. Felisaz¹, Eric Y. Chang², Irene Carne³, Polesel Marco¹, Stefano Montagna⁴, Maugeri Giulia¹, Baldi Maurizia⁴, Fabrizio Calliada¹, Stefano Bastianello⁵ ¹Radiology Department, University of Pavia, Pavia, Italy; ²Radiology Service, VA San Diego Healthcare System, San Diego, CA, United States; ³Medical Physics Department, IRCCS Salvatore Maugeri Foundation, Scientific Institute of Pavia, Italy; ⁴Radiology Department, IRCCS Salvatore Maugeri Foundation, Scientific Institute of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy

- Computer 20 4228. The Magic Angle Effect on Ultrashort Echo Time MRI for Analysis of T2* and Magnetization Transfer Ratio Hongda Shao¹, Michael Carl², Eric Chang¹, Christine B. Chung¹, Graeme M. Bydder¹, Jiang Du¹ ¹Radiology, University of California, San Diego, CA, United States; ²GE Healthcare, San Diego, CA, United States
- Computer 21 4229. Clinical Evaluation of IVIM and DCE in Sarcoma Jing Zhang¹, Pan-Li Zuo², Thorsten Feiweier³, Xiaoguang Cheng¹ ¹Beijing Jishuitan Hospital, Beijing, China; ²Siemens Healthcare, MR Collaborations NE Asia, Beijing, China; ³Siemens Healthcare, Erlangen, Germany

Computer 22 4230. Optimized Refocusing-Flip-Angle-Train Design for Small Peripheral Nerve Imaging with 3D TSE Barbara Cervantes¹, Jan S. Bauer², Hendrik Kooijman³, Marcus Settles¹, Axel Haase⁴, Ernst J. Rummeny¹, Klaus Wörtler¹, Dimitrios C. Karampinos¹ ¹Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany; ²Neuroradiology, Technische Universität München, Munich, Germany; ³Philips Healthcare, Hamburg, Germany; ⁴Zentralinstitut für Medizintechnik, Technische Universität München, Garching, Germany

- Computer 23 4231. An Improved Saturation Scheme for Measuring GagCEST in Human Knee at 7 T Vladimir Mlynarik¹, Stefan Zbyn¹, Vladimir Juras¹, Pavol Szomolanyi¹, Martin Brix¹, Benjamin Schmitt², Siegfried Trattnig¹ ¹High Field MR Center, Medical University of Vienna, Vienna, Austria; ²Siemens Ltd, Macquarie Park, Australia
- Computer 24 4232. Quantitative MRI of Triangular Fibrocartilage (TFC): Correlation with Biomechanical Properties. Mohammed Aakef¹, Tania Kumar¹, Reni Biswas¹, Betty Tran¹, Sheronda Statum¹, Eric Y. Chang², Won C. Bae¹, Christine B. Chung², ³ ¹Radiology, Univeristy of California, San Diego, San Diego, CA, United States; ²Veterans Affairs San Diego Healthcare System, CA, United States; ³Radiology, Univeristy of California, San Diego, CA, United States

Electronic Poster Muscle MRS/MRI

 Exhibition Hall
 Wednesday 14:30-15:30

 Computer 25
 4233.
 Reproducibility of Carnosine Quantification in the Calf Muscle by 1H MRS at 7T and Detection of Its Concentration Changes Following Acute Physical Activity Ivica Just Kukurova¹, Barbara Ukropcová², ³, Marjeta Tušek Jelenc¹, Milan Sedliak⁴, Marek Chmelik¹, Jozef Ukropec², Martin Krššák¹, ⁵, Siegfried Trattnig¹, Ladislav Valkovič ¹, ⁶

 ¹High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia; ³Faculty of Medicine, Comenius University, Bratislava, Slovakia; ⁴Faculty of Physical Education and Sport, Comenius University, Bratislava, Slovakia;
 ⁵Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; ⁶Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia

Computer 26 4234. Myoglobin Contribution to the Near Infrared Signal in Exercising Skeletal Muscle David Bendahan¹, Benjamin Chatel¹, Thomas Jue² ¹CNRS, CRMBM, Aix-Marseille University, Marseille, France; ²Biochem & Mol Medicine, University of California, Davis, CA, United States

Computer 27 4235. Spinal Fusion Induced Increase of Energy Demand in Lower Back Muscles - A Functional ³¹P-MRS Study Alexander Gussew¹, Philipp Schenk², ³, Heiko Stark⁴, Bernhard Ullrich³, Christoph Anders², Patrick Hiepe¹, Reinhard Rzanny¹, Kai Wohlfahrt⁵, Gunther Hofmann², ³, Hans-Christoph Scholle², Jürgen R. Reichenbach¹ ¹Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Thuringia, Germany; ²Clinic for Trauma, Hand and Reconstructive Surgery, Division of Motor Research, Pathophysiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Thuringia, Germany; ³Department of Trauma Surgery, BG Clinics Bergmannstrost, Halle (Saale), Saxony-Anhalt, Germany; ⁴Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Jena, Thuringia, Germany; ⁵Clinic for Neurology, BG Clinics Bergmannstrost, Halle (Saale), Saxony-Anhalt, Germany

Computer 28 4236. Functional 2D 31P MRSI in the Leg During Exercise, Using a Dual-Tuned 1H/31P Volume Coil Claudiu Schirda¹, Tiejun Zhao², Shailesh Raval³, SoJung Lee⁴, Silva Arslanian⁴, Hoby Hetherington¹, Tamer Ibrahim¹,

¹Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; ²Siemens Medical Solutions, Pittsburgh, PA, United States; ³Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; ⁴Division of Weight Management and Wellness, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States

Computer 29 4237. Fat to Water Ratio and T2 Value Variations Measured in Lumbar, Thoracic, and Cervical Spinal Bone Marrow at 3 T Quinn M. Barber¹, Atiyah Yahya¹,²

¹Department of Oncology, University of Alberta, Edmonton, Alberta, Canada, ²Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada

Computer 30 4238. Fat Assessment in Shoulder Muscle: A Comparison Between Spectroscopic and Imaging Techniques. *Gaëlle Diserens¹, Helen Anwander², Fabian Fuhrer², Chris Boesch¹, Mattias A. Zumstein², Peter Vermathen¹* ¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland; ²Dept. of Orthopaedic Surgery and Traumatology, University Bern, Bern, Switzerland

Computer 31 4239. Towards a Whole-Joint MR Evaluation of the Knee: Cartilage, Bone and Marrow. Won C. Bae¹, Kyu-Sung Kwack², Gavin Hamilton¹, Reni Biswas¹, Betty Tran¹, Robert Healey³, Sheronda Statum¹, Eric Y. Chang⁴, Christine B. Chung⁴, ⁵ ¹Radiology, University of California, San Diego, San Diego, CA, United States; ²Radiology, Ajou University Medical Center, Korea; ³Orthopedic Surgery, University of California, San Diego, CA, United States; ⁴Veterans Affairs San Diego Healthcare System, CA, United States; ⁵Radiology, University of California, San Diego, CA, United States

- **Computer 32 4240. Creatine Concentration in Human Calf Muscle at 7T with AREX** ^{ISWEW KEERT AWAG} ^{ISWEW KEERT AWAG} ^{ISWEW KEERT AWAG} ^{IGE} ^{IGE}
- Computer 33 4241. Progression of Skeletal Muscle Dysfunction Assessed by 31P MRS and BOLD MRI in Non-Obese Type 2 Diabetic Rats Yuchi Liu¹, Xunbai Mei¹, Andrew Slabic¹, Nicola Lai¹, Xin Yu¹, ²

¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States

Computer 34 4242. Dystrophic Skeletal Muscle ¹H₂O T₂ Analyzed for Multiple Components

Sean C. Forbes¹, William T. Triplett¹, Rebecca Willcocks¹, Abhinandan Batra¹, Ravneet Vohra¹, James Pollaro², Dah-Jyuu Wang³, Richard Finkel⁴, Barry J. Byrne⁵, Barry S. Russman⁶, Erika Finanger⁶, Michael Daniels⁷, William Roonev², Glenn A. Walter¹, H Lee Sweenev⁸, Krista Vandenborne¹

¹University of Florida, Gainesville, FL, United States; ²Oregon Health & Science University, OR, United States; ³The Children's Hospital of Philadelphia, PA, United States; ⁴Nemours Children's Hospital, FL, United States; ⁵University of Florida, Gainesville, FL, United States; ⁶Shriners Hospital, OR, United States; ⁷University of Texas at Austin, TX, United States; ⁸University of Pennsylvania, PA, United States

Computer 35 4243. Diffusion-Weighted, Triple-Fat-Suppressed Echo-Planar Imaging Provides 'Anomalous' Diffusion Metrics for Assessment of Muscle Quality in the Human Thigh

Donnie Cameron¹, Mustapha Bouhrara¹, David A. Reiter¹, Kenneth W. Fishbein¹, Christopher M. Bergeron¹, Richard G. Spencer¹

¹National Institute on Aging, National Institutes of Health, Baltimore, MD, United States

Computer 36 4244. Importance of Supine Rest Period Before Imaging for Thigh Muscle Volume Quantification *Vijay Shah¹*, Therese Crilly¹, Larry Molinelli¹, William Badger², Jon Riek¹ ¹VirtualScopics, Inc., Rochester, NY, United States; ²University of Rochester Medical Center, Rochester, NY, United States

Computer 37 4245. MSK Hemodynamics at Quadriceps Using Blood-Oxygen Level Dependent (BOLD) MRI at 3T; Volitional Exercise VS Neuromuscular Electrical Stimulation (NMES) Junghwan Kim¹,², Serter Gumus², Piva Sara Regina³, Tae Kim², Tamer Ibrahim¹,², Kyongtae Ty Bae¹,²</sup>

¹Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; ²Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ³Physical Therapy, University of Pittsburgh, Pittsburgh, PA, United States

Computer 38 4246. Quantifying Perfusion in Conditions of Rapidly Changing Blood Flow and Vascular Volume: A Novel Tracer Kinetic Model

Jeff L. Zhang¹, Christopher J. Hanrahan¹, Vivian S. Lee¹ ¹Radiology, University of Utah, Salt Lake City, UT, United States

Computer 39 4247. Multi Parametric MRI Evaluation of Muscle Development Kerryanne V. Winters¹, ², Olivier Reynaud¹, ², Dmitry S. Novikov¹, ², Els Fieremans¹, ², Sungheon G. Kim¹, ² ¹Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging - NYU School of Medicine, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research, NYU Langone Medical Center, New York, NY, United States

Computer 40 4248. Muscle Perfusion Reserve (MPR) Measured from Exercise-Recovery MRI: A New Functional Index for Diagnosing PAD

Jeff L. Zhang¹, Christopher J. Hanrahan¹, Jason Mendes¹, Gwenael Layec², Corey Hart², Kristi Carlston¹, Michelle Mueller³, Russell S. Richardson², Vivian S. Lee¹ ¹Radiology, University of Utah, Salt Lake City, UT, United States; ²Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States; ³Vascular Surgery, University of Utah, Salt Lake City, UT, United States

Computer 41 4249. Evaluation of Skeletal Muscle DTI in Duchenne Muscular Dystrophy Melissa Hooijmans¹, Martijn Froeling², Maarten Versluis³, Andrew Webb¹, Erik Niks⁴, Jan Verschuuren⁴, Hermien Kan¹ ¹Radiology, Leiden University Medical Center, Leiden, Zuid-holland, Netherlands; ²Radiology, Utrecht Medical Center, Utrecht, Netherlands; ³Philips, Netherlands; ⁴Neurology, Leiden University Medical Center, Leiden, Zuid-holland, Netherlands

Computer 42 4250. Advanced Pathology in Aged Mdx Muscle Characterized by Quantitative Multi-Parametric MRI Nathan David Bryant¹, ², Ke Li¹, ², Bruce Damon¹, ² ¹Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ²Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States

Computer 43 4251. Simultaneous Acquisition of Transverse Relaxation, Perfusion, and Diffusion Information of Lower-Leg Muscle Using Diffusion EPI with Different TE

Makoto Terazono¹, Tosiaki Miyati¹, Naoki Ohno¹, Shuya Fujihara¹, ², Natsumi Makino³, Satoshi Kobayashi⁴, Toshifumi Gabata⁴

¹Division of health sciences, Graduate school of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; ²Department of Radiology, Shinshu University Hospital, Nagano, Japan; ³School of Health Sciences, College of Medical, Pharmaceutical and Health Sciences, Kanazawa, Ishikawa, Japan; ⁴Department of Radiology, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan

Computer 44 4252. Deformation-Induced Damage in Rat Skeletal Muscle: Role of the Vascular System

Jules Nelissen¹,², Willeke Traa³, Kevin Moerman⁴, Cees Oomens⁵, Aart Nederveen⁴, Klaas Nicolay¹, Gustav Strijkers¹,

¹Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ²Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, Netherlands; ³Soft Tissue Biomechanics and Engineering, , Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands; ⁴Department of Radiology, Academic Medical Center, Amsterdam, Netherlands; ⁵Soft Tissue Biomechanics and Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands;

- Computer 45 4253. Muscle Oxygenation Changes in Different Bone Mineral Density Subjects A BOLD Based Study Heather T. Ma¹, ², James F. Griffith³, Yang Chen¹, Shoulin Huang¹, Davd K. Yeung³, Xu Xing¹, Li Liang¹ ¹Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China; ²Johns Hopkins University, Baltimore, MD, United States; ³The Chinese University of Hong Kong, Hong Kong, China
- Computer 46 4254. Significance of Perfusion Parameters and Muscle Performance in the Rotator Cuff Muscles of Young Badminton Athletes: Assessment by Dynamic Contrast-Enhanced MR Imaging Chih-Wei Yu¹, Tiffany Ting-Fang Shih¹, Hsing-Kuo Wang², Chao-Yu Hsu¹, Bang-Bin Chen¹, Xin-Jia Chen³ ¹Radiology and Medical Imaging, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan; ²School and Graduate Institute of Physical Therapy, National Taiwan University College of Medicine, Taipei, Taiwan; ³Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
- Computer 47 4255. Dynamic Analysis of T₂ and Proton Density of Exercise-Induced Muscle Using SE-EPI Noriyuki Tawara¹, Takahiro Ohnishi², Toru Yamamoto¹ ¹Faculty of Health Sciences, Hokkaido University, Hokkaido, Japan; ²Siemens Japan, Japan

Computer 48 4256. Correlation Between Quantitative MRI Features and Functional Assessment of Myopathy Hon J. Yu¹, ², Manaswitha Khare³, Mathew Gargus³, Marie Wencel³, Abhilasha Surampalli³, Vince Caiozzo⁴, Virginia Kimonis³ ¹Radiological Sciences, University of California, Irvine, CA, United States; ²Tu & Yuen Center for Functional Onco-Imaging, University of California, Irvine, CA, United States; ³Pediatrics, University of California, Irvine, CA, United States; ⁴Orthopaedic Surgery, University of California, Irvine, CA, United States

Electronic Poster

Mechanisms of Neural Degeneration & Damage 1

Exhibition Hall Wednesday 16:00-17:00 Computer 1 4257. CSF Alpha Synuclein Levels Modulate BOLD Connectivity of Executive Control Network Regions in

Parkinson's Disease Swati Rane¹, Manus J. Donahue², ³, Daniel Claassen³ ¹Radiology and Radiological Sciences, Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ³Neurology, Vanderbilt University, Nashville, TN, United States

Computer 2 4258. Tissue Volume Fraction as a Biomarker of Genetically-Determined Disease Burden in Huntington's Disease Jessica Steventon¹, Rebecca Trueman², Anne E. Rosser³, Derek K. Jones¹ ¹CUBRIC, School of Psychology, Cardiff University, Cardiff, Wales, United Kingdom; ²University of Nottingham, England, United Kingdom; ³School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom

Computer 3 4259. Altered Topological Properties of Functional Connectome in Early-Stage PD Revealed by Graph Theoretical Analysis

Xueling Suo¹, Du Lei¹, Fuqin Chen², Lei Li², Nannan Li³, Lan Cheng³, Rong Peng³, Qiyong Gong² ¹Huaxi MR Research Center (HMRRC), Department of Radiolody, West China Hospital, Chengdu, Sichuan, China; ²Huaxi MR Research Center (HMRRC), Department of Radiolody, West China Hospital, Chengdu, Sichuan, China; ³Department of Neurology, West China Hospital, Chengdu, Sichuan, China

Computer 4 4260. MRI Guided Magnetic Nanoparticle Based Drug Delivery for Neurodegenerative Diseases: Preliminary In-Vivo and In-Vitro Study

Yujuan Zhao¹, Noah Snyder¹, Tiejun Zhao², Liza Bruk¹, James Eles¹, Xia Li¹, X. Tracy Cui¹, Tamer S. Ibrahim¹ ¹University of Pittsburgh, Pittsburgh, PA, United States; ²Siemens Medical Solutions USA, Pittsburgh, PA, United States

Computer 5 **4261.** Aberrant Brain Network Connectivity Assessed Using Graph Theory in Paroxysmal Kinesigenic Dyskinesia Lei Li¹, Du Lei², Xueling Suo², Xinyu Hu², Jiechuan Ren³, Xiaoqi Huang², Qiyong Gong² ¹Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China; ²Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Sichuan, China; ³Department of Neurology, West China Hospital of Sichuan, China

Computer 6 4262. QSM of Substantia Nigra and Improved Characterization of Substantia Nigra

Jason Langley¹, Daniel E. Huddleston², Nishant Zachariah³, Xiangchuan Chen⁷, Xiaoping Hu¹ ¹Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States; ²Center for Health Research, Southeast, Kaiser Permanente, Atlanta, GA, United States; ³Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States

Computer 7 4263. Assessing the Level of Pathology of the Corticospinal Pathway in Patients with PLP1 Mutations Using Diffusion Tensor Imaging.

Malek I. Makki⁷, Jeremy J. Laukka² ¹MRI Research, University Children Hospital of Zurich, Zurich, Switzerland; ²Department of Neuroscience and Neurology, University of Toledo, Toledo, OH, United States

Computer 8 4264. Parkinson's Disease Related Pattern from Resting State fMRI An Vo¹, Wataru Sako¹, Frank M. Skidmore², David Eidelberg¹, Aziz M. Ulug¹, ³ ¹Center for Neurosciences, Feinstein Institute for Medical Research, Manhasset, NY, United States; ²Neurology, University of Alabama, AL, United States; ³Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey

Computer 9 4265. Abnormal Structural Connectivity Networks of Patients with Major Depressive Disorder: Graph Theoretical and Network-Based Statistic Analyses

Hao Hu¹, Vincent Chin-Hung Chen², Ming-Chou Ho³, Yeu-Sheng Tyan⁴, ⁵, Jun-Cheng Weng⁴, ⁵ ¹Department of Radiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China; ²Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan; ³Department of Psychology, Chung Shan Medical University, Taichung, Taiwan; ⁴School of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung, Taiwan; ⁵Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung, Taiwan

Computer 10 4266. T1rho Imaging as a Biomarker for Huntington's Disease Progression Vincent Magnotta¹, Casey Johnson¹, John Wemmie², Shafik Wassef⁴, Hans Johnson³, Jeffrey Long², Jane Paulsen² ¹Radiology, University of Iowa, Iowa City, IA, United States; ²Psychiatry, University of Iowa, Iowa City, IA, United States; ³Electrical and Computer Engineering, University of Iowa, Iowa City, IA, United States

Computer 11 4267. A Protean Poseur--SSPE

*Sniya Valsa Sudhakar¹, Maya Mary Thomas*² ¹Radiodiagnosis, Christian Medical College, Vellore, Tamil Nadu, India; ²Neurology, cmc vellroe, Vellore, Tamil Nadu, India

Computer 12 **4268.** Alterations of Cerebral Cortical Thickness in the Sensory and Pain Systems in Restless Legs Syndrome Byeong-Yeul Lee¹, James R. Connor², Wei Chen¹, Qing X. Yang, ²³

¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ²Department of Neurosurgery, The Pennsylvania State University College of Medicine, Hershey, PA, United States; ³Center for NMR Research, Department of Radiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States

Computer 13 4269. Spatiotemporal Changes in Ocular Morphology and White Matter Integrity in a Transgenic Mouse Model of Chronic Glaucoma

Xiao-Ling Yang¹,², Leon C. Ho¹,³, Yolandi van der Merwe¹,⁴, Ian P. Conner²,⁴, Seong-Gi Kim,¹⁵, Gadi Wollstein², Joel S. Schuman²,⁴, Kevin C. Chan¹,²</sup>

¹NeuroImaging Laboratory, University of Pittsburgh, Pittsburgh, PA, United States; ²Department of Ophthalmology, School of Medicine, University of Pittsburgh, PA, United States; ³Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China; ⁴Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA, United States; ⁵Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, Korea

Computer 14 4270. Comparisons of Neuronal Activations from BOLD and ASL fMRI During an Associative Working Memory Task in Patients with Cognitive Normal, Mild Cognitive Impairment, and Alzheimer's Disease

Hyug-Gi Kim¹, Dan-Bi Kim², Jang-Hoon Oh¹, Soon Chan Park², Hak Young Rhee³, Chang-Woo Ryu², Won-Chul Shin³, Dal-Mo Yang², Geon-Ho Jahng²

¹Biomedical Engineering, Kyung Hee University, YoungIn, Gyeonggi-do, Korea; ²Radiology, Kyung Hee University Hospital-Gangdong, Seoul, Korea; ³Neurology, Kyung Hee University Hospital-Gangdong, Seoul, Korea

Computer 15 4271. Neuromelanin Magnetic Resonance Imaging of Substantia Nigra in Patients with Parkinson Disease Dementia (PDD), Alzheimer Disease (AD) and Age-Matched Controls.

Won-Jin Moon¹, Ju Yeon Park, Jin Woo Choi, Yeon Sil Moon², Seol-Heui Han², Ki-Chang Kwak³, Jong-Min Lee³ ¹Department of Radiology, Konkuk University School of Medicine, Seoul, Korea; ²Department of Neurology, Konkuk University School of Medicine, Seoul, Korea; ³Department of Biomedical Engineering, Hanyang University, Seoul, Korea

Computer 16 4272. Cross Sectional and Longitudinal Magnetisation Transfer Ratio in Prion Disease at 3 Tesla

Enrico De Vita¹,², Marie-Claire Porter³,⁴, Ivor Simpson⁵, Zoe Fox⁶, Gerard Ridgway⁷, Sebastien Ourselin⁵, Peter Rudge³,⁴, Diana Caine³,⁴, Rolf Jager¹,², Tarek Yousry¹,², John Collinge³,⁴, Simon Mead³,⁴, Harpreet Hyare³,⁴, John S. Thornton¹,²</sup>

¹Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; ²Academic Neuroradiological Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, United Kingdom; ³MRC Prion Unit, Department of Neurology and Neurosurgery, London, United Kingdom; ⁴National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, United Kingdom; ⁵Centre for Medical Image Computing, University College London, London, United Kingdom; ⁶Education unit, UCL Institute of Neurology, London, United Kingdom; ⁷Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, United Kingdom;

Computer 17 4273. Left Temporal Lobe Epilepsy Associated with Hippocampal Sclerosis and Reduced Functional Connectivity in the Default Mode Network

Arzu Ceylan HAS¹, Irsel TEZER², Serap SAYGI², Kader K. OGUZ¹, ³ ¹National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey; ²Department of Neurology, Hacettepe University, Ankara, Turkey; ³Department of Radiology, Hacettepe University, Ankara, Turkey

Computer 18 4274. Insight Into Neuromelanin-MRI Z-Spectrum Contrast of the Substantia Nigra

Paula Trujillo¹,², Paul Summers¹, Luca Mainardi², Sergio Cerutti², Seth A. Smith³,⁴, Alex K. Smith³,⁴, Antonella Costa¹

¹Department of Neuroradiology, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, MI, Italy; ²Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, MI, Italy; ³Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ⁴Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States

Computer 19 4275. Quantitative Susceptibility Mapping as a Potential Biomarker in Parkinson's Disease: A Clinical Application Study

Sung-han Lin¹, Chin-Song Lu², Yi-Hsin Weng², Yao-Liang Chen³, Yi-Ming Wu³, Jiun-Jie Wang¹ ¹Medical Imaging and Radiological Science, Chang Gung University, Taoyuan County, Taiwan, Taiwan; ²Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan; ³Department of Radiology and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan

Computer 20 4276. Brain Changes in End-Stage Renal Disease Patients with Hemodialysis: A Voxel-Based Analysis of Morphometry and CBF Based on Cognition Assessment

Bo Hou¹, *Ke Zheng²*, *Hui You¹*, *Jing Yuan³*, *Hai-yun Wang²*, *Xue-mei Li²*, *Feng Feng¹* ¹Department of Radiology, Peking Union Medical College Hospital, Beijing, China; ²Department of Nephrology, Peking Union Medical College Hospital, Beijing, China; ³Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology, Peking Union Medical College Hospital, Beijing, China; ⁴Department of Neurology,

Computer 21 4277. Altered Striatal Functional Connectivity in Parkinson's Disease Patients with Impulse Control Disorder *Yi-Ming Wu¹, Chin-Song Lu², Yi-Hsin Weng², Yao-Liang Chen¹, Sung-han Lin³, Jiun-Jie Wang³* ¹Department of Radiology and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan; ²Department of Neurology, Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan; ³Medical Imaging and Radiological Science, Chang Gung University, Taoyuan, Taiwan

Computer 22 4278. Assessing Iron Load in Deep Grey Matter Brain Nuclei of Parkinson's Disease with L2-Regularized Quantitative Susceptibility Mapping

Darrell Ting Hung Li¹, Edward Sai Kam Hui¹, Queenie Chan², Siew-eng Chua³, Grainne McAlonan³, ⁴, Shu Leong Ho⁵, Henry Ka Fung Mak¹

¹Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, Hong Kong, ²Philips Healthcare, Hong Kong, China; ³Department of Psychiatry, Queen Mary Hospital, The University of Hong Kong, Hong Kong; ⁴Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, King's College London, London, United Kingdom; ⁵Department of Medicine, The University of Hong Kong, Hong Kong

Computer 23 4279. Altered Spontaneous Brain Activity in Type 2 Diabetes Related Cognitive Dysfunction: A Resting-State Functional MRI Study

Ying Xiong¹, Zhipeng Xu², Qiang Zhang³, Shiqi Yang¹, Shun Zhang¹, Wenzhen Zhu¹ ¹Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; ²Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; ³Neurology department, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China

Computer 24 4280. A Tract Based Spatial Statistic Study of Fractional Anisotropy Alterations Caused by Simian Immunodeficiency Virus Infection

Zhenchao Tang¹, Zhenyu Liu², Jiaojiao Liu³, Hongjun Li³, Enqing Dong¹, Jie Tian² ¹School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong Province, China; ²Institute of Automation, Chinese Academy of Sciences, Beijing, China; ³Beijing YouAn Hospital, Capital Medical University, Beijing, China

Electronic Poster

Mechanisms of Neural Degeneration & Damage 2

Exhibition Hall Wednesday 16:00-17:00

Computer 25 4281. Quantitative Susceptibility Mapping of the Motor Cortex in ALS and PLS Patients: a Biomarker for Upper Motor Neuron Dysfunction

Gerd Melkus¹, ², *Santanu Chakraborty¹*, ², *Pierre Bourque³* ¹Department of Medical Imaging, The Ottawa Hospital, Ottawa, ON, Canada; ²Department of Radiology, University of Ottawa, Ottawa, ON, Canada; ³Department of Neurology, University of Ottawa, Ottawa, ON, Canada

Computer 26 4282. Longitudinal Diffusion Tensor Imaging of the Rat Brain After Hexachlorophene Exposure Jaivijay Ramu¹, Tetyana Konak¹, Merle G. Paule¹, Joseph Hanig², Serguei Liachenko¹ ¹Neurotoxicology, NCTR / FDA, Jefferson, AR, United States; ²OTR, CDER / FDA, White Oak, MD, United States

Computer 27 4283. Altered Default Mode Network Functional Connectivity and White Matter Integrity in Parkinson's Disease and Relation with Cognitive Functions

Arzu Ceylan HAS^T, Ozlem CELEBI², Andac UZDOGAN³, Filiz AKBIYIK³, Bulent ELIBOL², Esen SAKA², Kader K. OGUZ¹,⁴

¹National Magnetic Resonance Research Center (UMRAM), Ankara, Turkey; ²Department of Neurology, Hacettepe University, Ankara, Turkey; ³Department of Biochemistry, Hacettepe University, Ankara, Turkey; ⁴Department of Radiology, Hacettepe University, Ankara, Turkey

Computer 28 4284. Transverse Relaxation and Volumetric Neural Changes in the H67D HFE Mouse Model and Cognitively Normal Healthy H63D-HFE Human Genotype Carriers

Douglas G. Peters¹, ², Carson J. Purnell¹, Jian-Li Wang³, Paul J. Eslinger⁴, Megha Vasavada³, Fatima Ali-Rahmani¹, Qing X. Yang³, James R. Connor¹, Mark David Meadowcroft¹, ³

¹Neurosurgery, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ²Neural and Behavioral Sciences, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ³Radiology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State Unive

Computer 29 4285. Lateralization of Temporal Lobe Epilepsy Using a Combinational Model of Electroencephalographic and Imaging

Fariborz Mahmoudi¹, ², *Mohammad-Reza Nazem-Zadeh¹*, *Jason M. Schwalb³*, *Ellen L. Air³*, *Hassan Bagher-Ebadian¹*, *Manpreet Kaur³*, *Rushna Ali³*, *Saeed Shokri¹*, *Kost V. Elisevich⁴*, *Hamid Soltanian-Zadeh¹*, ⁵ ¹Departments of Radiology, Research Administration, Henry Ford Health System, Detroit, MI, United States; ²Computer and It Engineering Faculty, Islamic Azad University, Qazvin Branch, Qazvin, Iran; ³Departments of Neurosurgery, Henry Ford Health System, Detroit, MI, United States; ⁴Department of Clinical Neurosciences, Spectrum Health System, Grand Rapids, MI, United States; ⁵CIPCE, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

Computer 30 4286. Detecting Alterations in Caudal Portion of Substantia Nigra in Parkinson's Disease

Xiangchuan Chen¹, Daniel Huddleston¹,², Jason Langley¹, Xiaoping Hu¹

¹Emory University, Atlanta, GA, United States; ²Kaiser Permanente Center for Health Research Southeast, Atlanta, GA, United States

Computer 31 4287. Eigenvector Centrality of Resting-State fMRI in the Brainstem: A Potential Marker for Parkinson's Disease Pathology

Štefan Holiga¹, ², Robert Jech³, Karsten Mueller¹, Dušan Urgošík⁴, Matthias L. Schroeter¹, ², Harald E. Möller¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ²Clinic for Cognitive Neurology & Leipzig Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany; ³Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague, Czech Republic; ⁴Department of Radiation and Stereotactic Neurosurgery, Na Homolce Hospital, Prague, Czech Republic

Computer 32 4288. An MRI-Based Method to Quantify Apoptosis In Vivo Chenchen Liu¹, Nuri B. Farber², Joel R. Garbow³, Joseph JH Ackerman⁴ ¹Chemistry, Washington University in St.Louis, St. Louis, MO, United States; ²Psychiatry, Washington University in St.Louis, St. Louis, MO, United States; ³Radiology, Washington University in St.Louis, St. Louis, MO, United States; ⁴Chemistry and Radiology, Washington University in St.Louis, St. Louis, MO, United States

Computer 33 4289. Quantitative Assessment of MRI T₂ Response to Kainic Acid Neurotoxicity in Rats In Vivo Serguei Liachenko¹, Jaivijay Ramu¹, Tetyana Konak¹, Merle Paule¹, Joseph Hanig² ¹Neurotoxicology, NCTR / FDA, Jefferson, AR, United States; ²OTR, CDER / FDA, White Oak, MD, United States

Computer 34 4290. Comparison of Chemical Exchange Saturation Transfer MR Imaging and Diffusion Tensor Imaging in Parkinson's Disease at 3 Tesla Chunmei Li¹, Xuna Zhao², Haibo Chen¹, Jinyuan Zhou³, Min Chen¹ ¹Beijing Hospital, Beijing, China; ²Peking University, Beijing, China; ³Johns Hopkins University, MD, United States

Computer 35 4291. Detection of the Local Volumes of White Matter Lesions in Type 2 Diabetes Mellitus by an Automatic Measurement Method

Xiaoling Zhang¹, Bundy Wong², Min Tang¹, Sipan Chen¹, Defeng Wang², Jian Yang³ ¹Department of Radiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; ²Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, New Territories, Hong Kong; ³Department of Radiology, Xi'an Jiao Tong University, Xi'an, Shaanxi, China

Computer 36 4292. Writer's Cramp Primary Dystonia Shows Brain Gray and White Matter Alterations: A Multimodal Imaging Study.

Massimo Filippi¹, Federica Agosta¹, Lidia Sarro¹, Aleksandra Tomic², Sebastiano Galantucci¹, Paola Valsasina¹, Marina Svetel², Alessandro Sodero¹, Nikola Kresojevic², Giancarlo Comi³, Vladimir S. Kostic² ¹Neuroimaging Research Unit, Institute of Experimental Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; ²Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Yugoslavia; ³Department of Neurology, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy

Computer 37 4293. Long Term MRI and MR Spectroscopic Evaluation of Gene Therapy in a Feline Model of Neurologic Disease.

Heather L. Gray-Edwards¹, Nouha Salbi², ³, Ashley N. Randle¹, Judith Hudson⁴, Ronald Beyers⁵, Miguel Sena Esteves⁶, Thomas Denney⁵, ⁷, Douglas Martin¹, ⁸

¹Scott-Ritchey Research Center, Auburn Univeristy, Auburn, Al, United States; ²Seimens Healthcare, Malvern, PA, United States; ³Auburn Univeristy MRI Research Center, Auburn Univeristy, AL, United States; ⁴Clinical Sciences, Auburn Univeristy, AL, United States; ⁵Auburn University MRI Research Center, Auburn University, AL, United States; ⁶Neurology, University of Massachusetts, MA, United States; ⁷Department of Electrical Engineering, Auburn University, AL, United States; ⁸Anatomy, Phsiology and Pharmacology, Auburn University, AL, United States

Computer 38 4294. MRI Patterns of Atrophy Associated with Parkinson's Subtypes

*Yue Xing*¹, *Stefan Schwarz*¹, *Nin Bajaj*², *Penny Gowland*³, *Dorothee Auer*¹ ¹Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom; ²Division of Neurology, Nottingham University Hospitals NHS Trust, Nottingham, Nottinghamshire, United Kingdom; ³Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

Computer 39 4295. An Arterial Spin Labelling Study Revealing Altered Neurovascular Status in Idiopathic Parkinson's Disease; Comparisons with Cerebrovascular Disease

Sarah Al-Bachari¹, Hedley Emsley², Rishma Vidyasagar¹, ³, Laura Parkes⁴ ¹Imaging, University of Manchester, Manchester, United Kingdom; ²Neurology, Royal Preston Hospital, Preston, Lancashire, United Kingdom; ³Department of Anatomy and Neurosciences, University of Melbourne, Victoria, Victoria, 3010, Australia; ⁴Imaging, Manchester University, Manchester, United Kingdom

Computer 40 4296. Serial Measurements of Structural Connectivity and Diffusion-Tensor Metrics in Parkinson's Disease Andre Ticlo¹, Sofia Reimão², Hugo Alexandre Ferreira¹, João Marcos Sousa¹, Daisy Abreu³, Joaquim Ferreira³, Jorge Campos², Rita Gouveia Nunes¹ ¹Instituto de Biofisica e Engenharia Biomedica, Faculdade de Ciencias, Universidade de Lisboa, Lisbon, Portugal; ²Neurological Imaging Department of Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Lisbon, Portugal; ³Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, Portugal

Computer 41 4297. Characterizing Neurodegeneration in Progressive Supranuclear Palsy Using VBM and SVM Classification

Karsten Mueller¹, Sandrine Bisenius¹, Adrian Danek², Janine Diehl-Schmid³, Klaus Fassbender⁴, Hans Foerstl³, Armin Giese², Holger Jahn⁵, Frank Jessen⁶, Jan Kassubek⁷, Johannes Kornhuber⁸, Bernhard Landwehrmeyer⁷, Martin Lauer⁹, Albert Ludolph⁷, Markus Otto⁷, Johannes Prudlo¹⁰, Anja Schneider¹¹, Katharina Stuke¹, Matthias L. Schroeter¹ ¹Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; ²Clinic of Neurology and Center for Neuropathology and Prion Research, Ludwig Maximilian University of Munich, Germany; ³Clinic and Polyclinic for Psychiatry and Psychotherapy, Technical University of Munich, Germany; ⁴Clinic and Polyclinic for Neurology, Saarland University Homburg, Germany; ⁵Clinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Germany; ⁶Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Erlangen, Germany; ⁹Clinic and Polyclinic for Psychiatry, Psychosomatic Medicine, and Psychotherapy, University of Kuerzburg, Germany; ¹⁰Clinic and Polyclinic for Neurology, University of Rostock, Germany; ¹¹Clinic for Psychiatry and Psychotherapy, University of Goettingen, Germany

Computer 42 4298. An Improved SWI Method for Nigrosome 1 Imaging

Yangsoo Ryu¹, Yoonho Nam¹, Han Jang¹, Sung Suk Oh², Eung Yeop Kim³, Jongho Lee¹ ¹Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea; ²Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Korea; ³Gachon University Gil Medical Center, Radiology, Incheon, Korea

Computer 43 4299. Alterations of Water Diffusion and Magnetization Transfer Metrics in the Brains of Amyotrophic Lateral Sclerosis Patients

Florian Borsodi¹, Christian Langkammer², Valeriu Culea¹, Lukas Pirpamer¹, Stefan Quasthoff⁴, Christian Enzinger¹, ³, Reinhold Schmidt¹, Franz Fazekas¹, Stefan Ropele¹

¹Dept. of Neurology, Medical University of Graz, Graz, Austria; ²MGH/HST Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, United States; ³Div. of Neuroradiology, Dept. of Radiology, Medical University of Graz, Graz, Austria

Computer 44 4300. Altered Hippocampal White Matter Connectivity and Memory Impairment in Type 2 Diabetes Mellitus

Frank C.G. van Bussel¹, Walter H. Backes¹, Paul A.M. Hofman¹, Alfons G.H. Kessels², Tamar M. van Veenendaal¹, Harm J. van de Haar¹, Martin P.J. van Boxtel³, Miranda T. Schram⁴, Coen D.A. Stehouwer⁴, Joachim E. Wildberger¹, Jacobus F.A. Jansen¹

¹Radiology, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ²Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ³Psychiatry and Neuropsychology, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ⁴Internal Medicine, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ⁴Internal Medicine, Maastricht University Medical Center, Maastricht, Limburg, Netherlands; ⁴Internal Medicine, Maastricht, Medical Center, Maastricht, Medical Center,

Computer 45 4301. Neuromelanin-Sensitive Imaging Correlates of Idiopathic Rapid Eye Movement Sleep Behavior Disorders

Mickael Ehrminger¹, Alice Latimier², Daniel Garcia-Lorenzo³, Smaranda Leu-Semenescu⁴, Marie Vidailhet⁵, Isabelle Arnulf⁴, Stephane Lehericy⁶

¹Ecole Normale Superieure, Paris, France; ²Service des pathologies du sommeil, ICM - Institut du Cerveau et de la Moelle, Paris, France; ³CENIR - Centre for NeuroImaging Research, ICM - Institut du Cerveau et de la Moelle, Paris, France; ⁴Service des pathologies du sommeil, Hopital Pitie-Salpetriere, Paris, France; ⁵Service de Neurologie, ICM - Institut du Cerveau et de la Moelle, Paris, France; ⁶CENIR - Center for NeuroImaging Research, ICM - Institut du Cerveau et de la Moelle, Paris, France

Computer 46 4302. Region-Specific Disturbed Iron Distribution in Early Idiopathic Parkinson's Disease Measured by Quantitative Susceptibility Mapping

Naying He¹, Fuhua Yan⁷, Huawei Ling¹, Yong Zhang², Zhongping Zhang³ ¹Ruijin Hospital,Shanghai Jiao Tong University School of Medicine, Shanghai, China; ²MR Research, GE Healthcare, China, Shanghai, China; ³MR Research, GE Healthcare, China, Guangzhou, China

Computer 47 4303. Multimodal MRI of a Novel Transgenic Model of Parkinson's Disease (MitoPark Mice) Linlin Cong¹, Eric R. Muir¹, Yusheng Qian², Cang Chen², Senlin Li², Timothy Q. Duong¹ ¹Research Imaging Institute, University of Texas Healthy Science Center at San Antonio, san antonio, TX, United States; ²Departments of Medicine and Pharmacology, University of Texas Healthy Science Center at San Antonio, san antonio, TX, United States

Computer 48 4304. Magnetic Resonance Spectroscopy in the Motor and Sensory Cortices Following Surgery for Cervical Spondylotic Myelopathy

Sandy Goncalves¹, ², Todd K. Stevens², Robert Bartha, ¹², Neil Duggal¹, ³ ¹Medical Biophysics, Western University, London, Ontario, Canada; ²Centre for Functional and Metabolic Mapping, Robarts Research Institute - Western University, London, Ontario, Canada; ³Clinical Neurological Sciences, University Hospital - London Health Sciences Centre, London, Ontario, Canada

Electronic Poster				
Alzheimer'	s Disease			
Exhibition Ha	Wednesday 16:00-17:00			
Computer 49 430	5. Chemical Exchange Saturation Transfer MR Imaging of Alzheimer; S Disease at 3 Tesla: A Preliminary Study Rui Wang ¹ , Saying Li ¹ , Min Chen ¹ , Jinyuan Zhou ² , Dantao Peng ³ , Chen Zhang ¹ , Yongming Dai ⁴ ¹ Department of Radiology, Beijing Hospital, Beijing, China; ² Johns Hopkins University School of Medicine, MD, United States; ³ Department of Neurology, China-Japan Friendship Hospital, Beijing, China; ⁴ Philips Healthcare, Shanghai, China			
Computer 50 430	6. Pharmocological Treatment with HDAC-6 Inhibitor (ACY-738) Recovers Alzheimer's Phenotype in APP/PS1 Mice			

*Tabassum Majid*¹, ², *Deric Griffin*¹, ², *Zachary Criss II*¹, *Asante Hatcher*³, *Matthew Jarpe*⁴, *Robia Pautler*¹, ² ¹Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States; ²Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, United States; ³Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; ⁴Acetylon Pharmaceuticals, Boston, MA, United States

Computer 51 4307. The Prospectively Validated RfMRI Biomarkers for Mild Cognitive Impairment

Gang Chen¹, Hao Shu¹, ², Guangyu Chen¹, Wenjun Li³, Zhan Xu¹, Zan Wang², Duan Liu², B. Douglas Ward¹, Jennifer Jones⁴, Malgorzata Franczak⁴, Joseph Goveas³, Piero Antuono⁴, Zhijun Zhang², Shi-Jiang Li¹ ¹Biophysics, Medical College of Wisconsin, milwaukee, WI, United States; ²Neurology, Affiliated ZhongDa Hospital of Southeast University, China; ³Psychiatry, Medical College of Wisconsin, milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States;

Computer 52 4308. Structural and Functional Connectivity in Dementia with Lewy Bodies Compared to Alzheimer Disease Vanda Viola¹, Laura Serra¹, Elisa Tuzzi¹, Chiara Mastropasqua¹, Barbara Spanò¹, Barbara Basile¹, Mario Torso¹, Giovanni Giulietti¹, Elena Makovac¹, Camillo Marra², Mara Cercignani³, Carlo Caltagirone⁴, ⁵, Marco Bozzali¹ ¹Neuroimaging Laboratory, Santa Lucia Foundation IRCCS, Roma, RM, Italy; ²Institute of Neurology, Università Cattolica, Rome, Italy; ³Clinical Imaging Science Centre, Brighton and Sussex Medical School, Brighton, United Kingdom; ⁴Departmente of Clinical and Behavioral Neurology, Santa Lucia Foundation IRCCS, Rome, Italy; ⁵Department of Neuroscience, Università "Tor Vergata", Rome, Italy

Computer 53 4309. White Matter Abnormalities in Type-2 Diabetes Patients with Mild Cognitive Impairment: A Diffusion Tensor Imaging Study

Ying Xiong^{1, 2}, Yi Sui², Zhipeng Xu³, Shiqi Yang¹, Kejia Cai², ⁴, Wenzhen Zhu¹, Xiaohong Joe Zhou², ⁴ ¹Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; ²Center for MR Research, University of Illinois at Chicago, Chicago, IL, United States; ³Pathophysiology Department, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; ⁴Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States

Computer 54 4310. Differences in DMN Functional Connectivity Before and After Clinical Diagnosis of Amnestic MCI

Eva Manzanedo Sáenz¹, Alexandra Cristobal Huerta¹, Elena Molina Molina¹, Ana Beatriz Solana², Virginia Mato¹, Daniel García Frank¹, Eva Alfayate³, Juan Álvarez-Linera⁴, Juan Antonio Hernández-Tamames¹ ¹Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; ²General Electric, Munich, Germany; ³Fundación Reina Sofía - Fundación CIEN, Madrid, Spain; ⁴Hospital Rúber Internacional, Madrid, Spain

Computer 55 4311. Investigating the Role of Brain Stem in Alzheimer's Disease Using Directional Brain Networks Derived from Resting State fMRI

Sinan Zhao¹, Archana Venkataraman², Peipeng Liang³, ⁴, Gopikrishna Deshpande¹, ⁵ ¹AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn university, Auburn, AL, United States; ²Department of Diagnostic Radiology, School of Medicine, Yale University, New Haven, CT, United States; ³Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China; ⁴Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, China; ⁵Department of Psychology, Auburn University, Auburn, AL, United States

Computer 56 4312. 4D Flow MRI for Intracranial Hemodynamic Assessment in Alzheimer's Disease

Leonardo A. Rivera-Rivera¹, Patrick Turski², Eric M. Schrauben¹, Phillip Kilgas¹, Carson Hoffman¹, Kevin M. Johnson¹, Michael Loecher¹, Chuck Illingworth², Sterling C. Johnson², Oliver Wieben¹, ³ ¹Medical Physics, University of Wisconsin-Madison, Madison, WI, United States; ²Medicine, University of Wisconsin-Madison, WI, United States; ³Radiology, University of Wisconsin-Madison, WI, United States

Computer 57 4313. Mean Diffusivity as a Non-Invasive Biomarker of the Amount of Amyloid Plaques in Alzheimer's Disease: A Preliminary Evaluation in a Mouse Model. Matteo Figini¹, Alessandro Scotti¹, Ileana Zucca¹, Emanuela Maderna², Margherita Ruggerone², Marcella Catania², Giuseppe Di Fede², Fabio Moda², Fabrizio Tagliavini², Maria Grazia Bruzzone³ ¹Scientific Direction, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; ²Neuropathology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy; ³Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta", Milan, Italy

Computer 58 4314. Brain Iron Levels as Measured by Quantitative Susceptibility Mapping (QSM) Are Not Significantly Different Between Subjects with Mild Cognitive Impairment (MCI) and Controls Jiri M.G. van Bergen¹, Xu Li², Michael Wyss³, Simon J. Schreiner¹, Stefanie C. Steininger¹, Jun Hua², Roger Nitsch¹,

Jiri M.G. van Bergen', Xu Li', Michael Wyss', Simon J. Schreiner', Stefanie C. Steininger', Jun Hua', Roger Nitsch', Klaas P. Pruessmann³, Peter C.M. van Zijl², Marilyn S. Albert⁴, Christoph Hock¹, Paul G. Unschuld¹ ¹Division of Psychiatry Research and Psychogeriatric Medicine, University of Zurich, Zurich, Switzerland; ²F.M. Kirby center for Functional Brain Imaging, Kennedy Krieger Institute and Johns Hopkins School of Medicine, Baltimore, MD, United States; ³Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; ⁴Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States

Computer 59 4315. Longitudinal GluCEST Imaging in a Mouse Model of Tauopathy

Rachelle Crescenzi¹,², Catherine DeBrosse³,⁴, Ravi Prakash Reddy Nanga⁴, Kevin D'Aquilla, Guruprasad Krishnamoorthy⁴, Leonard Nettey⁴, Hari Nath⁴, Hari Hariharan⁴, John A. Detre⁵, Virginia M.-Y. Lee⁶, Ravinder Reddy⁴

¹Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, United States; ²Radiology, University of Pennsylvania, Philadelphia, PA, United States; ³Biochemistry and Molecular Biophysics, University of Pennsylvania, PA, United States; ⁴Radiology, University of Pennsylvania, PA, United States; ⁵Neurology, University of Pennsylvania, PA, United States; ⁶Pathology and Laboratory Medicine, University of Pennsylvania, PA, United States

Computer 60 4316. Deterioration from Healthy to Mild Cognitive Impairment and Alzheimer's Disease Mirrored in Corresponding Loss of Centrality in Directed Brain Networks

Sinan Zhao¹, CK Dharmendra Kumar², D Narayana Dutt², Peipeng Liang³, ⁴, Gopikrishna Deshpande¹, ⁵ ¹AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ²Department of Medical Electronics, Dayananda Sagar College of Engineering, Bangalore, India; ³Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China; ⁴Beijing Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Key Laboratory for Neurodegenerative Diseases, Ministry of Education, Beijing, China; ⁵Department of Psychology, Auburn University, Auburn, AL, United States

Computer 61 4317. Brain T1rho MR Imaging in Parkinson Disease: Female Vs Male

Santosh K. Yadav¹, Anup Singh², ³, Arshi Rizwan⁴, Christos Davatzikos⁵, Elias R. Melhem⁶, Deepak Kaura¹, Ena Wang¹, Francesco M. Marincola¹, Mohammad Haris¹, ⁷

¹Research Branch, Sidra Medical and Research Center, Doha, Qatar; ²Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ³Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, India; ⁴All India Institute of Medical sciences, New Delhi, India; ⁵Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, United States; ⁶Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center,, MD, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁷Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁸Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ⁸Radiology, Center for Magnetic Resonance Resonance Analysis, Center for Magnetic Resonance Resonan

Computer 62 4318. Apolipoprotein E £4 Genotype Is Associated with the Changes in Cortical Thickness and CSF Biomarkers in Mild Cognitive Impairment and Alzheimer's Disease

Santosh K. Yadav¹, Anup Singh², ³, Arshi Rizwan⁴, Christos Davatzikos⁵, Elias R. Melhem⁶, Deepak Kaura¹, Ena Wang¹, Francesco M. Marincola¹, Mohammad Haris¹, ²

¹Research Branch, Sidra Medical and Research Center, Doha, Qatar; ²Radiology, Center for Magnetic Resonance and Optical Imaging, University of Pennsylvania, Philadelphia, PA, United States; ³Center for Biomedical Engineering, Indian institute of Technology, New Delhi, India; ⁴All India Institute of Medical sciences, New Delhi, India; ⁵Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, United States; ⁶Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland Medical Center., MD, United States

Computer 63 4319. Differential MRI Relaxation in Alzheimer's Patients with Mutant HFE and Transferrin Genotypes

Mark David Meadowcroft¹, ², Douglas G. Peters¹, ³, Carson J. Purnell¹, Jian-Li Wang², Paul J. Eslinger⁴, Megha Vasavada², Qing X. Yang², James R. Connor¹

¹Neurosurgery, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ²Radiology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ³Neural and Behavioral Sciences, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, The Pennsylvania State University - College of Medicine, Hershey, PA, United States; ⁴Neurology, Hershey, PA, United States;

Computer 64 4320. Correlation Between Cerebral Glutathione, Dietary Intake and Cognitive Function in Aging and Alzheimer's Disease

In-Young Choi¹, ², *Jeffrey M. Burns*², *Debra K. Sullivan*³, *Hung-Wen Yeh*⁴, *William M. Brooks*¹, ², *Phil Lee*⁵, ⁶ ¹Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; ²Neurology, University of Kansas Medical Center, Kansas City, KS, United States; ³Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States; ⁴Biostatistics, University of Kansas Medical Center, Kansas City, KS, United States; ⁵Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University Of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physiology, University Of Kansas Medical Center, Kansas City, KS, United States; ⁶Molecular & Integrative Physi

- Computer 65 4321. Double Inversion Recovery Imaging Improves to Evaluate Brain Tissue Volume Loss in Patients with Alzheimer; s Disease Compared to That of 3D T1-Weighted Imaging Geon-Ho Jahng¹, Danbi Kim¹, Soonchan Park¹, Dong Kvun Lee², Jong-Min Lee², Hak Young Rhee³, Chang-Woo Rvu¹, Jang-Hoon Oh⁴, Hyug-Gi Kim⁴, Dal-Mo Yang¹ ¹Radiology, Kyung Hee University Hospital at Gangdong, Seoul, Korea; ²Biomedical Engineering, Hanyang University, Seoul, Korea; ³Neurology, Kyung Hee University Hospital at Gangdong, Seoul, Korea; ⁴Biomedical Engineering, Kyung Hee University, Suwon, Gyeonggi-do, Korea
- Computer 66 4322. Combination of Intravoxel Incoherent Motion (IVIM) and Pulsed Arterial Spin Labeling (PASL) MRI on Studying Characteristic Features of Early Stage Alzheimer's Disease Zhenhua Zhang¹, Zhongwei Chen¹, Haiwei Miu¹, Oiong Ye¹ ¹The department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Computer 67 4323. Diffusion Kurtosis Imaging Reveals Widespread White Matter Abnormalities in Alzheimer' S Disease Weiwei Wang¹, Rui Hu¹, Ziheng Zhang², Qingwei Song¹, Ailian Liu¹, Yanwei Miao¹ ¹Radiology Department, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; ²GE Healthcare China, Beijing, China
- Computer 68 4324. Comparisons of QSM Data Obtained from a Single Echo and Multiple Echoes in Patients with Cognitive Normal, Mild Cognitive Impairment, and Alzheimer's Disease

Hyug-Gi Kim¹, Dan-Bi Kim², Jang-Hoon Oh¹, Hak Young Rhee³, Chang-Woo Ryu², Soon Chan Park², Dal-Mo Yang², Yi Wang¹, ⁴, Tian Liu⁴, Geon-Ho Jahng² ¹Biomedical Engineering, Kyung Hee University, YoungIn, Gyeonggi-do, Korea; ²Radiology, Kyung Hee University Hospital-Gangdong, Seoul, Korea; ³Neurology, Kyung Hee University Hospital-Gangdong, Seoul, Korea; ⁴Biomedical Engineering and Radiology, Cornell University, New York, United States

Computer 69 4325. Changes of Indices in Diffusion Tensor Images of Patients with Depressive Symptoms in the Elderly with Dementia

Tsung-Yuan Li¹, Ni-Jung Chang¹, Wei-Che Wu², Jyh-Wen Chai¹, ³, Clayton Chi-Chang Chen¹, ⁴ ¹Department of Radiology, Taichung Veterans General Hospital, Taichung, Taiwan, Taiwan, ²Department of Psyciatry, Taichung Veterans General Hospital, Taichung, Taiwan, Taiwan; ³College of Medicine, China Medical University, Taichung, Taiwan, Taiwan; ⁴Department of Biomedical Engineering, Hung Kuang University, Taichung, Taiwan, Taiwan

Computer 70 4326. Searching for New Dementia-Related Features Within MRI: Keypoint Detection and Description Elisabeth Stühler¹

¹Department of Computer and Information Science, University of Konstanz, Konstanz, Baden-Württemberg, Germany

Computer 71 4327. Mitochondrial Catalase Overexpression Recovers Axonal Transport Deficits and Improves Hippocampal Long-Term Potentiation in APP/PS1 Mice

Tabassum Majid¹,², Caiwei Guo³, Tao Ma⁴, Erik Klann⁴, Robia Pautler¹,² ¹Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States; ²Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, United States; ³Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States; ⁴New York University, New York, United States

```
Computer 72 4328. Investigating Haemodynamic Changes in the Default Mode Network in Alzheimer's Disease
                       Richard J. Dury<sup>1</sup>, Latha Velayudhan<sup>2</sup>, Penny A. Gowland<sup>1</sup>, Susan T. Francis<sup>1</sup>
                       <sup>1</sup>Sir Peter Mansfield Imaging Centre, The University of Nottingham, Nottingham, United Kingdom; <sup>2</sup>Department of Health Sciences,
                       Leicester General Hospital, Leicester, United Kingdom
```

Electronic Poster	
Exhibition Hall Computer 73 4329.	Wednesday 16:00-17:00 Imaging Biomarker and Pathophysiology of Early Memory Impairment in Multiple Sclerosis: A Pre-Clinical Study with Diffusion-Tensor Imaging of Hippocampal Layers. Thomas Tourdias ¹ , ² , Vincent Planche ¹ , Bassem Hiba ³ , Aline Desmedt ¹ , Gerard Raffard ³ , Aude Panatier ¹ , Stéphane Oliet ¹ , Vincent Dousset ¹ , ² ¹ INSERM U862 Neurocentre Magendie, University of Bordeaux, Bordeaux, France; ² Department of Neuroradiology, Bordeaux University hospital, Bordeaux, France; ³ UMR CNRS 5536, University of Bordeaux, Bordeaux, France
Computer 74 4330.	SWI Lesion Load and Tissue Hypoxia in Multiple Sclerosis: A Study Using the Experimental Autoimmune Encephalomyelitis Animal Model at 9.4T <i>Raveena Dhaliwal¹, Nabeela Nathoo¹, Ying Wu¹, James A. Rogers², V. Wee Yong², Jeff F. Dunn¹</i> ¹ Radiology, University of Calgary, Calgary, Alberta, Canada; ² Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
Computer 75 4331.	Vascular Expansion and Blood-Brain-Barrier Permeability: A Comparative Volumetric Study in Acute Japanese Macaque Encephalomyelitis Ian Tagge ¹ , ² , Steven Kohama ³ , Jim Pollaro ¹ , Lawrence Sherman ³ , Dennis Bourdette ⁴ , Randy Woltjer ⁴ , Scott Wong ³ , William Rooney ¹ , ² ¹ Advanced Imaging Research Center, Oregon Health & Science University, Portland, OR, United States; ² Biomedical Engineering, Oregon Health & Science University, Portland, OR, United States; ³ Oregon National Primate Research Center, Oregon Health & Science University, OR, United States; ⁴ Neurology, Oregon Health & Science University, Portland, OR, United States
Computer 76 4332 .	Diffusion Kurtosis Imaging Probes Cortical Alterations and White Matter Pathology Following Cuprizone- Induced Demyelination and Spontaneous Remyelination <i>Caroline Guglielmetti¹, Jelle Veraart², Ella Roelant³, Zhenhua Mai⁴, Jasmijn Daans⁵, Johan Van Audekerke⁴, Jelle</i> <i>Praet⁴, Peter Ponsaerts, jan Sijbers², Annemie Van der Linden⁴, Marleen Verhoye⁴</i> ¹ Bio Imaging Lab, University of Antwerp, WILRIJK, ANTWERPEN, Belgium; ² IBBT Vision LaboratoryDepartment of Physics, University of Antwerp, ANTWERPEN, Belgium; ³ StatUa Center for Statistics, University of Antwerp, ANTWERPEN, Belgium; ⁴ Bio Imaging Lab, University of Antwerp, ANTWERPEN, Belgium; ⁵ Experimental Cell Transplantation Group, Laboratory of Experimental Hematology, Vaccine and Infect, ANTWERPEN, Belgium
Computer 77 4333.	Cerebral Blood Flow Modulation Insufficiency in Default Mode Network in Multiple Sclerosis: A Hypercapnia MRI Study Olga Marshall ¹ , Sanjeev Chawla ¹ , Hanzhang Lu ² , Ilya Kister ³ , Jacqueline Smith ¹ , Yulin Ge ¹ ¹ Radiology/Center for Biomedical Imaging, New York University School of Medicine, New York, NY, United States; ² Advanced Imaging Research Center, University of Texas Southwestern Medical Center, TX, United States; ³ Neurology, New York University School of Medicine, New York, NY, United States
Computer 78 4334.	Describing the Distribution of Myelin Water Fraction Change Among Early Stage MS Lesions <i>Elizabeth Monohan¹, Wendy Vargas¹, Sneha Pandya², Michael Dayan², Thanh Nguyen², Ashish Raj², Sandra Hurtado³,</i> <i>Susan Gauthier¹</i> ¹ Neurology and Neuroscience, Weill Cornell Medical College, New York, NY, United States; ² Radiology, Weill Cornell Medical College, New York, NY, United States; ³ Public Health, Weill Cornell Medical College, New York, United States
Computer 79 4335.	Dynamic Changes in Venous Susceptibility in the Spinal Cord of an Animal Model of MS Are Detected with Susceptibility-Weighted Imaging <i>Nabeela Nathoo¹, ², Ying Wu¹, James A. Rogers², ³, V. Wee Yong², ³, Jeff F. Dunn¹, ⁴</i> ¹ Radiology, University of Calgary, Calgary, Alberta, Canada; ² Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; ³ Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada; ⁴ Experimental Imaging Centre, University of Calgary, Calgary, Alberta, Canada
Computer 80 4336.	Advanced Imaging in Lesion and Normal-Appearing White Matter Over 2 Years in MS Patients Treated with Alemtuzumab Irene Vavasour ¹ , Alex MacKay ¹ , ² , David Li ¹ , Cornelia Laule ¹ , ³ , Anthony Traboulsee

¹Radiology, University of British Columbia, Vancouver, British Columbia, Canada; ²Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; ³Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Computer 81 4337. Longitudinal MR Frequency Shift Imaging in Patients with Clinically Isolated Syndrome Vanessa Wiggermann¹, ², Inga Ibs, ²³, Stephanie M. Schoerner, ²⁴, Enedino Hernández Torres², ⁵, Luanne Metz⁶, David K.B. Li², ⁷, Anthony Traboulsee, ⁵⁷, Alexander Rauscher², ⁵ ¹Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; ²Radiology, University of British Columbia, Vancouver, BC, Canada; ³University of Osnabrueck, Germany; ⁴Technical University of Dortmund, Germany; ⁵UBC MRI Research Centre, Vancouver, BC, Canada; ⁶Clinical Neurosciences, University of Calgary, Calgary, AB, Canada; ⁷Medicine (Neurology), University of British Columbia, Vancouver, BC, Canada

Computer 82 4338. In-Vivo Measurement of Cerebral Metabolic Rate of Oxygen Consumption in an Animal Model of Multiple Sclerosis Using Combined MRI and Near-Infrared Spectroscopy *Thomas W. Johnson¹*, ², *Linhui Yu³*, *Kartikeya Murari³*, *Jeff F. Dunn¹*, ² ¹Radiology, University of Calgary, Calgary, Alberta, Canada; ²Hotchkiss Brain Institute, Calgary, Alberta, Canada; ³Electrical Engineering, University of Calgary, Calgary, Alberta, Canada

Computer 83 4339. Differences in Visual fMRI Activation and OCT Metrics Between Affected and Unaffected Eyes After Recovery from Optic Neuritis

Blessy Mathew¹, Mark J. Lowe¹, Pallab Bhattacharyya¹, Rob Bermel¹ ¹Cleveland Clinic, Cleveland, OH, United States

Computer 84 4340. Local Tissue Volume Changes in Early MS Are Most Strongly Reflected in Non-Peripheral Grey Matter

Courtney A. Bishop¹,², Jean SZ Lee³, Charlotte L. Thomas⁴, Rebecca Quest⁵, Lesley Honeyfield⁵, Paolo A. Muraro²,⁶, Adam D. Waldman²,⁵, Rexford D. Newbould¹,⁷

¹Image Analysis Department, Imanova Centre for Imaging Sciences, London, United Kingdom; ²Division of Brain Sciences, Imperial College London, London, United Kingdom; ³Radiology Department, Oxford University Hospitals NHS Trust, Oxford, United Kingdom; ⁴Department of Medicine, St George's Hospital, London, United Kingdom; ⁵Department of Imaging, Imperial College Healthcare NHS Trust, London, United Kingdom; Department of Clinical Neurosciences, Imperial College Healthcare NHS Trust, London, United Kingdom; ⁷Division of Experimental Medicine, Imperial College London, London, United Kingdom

Computer 85 4341. Phase Contrast MRI Differentiates Between Brain Lesions in Neuromyelitis Optica and Multiple Sclerosis -Preliminary Data from a 7T MRI Study

Tim Sinnecker¹, Sophie Hahndorf⁴, Katharina Mueller¹, Petr Dusek², ³, Lutz Harms⁴, ⁵, Sanjeev Chawla⁶, Thoralf Niendorf⁷, ⁸, Ilya Kister⁹, Friedemann Paul¹, ⁴, Yulin Ge⁶, Jens Wuerfel¹,

¹NeuroCure Clinical Research Center, Charité- Universitaetsmedizin, Berlin, Germany; ²Institute of Neuroradiology, Universitaetsmedizin Goettingen, Niedersachsen, Germany; ³1st Faculty of Medicine and General University Hospital in Prague, Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, Praha, Czech Republic; ⁴Experimental and Clinical Multiple Sclerosis Research Center, Charité Universitaetsmedizin Berlin, Berlin, Germany; ⁵Department of Neurology, Charité - Universitaetsmedizin Berlin, Berlin, Germany; ⁶Department of Radiology, NYU School of Medicine, New York, NY, United States; 7Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Berlin, Germany; 8 Max Delbrueck Center for Molecular Medicine, Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin, Berlin, Germany; ⁹Multiple Sclerosis Care Center, Department of Neurology, NYU School of Medicine, New York, NY, United States

Computer 86 4342. High Percentage of MS Lesions Found to Have a Central Vein Using Single Slice SWI at 7 Tesla

Jacob Alois Matusinec¹, Zahra Hosseini², Junmin Liu³, David A. Rudko⁴, Matthew P. Quinn³, Marcelo kremenchutzky⁵, Ravi Menon³, ⁶, Maria Drangova³, ⁷

¹Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; ²Biomedical Engineering Graduate Program, Western University, Ontario, Canada; ³Imaging Research Laboratories, Robarts Research Institute, Western University, London, Ontario, Canada; ⁴Brain Imaging Centre Montreal Neurological Hospital and Institute, McGill University, Quebec, Canada; ⁵Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; 6 Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada; ⁷Department of Medical Biophysics Schulich School of Medicine & Dentistry, Western University, Ontario, Canada

Computer 87 4343. Diagnose Acute Gadolinium Enhancing Multiple Sclerosis Lesions Using Gradient Echo MRI (R2* and QSM) Without Gadolinium Injection

Lijie Tu¹,², Yan Zhang¹,³, Ajay Gupta¹, Joseph Comunale¹, Thanh Nguyen¹, Susan Gauthier⁴, Yi Wang¹,⁵

¹Radiology, Weill Cornell Medical College, New York, NY, United States; ²Applied & Engineering Physics, Cornell University, Ithaca, NY, United States; ³Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technoology, Wuhan, Hubei, China; ⁴Neurology, Weill Cornell Medical College, New York, NY, United States; ⁵Biomedical Engineering, Cornell University, Ithaca, NY, United States

Computer 88 4344. Characterization of DTI Brain Connectivity in Different Clinical Forms of Multiple Sclerosis Patients Based on Graph Theory

Gabriel KOCĚVAR¹, Claudio STAMILE¹, Salem HANNOUN¹, Francois COTTON, ¹², Françoise DURAND-DUBIEF, ¹³, Dominique SAPPEY-MARINIER¹, ⁴

¹CREATIS (CNRS UMR5220 & INSERM U1044), Université Lyon 1, INSA-Lyon, Villeurbanne, France; ²Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Benite, France; ³Service de Neurologie A, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France; ⁴CERMEP - Imagerie du Vivant, Université de Lyon, Bron, France

Computer 89 4345. Comparison of QSM, T2-Relaxometry and T2-Weighted Imaging at 7T for Assessment of Basal Ganglia Iron in MS Patients

Petra Schmalbrock¹, Mary Russell¹, Grant K. Yang¹, Jacqueline A. Nicholas², Michael V. Knopp¹, David Pitt³ ¹Radiology, The Ohio State University, Columbus, OH, United States; ²Neurology, The Ohio State University, Columbus, OH, United States; ³Neurology, Yale School of Medicine, New Haven, CT, United States

Computer 90 4346. Magnetization Transfer from Inhomogeneously Broadened Lines (IhMT): Application on Multiple Sclerosis (MS)

Guillaume Duhamel¹, Arnaud le Troter¹, Valentin Prevost¹, Gopal Varma², Maxime Guye¹, Jean-Philippe Ranjeva¹, Jean Pelletier³, David C. Alsop², Olivier M. Girard¹

¹Aix Marseille University, CRMBM / CNRS UMR 7339, Marseille, France; ²Department of Radiology, BIDMC, Harvard Medical School, Boston, MA, United States; ³Pôle de Neurosciences Cliniques, Service de Neurologie, APHM, Hôpital La Timone, Marseille, France

Computer 91 4347. Deep Grey Matter Iron Deposition and Brain Atrophy in Early Multiple Sclerosis: A Longitudinal Study

Mathew P. Quinn¹, ², Joseph S. Gati¹, L Martyn Klassen¹, Marcelo Kremenchutzky³, Ravi S. Menon¹, ² ¹Centre for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada; ²Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada; ³Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada;

Computer 92 4348. DTI and Visually Evoked Potential Changes in Mice with Optic Neuritis

Christopher Nishioka¹, Jennifer Mei², Hsiao-Fang Liang³, Wei-Xing Shi⁴, Shu-Wei Sun⁵, ⁶ ¹Neuroscience, UC Riverside, Riverside, CA, United States; ²Basic Science, Loma Linda University, Loma Linda, United States; ³Basic Science, Loma Linda University, Loma Linda, CA, United States; ⁴Pharmaceutical Science, Loma Linda University, CA, United States; ⁵Basic Science and Radiation Medicine, Loma Linda University, CA, United States; ⁶Neuroscience and Bioengineering, UC Riverside, CA, United States

Computer 93 4349. Exploration of Advanced MR Imaging Contrasts for Automated Detection of White Matter and Cortical Lesions in Early-Stages of Multiple Sclerosis

Mário João Fartaria de Oliveira¹,², Guillaume Bonnier³,⁴, Alexis Roche³,⁴, Tobias Kober³,⁴, Reto Meuli, David Rotzinger, Myriam Schluep², Renaud Du Pasquier², Jean-Philippe Thiran⁴, Gunnar Krueger³,⁴, Cristina Granziera,²³, Meritxell Bach Cuadra⁵

¹Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI & Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV), Lausanne, Switzerland; ²Neuro-immunology Unit and Laboratoire de Recherché en Neuroimagérie (LREN), Neurology Division, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV), Lausanne, Switzerland; ³Advanced Clinical Imaging Technology, Siemens Healthcare IM BM PI & Department of Radiology, Centre Hospitalier Universitaire Vaudois and University of Lausanne (CHUV), Lausanne, Switzerland; ⁴Signal Processing Laboratory, LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ⁵Signal Processing Core, Centre d'Imagerie BioMédicale (CIBM), Lausanne, Switzerland

Computer 94 4350. Whole Brain Multi-Metabolite Statistical Mapping Analyses to Characterize Metabolic Disorders in Multiple Sclerosis Using Combination of Two Tilted 3D-EPSI Acquisitions.

Maxime Donadieu¹,², Yann Le Fur¹,², Andrew A. Maudsley³, Angèle Lecocq¹,², Wafaa Zaaraoui¹,², Elisabeth Soulier¹, ², Marie-Liesse Lesage¹,², Sulaiman Sheriff³, Mohammad Sabati³, Sylviane Confort-Gouny¹,², Maxime Guye¹,², Jean Pelletier¹,⁴, Bertrand Audoin¹,⁴, Jean-Philippe Ranjeva¹,²</sup>
¹CRMBM UMR CNRS 7339, Aix Marseille Université, Marseille, France, Metropolitan; ²CEMEREM, Pole d'imagerie médicale, Hopital la Timone, AP-HM, Marseille, France, Metropolitan; ³Department of Radiology, Miller School of Medicine University of Miami, Miami, FL, United States; ⁴Department of Neurology, Timone University Hospital, Marseille, France, Metropolitan

Electror MS 2	nic Po	ster
Exhibition	Hall	Wednesday 17:00-18:00
Computer 1	4351.	Multi-Contrast MRI of Myelination After Transplantation of Human Glial-Restricted Progenitor Cells in a Dysmyelinated Mouse Model Antje Arnold ¹ , ² , Jiangyang Zhang ¹ , ² , Guanshu Liu ¹ , ³ , Agatha Lyczek ¹ , ² , Miroslaw Janowski ¹ , ⁴ , Jeff W.M. Bulte ¹ , ² , Piotr Walczak ¹ , ² ¹ Dept. of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; ² Cellular Imaging Section, Institute for Cell Engineering, Baltimore, MD, United States; ³ F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ⁴ NeuroRepair Department, Polish Academy of Sciences, Warsaw, Poland
Computer 2	4352.	Normal-Appearing White Matter and Venous Flow Multiparameter Comparison Between Multiple Sclerosis and Healthy Control Subjects Eric Mathew Schrauben ¹ , Kevin M. Johnson ¹ , Oliver Wieben ¹ , ² , Aaron Field ³ ¹ Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ² Radiology, University of Wisconsin - Madison, WI, United States; ³ Radiology, University of Wisconsin - Madison, Madison, WI, United States
Computer 3	4353.	Using Diffusion and Structural MRI for the Automated Segmentation of Multiple Sclerosis Lesions <i>Pedro A. Gómez¹, ², Tim Sprenger¹, ², Ana A. López¹, Jonathan I. Sperl², Brice Fernandez³, Miguel Molina-Romero¹, ², Xin Liu¹, ², Vladimir Golkov¹, ², Michael Czisch⁴, Philipp Saemann⁴, Marion I. Menzel², Bjoern H. Menze¹ ¹Technical University Munich, Munich, Germany; ²GE Global Research, Munich, Germany; ³GE Healthcare, Munich, Germany; ⁴Max Plank Institute of Psychiatry, Munich, Germany</i>
Computer 4	4354.	Fully Automated Segmentation of the Cervical Cord Using PropSeg: Application to Multiple Sclerosis <i>Marios C. Yiannakas¹, Ahmed Mustafa¹, Benjamin De Leener², Hugh Kearney¹, David H. Miller¹, Julien Cohen-Adad², Claudia A. M. Wheeler-Kingshott¹</i> ¹ NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, WC1N3BG, United Kingdom; ² Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
Computer 5	4355.	Comparison of 3T Arterial Spin Labelling and Dynamic Contrast Enhanced MRI in Multiple Sclerosis <i>Afaf S. Elsarraj¹, Paul S. Morgan², Cris S. Constantinescu³, Dorothee P. Auer¹, Robert A. Dineen¹</i> ¹ Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, United Kingdom; ² Medical Physics, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; ³ Clinical Neurology Group, Division of Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom
Computer 6	4356.	Quantitative Spin Echo R₂ and Brain Atrophy Measurements for Subcortical Grey Matter in Patients with Multiple Sclerosis: A 2-Year Longitudinal Study <i>Md Nasir Uddin¹, R Marc Lebel¹, Peter Seres¹, Gregg Blevins², Alan H. Wilman¹</i> ¹ Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; ² Division of Neurology, University of Alberta, Edmonton, Alberta, Canada
Computer 7	4357.	Effect of Rhythmic Auditory Stimulation on Cortical Activation During the Mental Imagery of Walking in Patients with Multiple Sclerosis Katherine A. Koenig ¹ , Mark J. Lowe ¹ , Darlene K. Stough ² , Lisa Gallagher ² , Dwyer Conklyn ³ , Francois Bethoux ² ¹ The Cleveland Clinic, Cleveland, OH, United States; ² Neurological Institute, The Cleveland Clinic, Cleveland, OH, United States; ³ DBC3 Music Therapy, Independence, OH, United States
Computer 8	4358.	Mapping of the Optic Nerve in Multiple Sclerosis Patients with and Without Optic Neuritis Robert L. Harrigan ¹ , Katrina M. Nelson ¹ , Lindsey M. Dethrage ² , Robert L. Galloway ³ , Bennett A. Landman ¹ , ² , Louise A. Mawn ⁴ , Seth A. Smith ² , ⁵

¹Electrical Engineering, Vanderbilt University, Nashville, TN, United States; ²Institute for Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ⁴Ophthalmology and Neurological Surgery, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁵Radiology and Radiological Sciences; ⁵Radiology and Radiology and Radio

Computer 9 4359. Cortical Abnormalities in Multiple Sclerosis by 7T MRI: Novel Imaging Insights and Update

Yulin Ge¹, Ilya Kister², Sanjeev Chawla¹, Tim Sinnecker³, Jean-Christophe Brisset¹, Joseph Herbert², Friedemann Paul³, Jens Wuerfel³

¹Radiology, NYU Langone Medical Center, New York City, NY, United States; ²Neurology, NYU Langone Medical Center, NY, United States; ³Universitätsmedizin Göttingen, Berlin, Germany

Computer 10 4360. Computerised Cognitive Rehabilitation in Multiple Sclerosis May Result in Improved Working Memory Jamie Campbell¹, Dawn Langdon², Waqar Rashid³, Mara Cercignani¹ ¹Clinical Imaging Sciences Centre, Brighton & Sussex Medical School, University of Sussex, Brighton, East Sussex, United Kingdom; ²Neuropsychology, University of London, London, United Kingdom; ³Neurology, Brighton & Sussex University Hospitals NHS Trust, Brighton, East Sussex, United Kingdom

Computer 11 4361. A Comparison of FLAIR* and T2*-Weighted Imaging in Detecting White Matter Lesions and Central Veins in Patients with MS and Ischaemic Lesions at 3T.

Amal Samaraweera¹, Margareta Clarke², Olivier Mougin³, Rob Dineen⁴, Ian Driver³, Paul S. Morgan, Nikos Evangelou¹

¹Division of Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom; ²Clinical Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom; ³Sir Peter Mansfield MR Centre, University of Nottingham, Nottingham, United Kingdom; ⁴Department of Neuroradiology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom

Computer 12 4362. Age Related Metabolic Consequences of Reduced Myelin Basic Protein – MRS and MRI of Heterozygous Shiverer Mice

Juergen Baudewig¹, Giulia Poggi², Hannelore Ehrenreich², Susann Boretius¹ ¹Section Biomedical Imaging, Dept. of Radiology and Neuroradiology, Christian-Albrechts-University Kiel, Kiel, Germany; ²Max Planck Institute of Experimental Medicine, Goettingen, Germany

Computer 13 4363. High-Field Characterization of Spinal Cord Damage in Multiple Sclerosis

Bailey Lyttle¹, Adrienne Dula², ³, Benjamin Conrad², Richard Dortch², ³, Megan Barry⁴, Subramaniam Sriram⁴, Shilpa Reddy⁴, Seth Smith², ³, Siddharama Pawate⁴ ¹Neuroscience, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Neurology, Vanderbilt University, Nashville, TN, United States

Computer 14 4364. Identification of Quantitative Differences in Normal-Appearing White Matter of Multiple Sclerotic Patients Vs. Healthy Controls Using a Novel Bloch-Simulation-Based T₂ Mapping Technique

Noam Ben-Eliezer¹,², Veronica Cosi¹, Akio Yoshimoto¹, Daniel K. Sodickson¹,², Mary Bruno¹, Kai Tobias Block¹,², Timothy M. Shepherd¹,²

¹Center for Biomedical Imaging, Department of Radiology, New York University Medical Center, New York, NY, United States; ²Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States

Computer 15 4365. Magnetization Transfer from Inhomogeneously Broadened Lines (IhMT): Application on a Mouse Model of Experimental Autoimmune Encephalomyelitis (EAE) Valentin H. Prevost¹, Angele Viola¹, Olivier M. Girard¹, Adriana T. Perles-Barbacaru¹, Jennifer Tracz¹, Gopal Varma², David C. Alsop², Guillaume Duhamel¹ ¹CRMBM CNRS UMR 7339, Aix-Marseille University, Marseille, France; ²Departement of radiology, BIDMC, Harvard Medical School, Boston, MA, United States

Computer 16 4366. Quantify White Matter Damage with Confounding Fiber Crossing and CSF Contamination

Yong Wang¹,², Peng Sun¹, Qing Wang¹, Kathryn Trinkaus³, Robert T. Naismith⁴, Robert E. Schmidt⁴, Anne H. Cross, ²⁴, Sheng-Kwei Song¹,²

¹Radiology, Washington University in St. Louis, Saint Louis, MO, United States; ²Hope Center for neurological Disorders, Washington University in St. Louis, Saint Louis, MO, United States; ³Biostatistics, Washington University in St. Louis, Saint Louis, MO, United States; ⁴Neurology, Washington University in St. Louis, Saint Louis, MO, United States

Computer 17 4367. Multi-Modal Analysis of Cortico-Cortical Connectivity Based on GM and WM Anatomical Properties: Application to Secondary Progressive Multiple Sclerosis

Émma Biondetti¹, Jonathan D. Clayden², Matteo Pardini³, ⁴, Alessandra Bertoldo⁵, Declan T. Chard⁴, Claudia A. M. Wheeler-Kingshott⁴

¹UCL Department of Medical Physics and Biomedical Engineering, University College London, London, England, United Kingdom; ²Developmental Imaging and Biophysics Section, UCL Institute of Child Health, University College London, London, England, United Kingdom; ³Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy; ⁴NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ⁵University of Padova, Padova, Italy

Computer 18 4368. Quantification of Normal-Appearing White Matter in Multiple Sclerosis (MS) by Quantitative Susceptibility Mapping (QSM)

Weiwei Chen¹, Yan Zhang¹, Wenzhen Zhu¹, Ketao Mu¹, Chu Pan¹, Susan A. Gauthier², Yi Wang³ ¹Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science& Technology, Wuhan, Hubei, China; ²Neurology, Weill Cornell Medical College, NY, United States; ³Radiology, Weill Cornell Medical College, NY, United States

Computer 19 4369. Application of 3D Double Inversion Recovery Sequence in the Demyelinating Disease of Cervical and Thoracic Cord

Yelong Shen¹, Tianyi Qian², Yanbing Wang³, Guangbin Wang¹, Bin Zhao¹ ¹Shandong Medical Imaging Research Institute, School of Medicine, Shandong University, Jinan, Shandong, China; ²MR Collaborations NE Asia, Siemens Healthcare, Beijing, China; ³Rizhao People's Hospital of Shandong, Shandong, China

Computer 20 4370. Relationship of Sodium Concentration and T2 Relaxation in Multiple Sclerosis

Patricia Alves Da Mota¹, Marios C. Yiannakas², Ferran Prados², ³, Manuel Jorge Cardoso², David Paling⁴, Frank Riemer², Daniel Tozer⁵, Sébastien Ourselin², David H. Miller¹, Xavier Golay⁶, Claudia AM Wheeler-Kingshott¹, Bhavana S. Solanky¹

¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ²NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ³Department of Medical Physics and Bioengineering Wolfson House, Translational Imaging Group CMIC, London, England, United Kingdom; ⁴Department of Clinical Neurosciences, University of Sheffield, Sheffield, England, United Kingdom; ⁵Department of Clinical Neurosciences, University of Cambridge, England, United Kingdom; ⁶NMR Research Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, England, United Kingdom

Computer 21 4371. Improve Myelin Imaging Biomarkers Specificity by Modeling Extra-Cellular Tissue Water

Yong Wang¹,², Peng Sun⁷, Qing Wang¹, Kathryn Trinkaus³, Robert T. Naismith⁴, Robert E. Schmidt⁴, Anne H. Cross, ²⁴, Sheng-Kwei Song¹,³

¹Radiology, Washington University in St. Louis, Saint Louis, MO, United States; ²Hope Center for neurological Disorders, Washington University in St. Louis, Saint Louis, MO, United States; ³Biostatistics, Washington University in St. Louis, Saint Louis, MO, United States; ⁴Neurology, Washington University in St. Louis, Saint Louis, MO, United States; ⁵Hope Center for neurological Disorders, Washington University in St. Louis, Saint Louis, m, United States

Computer 22 4372. Tracking the Individual Lesion Myelination Status in Multiple Sclerosis

Hagen H. Kitzler¹, Caroline Koehler¹, Hannes Wahl¹, Tjalf Ziemssen², Sean C. Deoni³ ¹Neuroradiology, Technische Universitaet Dresden, Dresden, SN, Germany; ²Neurology, Technische Universitaet Dresden, Dresden, SN, Germany; ³Engineering, Brown University, Providence, RI, United States

Computer 23 4373. Venous Oxygenation Mapping in Multiple Sclerosis: A Longitudinal Study

Sanjeev Chawla¹, Olga Marshall¹, Jean Christophe Brisset¹, Hanzhang Lu², Ilya Kister³, Yulin Ge¹ ¹Radiology, New York University Langone Medical Center, New York, NY, United States; ²Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States; ³Neurology, New York University Langone Medical Center, New York, NY, United States Computer 24 4374. Evaluation of Demyelination in a New Myelin Basic Protein Mutant Mouse Using In Vivo MRI

*Tom Dresselaers*¹, *Kristof Govaerts*¹, *James Dooley*², ³, *Uwe Himmelreich*¹, *Adrian Liston*², ³, *Kim A. Staats*², ³ ¹Dept of Imaging and Pathology, KU Leuven, Leuven, Belgium; ²Autoimmune Genetics Laboratory, VIB, Leuven, Belgium; ³Dept. of Microbiology and Immunology, KU Leuven, Leuven, Belgium

Electronic Poster

Brain Tumour Advanced Metho

Exhibition Hall Wednesday 17:00-18:00

Computer 25 4375. MR Perfusion of Human Brain Tumors Demonstrates Increased Blood Volume in Active Tumor Before Static Contrast Enhancement or Permeability. *Ajay Nemani¹, Mirko Vukelich¹, Kristina Wakeman², Tibor Valyi-Nagy², Keith Thulborn¹* ¹Center for MR Research, University of Illinois at Chicago, Chicago, IL, United States; ²Pathology, University of Illinois at Chicago, Chicago, IL, United States

Computer 26 4376. Survival Prediction of Patients with Glioblastoma Based on Combination Analysis of Mammalian Target of Rapamycin (MTOR) - Epidermal Growth Factor Receptor (EGFR) Pathway and Dynamic Susceptibility Contrast (DSC)-MR Perfusion Imaging Xiang Liu¹, Wei Tian², Rajiv Mangla², Mahlon Johnson², Sven Ekholm²

¹Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States; ²University of Rochester Medical Center, NY, United States

Computer 27 4377. Weighted-Average Model Curve Preprocessing Strategy for Quantification of DSC Perfusion Imaging Metrics from Image-Guided Tissue Samples in Patients with Brain Tumors Janine M. Lupo¹, Qiuting Wen¹, Joanna J. Phillips², ³, Susan M. Chang², Sarah J. Nelson¹ ¹Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States; ²Neurological Surgery, University of California, San Francisco, CA, United States; ³Pathology, University of California, San Francisco, CA, United States

Computer 28 4378. Tumour Response Assessment Using Volumetric DCE-CT and DCE-MRI in Metastatic Brain Cancer Patients *Catherine Coolens¹*, ², *Brandon Driscoll*³, *Warren Foltz, Caroline Chung*, ⁴ ¹Radiation Medicine Program, Princess Margaret Cancer Centre and University Health Network, Toronto, Ontario, Canada; ²Radiation Oncology and IBBME, University of Toronto, Toronto, Ontario, Canada; ³Radiation Medicine Program, Princess Margaret Cancer Centre, Ontario, Canada; ⁴Radiation Oncology, University of Toronto, Ontario, Canada

Computer 29 4379. Are There Differences Between Macrocyclic Gadolinium Contrast Agents for Brain Tumor Imaging? Results of a Multicenter Intra-Individual Crossover Comparison of Gadobutrol with Gadoteridol (The TRUTH Study) Martin P. Smith¹, Kenneth R. Maravilla², Stefano Bastianello³, Eva Bueltmann⁴, Toshinori Hirai⁵, Tiziano Frattint⁶, Cesare Colosimo⁷, Gianpaolo Pirovano⁸ ¹Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, United States; ²University of Washington, WA, United States; ³Neuroradiology Department, University of Pavia, Pavia, Italy; ⁴Oberartzin Institut fur Diagnostiche und Interventionelle Neuroradiologie, Hannover, Germany; ⁵Kumamoto University, Kumamoto, Japan; ⁶Ospedale Valduce, Como, Italy; ⁷Policlinico "Agostino Gemelli", Rome, Italy; ⁸Bracco Diagnostics Inc., Monroe, NJ, United States

- Computer 30 4380. The Role of DWI in Postoperative High Grade Glioma Trials Dewen Yang¹ ¹ICON Medical Imaging, Warrington, PA, United States
- Computer 31 4381. Differentiation of High-Grade and Low-Grade Diffuse Gliomas by Intravoxel Incoherent Motion MRI Osamu Togao¹, Akio Hiwatashi¹, Koji Yamashita¹, Kazufumi Kikuchi¹, Marc Van Cauteren², Hiroshi Honda¹ ¹Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; ²Philips Electronics Japan, Tokyo, Japan
- Computer 32 4382. Cerebral Gliomas: Correlation of Diffusion Kurtosis Imaging with Tumour Grade and Ki-67 Rifeng Jiang¹, Wenzhen Zhu¹, Jingjing Jiang¹, Nanxi Shen¹, Changliang Su¹ ¹Radiology, Tongji Hospital, Tongji Medical College, HUST, Wuhan, Hubei, China

Computer 33 4383. Differentiation of Low-Grade and High-Grade Gliomas Using a Non-Gaussian Diffusion Imaging Model

Yi Sui¹, ², Ying Xiong¹, ³, Karen Xie⁴, Frederick C. Damen¹, Xiaohong Joe Zhou¹, ⁵, Wenzhen Zhu³ ¹Center for MR Research, University of Illinois Hospital & Health Sciences System, Chicago, IL, United States; ²Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ³Radiology, Tongji Hospital, Wuhan, Hubei, China; ⁴Radiology, University of Illinois Hospital & Health Sciences System, Chicago, IL, United States; ⁵Departments of Radiology, Neurosurgery and Bioengineering, University of Illinois Hospital & Health Sciences System, Chicago, IL, United States

Computer 34 4384. Diffusion-Weighted MR Imaging Using Mono-Exponential, Bi-Exponential and Mono-Exponential High-B Values Models in the Grading of Gliomas

Yan Bai¹, Carlos Torres², Zhoushe Zhao³, Dandan Zheng³, Dapeng Shi¹, Jie Tian⁴, Meiyun Wang¹ ¹Henan Provincial People's Hospital, Zhengzhou, Henan, China; ²Department of Radiology, The Ottawa Hospital, The University of Ottawa, Ottawa, ON, Canada; ³GE Healthcare, Beijing, China; ⁴Institute of Automation, Chinese Academy of Sciences, Beijing, China

Computer 35 4385. Brain Tumor Imaging Based, Histology Trained Maps (IBHTMs) of Cellularity Predict Tumor Presence in Pathologically Confirmed Regions Sampled *Ex-Vivo*

Peter S. LaViolette¹, Elizabeth J. Cochran², Nikolai Mickevicius³, Jennifer Connelly⁴, Kathleen M. Schmainda¹, ³, Scott D. Rand¹

¹Radiology, Medical College of Wisconsin, Milwaukee, WI, United States; ²Pathology, Medical College of Wisconsin, Milwaukee, WI, United States; ³Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, United States; ⁴Neurology, Medical College of Wisconsin, Milwaukee, WI, Wisconsin, WIsconsin, WIscon

Computer 36 4386. Towards Imaging Tumor Cellularity: Diffusion Basis Spectrum Imaging (DBSI) and Amide Proton Transfer (APT)

Chien-Yuan Eddy Lin¹, ², *Bing Wu*², *Hung-Wen Kao*³, ⁴, *Peng Sun*⁵, *Yong Wang*⁵, *Sheng-Kwei Song*⁵ ¹GE Healthcare, Taipei, Taiwan; ²GE Healthcare China, Beijing, China; ³Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; ⁴Department of Biomedical Imaging and Radiological Sciences , National Yang-Ming University, Taipei, Taiwan; ⁵Department of Radiology, Washington University School of Medicine, St. Louis, MO, United States

Computer 37 4387. Hierarchical Non-Negative Matrix Factorization Using Multi-Parametric MRI to Assess Tumor Heterogeneity Within Gliomas.

Within Gliomas. Nicolas Sauwen¹, ², Diana Sima¹, ², Sofie Van Cauter³, Jelle Veraart⁴, ⁵, Alexander Leemans⁶, Frederik Maes¹, ², Uwe Himmelreich⁷, Sabine Van Huffel¹, ²

¹Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium; ²iMinds Medical IT, Leuven, Belgium; ³Department of Radiology, University Hospitals of Leuven, Leuven, Belgium; ⁴iMinds Vision Lab, Department of Physics, University of Antwerp, Antwerp, Belgium; ⁵Center for Biomedical Imaging, Department of Radiology, New York University Langone Medical Center, New York, NY, United States; ⁶Image Sciences Institute, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; ⁷Biomedical MRI/MoSAIC, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium

Computer 38 4388. Association Between Texture Feature Ratios and Patient Survival in Glioblastoma

Joonsang Lee¹, Rajan Jain², Kamal Khalil³, Brent Griffith³, Ryan Bosca⁴, Ganesh Rao⁵, Arvind Rao¹ ¹Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; ²Radiology, New York University School of Medicine, Langone Medical Center, New York, NY, United States; ³Radiology, Henry Ford Hospital, Detroit, MI, United States; ⁴Medical Physics, University of Wisconsin, Madison, WI, United States; ⁵Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States

Computer 39 4389. Multiparametric MRI Towards a Predictive Model to Differentiate Solitary Brain Metastasis from Glioblastoma Multiforme

Kambiz Nael¹, Adam H. Bauer¹ ¹Medical Imaging, University of Arizona, Tucson, AZ, United States

Computer 40 4390. Relationship of Subventricular Zone with Tumor Blood Volume, Tumor Genomics and Patient Survival in Patients with Glioblastoma : A TCGA Glioma Phenotype Research Group Project Brent Griffith¹, Laila Poisson², Lev Bangiyev³, Jason Huse⁴, Rajan Jain⁵

¹Radiology, Henry Ford Hospital, Detroit, MI, United States; ²Henry Ford Hospital, MI, United States; ³Radiology, Stony Brook University School of Medicine, NY, United States; ⁴Pathology, Memorial Sloan-Kettering Cancer Center, NY, United States; ⁵Radiology, NYU School of Medicine, New York, NY, United States

Computer 41 4391. ISMEN MEET AWARD Magina cum laude	Peritumoral Myelin Imaging in Low-Grade Astrocytomas Hagen H. Kitzler ¹ , Hannes Wahl ¹ , Tareq Yuratli ² , Matthias Meinhardt ³ ¹ Neuroradiology, Technische Universitaet Dresden, Dresden, SN, Germany; ² Neurosurgery, Technische Universitaet Dresden, Dresden, SN, Germany; ³ Neuropathology, Technische Universitaet Dresden, Dresden, SN, Germany
Computer 42 4392.	Simultaneous UHF Quantitative T1 Mapping and T2* Weighted Dynamic Contrast Imaging with Applications to Brain Tumors Jayashree Kalpathy-Cramer ¹ , Ville Renvall ¹ , ² , Elizabeth Gerstner ³ , David Salat ¹ , Jean-Philippe Coutu ¹ , Bruce R. Rosen ¹ , Jonathan R. Polimeni ¹ ¹ Radiology, MGH/Harvard Medical School, Charlestown, MA, United States; ² Brain Research Unit, O.V. Lounasmaa Laboratory, Aalto University, Espoo,, Finland; ³ Neuroncology, MGH/Harvard Medical School, Charlestown, MA, United States
Computer 43 4393 .	Automated 3-D Segmentation of Radiation-Induced Cerebral Microbleeds on Susceptibility Weighted Imaging at 3T and 7T Xiaowei Zou ¹ , Wei Bian ² , Christopher P. Hess ¹ , Sarah J. Nelson ¹ , Janine M. Lupo ¹ ¹ Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ² Radiology, Stanford University, Stanford, CA, United States
Computer 44 4394.	Preliminary Experience with Visualization of Susceptibility Signals to Differentiate Recurrent Tumor Progression of Brain Metastases and Radiation Necrosis Following Gamma Kinfe Radiotherapy haiyan lou ^l , Rui Zhang ^l , Ying Tong ² , Qidong Wang ^l , Shunliang Xu ^l ¹ radiology department, No.1 Affiliated hospital, Medical School of Zhejiang University, hangzhou, zhejiang, China; ² Neurosurgery department, No.1 Affiliated hospital, Medical School of Zhejiang University, hangzhou, zhejiang, China
Computer 45 4395.	Imaging the Delivery of Brain-Penetrating PLGA Nanoparticles in the Brain Using Magnetic Resonance Daniel Coman ¹ , Garth Strohbehn ² , Liang Han ³ , Ragy R. T. Ragheb ² , Tarek M. Fahmy ² , Anita J. Huttner ⁴ , Fahmeed Hyder ¹ , ² , Joseph M. Piepmeier ³ , Mark Saltzman ² , Jiangbing Zhou ² , ³ ¹ Diagnostic Radiology, Yale University, New Haven, CT, United States; ² Biomedical Engineering, Yale University, New Haven, CT, United States; ³ Neurosurgery, Yale University, New Haven, CT, United States; ⁴ Pathology, Yale University, New Haven, CT, United States
Computer 46 4396.	Intracellular Sodium (23Na) MRI for Assessment of Response to Cancer Therapies on Brain Tumor Patients Yongxian Qian ¹ , Charles M. Laymon ² , Matthew J. Oborski ³ , Jan Drappatz ⁴ , Frank S. Lieberman ⁴ , James M. Mountz ² ¹ Qian's Lab for MRI, General Labs Cloud LLC, Pittsburgh, PA, United States; ² Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ³ Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsburgh, Pittsburgh, Pittsburgh, Pittsburgh, Pittsburgh, PA, United States; ⁴ Neurology and Medicine, University of Pittsburgh, Pittsb
Computer 47 4397.	Electrical Conductivity Characteristics of Meningiomas: Noninvasive Assessment Using Electric Properties

Tomography Khin Khin Tha¹, Ulrich Katscher², Christian Stehning², Shigeru Yamaguchi³, Shunsuke Terasaka³, Hiroyuki Sugimori³, Toru Yamamoto⁴, Noriyuki Fujima³, Kohsuke Kudo³, Yuriko Suzuki⁵, Marc van Cauteren⁵, Hiroki Shirato¹

¹Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, Japan; ²Philips Research Laboratories, Hamburg, Germany; ³Hokkaido University Hospital, Japan; ⁴Hokkaido University Graduate School of Health Sciences, Japan; ⁵Philips Electronics, Japan

Computer 48 4398. Noninvasive Characterization and Staging of Glioma with MR Elastography - A Pilot Study Kay Pepin¹, Arvin Arani², Nikoo Fattahi², Armando Manduca³, Richard L. Ehman², John Huston III², Kiaran McGee² ¹Graduate School, Mayo Clinic, Rochester, MN, United States; ²Radiology, Mayo Clinic, MN, United States; ³Physiology and Biomedical Engineering, Mayo Clinic, MN, United States

Electronic Poster Traumatic Brain Injury

Fraumatic Dram Injury Exhibition Hall Wednesday 17:00-18:00		
Computer 49 4399.	Investigation of Vigilance and Working Memory Impairment in Sport Related Concussion Patients with Functional MRI	
	Binjian Sun ¹ , Thomas G. Burns ¹ , Tricia Z. King ² , Laura L. Hayes ¹ , Ana Arenivas ³ , Susan McManus ¹ , Kim E. Ono ¹ , Richard A. Jones ¹ , ⁴	
	¹ Children's Healthcare of Atlanta, Atlanta, GA, United States; ² Georgia State University, Atlanta, GA, United States; ³ Kennedy Krieger Institute, Baltimore, MD, United States; ⁴ Emory University, Atlanta, GA, United States	
Computer 50 4400.	Resting State Dynamic Functional Network Analysis in Mild Traumatic Brain Injury Wenshuai Hou ¹ , Chandler Sours ² , Joseph JaJa ³ , Rao Gullapalli ²	
	ECE, University of Maryland, college park, MD, United States; 'Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, MD, United States; ³ ECE, University of Maryland, MD, United States	
Computer 51 4401.	MRI Monitoring of Stem Cells Transplantation in Traumatic Brain Injury Mice and Its Therapeutic Potential	
ismam merit award magna cum laude	¹ NMR Research Centre, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India; ² Stem Cells Research Group, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi, India	
Computer 52 4402.	Static and Dynamic Functional Connectivity Impairments in Concussed Soldiers with and Without PTSD D Rangaprakash ¹ , Gopikrishna Deshpande ¹ , ² , Thomas A. Daniel ² , Adam Goodman ² , Jeffrey S. Katz, ¹² , Nouha Salibi ¹ ,	
	 ³, Thomas S. Denney Jr¹, ², MAJ Michael N. Dretsch⁴, ³ ¹AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ²Department of Psychology, Auburn University, Auburn, AL, United States; ³MR R&D, Siemens Healthcare, Malvern, PA, United States; ⁴National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States; ⁵U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, United States 	
Computer 53 4403.	Identify Potentially Vulnerable Functional Networks to Concussion in Sports: A Resting-State fMRI Longitudinal Study	
	David C. Zhu ¹ , Sally Nogle ¹ , Scarlett Doyle ¹ , Doozie Russell ¹ , Tracey Covassin ¹ , Randolph L. Pearson ¹ , J Kevin DeMarco ¹ , David I. Kaufman ¹ ¹ Michigan State University, East Lansing, MI, United States	
Computer 54 4404.	Dynamic Susceptibility Contrast Perfusion Imaging Revealed Asymmetric Cerebral Blood Flow in Chronic TBI	
	Wei Liu ¹ , ² , Jennifer Pacheco, ¹² , Cyrus Eierud, ¹² , David Joy ¹ , ³ , Justin Senseney, ¹² , Ping-Hong Yeh, ¹² , Dominic Nathan, ¹² , Elyssa Sham, ¹² , John Ollinger, ¹² , Terrence Oakes, ¹² , Gerard Riedy, ¹²	
	¹ National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, United States; ² National Capital Neuroimaging Consortium, Bethesda, MD, United States; ³ Center of Neuroscience and Regenerative Medicine, Bethesda, MD, United States	
Computer 55 4405.	Reduction of Hippocampal Blood Flow in Collegiate Football Players Michael Zeineh ¹ David Douglas ¹ Mansi Parekh ¹ Eugene Wilson ¹ Sherveen Pariyash ² Lex Mitchell ³ Brian Boldt ¹	
	Wei Scott Bian ¹ , Scott Anderson ⁴ , Andrew Hoffman ⁵ , Huy Scott Do ¹ , Gerald Scott Grant ⁶ , Jamshid Scott Ghajar ⁶ , Greg Zaharchuk ¹	
	¹ Radiology, Stanford University, Stanford, CA, United States; ² Duke University, NC, United States; ³ Evans Army Community Hospital, Fort Carson, CO, United States; ⁴ Sports Medicine, Stanford University, Stanford, CA, United States; ⁵ Internal Medine, Stanford University, Stanford, CA, United States; ⁶ Neurosurgery, Stanford University, Stanford, CA, United States	
Computer 56 4406.	Diffusion MRI Connectometry Findings and Symptom Reporting Following Traumatic Brain Injury <i>Ping-Hong Yeh</i> ¹ , <i>Fang-Cheng Yeh</i> ² , <i>John Ollinger</i> ³ , <i>Elyssa B. Sham</i> ³ , <i>Binguan Wang</i> ¹ , <i>David Jov</i> ¹ , <i>Justin Sensenev</i> ³ .	
	<i>Terrence R. Oakes</i> ³ , <i>Gerard Riedy</i> ³ ¹ Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; ² Department of Psychology & Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburg, PA, United States; ³ National Intrepid Center of Excellence, Bethesda, MD, United States	

Computer 57 4407. Diffusion-Derived MRI Measures of Longitudinal Microstructural Remodeling Induced by Marrow Stromal Cell Therapy After TBI

Lian Li¹, Michael Chopp¹,², Guangliang Ding¹, Changsheng Qu³, Siamak P. Nejad-Davarani¹, Esmaeil Davoodi-Bojd¹, Qingjiang Li¹, Asim Mahmood³, Quan Jiang¹,² ¹Neurology, Henry Ford Hospital, Detroit, MI, United States; ²Physics, Oakland University, MI, United States; ³Neurosurgery, Henry Ford Hospital, Detroit, MI, United States

Computer 58 4408. Preliminary Multimodal MR Imaging Evaluation in Blast-Induced Traumatic Brain Injury Rat Model Xiao Wang¹, Xiao-hong Zhu¹, Afshin Divani², Yi Zhang¹, Wei Chen¹ ¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, MN, United States; ²Department of Neurology, University of Minnesota, MN, United States

Computer 59 4409. Symptomatic White Matter and Gray Matter Changes in Mild Traumatic Brain Injury Ping-Hong Yeh¹, Jennifer Pacheco², Joseph Hennessey², Alex Kubli², Priya Santhanam², Terrence R. Oakes², Thomas Perkins³, Gerard Riedy², William W. Orrison⁴, Lindell K. Weaver⁵, ⁶ ¹Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States; ²National Intrepid Center of Excellence, Bethesda, MD, United States; ³Philips Healthcare, Cleveland, OH, United States; ⁴Nevada Imaging Centers, Las Vegas, NV, United States; ⁵Department of Hyperbaric Medicine, Intermountain LDS Hospital and Intermountain Medical Center, Salt Lake City, UT, United States; ⁶School of Medicine, University of Utah, UT, United States

- Computer 60 4410. Effects of Subconcussive Head Trauma on the Resting State Default Mode Network Brian Johnson¹, Semyon Slobounov², Thomas Neuberger² ¹Penn State University, University Park, PA - Pennsylvania, United States; ²Penn State University, PA, United States
- Computer 61 4411. MEMRI of Mild Traumatic Brain Injury Lora Talley Watts¹, Qiang Shen¹, Justin Alexander Long¹, Timothy Duong¹ ¹Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Computer 62 4412. Detection of TBI-Related Anomalies in Single-Subject DTI Scalar Images John M. Ollinger¹, PIng-Hong Yeh¹, David Joy¹, Terrence R. Oakes¹, Gerard Riedy¹ ¹NICoE, Walter Reed National Military Medical Center, Bethesda, MD, United States
- Computer 63 4413. Neuroprotective Effects of Chronic Oral Methylene Blue Treatment in Mild Traumatic Brain Injury Lora Talley Watts¹, Michael O'Boyle¹, Robert Cole Boggs¹, Shiliang Huang¹, Justin Alexander Long¹, Qiang Shen¹, Timothy Duong¹ ¹Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States

Computer 64 4414. Multiparametric MRI Characterization of Mild Traumatic Brain Injury in Mice *Yichu Liu^l*, ², *Lora Watts¹*, *Qiang Shen¹*, *Hemanth Manga¹*, ², *Timothy Duong¹* ¹Research Imaging Center, University of Texas Health Science Center, San Antonio, TX, United States; ²Biomedical Engineering, UT San Antonio, San Antonio, TX, United States

Computer 65 4415. MRS of Acute MTBI in Young Athletes *General Leung*¹, ², *Nathan W. Churchill*³, *Anthony A. Sheen*¹, *Shaylea Badovinac*⁴, *Marc A. Settino*³, *Gerald R. Moran*⁵, *Todd English*⁵, *Walter Montanera*¹, ², *Michael G. Hutchison*⁶, *Tom A. Schweizer*³, ⁷ ¹Medical Imaging, St. Michael's Hospital, Toronto, Ontario, Canada; ²Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ³Neuroscience Research Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Ontario, Canada; ⁴University of Toronto, Ontario, Canada; ⁵Siemens Canada Ltd, Ontario, Canada; ⁶Concussion Program, Faculty of Kinesiology and Physical Education, University of Toronto, Ontario, Canada; ⁷Faculty of Medicine, Neurosurgery, University of Toronto, Ontario, Canada

Computer 66 4416. White Matter Abnormalities in Acute Mild Traumatic Brain Injury: A Diffusion Kurtosis MRI Study Sohae Chung¹, ², Els Fieremans¹, ², Jelle Veraart¹, ², Dmitry S. Novikov¹, ³, Jacqueline Smith¹, ², Steven R. Flanagan⁴, Yvonne W. Lui¹, ²

¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ³Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States; ⁴Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States

Computer 67 4417. Multi-Scale Coupling of BOLD fMRI and Cardiac Variability in Patients with Mild Traumatic Brain Injury

Nathan Churchill¹, Michael G. Hutchison², Doug Richards², Shaylea Badovinac³, Marc A. Settino¹, General Leung⁴, ⁵, Gerald R. Moran⁶, Todd English⁶, Anthony Sheen⁷, Tom A. Schweizer⁸, ⁶

¹Neuroscience Research Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Toronto, Ontario, Canada; ²Concussion Program, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada; ³University of Toronto, Ontario, Canada; ⁴Medical Imaging, University of Toronto, Toronto, Ontario, Canada; ⁵Keenan Research Centre, St Michael's Hospital, Ontario, Canada; ⁶Siemens Canada Ltd, Ontario, Canada; ⁷Medical Imaging, St. Michael's Hospital, Ontario, Canada; ⁸Neuroscience Research Program, Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Ontario, Canada; ⁹Faculty of Medicine (Neurosurgery), University of Toronto, Ontario, Canada

Computer 68 4418. Analysis of Hemorrhagic Traumatic Axonal Injury Lesions Using Seed-Based Resting-State fMRI at 7T

Seul Lee¹, ², Jonathan R. Polimeni³, Thomas Witzel³, Collin M. Price⁴, Michael D. Greicius⁴, Brian L. Edlow, ³⁵ Jennifer A. McNab²

¹Department of Electrical Engineering, Stanford University, Stanford, CA, United States; ²Department of Radiology, Stanford University, Stanford, CA, United States; ³Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, United States; ⁴Department of Neurology, Stanford University, CA, United States; ⁵Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MA, United States

Computer 69 4419. Robust Detection of Axonal Abnormalities in High School Collision-Sport Athletes: Longitudinal Single Subject Analysis

Ikbeom Jang¹, Il Yong Chun¹, Larry J. Leverenz², Eric A. Nauman³, ⁴, Thomas M. Talavage¹, ⁴ ¹School of Electrical & Computer Engineering, Purdue Universisty, West Lafayatte, IN, United States; ²Department of Health & Kinesiology, Purdue Universisty, IN, United States; ³School of Mechanical Engineering, Purdue Universisty, IN, United States; ⁴Weldon School of Biomedical Engineering, Purdue Universisty, IN, United States

Computer 70 4420. Detecting Atrophy in Chronic Moderate and Severe Traumatic Brain Injury Using an Automated Volume-**Based Morphometry Toolbox**

Yang Wang¹,², Benedicte Marechal³,⁴, Dawn Neumann², Alexis Roche³,⁴, John D. West², Brenna C. McDonald², Michelle A. Keiski², Dori J. Smith², Andrew J. Saykin², Gunnar Kruger³, ¹Medical College of Wisconsin, Milwaukee, WI, United States; ²Indiana University School of Medicine, Indianapolis, IN, United States; ³Siemens Healthcare IM BM PI & Department of Radiology CHUV, Lausanne, Switzerland; ⁴LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Computer 71 4421. DTI Parametric Lesion Load Is a Better Surrogate Marker When Regional Analysis Is Insensitive to Distinguish **Between Control and TBI Population.**

Ramtilak Gattu¹, Robert Welch², Brian Oneil³, Anamika Chaudhary¹, Ewart Mark Haacke¹, Zhifeng Kou¹ ¹Radiology, wayne state university, Detroit, MI, United States; ²Emergency Medicine, wayne state university, Detroit, MI, United States; ³Emergency Medicine, wayne state university, MI, United States

Computer 72 4422. Effects of Linear and Rotational Head Impact on White Matter Changes in High School Football Players Naeim Bahrami¹, Harish Sharma¹, Elizabeth Davenport¹, Jillian Urban², Joel Stitzel², Christopher Whitlow¹, Joseph Maldiian

¹Wake Forest School of Medicine, NC, United States; ²Wake forest school of Biomedical Engineering, NC, United States

Electronic Poster

Spinal Cord & Plexus

Exhibition Hall	Wednesday 17:00-18:00
Computer 73 4423.	Multi-Parameter Mapping of the Human Cervical Spinal Cord in Brachial Plexus Root Implantation
	Rebecca Sara Samson ¹ , Carolina Kachramanoglou ¹ , David Choi ² , Antoine Lutti ³ , David L. Thomas ⁴ , Nikolaus Weiskopf ³ , Olga Ciccarelli ⁵ , ⁶ , Claudia A M Wheeler-Kingshott ¹
	United Kingdom; ² Spinal Repair Unit, UCL Institute of Neurology, London, England, United Kingdom; ³ Wellcome Trust Centre for

Neuroimaging, UCL Institute of Neurology, London, England, United Kingdom; ⁴⁵Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, England, United Kingdom; ⁵NMR Research Unit, Department of Brain Repair and Rehabilitation, Queen Square MS Centre, UCL Institute of Neurology, London, England, United Kingdom; ⁶6NIHR UCL/UCLH Biomedical Research Centre (BRC), London, England, United Kingdom

Computer 74 4424. Spinal Cord Grav and White Matter Segmentation Using Atlas Deformation

Benjamin De Leener¹, Augustin Roux¹, Manuel Taso², ³, Virginie Callot², ³, Julien Cohen-Adad¹, ⁴ ismem merit award magna cum laude ¹Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; ²Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France; ³AP-HM, Pôle d'imagerie médicale, Hopital de la Timone, CEMEREM, Marseille, France; ⁴Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada

Computer 75 4425. Development and Implementation of Amide Proton Transfer Chemical Exchange Saturation Transfer in the Spinal Cord at 3T Using Lorentzian Difference Analysis ismem merit award magna cum laude

Samantha By¹,², Alex K. Smith¹,², Lindsey M. Dethrage², Adrienne N. Dula²,³, Siddharma Pawate⁴, Seth A. Smith²,³ ¹Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States; ²Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, United States; ³Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, United States; ⁴Department of Neurology, Vanderbilt University, Nashville, TN, United States

Computer 76 4426. Cervical Myelopathy Patient Follow-Up After Decompressive Surgery Using Diffusion Tensor Imaging (DTI) ismem merit award magna cum laude

and Inhomogeneous Magnetization Transfer (IhMT): Preliminary Application and Results Manuel Taso¹, ², Olivier M. Girard³, ⁴, Guillaume Duhamel³, ⁴, Thorsten Feiweier⁵, Pierre-Jean Arnoux², Maxime Guye³, ⁴, Jean-Philippe Ranjeva³, ⁴, Kathia Chaumoitre⁶, Pierre-Hugues Roche⁷, Virginie Callot³, ⁴ ¹CRMBM-CEMEREM UMR 7339, Aix-Marseille Université, CNRS, Marseille, France; ²LBA UMR T 24, Aix-Marseille Université, IFSTTAR, Marseille, France; ³CRMBM UMR 7339, Aix-Marseille Université, CNRS, Marseille, France; ⁴CEMEREM, Pole d'imagerie médicale, Hopital la Timone, AP-HM, Marseille, France; ⁵Siemens AG, Healthcare, Erlangen, Germany; ⁶Service de radiologie, Hopital Nord, Pole d'imagerie médicale, AP-HM, Marseille, France; ⁷Service de Neurochirurgie, Trauma Center, Hopital Nord, AP-HM, Marseille, France

Computer 77 4427. MRI Investigation of Functional Connectivity in the Human Spinal Cord

Oscar San Emeterio Nateras¹, Fang Yu², Eric R. Muir³, ⁴, Carlos Bazan III², Crystal G. Franklin⁴, Wei Li³, ⁴, Jack L. magna cum laude Lancaster², ⁴, Jinqi Li², ⁴, Timothy Q. Duong³, ⁴ ¹Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, United States; ²Radiology, University of Health Science Center at San Antonio, TX, United States; ³Ophthalmology, University of Health Science Center at San Antonio, TX, United States; ⁴Research Imaging Institute, San Antonio, TX, United States

Computer 78 4428. Slice-By-Slice Regularized Registration for Spinal Cord MRI: SliceReg J. Cohen-Adad¹, ², S. Lévy¹, B. Avants³ ¹Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, OC, Canada; ²Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada; ³PENN Image Computing & Science Lab, Dept of Radiology, UPENN, Philadelphia, PA, United States

Computer 79 4429. Whole Post-Mortem Spinal Cord Imaging with Diffusion-Weighted Steady State Free Precession at 7T Sean Foxley¹, Jeroen Mollink¹, Olaf Ansorge², Connor Scott², Saad Jbabdi¹, Richard Yates², Gabriele De Luca², Karla Miller¹ ¹FMRIB Centre, University of Oxford, Oxford, OXON, United Kingdom; ²Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OXON, United Kingdom

Computer 80 4430. Comparison Between Histology and MRI Markers of White Matter Damage in Contused Rat Spinal Cords Treated with Transplanted Schwann Cells: Correlation Analysis Based on Image Registration Andrew C.H. Yung¹, Peggy Assinck², Di Leo Wu³, Jie Liu², Shaalee Dworski⁴, Freda Miller⁴, Wolfram Tetzlaff², ⁵, Piotr Kozlowski¹.²

> ¹UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; ²ICORD, Vancouver, BC, Canada; ³Physics, University of British Columbia, Vancouver, BC, Canada; ⁴Hospital for Sick Children, Toronto, ON, Canada; ⁵Zoology, University of British Columbia, Vancouver, BC, Canada

Computer 81 4431. Diffusion Tensor Imaging of Porcine Spinal Cord at 7 Tesla Using Readout-Segmented EPI, GRAPPA and a Distortion Correction Tool

Aurélien Massire¹, ², Pierre-Henri Rolland³, Maxime Guye¹, ², Virginie Callot¹, ² ¹CRMBM UMR 7339 CNRS, Aix-Marseille Université, Marseille, France; ²CEMEREM, Hôpital de la Timone, Pôle d'imagerie médicale, AP-HM, Marseille, France; ³Experimental Interventional Imaging Laboratory, Aix-Marseille Université, Marseille, France

Computer 82 4432. CEST of the Cervical Spinal Cord at 7 Tesla Adrienne Dula^l, Siddharama Pawate^l, Lindsey M. Dethrage^l, Benjamin N. Conrad^l, Robert L. Barry^l, Seth A. Smith^l ¹Vanderbilt University, Nashville, TN, United States

Computer 83 4433. Cortical Plasticity of the Ipsilateral Motor Areas in Cervical Myelopathy Following Decompression Surgery Kayla Ryan¹,², Sandy Goncalves¹,², Izabela Aleksanderek¹,², Robert Bartha,¹², Neil Duggal,¹³ ¹Medical Biophysics, Western University, London, Ontario, Canada; ²Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, Ontario, Canada; ³Clinical Neurological Sciences, University Hospital, London, Ontario, Canada

Computer 84 4434. Large-FOV Tractography of the Brain and Spinal Cord with Reduced Scan Time: a Study Using Diffusion-Weighted, Readout-Segmented EPI and Simultaneous Multi-Slice Acceleration

Wei Liu¹, Himanshu Bhat², Julien Cohen-Adad³, Kawin Setsompop⁴, Dingxin Wang⁵, Thomas Beck⁶, Stephen F. Cauley⁴, Kun Zhou¹, David A. Porter⁷

¹Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, Guangdong, China; ²Siemens Medical Solutions USA, Inc., Charlestown, MA, United States; ³Department of Electrical Engineering, Institute of Biomedical Engineering, Ecole Polytechnique de Montreal, Montreal, QC, Canada; ⁴A.A. Martinos Center for Biomedical Imaging, Dept. of Radiology, MGH, Charlestown, MA, United States; ⁵Siemens Medical Solutions USA, Inc., Minneapolis, MN, United States; ⁶MR Application Development, Siemens Healthcare, Erlangen, Germany; ⁷Fraunhofer MEVIS, Institute for Medical Image Computing, Bremen, Germany

Computer 85 4435. T1 and T2 Template of the Human Brainstem and Spinal Cord

J. Touati¹, M. Taso², ³, V. Fonov⁴, A. Le Troter², ³, B. De Leener¹, D.L. Collins⁴, V. Callot², ³, Julien Cohen-Adad¹, ⁵ ¹Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada; ²CRMBM UMR 7339, Aix- Marseille Université, CNRS, Marseille, France; ³CEMEREM, Hopital de la Timone, Pôle d'imagerie médicale, AP-HM, Marseille, France; ⁴Montreal Neurological Institute, McGill University, Montreal, QC, Canada; ⁵Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada

Computer 86 4436. Measuring Cross Sectional Area of the Spinal Cord at 7T: Validating Fully Automated Segmentation Benjamin N. Conrad¹, Bailey D. Lyttle², Siddharama Pawate³, Robert L. Barry¹, ⁴, Bennett A. Landman¹, ⁵, Seth A. Smith¹, ⁴ ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Neuroscience, Vanderbilt University, Nashville,

¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Neuroscience, Vanderbilt University, Nashville, TN, United States; ³Neurology, Vanderbilt University, Nashville, TN, United States; ⁴Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; ⁵Electrical Engineering, Vanderbilt University, Nashville, TN, United States

Computer 87 4437. Template-Based Analysis of Multi-Parametric MRI Data with the Spinal Cord Toolbox

Benjamin De Leener¹, Augustin Roux¹, Julien Touati¹, Simon Levy¹, Manuel Taso², ³, Vladimir Fonov⁴, D. Louis Collins⁴, Virginie Callot², ³, Julien Cohen-Adad¹, ⁵ ¹Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; ²CRMBM UMR 7339, Aix-Marseille

¹Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, Quebec, Canada; ²CRMBM UMR 7339, Aix-Marseille Université, CNRS, Marseille, France; ³CEMEREM, Hopital de la Timone, Pôle d'imagerie médicale, AP-HM, Marseille, France; ⁴Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; ⁵Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, Quebec, Canada

Computer 88 4438. Comparison of White Matter Damage Progression in Dislocation Versus Contusion Injury in Rat Spinal Cord Using Longitudinal Diffusivity Measurements

Andrew C.H. Yung¹, Stephen Mattucci², Barry Bohnet³, Jie Liu², Wolfram Tetzlaff², Piotr Kozlowski¹, Thomas Oxland² ¹UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada; ²ICORD, Vancouver, BC, Canada; ³UBC MRI Research Centre, University of British Columbia, Vancouver, BC, Canada

Computer 89 4439. 3D Brachial Plexus Imaging: Comparison Between STIR and Two Point Dixon Technique

Mitsuharu Miyoshi¹, *Shigeo Okuda²*, *Masahiro Jinzaki²*, *Atsushi Nozaki¹*, *Hiroyuki Kabasawa¹* ¹Global MR Application and Workflow, GE Healthcare Japan, Hino, Tokyo, Japan; ²2. Department of Diagnostic Radiology, Keio University School of Medicine, Tokyo, Japan

Computer 90 4440. Isotropic Volumetric Imaging of Lumbar and Brachial Plexus Using Outer Volume Suppression CUBE MSDE Anand Kumar Venkatachari¹, Suchandrima Banerjee², Mitsuharu Miyoshi³, Ajit Shankaranarayanan², William Dillon⁴,

*Sharmila Majumdar¹, Christopher Hess*⁴ ¹Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States; ²Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States; ³Global Applied Science Laboratory, GE Healthcare, Hino, Japan; ⁴Neuroradiology, University of California San Francisco, San Francisco, CA, United States

Computer 91 4441. Resting State Spinal Cord Functional Connectivity at 3 Tesla Robert L. Barry¹, ², Seth A. Smith¹, ², John C. Gore¹, ² ¹Vanderbilt University Institute of Imaging Science, Nashville, TN, United States; ²Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States

Computer 92 4442. Investigating Functional-Structural Correlations in the Cervical Spinal Cord In Vivo Moreno Pasin¹, Marios C. Yiannakas¹, Ahmed T. Toosy², Claudia A M Wheeler-Kingshott¹ ¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre​, UCL Institute of Neurology, London, England, United Kingdom; ²Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, England, United Kingdom

Computer 93 4443. Comparison Between DTI, MWF, and Frequency Shift Mapping in Assessing White Matter Damage of Spinal Cord

Evan I-Wen Chen¹, ², *Jie Liu²*, *Vanessa Wiggermann¹*, *Andrew Yung¹*, *Alexander Rauscher¹*, ³, *Piotr Kozlowski¹*, ³ ¹MRI Research Center, Vancouver, BC, Canada; ²International Collaboration On Repair Discoveries, Vancouver, BC, Canada; ³Radiology, University of British Columbia, Vancouver, BC, Canada

Computer 94 4444. Optimization of Spinal Cord NODDI Protocol with Multi-Band EPI for Clinical Use

Masaaki Hori¹, ², Ryuji Nojiri², Katsutoshi Murata³, Yuichi Suzuki⁴, Koji Kamagata¹, Mariko Yoshida¹, Kouhei Tsuruta, ¹⁵, Keiichi Ishigame², Shigeki Aoki¹ ¹Radiology, Juntendo University School of Medicine, Tokyo, Japan; ²Tokyo Medical Clinic, Tokyo, Japan; ³Siemens Japan K.K., Tokyo, Japan; ⁴Radiology, The University of Tokyo Hospital, Tokyo, Japan; ⁵Department of Health Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan

Computer 95 4445. Velocity Phase Imaging with Simultaneous Multi-Slice EPI Reveals Respiration Driven Motion in Spinal CSF. *Alexander Beckett¹*, ², *Liyong Chen¹*, ², *Ajay Verma³*, *David A. Feinberg¹*, ² ¹Helens Wills Neuroscience Institute, University of California, Berkeley, CA, United States; ²Advanced MRI Technology, Sebastopol, CA, United States; ³Biogen Idec, MA, United States

Computer 96 4446. The Comparative Research of Different Sequences on Lumbosacral Nerve Roots with 3.0T MR *Yunlong Song¹*, *Lihua Sun¹*, *Guangnan Quan²*, *Lizhi Xie²* ¹Department of CT & MRI, Air Force General Hospital, Beijing, China; ²GE Healthcare China, Beijing, China

Electronic Poster Myocardial Tissue Differentiation

•		
Exhibition	Hall	Thursday 10:30-11:30
Computer 1	4447.	High-Resolution Three-Dimensional ANGIE T1 Mapping of the Heart Bhairav Bipin Mehta ¹ , Michael Salerno, ¹² , Frederick H. Epstein ¹ , ³ ¹ Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ² Department of Medicine, Cardiology Division, University of Virginia, Charlottesville, VA, United States; ³ Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States; ³ Department of Radiology and Medical Imaging,
Computer 2	4448	Evaluation of Extracellular Volume with Limited T1 Manning Planes Using MOLLI Technique

Computer 2 4448. Evaluation of Extracellular Volume with Limited T1 Mapping Planes Using MOLL1 Technique Wei Li¹, Eugene Dunkle², Claire Feczko³, Shivraman Giri⁴, Edelman R. Robert¹ ¹Northshore University HealthSystem, Evanston, IL, United States; ²Northshore University HealthSystem, IL, United States; ³Northshore University HealthSystem, Evanston, IL, United States, IL, United States; ⁴Siemens Healthcare, Chicargo, IL, United States

Computer 3 4449. Improving the Precision of Arrhythmia-Insensitive Rapid (AIR) T1 Mapping Through Optimization of Saturation Recovery Time Delay

*Kyle Erjin Jeong*¹, ², *Kyungpyo Hong*¹, ², *Daniel Kim*², ³ ¹Bioengineering Department, University of Utah, Salt Lake City, UT, United States; ²Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States; ³Department of Radiology, University of Utah, UT, United States

Computer 4 4450. Prognostic Value of Hypointense Cores Within Chronic Myocardial Infarctions on Balanced Steady-State Free Precession MRI for the Prediction of Malignant Ventricular Arrhythmias

Ivan Cokic¹, Avinash Kali¹, Hsin-Jung Yang¹, Raymond Yee², Richard Tang¹, Mourad Tighiouart³, Xunzhang Wang⁴, Warren M. Jackman⁵, Sumeet S. Chugh⁴, James A. White⁶, Rohan Dharmakumar¹ ¹Biomedical Sciences - BIRI, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Department of Medicine - Division of Cardiology, London Health Sciences Centre, London, ON, Canada; ³Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ⁴Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ⁵Heart Rhythm Institute, University of Oklahoma, Oklahoma City, OK, United States; ⁶Department of Cardiac Sciences, University of Calgary - Stephenson Cardiac Imaging Centre, Calgary, AB, Canada

Computer 5 4451. Free-Breathing Myocardial 3D T1 Mapping Using Inversion Time Specific Image-Based Respiratory Navigators Markus Henningsson¹, Rene Botnar¹, Tobias Voigt, ¹² ¹Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Clinical Research Europe, Philips Research, Hamburg, United Kingdom

Computer 6 4452. Assessment of Acute Cryo and RF Ablation Lesions by Non-Contrast and Contrast Enhanced MRI Techniques: Similarities and Differences Eugene G. Kholmovski¹, Ravi Ranjan², Joshua Silvernagel², Nassir F. Marrouche²

¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²CARMA Center, University of Utah, Salt Lake City, UT, United States

Computer 7 4453. Non-Contrast MRI for Assessing Myocardial Fibrosis: Initial Study in a Canine Model of Myocardial Reperfusion After Drug Treatments

Jie Zheng¹, Qian Yin¹, David Muccigrosso¹, Ridong Chen², Dana Abendschein³ ¹Radiology, Washington University School of Medicine, Saint Louis, MO, United States; ²APT Therapeutics, Saint Louis, MO, United States; ³Cardiology Division, Washington University School of Medicine, Saint Louis, MO, United States

Computer 8 4454. **T1p-Mapping of the Heart in a Single Breath-Hold** Joep van Oorschot¹, Hamza El Aidi¹, Fredy Visser², Peter Luijten¹, Tim Leiner¹, Jaco Zwanenburg¹ ¹University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Noord-Brabant, Netherlands

Computer 9 4455. Geometrical Complexity of Left Ventricular Endocardial Border Measured by Fractal Analysis: A Comprehensive Study Andrea S. Dell'Aquila¹, Sofia A. Papadopoulou¹, Sanjay Sharma¹, Lisa J. Anderson¹, Taigang He¹ ¹Cardiovascular Sciences Research Centre, St George's, University of London, London, Greater London, United Kingdom

Computer 10 4456. Oxygen-Enhanced T2* Cardiac Magnetic Resonance Imaging in Non-Ischemic Cardiac Diseases Satoshi Kawanami¹, Michinobu Nagao¹, Masato Yonezawa², Yuzo Yamasaki², Takeshi Kamitani², Torahiko Yamanouchi², Tomomi Ide³, Ryohei Funatsu⁴, Hidetake Yabuuchi⁵, Hiroshi Honda² ¹Molecular Imaging & Diagnosis, Kyushu University, Graduate School of Medicine, Fukuoka, Japan; ²Clinical Radiology, Kyushu University, Graduate School of Medicine, Fukuoka, Japan; ³Cardiovascular Medicine, Kyushu University, Graduate School of Medicine, Fukuoka, Japan; ⁴Radiological Technology, Kyushu University Hospital, Fukuoka, Japan; ⁵Health Sciences, Kyushu University, Graduate School of Medicine, Fukuoka, Japan

Computer 11 4457. Feasibility Analysis of the Chemical Exchange and T₁ Measurement Using Progressive Saturation (CUPS) Method for In Vivo Application to Human Myocardium David A. Reiter¹, Mustapha Bouhrara¹, Richard G. Spencer¹ ¹Laboratory of Clinical Investigation, NIH/National Institute on Aging, Baltimore, MD, United States

Computer 12 4458. Small Animal Myocardial T1 Mapping with Respiratory Motion Navigated Look-Locker Imaging ^{ISBMEN MERT AWARD} magna cum laube ^{ISBMEN MERT AWARD} ^{ISBMEN MERT AWARD</sub> ^{ISBMEN MERT AWARD AWARD</u> ^{ISBMEN MERT AWARD</sub> ^{ISBMEN MERT AWARD</sub> ^{ISBMEN MERT AWARD AWARD ^{ISBMEN MERT AWARD</u> ^{ISBMEN MERT AWARD ^{ISBMEN MERT AWARD</u> ^{ISBMEN MERT AWARD ^{ISBMEN MERT AWARD</u> ^{ISBMEN MERT AWARD</u> ^{ISBMEN MERT AWARD ^{ISBMEN MERT AWARD</u> ^I}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Computer 13 4459. 3D Late Gadolinium Enhancement Imaging Using CENTRA-PLUS Ordering with Weighted Navigator Acquisition: Feasibility of Surgically Implanted RV Patch Volume Quantification in Swine Model Keigo Kawaji¹, Akiko Tanaka², Mita Patel¹, Sui-Cheng Wang³, Hui Wang⁴, Takeyoshi Ota², Roberto M. Lang¹, Amit R. Patel¹ ¹Medicine, Section of Cardiology, The University of Chicago, Chicago, IL, United States; ²Surgery, The University of Chicago, Chicago, IL, United States; ³Biomedical Engineering, Northwestern University, Evanston, IL, United States; ⁴Philips Medical Systems, Cleveland, OH, United States

- Computer 14 4460. Whole Heart DTI Using Asymmetric Bipolar Diffusion Gradients Martijn Froeling¹, ², Gustav J. Strijkers³, Aart J. Nederveen⁴, Peter R. Luijten¹ ¹Radiology, UMC Utrecht, Utrecht, Netherlands; ²Radiology, AMC, Amsterdam, Netherlands; ³Biomedical engineering and physics, AMC, Amsterdam, Netherlands; ⁴Radiology, AMC, Amsterdam, Netherlands
- Computer 15 4461. The Accuracy of Quantitative MR Elastography in an Anatomically Accurate Diastolic Cardiac Phantom Arvin Arani¹, Shivaram Poigai Arunachalam¹, Phillip Rossman¹, Armando Manduca², David S. Lake¹, Joshua D. Trzasko¹, Kiaran P. McGee¹, Kevin J. Glaser¹, Richard L. Ehman¹, Philip Araoz¹ ¹Radiology, Mayo Clinic, Rochester, MN, United States; ²Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- Computer 16 4462. Wideband Arrhythmia-Insensitive-Rapid (AIR) Cardiac T₁ Mapping Pulse Sequence for Suppressing Image Artifacts Induced by ICD *Kyungpyo Hong¹*, ², *Eun-Kee Jeong¹*, *Daniel Kim¹* ¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Bioengineering, University of Utah, Salt Lake City, UT, United States

Computer 17 4463. Late Gadolinium Enhancement for Left Ventricular Lead Guidance in Cardiac Resynchronization Therapy: Comparison of 3D Free-Breathing IR-FLASH Vs 2D Breath-Hold Phase-Sensitive IR Adrian Lam¹, Ankit Parikh², Michael Lloyd², John Oshinski¹, ³ ¹Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; ²Department of Medicine, Emory University, GA, United States; ³Department of Radiology and Imaging Science, Emory University, GA, United States

Computer 18 4464. Improved Arrhythmia-Insensitive-Rapid (AIR) Cardiac T₁ Mapping with Pulse Sequence Optimization: K-Space Ordering and Flip Angle *Kyungpyo Hong¹*, ², *Daniel Kim¹* ¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Bioengineering, University of Utah, Salt Lake City, UT, United States

Computer 19 4465. Measurement and Quantification of Sheep Cardiac Myocyte and Sheetlet Orientation from High-Field 80 × 80 × 160 µm Contrast-Enhanced T1W MRI. Stephen Henry Gilbert¹, Julie Magat², Mark Trew³, Valery Ozenne², Fanny Vaillant², Jérôme Naulin², Olivier Bernus², Bruno Quesson² ¹Mathematical Cell Physiology, Max Delbrück Center for Molecular Medicine, Berlin, Germany; ²L'Institut de rythmologie et modélisation cardiaque LIRYC, Pessac, France; ³Auckland Bioengineering Institute, Auckland, New Zealand

Computer 20 4466. Hemorrhage Alters T2 BOLD Response in Remote Myocardium Following Acute Myocardial Infarction in a Porcine Model

Nilesh R. Ghugre¹, ², Xiuling Qi¹, Jennifer Barry¹, Bradley H. Strauss³, Graham A. Wright¹, ² ¹Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; ²Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; ³Schulich Heart Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada

Computer 21 4467. Intralipid Reduces Post-MI Ventricular Remodeling and Heart Failure After Ischemic Injury

Yijen Lin Wu¹, ², *Fang-Cheng Yeh*³, *Chien Ho*⁴ ¹Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States; ²Rangos Research Center Imaging Core, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States; ³Psychology, Carnegie Mellon University, Pittsburgh, PA, United States; ⁴Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States

Computer 22 4468. Early Detection of Doxorubicin Induced Diffuse Myocardial Fibrosis by Contrast Enhanced Magnetic Resonance Imaging in Rabbit Modell: Compared with Histology and Electron Microscopy. Byoung Wook Choi⁷, Yoo Jin Hong⁷, Chul Hwan Park⁷, Panki Kim¹ ¹Radiology, Yonsei University, Seoul, Korea

Computer 23 4469. Left Atrial Strain Is Correlated to Atrial Fibrosis by Late Gadolinium Enhancement, in an AF Population. Dana C. Peters¹, Daniel Cornfeld¹, Albert J. Sinusas², James S. Duncan¹, Xenios Papademetris¹, Karl Grunseich¹, Sudhakar Chelikani¹ ¹Radiology, Yale School of Medicine, New Haven, CT, United States; ²Cardiology, Yale School of Medicine, New Haven, CT, United States

Computer 24 4470. Assessment of Diffuse Ventricular Fibrosis in Atrial Fibrillation Using Extracellular Volume Fraction Mapping: Initial Study

Lei Zhao¹, *Xiaohai Ma¹*, *Songnan Li²*, *Tianjing Zhang³*, *Jing An³*, *Greiser Andreas⁴*, *Zhanming Fan¹* ¹Radiology, Anzhen Hospital, Capital Medical University, Beijing, China; ²Cardiology, Anzhen Hospital, Capital Medical University, Beijing, China; ³MR Collaborations NE Asia, Siemens Healthcare, Beijing, China, Beijing, China; ⁴Siemens Healthcare, Erlangen, Germany

Electronic Poster

Cardiac Perfusion & Function		
Exhibition Hall	Thursday 10:30-11:30	
Computer 25 4471.	Efficient Radial Tagging: Undersampled Radial Acquisition with Polar Fourier Transform Reconstruction Shokoufeh Golshani ¹ , Abbas Nasiraei Moghaddam ¹ , ² ¹ BME, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; ² Radiology, UCLA, Los Angeles, CA, United States	
Computer 26 4472.	Assessment of Global Cardiac Function from Tagged Magnetic Resonance Images. Comparison with Cine MRI Abram Makram ¹ , Ayman Khalifa ¹ , Hossam El-Rewaidy ² , Ahmed Fahmy ² , El-Sayed H. Ibrahim ³ ¹ Helwan University, Cairo, Egypt; ² Nile University, Cairo, Egypt; ³ University of Michigan, Ann Arbor, MI, United States	
Computer 27 4473.	Impact of Temporal Resolution on the Quantification of Regional Myocardial Velocities Using Tissue Phase Mapping Kai Lin ¹ , Robert A. Gordon ² , Keith H. Benzuly ² , Clyde W. Yancy ² , Jon W. Lomasney ² , Vera H. Rigolin ² , Allen S. Anderson ² , Michael Markl ¹ , James C. Carr ¹ ¹ Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL - Illinois, United States; ² Cardiology, Northwestern University Feinberg School of Medicine, Chicago, IL - Illinois, United States	
Computer 28 4474.	Multi-Slice Excitation with MRI Tagging for Single Breath Hold Estimates of Left Ventricular Rotational Mechanics Zhe Wang ¹ , ² , Ziwu Zhou ¹ , ² , Yi Wang ³ , Peng Hu ¹ , ² , Daniel B. Ennis ¹ , ² ¹ Radiological Science, University of California, Los Angeles, CA, United States; ² Bioengineering, University of California, Los Angeles, CA, United States; ³ Neurology, University of California, Los Angeles, CA, United States	
Computer 29 4475.	Improvement of Left Ventricular Strain with Reduction of Mean Pulmonary Arterial Pressure in Pulmonary Hypertension: Treatment Effect Independent of Right Ventricular Volumetric Parameters. Tomoyoshi Kimura ¹ , ² , Hideki Ota ¹ , Koichiro Sugimura ³ , Kazuomi Yamanaka ¹ , Tatsuo Nagasaka ¹ , Hiroaki Shimokawa ³ , Kei Takase ¹ , Haruo Saito ² ¹ Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan; ² Graduate School of Medicine, Tohoku University, Sendai, Miyagi, Japan; ³ Cardiology, Tohoku University Hospital, Sendai, Miyagi, Japan	

Computer 30 4476. A Novel Approach to Comprehensive Atrio-Ventricular Functional Analysis Xiaoxia Zhang¹,², Nikhil Jha¹,², Himanshu Gupta³, Nouha Salibi,²⁴, Thomas Jr. Denney¹,² Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ²AU MRI Research Center, Auburn University, Auburn, AL, United States; ³Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, United States; ⁴MR R&D, Siemens Healthcare, Malvern, PA, United States Computer 31 4477. Normalized Wall Thickening Patterns for Detecting Cardiac Functional Abnormality from Cine MRI Images Mai Wael¹, El-Sayed H. Ibrahim², Ahmed Fahmy¹ ¹Nile University, Cairo, Egypt; ²University of Michigan, Ann Arbor, MI, United States Computer 32 4478. Left Ventricular (LV) Volume Based Indices for the Evaluation of Diastolic Function Using High Frame Rate **Cine SSFP Imaging: Direct Comparison with Doppler Echocardiography** Jiming Zhang¹, Amol Pednekar², Jie Chen¹, Claudio Arena¹, Debra Dees¹, Benjamin Cheong¹, Raja Muthupillai¹ ¹Diagnostic and Interventional Radiology, CHI St Luke's Health, Houston, TX, United States; ²Philips Healthcare, Houston, TX, United States Subashini Srinivasan¹, ², Randall M. Kroeker³, Adam Plotnik¹, Simon Gabriel¹, Nancy Halnon⁴, Peng Hu¹, J. Paul Finn¹, Daniel B. Ennis¹, ² Computer 33 4479. Free Breathing Variable Flip Angle Balanced SSFP Cardiac Cine Imaging with Reduced SAR at 3T ¹Department of Radiological Sciences, University of California, Los Angeles, CA, United States; ²Department of Bioengineering, University of California, Los Angeles, CA, United States; ³Siemens Healthcare, Malvern, PA, United States; ⁴Department of Pediatrics, University of California, Los Angeles, CA, United States Computer 34 4480. Robust Free-Breathing Whole-Heart Cine MRI Using Multi-Slab 3D Acquisition with Isotropic Resolution and **Offline Reformattability** ismem merit award magna cum laude Peng Lai¹, Joseph Y. Cheng², Shreyas S. Vasanawala², Anja CS Brau³ ¹Global MR Applications & Workflow, GE Healthcare, Menlo Park, CA, United States; ²Radiology, Stanford University, CA, United States; ³Global MR Applications & Workflow, GE Healthcare, Munich, Germany

Computer 35 4481. Can We Rely on the New 1T "benchtop" Systems for Investigating Cardiac Function and Viability? Daniel James Stuckey¹, Thomas A. Roberts¹, Laurence H. Jackson¹, Rajiv Ramasawmy¹, Valerie Taylor¹, Anna L. David², Bernard Siow^{*1}, Mark F. Lythgoe^{*1} ¹Centre for Advanced Biomedical Imaging, UCL - University College London, London, United Kingdom; ²Institute for Women's Health, UCL - University College London, London, United Kingdom

Computer 36 4482. Evaluation of Myocardial Eulerian Strain Using Bandpass Optical Flow. Comparison to Harmonic Phase Imaging Azza Hassanein¹, Ayman Khalifa¹, El-Sayed H. Ibrahim² ¹Helwan University, Cairo, Egypt; ²University of Michigan, Ann Arbor, MI, United States

Computer 37 4483. Heterogeneity of Myocardial ATP Flux Rate Via CK *In Vivo* Porcine Hearts with HiPSC Tri-Lineage Cell Transplantation Using 2D CSI P-31 MR Spectroscopy *Weina Cui^l*, *Lei ye^l*, *Albert Jang^l*, *Pengyuan Zhang^l*, *Qiang Xiong^l*, *Jianyi Zhang^l* ¹Department of Medicine/cardiology, University of Minnesota, minneapolis, MN, United States

- Computer 38 4484. High Resolution Quantitative Spiral CMR Perfusion Imaging Demonstrates a Reduced Endocardial to Epicardial Perfusion Gradient and Myocardial Flow Reserve in Patients with Microvascular Disease Michael Salerno¹, ², Yang Yang³, Peter Shaw⁴, Angela Taylor⁴, Craig Meyer³, Fred Epstein³, Christopher Kramer, ⁴⁵ ¹Medicine, Cardiology, University of Virginia, Charlottesville, VA, United States; ²Radiology, University of Virginia, Charlottesville, VA, United States; ³Biomedical Engineering, University of Virginia, VA, United States; ⁴Medicine, Cardiology, University of Virginia, VA, United States; ⁵Radiology, University of Virginia, VA, United States
- Computer 39 4485. Prospectively Accelerated CMR First-Pass Perfusion Imaging in Patients with Suspected Heart Disease Xiao Chen¹, Michael Salerno², ³, Christopher M. Kramer³, ⁴, Bhairav B. Mehta¹, Yang Yang¹, Peter Shaw⁴, Frederick H. Epstein¹

¹Biomedical Engineering, University of Virginia, Charlottesville, VA, United States; ²Radiology, University of Virginia, Charlottesville, VA, United States; ³Cardiology, University of Virginia, Charlottesville, VA, United States; ⁴Medicine, Cardiovascular Medicine, University of Virginia, Charlottesville, VA, United States

Computer 40 4486. A Novel Fully Automatic Motion Correction Scheme for Cardiac Perfusion MR Images Using Group-Wise Non-Rigid Registration

Sandeep Kaushik¹, Dattesh Shanbhag¹, Anne Menini², Sheshadri Thiruvenkadam¹, Stephanie Reiter³, Tobias Heer³, Günter Pilz³, Anja Brau⁴

¹Medical Image Analysis Lab, GE Global Research, Bangalore, Karnataka, India; ²GE Global Research, Garching, Bavaria, Germany; ³Department of Cardiology, Clinic Agatharied Academic Teaching Hospital, University of Munich, Hausham, Bavaria, Germany; ⁴GE Healthcare, Garching, Bavaria, Germany

- Computer 41 4487. FLASH Proton Density Imaging for Improved Surface Coil Intensity Correction in Quantitative and Semi-Quantitative SSFP Myocardial Perfusion Imaging Sonia Nielles-Vallespin¹, Peter Kellman¹, Li-Yueh Hsu¹, Andrew E. Arai¹ ¹National Institutes of Health, Bethesda, MD, United States
- Computer 42 4488. Radial CAIPIRINHA for Rapid 6 Slice Myocardial Perfusion Without Magnetization Preparation Haonan Wang¹, Neal Kepler Bangerter¹, Liyong Chen², Ganesh Adluru³, Edward V.R DiBella³ ¹Department of Electrical & Computer Engineering, Brigham Young University, Provo, UT, United States; ²Advanced MRI Technologies, Sebastopol, CA, United States; ³Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, UT, United States
- Computer 43 4489. Data-Driven Dynamic Coil-Bias Correction for Segmented Myocardial Perfusion Images. Roman Wesolowski¹, ², Eva Sammut², Niloufar Zarinabad Nooralipour², Eike Nagel², Amedeo Chiribiri² ¹University of Birmingham, Birmingham, West Midlands, United Kingdom; ²King's College London, London, United Kingdom

Computer 44 4490. A Preliminary Assessment of Magnetic Resonance Low-Multi-B Values Diffusion Weighted Imaging in Patients with Hypertrophic Cardiomyopathy Mou anna¹, Li zhiyong², Zhang ziheng³, Song qingwei², Liu ailian²

¹The First Affiliated Hospital of Dalian Medical University, China, Liaoning, China; ²The First Affiliated Hospital of Dalian Medical University, Liaoning, China; ³GE Healthcare China, Beijing, China

Computer 45 4491. Fusion and Combined Evaluation of 3D-CMR-Perfusion with 3D-MR-Coronary Angiography Alexander Gotschy¹, ², Lukas Wissmann¹, Datta Singh Goolaub¹, Markus Niemann³, Sebastian Kozerke¹, Robert Manka¹, ³ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland; ³Department of Cardiology, University Hospital Zurich, Switzerland

Computer 46 4492. Heart-Rate Independent, Whole-Heart, Free-Breathing, Quantitative Myocardial BOLD MRI at 3T with Simultaneous 13N-Ammonia PET Validation in Canines Hsin-Jung Yang¹, Damini Dey², Jane Sykes³, John Butler³, Avinash Kali², Ivan Cokic², Behzad Sharif², Sotirios Tsaftaris⁴, Debiao Li², Piotr Slomka², Frank Prato³, Rohan Dharmakumar² ¹Cedars Sinai Medical Center, Los angeles, CA, United States; ²Cedars Sinai Medical Center, CA, United States; ³Lawson Health Research Institute, ON, Canada; ⁴IMT Lucca Institute, Lucca, Italy

Computer 47 4493. Reducing Dark-Rim Artifacts in Free-Breathing First-Pass Perfusion Cardiac MRI with Cartesian Sampling and Instantaneous Image Reconstruction Zhengwei Zhou¹, ², Xiaoming Bi³, Hsin-Jung Yang¹, ², Rohan Dharmakumar¹, Reza Arsanjani, ¹⁴, C Noel Bairey Merz⁴, Daniel Berman, ¹⁴, Debiao Li¹, ², Behzad Sharif⁴ ¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States; ³MR R&D, Siemens Healthcare, Los Angeles, CA, United States; ⁴Cedars-Sinai Heart Institute, Los Angeles, CA, United States

Computer 48 4494. Through-Plane Dark-Rim Artefacts in 3D First-Pass Perfusion Merlin J. Fair¹,², Peter D. Gatehouse¹,², David N. Firmin¹,² ¹NHLI, Imperial College London, London, United Kingdom; ²NIHR Cardiovascular BRU, Royal Brompton Hospital, London, United Kingdom

Exhibition 1	Hall	Thursday 10:30-11:30
Computer 49	4495.	Improving Flow Characterization in SNAP with K-Space Acquisition Reordering Jinnan Wang ¹ , Haining Liu ² , Zechen Zhou ³ , Niranjan Balu ² , Thomas S. Hatsukami ² , Jin Liu ² , Peter Boernert ⁴ , Chun Yuan ² ¹ Philips Reserach North America, Seattle, WA, United States; ² University of Washington, Seattle, WA, United States; ³ Tsinghua
		University, Beijing, China; ⁴ Philips Research Europe, Hamburg, Germany
Computer 50 44	4496.	Non-Contrast-Enhanced Peripheral Venography Using Velocity-Selective Magnetization Preparation and Transient Balanced SSFP
		<i>Taehoon Shin¹, Seth J. Kligerman¹, Robert S. Crawford², Sanjay Rajagopalan³, Rao P. Gullapalli¹</i> ¹ Radiology, University of Maryland, Baltimore, MD, United States; ² Vascular Surgery, University of Maryland, MD, United Kingdom; ³ Cardiovascular Medicine, University of Maryland, Baltimore, MD, United States
Computer 51	4497.	Non-Contrast MRA in PAD Patients: Diagnostic Comparison of QISS, ECG-FSE, and QIR Techniques Christopher J. Hanrahan ¹ , Marc Lindley ¹ , Michelle Mueller ² , Daniel Sommers ¹ , Marta E. Heilbrun ¹ , Glen Morrell ¹ , Daniel Kim ¹ Vivian S. Leo ¹
		¹ Radiology, UCAIR, University of Utah School of Medicine, Salt Lake City, UT, United States; ² Vascular Surgery, University of Utah School of Medicine, Salt Lake City, United States
Computer 52	4498.	Comprehensive Arterial Assessment in Diabetic Patients Using Combined Quiescent Interval Single Shot (QISS) Imaging for Leg Imaging and QISS-Arterial Spin Labeled MRA for Pedal Imaging: Preliminary Experience with Comparison to DSA
		Ruth P. Lim ¹ , ² , Adrienne CY Lam ¹ , Matthew Lukies ¹ , Dinesh Ranatunga ¹ , Emma K. Hornsey ¹ , Brenden McColl ¹ , Yuliya Perchyonok ¹ , ² , Jason Chuen, ²³ , Jason Heidrich ¹ , Pei-Heng Ko ³ , Robert R. Edelman ⁴ ¹ Radiology, Austin Health, Melbourne, Victoria, Australia; ² The University of Melbourne, Melbourne, Victoria, Australia; ³ Vascular Surgery, Austin Health, Melbourne, Victoria, Australia; ⁴ Radiology, NorthShore University Health System, Chicago, IL, United States
Computer 53	4499.	Comparison of 3D Non-Contrast Enhanced Foot MR Angiography Using Steady-State Free Precession with Single and Multi-Directional FSD Modules Preparation
		¹ Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology of Chinese Academy of Sciences, Shenzhen, Guangdong, China; ² Shenzhen Key Laboratory for MRI, Shenzhen, Guangdong, China; ³ Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
Computer 54	4500.	Velocity-Selective Magnetization-Prepared Non-Contrast-Enhanced Cerebral MR Angiography at 3T <i>Qin Qin¹, ², Taehoon Shin³, Michael Schar¹, Hua Guo⁴, Ye Qiao¹</i>
		¹ Radiology, Johns Hopkins University, Baltimore, MD, United States; ² Kirby Center, Kennedy Krieger Institute, Baltimore, MD, United States; ³ Radiology, University of Maryland, Baltimore, MD, United States; ⁴ Center for Biomedical Imaging Research, Biomedical Engineering, Tsinghua University, Beijing, China
Computer 55	4501.	Velocity-Selective Magnetization-Prepared Non-Contrast-Enhanced Peripheral MR Angiography at 3T <i>Taehoon Shin¹, Qin Qin², Jang-Yeon Park³, Sanjay Rajagopalan⁴</i>
		MD, United States; ³ Biomedical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, Korea; ⁴ Cardiology, University of Maryland, Baltimore, MD, United States

Computer 56 4502. 3D TOF MR Angiography Using Combined Compressed Sensing and Parallel Imaging with Coil Compression Naoyuki Takei¹, Kevin F. King², Adriana Kanwischer², Hiroyuki Kabasawa³ ¹GE Healthcare, Hino, Tokyo, Japan; ²GE Healthcare, WI, United States; ³GE Healthcare, Hino, Tokyo, Japan Computer 57 4503. Additive Value of Non Contrast MRA for Evaluation of Mesenteric Arterial Anatomy in Preoperative Planning for Living Donor Liver Transplants.

Elizabeth M. Hecht¹, Firas Ahmed¹, Anuradha Shenoy-Bhangle¹, Guillermo Jimenez¹, Stuart Bentley-Hibbert¹, Martin Prince¹

¹Columbia University, New York, NY, United States

- Computer 58 4504. Undersampled Motion Compensated LOST Reconstruction for Free-Breathing Coronary MRA Andrew Peter Aitken¹, Mehmet Akçakaya², Rene Botnar¹, Claudia Prieto¹ ¹Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United Kingdom
- Computer 59 4505. Large Slice FOV Non-Contrast MR Angiography with Variable Slice Resolution 3D Time-Of-Flight *Yutaka Nattsuaki¹*, Xiaoming Bi¹, Aurelien F. Stalder², Gerhard Laub¹ ¹Siemens Healthcare, Los Angeles, CA, United States; ²Siemens Healthcare, Erlangen, Germany

Computer 60 4506. Image Quality and Accuracy of a 3D Whole-Heart Self-Navigated Sequence in Comparison with Cardiac Computed Tomography for the Assessment of Coronary Artery Anomalies *Giuseppe Muscogiuri*^{1, 2}, *Akos Varga-Szemes*¹, *U. Joseph Schoepf*⁴, *Carlo N. De Cecco*¹, ², *Davide Piccini*³, ⁴, *Wolfgang G. Rehwald*⁵, ⁶, *Anthony M. Hlavacek*¹, *Arni C. Nutting*¹ ¹Medical University of South Carolina, Charleston, SC, United States; ²University of Rome Sapienza, Rome, Italy; ³Siemens Healthcare IM BM IP, Lausanne, Switzerland; ⁴University of Lausanne, Lausanne, Switzerland; ⁵Siemens Medical Solutions, Chicago, IL, United States; ⁶Duke Cardiovascular Magnetic Resonance Center, Durham, NC, United States

Computer 61 4507. ECG Gated 3D Single Shot Fast Spin Echo with Variable TR for Non-Contrast Peripheral MR Angiography at 3T

Xiangzhi Zhou¹, Cheng Ouyang¹, Aiming Lu¹, Mitsue Miyazaki¹ ¹Toshiba Medical Research Institute USA, Vernon Hills, IL, United States

Computer 62 4508. High-Resolutional Visualization of the Lenticulostriate Artery: Application of Compressed Sensing for Faster Acquisition

Tomohisa Okada¹, Koji Fujimoto¹, Yasutaka Fushimi¹, Akira Yamamoto¹, Kei Sano², Toshiyuki Tanaka², Naotaka Sakashita³, Kaori Togashi¹

¹Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; ²Department of Informatics, Kyoto University Graduate School of Informatics, Kyoto, Japan; ³Toshiba Medical Systems, Otawara, Tochigi, Japan

Computer 63 4509. Turbo Quiescent-Interval Single-Shot (TurboQISS): Accelerated Non-Enhanced Peripheral Angiography Shivraman Giri¹, Eugene Dunkle², Wei Li², Ian Murphy², ³, Ioannis Koktzoglou², ⁴, Robert R. Edelman², ³ ¹Siemens Healthcare, Chicago, IL, United States; ²Radiology, NorthShore University HealthSystem, IL, United States; ³Radiology, Northwestern University Feinberg School of Medicine, IL, United States; ⁴Radiology, The University of Chicago Pritzker School of Medicine, IL, United States

Computer 64 4510. Combined Parallel Imaging and Compressed Sensing for Rapid Inflow-Enhanced Inversion Recovery (IFIR) Imaging of Carotid Arteries

Allison Grayev¹, Utaroh Motosugi¹, ², Peter Bannas¹, ³, Naoyuki Takei⁴, Kevin King⁵, Kang Wang⁶, James Holmes⁷, Scott Reeder⁸, ⁹, Aaron Field¹

¹Department of Radiology, University of Wisconsin, Madison, WI, United States; ²Department of Radiology, University of Yamanashi, Japan; ³Department of Radiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany, Germany; ⁴Global MR Applications and Workflow, GE Healthcare, Hino, Japan; ⁵Global MR Applications and Workflow, GE Healthcare, Waukesha, WI, United States; ⁶Global MR Applications and Workflow, GE Healthcare, Madison, WI, United States; ⁷Department of Medical Physics, University of Wisconsin, Madison, WI, United States; ⁸Department of Radiology; Department of Medical Physics, University of Wisconsin, Madison, WI, United States; ⁹Department of Biomedical Engineering and Medicine; Department of Emergency Medicine, University of Wisconsin, Madison, WI, United States

Computer 65 4511. Dietary Intake Enhances the Visualization of MR Portography Using Non-Contrast-Enhanced Time-Spatial Labeling Inversion Pulse (Time-SLIP) - Evaluation of Temporal Change After Meal to Determine an Appropriate Examination Timing -

Hiroki Matoba¹, Akiyoshi Yamamoto¹, Yuji Shintani¹, Daiji Uchiyama¹, Seigo Yoshida¹, Katsumi Nakamura, ¹², Mitsue Miyazaki³

¹Radiology, Tobata Kyoritsu Hospital, Kitakyusyu, Fukuoka, Japan; ²Radiology, Hikari Central Hospital, Hikari, Yamaguchi, Japan; ³Toshiba Medical Research Institute USA, Vernon Hills, IL, United States

Computer 66 4512. Fat Saturation Improves Fresh Blood Imaging of Peripheral Vessels in the Calf Station Marc D. Lindley¹, ², Daniel Kim¹, Glen Morrell¹, Marta E. Heilbrun¹, Christopher J. Hanrahan¹, Vivian S. Lee¹ ¹UCAIR, Radiology, University of Utah, Salt Lake City, UT, United States; ²Physics, University of Utah, Salt Lake City, UT, United States

Computer 67 **4513.** Velocity Selective Prepared Non-Contrast Enhanced MR Angiography Using Phase Sensitive Reconstruction *Xinzeng Wang^l*, Joshua S. Greer^l, ², Shu Zhang^l, Ananth J. Madhuranthakam^l, ³ ¹Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ²Bioengineering, UT Dallas, Dallas, TX, United States; ³Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States

Computer 68 4514. High Resolution, First Pass 3D Gadolinium-Enhanced Venography of the Jugular Veins: Application to Multiple Sclerosis

Andrew J. Walsh¹, Derek J. Emery², Ken Warren³, Ingrid Catz³, Alan H. Wilman¹ ¹Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada; ²Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada; ³Neurology, University of Alberta, Edmonton, Alberta, Canada

Computer 69 4515. Positive Contrast High-Resolution 3D-Cine Imaging of the Cardiovascular System in Small Animals Using a UTE Sequence and Iron Nanoparticles at 4.7, 7 and 9.4 T Aurélien Julien Trotier¹, William Lefrancois¹, Kris Van Renterghem¹, Jean-Michel Franconi¹, Eric Thiaudière¹, Sylvain Miraux¹ ¹RMSB-UMR5536, CNRS - Université de Bordeaux, Bordeaux, Aquitaine, France

Computer 70 4516. The Effects of Injection Rate on Vascular Signal Intensity Profile in a Porcine Model Using Four Gadolinium Contrast Agents: Comparison Between Observation and Prediction Based on Measured Blood Relaxivity Values Jeffrey H. Maki¹, Guenther Schneider², Alexander Massmann², Matthias Leist², Diane Wagner-Jochem², Gregory J. Wilson¹

¹Radiology, University of Washington, Seattle, WA, United States; ²Radiology, University Hosptial of Saarland, Homburg, Germany

Computer 71 4517. An MRI-Based CFD Analysis of Flow Patterns in the Jugular Vein Evan Kao¹, ², Farshid Faraji¹, Sarah Kefayati¹, Van Halbach¹, Matthew Amans¹, David Saloner¹ ¹Radiology, UCSF, San Francisco, CA, United States; ²Bioengineering, UC Berkeley, Berkeley, CA, United States

Computer 72 4518. angioCEST: Using TmDOTMA Liposomes and Chemical Exchange Saturation Transfer for MR Angiography Todd C. Soesbe¹, ², Ketan B. Ghaghada³, S. James Ratnakar¹, Chandreshkumar Patel³, Mark Milne¹, A. Dean Sherry¹, ⁴, Robert E. Lenkinski² ¹Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, United States; ²Department of Radiology, UT Southwestern Medical Center, Dallas, TX, United States; ³Texas Children's Hospital, Houston, TX, United States; ⁴Department of Chemistry, University of Texas at Dallas, TX, United States

Electronic Poster

Vessel Wall & Cardiovascular Image Processing

Exhibition Hall Thursday 11:30-12:30

Computer 1 4519. Effect of BOLD Contrast on Myocardial Registration

Ilkay Oksuz¹, Anirban Mukhopadhyay¹, Marco Bevilacqua¹, Hsin-Jung Yang², ³, Rohan Dharmakumar², ³, Sotirios A. Tsaftaris¹, ⁴

¹IMT Institute for Advanced Studies, Lucca, Tuscany, Italy; ²Biomedical Research Institute, Cedars Sinai Medical Center, Los Angeles, CA, United States; ³Medicine, University of California, Los Angeles, CA, United States; ⁴Electrical Engineering and Computer Science, Northwestern University, IL, United States

Computer 2 4520. Three-Dimensional Super-Resolution Technique for Whole-Heart Coronary MRA by Utilizing Graphical Processing Unit Ryohei Nakayama¹, Masaki Ishida¹, Yasutaka Ichikawa¹, Yoshitaka Goto¹, Motonori Nagata¹, Kakuya Kitagawa¹, Hajime Sakuma¹

¹Department of Radiology, Mie University School of Medicine, Tsu, Mie, Japan

Computer 3 4521. Extracting a Cine Cardiac Cycle Without Respiratory Motion from Real-Time Free-Breathing Images with Unsupervised Motion Correction

Haris Saybasili¹, Marie-Pierre Jolie², Bruce Spottiswoode¹ ¹Siemens Healthcare, Chicago, IL, United States; ²Imaging and Computer Vision, Siemens Corporation, Corporate Technology, NJ, United States

Computer 4 4522. Software for Multi-Average Processing in Neonatal Cardiac Imaging Andreia S. Gaspar¹, ², David J. Cox¹, Alan M. Groves¹, ³, Anthony N. Price¹ ¹Centre for the Developing Brain, King's College London, London, United Kingdom; ²Instituto de Biofisica e Engenharia Biomedica, Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal; ³Department of Pediatrics, Weill Cornell Medical College, NY, United States

Computer 5 4523. Prediction of the Benefit of Motion-Compensated Reconstruction for Whole-Heart Coronary MRI Jens Wetzl¹, ², Christoph Forman³, Andreas Maier¹, ², Joachim Hornegger¹, ², Michael O. Zenge³ ¹Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; ²Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; ³Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Germany

Computer 6 4524. Retrospective Motion Correction for Carotid Vessel Wall Imaging

Rui Li¹, Shujing Cao¹, Feng Huang², Chun Yuan¹, ³ ¹Center for Biomedical Imaging Research, Tsinghua University, Beijing, China; ²Philips Research China, Shanghai, China; ³University of Washington, Seattle, WA, United States

Computer 7 4525. Artifact Removal in Carotid Imaging Based on Motion Measurement Using Structured Light Huijun Chen¹, Jin Liu², Zechen Zhou¹, Chun Yuan², Peter Boernert³, Jinnan Wang⁴ ¹Tsinghua University, Beijing, China; ²University of Washington, Seattle, WA, United States; ³Philips Research Europe, Hamburg, Germany; ⁴Philips Reserach North America, Seattle, WA, United States

Computer 8 4526. Data Driven Feature Learning for Representation of Myocardial BOLD MR Images

Anirban Mukhopadhyay¹, Marco Bevilacqua¹, Ilkay Oksuz¹, Rohan Dharmakumar², ³, Sotirios Tsaftaris¹, ⁴ ¹IMT Institute for Advanced Studies Lucca, Luc, Italy; ²Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ³Medicine, University of California, Los Angeles, Los Angeles, CA, United States; ⁴Electrical Engineering and Computer Science, Northwestern University, Evanston, II, United States

Computer 9 4527. Dictionary-Based Support Vector Machines for Unsupervised Ischemia Detection at Rest with CP-BOLD Cardiac MRI

Marco Bevilacqua¹, Anirban Mukhopadhyay, Ilkay Oksuz, Cristian Rusu², Rohan Dharmakumar³, ⁴, Sotirios A. Tsaftaris, ⁵

¹ IMT Institute for Advanced Studies, Lucca, LU, Italy; ²University of Vigo, Vigo, Galicia, Spain; ³Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ⁴Medicine, University of California, Los Angeles, CA, United States; ⁵Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, United States

Computer 10 4528. An Integer Optimization Technique for Measuring Biventricular Cardiac Strain from Tagged MR Images Ming Li⁷, ², Himanshu Gupta³, Steven G. Lloyd³, Louis J. Dell'Italia³, Thomas S. Denney Jr. ¹, ² ¹Auburn University MRI Research Center, Auburn University, Auburn, AL, United States; ²Electrical and Computer Engineering, Auburn University, AL, United States; ³Division of Cardiovascular Disease, University of Alabama at Birmingham, AL, United States

Computer 11 4529. Fully Automated Strain Analysis from SSFP Cines of the Heart Using Non-Rigid Registration Techniques *Yun-Jung Jack Tsai^l*, *Yingmin Liu^l*, *Andreas Greiser²*, *Carmel Hayes²*, *Helen Lam^l*, *Chris Occleshaw^l*, *Alistair Young^l*, *Brett Cowan^l* ¹University of Auckland, Auckland MRI Research Group, Auckland, New Zealand; ²Siemens Healthcare, Erlangen, Germany

Computer 12 4530. Unwrapping-Based Fat-Suppression Method for Imaging Scar Using Bipolar Dual-Echo Acquisition

Junmin Liu¹, Dana C. Peters², Maria Drangova¹, ³ ¹Imaging Research Laboratories, Robarts Research Institute, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontraio, Canada; ²Department of Diagnostic Radiology, Yale Medical School, New Haven, CT, United States; ³Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada

Computer 13 4531. T1-Mapping Based Synthetic Phase-Sensitive Inversion Recovery Imaging for the Accurate Quantification of Myocardial Late Gadolinium Enhancement

Akos Varga-Szemes¹, Rob J. van der Geest², Bruce Spottiswoode³, Giuseppe Muscogiuri¹, ⁴, Carlo N. De Cecco¹, ⁴, Pal Suranyi¹, Wolfgang G. Rehwald³, ⁵, U. Joseph Schoepf⁴

¹Medical University of South Carolina, Charleston, SC, United States; ²Leiden University Medical Center, Leiden, Netherlands; ³Siemens Medical Solutions, Chicago, IL, United States; ⁴University of Rome Sapienza, Rome, Italy; ⁵Duke Cardiovascular Magnetic Resonance Center, Durham, NC, United States

Computer 14 4532. Ungated, Free-Breathing Arrhythmia-Insensitive-Rapid (AIR) Cardiac T₁ Mapping with Motion Corrected Registration

Kyungpyo Hong¹, ², Ganesh Adluru¹, Edward VR. DiBella¹, Daniel Kim¹ ¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Bioengineering, University of Utah, Salt Lake City, UT, United States

Computer 15 4533. Synthetic LGE Derived Automatically from Cardiac T₁ Mapping Using K-Means Clustering of T₁: Virtual TI Scout Approach

Kyungpyo Hong¹, ², Edward VR. DiBella¹, Akram Shaaban, Daniel Sommer, Leif Jensen, Eugene G. Kholmovski¹, Ravi Ranjan³, Daniel Kim¹

¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Department of Bioengineering, University of Utah, Salt Lake City, UT, United States; ³Cardiology, Internal Medicine, University of Utah, Salt Lake City, UT, United States

Computer 16 4534. Motion Correction of Free Breathing Quantitative Myocardial T2 Mapping: Impact on Reproducibility and Spatial Variability

Sébastien Roujol¹, Tamer A. Basha¹, Sebastian Weingärtner¹, Mehmet Akcakaya¹, Sophie Berg¹, Warren Manning¹, ², Reza Nezafat¹

¹Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ²Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

Computer 17 4535. The Influence of Geometric and In-Flow Boundary Conditions on Patient-Specific Computational Fluid Dynamics in a Fontan Patient Population

Merih Cibis¹, Kelly Jarvis², ³, Alex J. Barker², Michael Rose², ⁴, Cynthia Rigsby², ⁴, Michael Markl², ³, Jolanda J. Wentzel¹

¹Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands; ²Radiology, Northwestern University, Chicago, IL, United States; ³Biomedical Engineering, Northwestern University, Chicago, IL, United States; ⁴Medical Imaging, Ann& Robert H Lurie Children's Hospital of Chicago, Chicago, IL, United States

Computer 18 4536. In-Vivo Systolic Pressure Gradients Across the Aortic Root in Patients with a Physiologically Shaped Sinus Prosthesis and Healthy Volunteers Analyzed by 4D Flow MRI Thekla Oechtering¹, Carl Frederik Hons¹, Julian Haegele¹, Peter Hunold¹, Michael Scharfschwerdt², Anja Hennemuth³, Markus Huellebrand³, Hans-Hinrich Sievers², Jörg Barkhausen¹, Alex Frydrychowicz¹ ¹Clinic for Radiology and Nuclear Medicine, University Hospital Schleswig-Holstein, Lübeck, Germany; ²Department of Cardiac and Cardiothoracic Vascular Surgery, University Hospital Schleswig-Holstein, Lübeck, Germany; ³Fraunhofer MEVIS, Bremen, Germany

Computer 19 4537. 3D Cine Atherosclerotic Plaque Images Using 3D Stack of Stars Trajectory Acquisition and Ciné Reconstruction Method Using Retrospective Ordering and Compressed Sensing (Ciné-ROCS)

Seong-Eun Kim¹, John A. Roberts¹, J. Scott Mcnally¹, Bradley D. Bolster, Jr.², Gerald S. Treiman³, ⁴, Dennis L. Parker¹

¹UCAIR, Department of Radiology, University of Utah, Salt Lake City, UT, United States; ²Siemens Healthcare, Salt Lake City, UT, United States; ³Department of Surgery, University of Utah, Salt Lake City, UT, United States; ⁴Department of Veterans Affairs, VASLCHCS, Salt Lake City, UT, United States

Computer 20 4538. Whole-Brain Intracranial Arterial Wall Imaging at 3 Tesla: 3D TSE with CSF Attenuation and Enhanced T1 Weighting

Zhaoyang Fan¹, Qi Yang¹, ², Debiao Li¹ ¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²Radiology, Xuanwu Hospital, Beijing, China

Computer 21 4539. Volumetric Aortic Vessel Wall MRI Using Improved Flow-Independent T2-Prepared Phase Sensitive Inversion Recovery at 3T

M.G.M. van de Steeg¹, ², *M. Henningsson*², *A. Noorani*², *K. Nicolay*¹, *R. Botnar*² ¹Division of Molecular Bioengineering and Molecular Imaging, Eindhoven University of Technology, Eindhoven, Netherlands; ²Division of Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom

Computer 22 4540. Comparison Between Carotid Wall T1,T2 Quantifications with and Without 3D IMSDE Reference Scan Shan Gao¹, Bram F. Coolen², Rob J. van der Geest¹, Dirk H.J. Poot³, ⁴, Aart J. Nederveen² ¹Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Radiology, Academic Medical Center, Amsterdam, Netherlands; ³Biomedical Imaging Group Rotterdam, Erasmus MC Rotterdam, Rotterdam, Netherlands; ⁴Imaging Science and Technology, Delft University of Technology, Delft, Netherlands

Computer 23 4541. Lumen Expansion at Five Locations Along the Venous System of Murine Models

Olivia Palmer¹, Amos Cao², Ulrich Scheven², Jose A. Diaz³, Joan M. Greve² ¹Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States; ²Biomedical Engineering, University of Michigan, MI, United States; ³Surgery, Section of Vascular Surgery, Conrad Jobst Vascular Research Lab, University of Michigan, MI, United States

Computer 24 4542. The Effect of Ivabradine on Plaque Size, Biomechanics, and Microvasculature in Atherosclerotic Rabbits Measured Using MR and Ultrasound Imaging

Raf H.M. van Hoof¹, ², Evelien Hermeling¹, ², Julie Salzmann³, Judith C. Sluimer, ²⁴, Sylvia Heeneman, ²⁴, Arnold P.G. Hoeks, ²⁵, Harry A.J. Struijker-Boudier, ²⁶, Jérôme Roussel³, Joachim E. Wildberger¹, ², M. Eline Kooi¹, ² ¹Radiology, Maastricht University Medical Center, Maastricht, Netherlands; ²Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, Maastricht e Recherches Internationales Servier, Suresnes, France; ⁴Pathology, Maastricht University Medical Center, Maastricht, Netherlands; ⁵Biomedical Engineering, Maastricht University Medical Center, Maastricht, Netherlands; ⁶Pharmacology, Maastrich

Electronic Po	ster
Let It Flow	
Exhibition Hall	Thursday 11:30-12:30
Computer 25 4543.	Intracranial K-T Accelerated Dual-Venc 4D Flow MRI Susanne Schnell ¹ , Can Wu ¹ , ² , Ian G. Murphy ¹ , Julio Garcia ¹ , Michael Markl ¹ , ² ¹ Radiology, Northwestern University, Chicago, IL, United States; ² Biomedical Engineering, Northwestern University, Evanston, IL, United States

Computer 26 4544. Accelerating Flow Encoded MRI by Exploiting Vector Field Divergence Regularization

Claudio Santelli¹, ², *Michael Loecher³*, *Julia Busch²*, *Oliver Wieben³*, ⁴, *Tobias Schaeffter¹*, *Sebastian Kozerke¹*, ² ¹Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom; ²Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ³Department of Medical Physics, University of Wisconsin-Madison, WI, United States; ⁴Department of Radiology, University of Wisconsin-Madison, WI, United States

Computer 27 4545. New Method for Efficient, Volumetric Quantification of Aortic Hemodynamics

Michael J. Rose¹, Kelly Jarvis², ³, Varun Chowdhary², Alex J. Barker², Bradley D. Allen², Joshua D. Robinson⁴, ⁵, Michael Markl², ³, Cynthia K. Rigsby¹, ², Susanne Schnell² ¹Medical Imaging, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States; ²Radiology, Northwestern University, Chicago, IL, United States; ³Biomedical Engineering, Northwestern University, Chicago, IL, United States; ⁴Pediatrics, Northwestern University, Chicago, IL, United States; ⁵Pediatric Cardiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States

Computer 28 4546. Dual-Velocity Encoding Phase-Contrast MRI: Extending the Dynamic Range and Lowering the Velocity to Noise Ratio

Susanne Schnell¹, Julio Garcia¹, Can Wu¹, ², Michael Markl¹, ² ¹Radiology, Northwestern University, Chicago, IL, United States; ²Biomedical Engineering, Northwestern University, Evanston, IL, United States

Computer 29 4547. Assessing Caval Flow Distribution in Patients with Fontan Circulation Using 4D Flow MRI and Probabilistic Flow Connectivity Mapping

Kelly Jarvis¹, ², Susanne Schnell¹, Alex J. Barker¹, James Carr¹, Joshua D. Robinson³, ⁴, Cynthia K. Rigsby¹, ⁴, Michael Markl¹, ²

¹Radiology, Northwestern University, Chicago, IL, United States; ²Biomedical Engineering, Northwestern University, Chicago, IL, United States; ³Pediatrics, Northwestern University, Chicago, IL, United States; ⁴Medical Imaging and Cardiology, Ann & Robert H Lurie Children's Hospital of Chicago, IL, United States

Computer 30 4548. Impact of View Ordering and Soft-Gating on Morphologic Assessment of Congenital Heart Disease with 4D Flow

Joseph Y. Cheng¹,², Kate Hanneman², Tao Zhang¹,², Marcus T. Alley², Peng Lai³, Jonathan I. Tamir⁴, Martin Uecker⁴, Michael Lustig⁴, John M. Pauly¹, Shreyas S. Vasanawala²

¹Electrical Engineering, Stanford University, Stanford, CA, United States; ²Radiology, Stanford University, Stanford, CA, United States; ³Global MR Applications & Workflow, GE Healthcare, Menlo Park, CA, United States; ⁴Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, United States

Computer 31 4549. Radial Displacement Errors and Correction Efficiency for Streamline Visualization in 4D-Flow MRI Michael Loecher¹, Kevin M. Johnson¹, Patrick Turski², Oliver Wieben¹, ² ¹Medical Physics, University of Wisconsin Madison, Madison, WI, United States; ²Radiology, University of Wisconsin Madison, Madison, WI, United States

Computer 32 4550. Clinical Evaluation and Optimization of Highly Accelerated 2D and 4D Phase Contrast Flow Imaging Applications Using Sparse Sampling and Iterative Reconstruction

Andreas Greiser¹, Christoph Forman¹, Jens Wetzel², Christoph Tillmanns³, Aurelien F. Stalder⁴, Michaela Schmidt⁴, Michael Zenge⁵, Edgar Mueller⁴

¹Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Bavaria, Germany; ²Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nuernberg, Pattern Recognition Lab, Erlangen, Bavaria, Germany; ³Diagnostikum Berlin, Berlin, Germany; ⁴Siemens AG, Healthcare, Imaging & Therapy Systems, Magnetic Resonance, Erlangen, Bavaria, Germany; ⁵Siemens Healthcare, NY, United States

Computer 33 4551. Comparison of MRI and CFD Based Wall Shear Stress and Their Relationship with Wall Thickening in Human Carotid Arteries

Merih Cibis¹, Wouter V. Potters², Mariana Selwaness³, Frank J. Gijsen¹, Andres M. Arias Lorza⁴, Aad van der Lugt³, Aart J. Nederveen², Jolanda J. Wentzel¹

¹Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands; ²Radiology, AMC, Amsterdam, Netherlands; ³Epidemiology, Erasmus MC, Rotterdam, Netherlands; ⁴Radiology and Medical Informatics, Erasmus MC, Rotterdam, Netherlands

Computer 34 4552. USPIO Enhanced 3D-Cine Phase Contrast of the Whole Cardiovascular System in Small Animals at 7T with an Ultrashort Echo Time Sequence

Aurélien Julien Trotier¹, Charles Castets¹, William Lefrancois¹, Jean-Michel Franconi¹, Eric Thiaudière¹, Sylvain Miraux¹

¹RMSB-UMR5536, CNRS - Université de Bordeaux, Bordeaux, Aquitaine, France

Computer 35 4553. Inter Breath-Hold Reproducibility of High Temporal Resolution Spiral Phase Velocity Mapping of Coronary Artery Blood Flow and In Vivo Validation Against Doppler Flow Wire Jennifer Keegan¹, Claire Raphael¹, Kim Parker², Robin Simpson³, Ranil de Silva¹, Carlo Di Mario¹, Julian Collinson⁴, Rod Stables⁵, Stephen Strain¹, Sanjay Prasad¹, David Firmin¹, ² ¹Royal Brompton Hospital, London, United Kingdom; ²Imperial College, London, United Kingdom; ³Radiological Physics, Freiburg, Germany; ⁴Chelsea and Westminster Hospital, United Kingdom; ⁵Liverpool Heart and Chest Hospital, United Kingdom Computer 36 4554. Impact of Aortic Valve Replacement on Turbulent Flow Characteristics Christian Binter¹, Alexander Gotschy¹, ², Robert Manka¹, ³, Simon H. Sündermann⁴, Sebastian Kozerke¹, ⁵

*Christian Binter¹, Alexander Gotschy*¹, ², *Robert Manka*¹, ³, *Simon H. Sündermann*⁴, *Sebastian Kozerke*¹, ⁵ ¹Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland; ²Dept. of Internal Medicine, University Hospital Zurich, Switzerland; ³Dept. of Cardiology, University Hospital Zurich, Switzerland; ⁴Division of Cardiovascular Surgery, University Hospital Zurich, Switzerland; ⁵Imaging Sciences and Biomedical Engineering, King's College London, United Kingdom

Computer 37 4555. Preliminary Fetal Hemodynamic Patterns in Late Gestation Fetuses with Common Forms of Cyanotic Congenital Heart Disease by Phase Contrast MRI and T2 Mapping Prashob Porayette¹, Christopher Macgowan², Sujana Madathil¹, Edgar Jaeggi¹, Lars Grosse-Wortmann¹, Shi-Joon Yoo³, John Kingdom⁴, Greg Ryan⁵, Steven Miller⁶, Mike Seed¹
 ¹Pediatric Cardiology, The Hospital for Sick Children, Toronto, ON, Canada; ²Physiology & Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada; ³Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada; ⁴Obstetrics & Gynaecology, Mount Sinai Hospital, Toronto, ON, Canada; ⁶Neurology, The Hospital for Sick Children, Toronto, ON, Canada;

Computer 38 4556. Self-Gated Tissue Phase Mapping Using Golden Angle Radial Sparse SENSE Jan Paul¹, Stefan Wundrak¹, Peter Bernhardt¹, Wolfgang Rottbauer¹, Heiko Neumann², Volker Rasche¹ ¹Internal Medicine II, University Hospital Ulm, Ulm, Germany; ²Institute of Neural Information Processing, University of Ulm, Ulm, Germany

Computer 39 4557. Spatio-Temporal Sacrifices for Wall Shear Stress and Oscillatory Shear Stress Calculations

Wouter V. Potters¹, Merih Cibis², Frank JH Gijsen², Henk A. Marquering¹, ³, Ed vanBavel³, Jolanda J. Wentzel², Aart J. Nederveen¹

¹Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Biomedical Engineering, Erasmus Medical Center, Rotterdam, Netherlands; ³Biomedical Engineering & Physics, Academic Medical Center, Amsterdam, Netherlands

Computer 40 4558. 4D Vs. 2D Flow MRI in 109 Patients with Dilated Ascending Aorta: Improved Assessment of Peak Systolic Velocity

Martin Fasshauer¹, ², *Alexander L. Powell³*, *Alex J. Barker³*, *Susanne Schnell³*, *Joachim Lotz*, ²⁴, *Michael Markl³*, ⁵ ¹Institute for Diagnostic And Interventional Radiology, University Medical Center Goettingen, Goettingen, Lower saxony, Germany; ²German Center for Cardiovascular Research, DZHK, partner site Goettingen, Germany; ³Department of Radiology, Nortwestern University, Chicago, IL, United States; ⁴Institute for Diagnostic And Interventional Radiology, University Medical Center Goettingen, Goettingen, Lower saxony, Germany; ⁵Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States

Computer 41 4559. Analysis of Aortic Pulse Wave Velocities Using Real-Time PC MRI Arun Antony Joseph¹, Martin Fasshauer², Klaus-Dietmar Merboldt³, Jens Frahm³ ¹Biomedizinsche NMR Forschungs GmbH am Max Planck Institut fuer biophysikalische Chemie, Goettingen, Niedersachsen, Germany; ²Abteilung Diagnostische Radiologie, Universitätsmedizin Goettingen, Niedersachsen, Germany; ³Biomedizinsche NMR Forschungs GmbH am Max Planck Institut fuer biophysikalische Chemie, Germany; ³Biomedizinsche NMR

Computer 42 4560. MR Phase-Contrast Imaging with Automatic Inline Flow Quantification and Visualization Mehmet Akif Gulsun¹, Arne Littmann², Timothy Slesnick³, Ning Jin⁴, Andreas Greiser², Marie-Pierre Jolly¹, Gary McNeal⁴, Aurelien F. Stalder² ¹Imaging and Computer Vision, Siemens Corporate Technology, Princeton, NJ, United States; ²Siemens Healthcare, Erlangen, Germany; ³Emory University School of Medicine, Children's Healthcare of Atlanta, GA, United States; ⁴Siemens Healthcare, IL, United States

Computer 43 4561. High-Acquisition-Efficiency Cardiac 4D Flow MRI for High-SNR Motion-Robust Imaging with Contrast Agent During Delayed Enhancement Wait Time Peng Lai¹, Ann Shimakawa¹, Joseph Y. Cheng², Marcus T. Alley², Shreyas S. Vasanawala², Anja CS Brau³

¹Global MR Applications & Workflow, GE Healthcare, Menlo Park, CA, United States; ²Radiology, Stanford University, CA, United States; ³Global MR Applications & Workflow, GE Healthcare, Munich, Germany

Computer 44 4562. Assessment of Flow Vorticity in the Right Heart of Patients with Repaired Tetralogy of Fallot Julio Garcia¹, Daniel Hirtler², Alex J Barker¹, Julia Geiger², ³ ¹Radiology, Northwestern University, Chicago, IL, United States; ²Congenital Heart Defects and Pediatric Cardiology, University Hospital Freiburg, Freiburg, Germany; ³Radiology, University Childrens' Hospital Zurich, Zurich, Switzerland

Computer 45 4563. Coil Array Compression for Tissue Phase Mapping Jan Paul¹, Stefan Wundrak¹, Heiko Neumann², Volker Rasche¹ ¹Internal Medicine II, University Hospital Ulm, Ulm, Germany; ²Institute of Neural Information Processing, University of Ulm, Ulm, Germany

Computer 46 4564. 4D Flow MRI to Monitor Mean Pulmonary Arterial Pressure in Patients with Chronic Thromboembolic Pulmonary Hypertension Treated by Percutaneous Transluminal Pulmonary Angioplasty Hideki Ota¹, Koichiro Sugimura², Haruka Sato², Kotaro Nochioka², Shunsuke Tatebe², Saori Yamamoto², Masanobu Miura², Kimio Satoh², Yuta Urushibata³, Yoshiaki Komori³, Aurelien F. Stalder⁴, Andreas Greiser⁴, Hiroaki Shimokawa², Kei Takase¹ ¹Diagnostic Radiology, Tohoku University Hospital, Sendai, Miyagi, Japan; ²Cardiology, Tohoku University Hospital, Sendai, Miyagi, Japan; ³Siemens Japan K.K, Tokyo, Japan; ⁴Siemens Healthcare, Erlangen, Germany

Computer 47 4565. 4D Flow MRI Assessment of Cerebrospinal Venous Blood Flow in Multiple Sclerosis Patients and Age/Sex-Matched Controls

Eric Mathew Schrauben¹, Kevin M. Johnson¹, Aaron Field², Oliver Wieben¹, ² ¹Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ²Radiology, University of Wisconsin - Madison, Madison, WI, United States

Computer 48 4566. Systolic Pressure Gradients Derived from 4D Flow in a Physiological Healthy and Aortic Coarctation Phantom Versus Cardiac Catheterization

Jesús Urbina¹,², Julio Sotelo²,³, Cristian Montalba², Cristián Tejos²,³, Pablo Irarrázaval²,³, Marcelo Andía²,⁴, Israel Valverde⁵,⁶, Sergio Uribe²,⁴

¹School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile; ²Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile; ³Electrical Engineering Department, Pontificia Universidad Católica de Chile, Santiago, Chile; ⁴Radiology Department, Pontificia Universidad Católica de Chile, Santiago, Chile; ⁵Pediatric Cardiology Unit, Hospital Virgen del Rocio, Seville, Spain; ⁶Institute of Biomedicine of Seville, Universidad de Sevilla, Seville, Spain

Electronic Poster

New Insights & Innovations in Cardiovascular MRI

Exhibition Hall Thursday 11:30-12:30

Computer 49 4567. Simultaneous Multi-Slice Dark Blood Cardiac Imaging Using Multiband Double-Inversion Recovery TSE Dingxin Wang¹, ², Edward Auerbach³, Gary McNeal⁴, Peter Kollasch¹, Uma Valett⁵, Vibhas Deshpande⁶, Kamil Ugurbil³, Greg Metzger³ ¹Siemens Healthcare, Minneapolis, MN, United States; ²CMRR, Department of Radiology, University of Minnesota, Minneapolis,

⁵Siemens Healthcare, Minneapolis, MN, United States; ⁵CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ³CMRR, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ⁴Siemens Healthcare, Dallas, TX, United States; ⁵Departments of Medicine and Radiology, University of Minnesota, Minneapolis, MN, United States; ⁶Siemens Healthcare, Austin, TX, United States

Computer 50 4568. Free-Breathing Diffusion Tensor MRI of the Entire Human Heart *In Vivo* Using Simultaneous Multislice Excitation and Spatiotemporal Registration Choudry Makkaow¹ Timothy G. Pagea² Staphan F. Caulay² Kawin Satsampor² Himanshy Bhat³ William J. Kost

Choukri Mekkaoui¹, Timothy G. Reese², Stephen F. Cauley², Kawin Setsompop², Himanshu Bhat³, William J. Kostis², Marcel P. Jackowski⁴, David E. Sosnovik² ¹Harvard Medical School - Massachussetts General Hospital, Boston, MA, United States; ²Harvard Medical School-Massachusetts General Hospital, Boston, MA, United States; ³Siemens, Boston, MA, United States; ⁴University of São Paulo, São Paulo, Brazil

Computer 51 4569. Respiratory Resolved Cardiac Cine Imaging Using Self-Gated Golden Angle Radial Acquisition Karen Holst¹, Martin Ugander¹, Andreas Sigfridsson¹

¹Department of Clinical Physiology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden

- Computer 52 4570. Cardiac Magnetic Resonance Imaging with Doppler Ultrasound as Alternative Trigger Method at 3T Fabian Kording¹, Bjoern Schoennagel¹, Friedrich Ueberle², Gunnar Lund¹, Gerhard Adam¹, Jin Yamamura¹ ¹Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ²Faculty of Life Sciences, University of Aplied Sciences, Hamburg, Germany
- Computer 53 4571. 4D Flow MRI of the Great Vessels During Respiration Plateaus Eric Mathew Schrauben¹, Christopher J. François², Oliver Wieben¹, ², Alejandro Roldán-Alzate² ¹Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ²Radiology, University of Wisconsin - Madison, WI, United States
- Computer 54 4572. Multi-Channel Double-Tuned TX/RX RF Coil Using Loop Elements for ²³Na and Loopole Elements for ¹H Cardiac MR Imaging at 7.0 Tesla Helmar Waiczies¹, Jan Rieger¹, Armin M. Nagel², Andreas Graessl³, Lukas Winter³, Thoralf Niendorf³ ¹MRI.Tools GmbH, Berlin, Germany; ²Division of Medical Physics in Radiology, Cancer Research Center (DKFZ), Heidelberg, Germany; ³Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Computer 55 4573. 7D DSA: a Dual Modality Combination of 4D DSA and 4D Flow MRI CHARLES ANTHONY MISTRETTA¹, CHARLES STROTHER, OLIVER WIEBEN¹ ¹MEDICAL PHYSICS AND RADIOLOGY, U OF WISCONSIN-MADISON, MADISON, WI, United States
- Computer 56 4574. In Vivo Detection of Myocardial Fibrosis Using Native T1p and T2* Mapping in an Animal Model of Chronic Myocardial Infarction

Joep van Oorschot¹, Sanne Jansen of Lorkeers¹, Fredy Visser², Pieter Doevendans¹, Johannes Gho¹, Steven Chamuleau¹, Peter Luijten¹, Jaco Zwanenburg¹ ¹University Medical Center Utrecht, Utrecht, Netherlands; ²Philips Healthcare, Best, Noord-Brabant, Netherlands

- Computer 57 4575. Accelerate Free Breathing Cardiac Cine Imaging with Propeller and GRAPPA *Tsung-Lun Wu¹*, *Ching-Lung Cheng²*, *Ming-Ting Wu³*, ⁴, *Ming-Long Wu¹*, ², *Tzu-Cheng Chao¹*, ² ¹Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan; ²Institute of Medical Informatics, National Cheng-Kung University, Tainan, Taiwan; ³Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; ⁴School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Computer 58 4576. Free-Breathing 3D Late Gadolinium Enhancement MRI Using Outer Volume Suppressed Projection Navigators Rajiv G. Menon¹, G Wilson Miller², Jean Jeudy¹, Sanjay Rajagopalan³, Taehoon Shin¹ ¹Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States; ²Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States; ³Division of Cardiovascular Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
- Computer 59 4577. MRI Assessment of Cardiac Function in Response to Exercise Jacob Macdonald¹, Omid Forouzan², Jared Warczytowa², Oliver Wieben¹, ³, Naomi Chesler², Christopher Francois³ ¹Medical Physics, University of Wisconsin - Madison, Madison, WI, United States; ²Biomedical Engineering, University of Wisconsin - Madison, Madison, WI, United States; ³Radiology, University of Wisconsin - Madison, Madison, WI, United States
- Computer 60 4578. Rapid Ungated Free-Breathing Cardiac MRI Protocol Edward DiBella^{1, 2}, Elwin Bassett³, Kyungpyo Hong, ²³, Ganesh Adluru³, Devavrat Likhite³, Promporn Suksaranjit⁴, Brent Wilson⁴, Chris McGann⁴, Daniel Kim, ²³ ¹University of Utah, Salt Lake City, UT, United States; ²Bioengineering, University of Utah, Salt Lake City, UT, United States; ³Radiology, University of Utah, UT, United States; ⁴Cardiology, University of Utah, UT, United States

Computer 61 4579. Real-Time Heart MRI of the Mouse

Amir Moussavi¹, Philipp R. Bovenkamp², Verena Hoerr², Cornelius Faber², Susann Boretius¹

¹Section Biomedical Imaging, Department of Radiology and Neuroradiology, Christian-Albrechts-University, Kiel, Germany; ²Institute of Clinical Radiology, University Hospital of Muenster, Muenster, Germany

- Computer 62 4580. Cardiac Diffusion-Weighted MRI with Selective RF Excitation in a Single Breath-Hold Mahdi Salmani Rahimi¹, Dominik Fleischmann¹, Anne Chin¹, ², Roland Bammer¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²Radiology, Centre hospitalier de l'Université de Montréal, Montreal, QC, Canada
- Computer 63 4581. Whole-Heart T1 and Extracellular Volume Fraction Mapping with 6 Heartbeats Sohae Chung¹, ², Pippa Storey¹, ², Leon Axel¹, ² ¹Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY, United States; ²Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, United States
- Computer 64 4582. A New Method for Quantification of Aortic Stiffness In Vivo Using Magnetic Resonance Elastography (MRE): A Translational Study from Sequence Design to Implementation in Patients Rachel Clough¹, Ondrej Holub¹, Henry Fok¹, Nick Gaddum¹, Jordi Alastruey¹, Ralph Sinkus¹ ¹King's College London, London, United Kingdom
- Computer 65 4583. A Novel Imagery-Based Method for Preoperative EVAR/TEVAR Modeling: Validation Anou Sewonu¹, ², Ramiro Moreno¹, ², Olivier Meyrignac³, Hervé Rousseau³ ¹I2MC, INSERM/UPS UMR 1048, Toulouse, France; ²ALARA Expertise, Strasbourg, France; ³Pôle imagerie, CHU Toulouse, Toulouse, France

Computer 66 4584. New Intrinsic Frequency Measures of Cardiac Function Vs. Cardiac MRI as a Gold Standard

Niema M. Pahlevan⁷, ², Thao T. Tran³, Peyman M. Tavallali⁴, Derek G. Rinderknecht⁵, Marie Csete, Morteza M. Gharib⁴

¹Medical Engineering, California Institute of Technology, Pasadena, CA, United States; ²Magnetic Resonance Spectroscopy, Huntington Medical Research Institute, Pasadena, CA, United States; ³Magnetic Resonance Spectroscopy, Huntington Medical Research Institutes, Pasadena, CA, United States; ⁴Graduate Aerospace Laboratory, California Institute of Technology, Pasadena, CA, United States; ⁵Aerospace, California Institute of Technology, Pasadena, CA, United States

- Computer 67 **4585.** *In Vivo* Cardiac MR Elastography on Mouse *Yifei Liu¹, Thomas J. Royston¹, ², E Douglas Lewandowski³, ⁴* ¹Department of Mechanical & Industrial Engineering, University of Illinois at Chicago, Chicago, IL, United States; ²Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, United States; ³Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States; ⁴Department of Physiology & Biophysics and Medicine (Cardiology), University of Illinois at Chicago, Chicago, IL, United States;
- Computer 68 4586. Simulation and Phantom Study of Wall Shear Stress in Arteriovenous Grafts Daniel Beauchamp¹, ², Steven G. Lloyd³, ⁴, Michael Allon³, Timmy Lee³, Nouha Salibi, ¹⁵, Thomas S. Denney Jr. ¹, ² ¹AU MRI Research Center, Auburn University, Auburn, AL, United States; ²Electrical and Computer Engineering, Auburn University, Auburn, AL, United States; ³Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States; ⁴VA Medical Center, Birmingham, AL, United States; ⁵MR R&D, Siemens Healthcare, Malvern, PA, United States
- Computer 69 4587. Myocardial Steatosis and Its Association with Obesity and Regional Ventricular Dysfunction: Evaluated by Magnetic Resonance Tagging and 1H Spectroscopy in Healthy African Americans Chia-Ying Liu¹, David A. Bluemke¹, Gary Gerstenblith², Stefan L. Zimmerman², Ji li², hong zhu³, Shenghan Lai², Hong Lai² ¹Radiology and Imaging Sciences, NIH, Bethesda, MD, United States; ²Johns Hopkins School of Medicine, MD, United States; ³johns

¹Radiology and Imaging Sciences, NIH, Bethesda, MD, United States; ²Johns Hopkins School of Medicine, MD, United States; ³Johns Hopkins School of Medicine, MD, United States

Computer 70 4588. Dedicated Neonatal Cardiac Coil – Preliminary Results

Michael S. Hansen¹, Russel R. Cross², Laura J. Olivieri, ¹², Kendall O'Brien, ¹², Hui Xue¹, Matthew R. DiPrimio³, Paul Taylor³, Tsinghua Zheng³, Xiaoyu Yang³, Matthew Finnerty³, Peter Kellman¹

¹National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; ²Children's National Medical Center, Washington, D.C., United States; ³Quality Electrodynamics, Mayfield Village, OH, United States

Computer 71 4589. ECG and Navigator-Free 4D Whole-Heart Coronary MRA: Preliminary Comparisons with Conventional Protocols

Jianing Pang¹, Behzad Sharif¹, Zhaoyang Fan¹, Xiaoming Bi², Reza Arsanjani¹, Daniel S. Berman¹, Debiao Li¹, ³ ¹Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States; ²MR R&D, Siemens Healthcare, Los Angeles, CA, United States; ³Medicine and Bioengineering, University of California, Los Angeles, CA, United States

Computer 72 **4590.** Comprehensive Morphological Classification of Bicuspid Aortic Valve by Cine CMR in 368 Patients. Ian Gavin Murphy¹, Alex J. Barker², Michael Markl², Chris memorial Malaisrie³, Patrick M. McCarthy³, Colleen memorial Clennon⁴, James C. Carr¹, Jeremy Collins¹ ¹Cardiovascular Imaging, Feinberg School of Medicine, Northwestern Memorial Hospital, CHICAGO, IL, United States; ²Cardiovascular Imaging, Northwestern University, CHICAGO, IL, United States; ³Cardiothoracic Surgery, Feinberg School of Medicine, Northwestern Memorial Hospital, CHICAGO, IL, United States; ⁴Cardiothoracic Specialist Nurse, Feinberg School of Medicine, Northwestern Memorial Hospital, CHICAGO, IL, United States;

Electroni	c Poster
LICCHUII	

Hyperpolarized MR

Exhibition	Hall	Thursday 13:30-14:30
Computer 1	4591.	Comparison of FDG-PET and Hyperpolarized Pyruvate in Assessing Response to an Isoform-Specific PI3K
		Inhibitor in Breast Cancer <i>Aaron K. Grant¹, Gopal Varma¹, Hai Hu², Xiaoen Wang¹, Ashish Juvekar², Soumya Ullas², Gerburg Wulf²</i> ¹ Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States; ² Hematology and Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States

Computer 2 4592. High Resolution Hyperpolarized Metabolic Imaging with Three-Dimensional Spectral-Spatial EPI at 7T Jack J. Miller¹, ², Angus Z. Lau¹, ³, Damian J. Tyler¹, ³

¹Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom; ²Department of Physics, University of Oxford, Oxford, United Kingdom; ³Department of Cardiovascular Medicine, OCMR, University of Oxford, Oxford, United Kingdom

Computer 3 4593. Effect of Acetate Concentration on Its Cerebral Metabolism Studied by Hyperpolarized ¹³C MRS Elise Vinckenbosch¹, Mor Mishkovsky¹, Arnaud Comment², Rolf Gruetter¹, ³ ¹Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; ²Institute Of Physics Of Biological Sytems, Ecole Polytechnique Fédérale de Lausanne, Switzerland; ³Department of Radiology, Université de Lausanne et de Genève, Lausanne and Geneva, Switzerland

Computer 4 4594. Magnetic Field Dependence of Singlet State Lifetimes and Implications for Hyperpolarized Magnetic Resonance Thomas Theis¹, Matthew Morgan¹, Kevin Claytor², Ryan Davis³, Zijian Zhou¹, Warren Warren⁴ ¹Chemistry, Duke University, Durham, NC, United States; ²Physics, Duke University, Durham, NC, United States; ³BME, Duke University, Durham, NC, United States; ⁴Chemistry, Physics, Radiology and BME, Duke University, Durham, NC, United States

Computer 5 **4595.** Time Evolution of [1,2-¹³C]Pyruvate Doublet Asymmetry in Hyperpolarized ¹³C MRS *Keshav Datta¹*, *Daniel Spielman²* ¹Dept. of Electrical Engineering, Stanford University, Stanford, CA, United States; ²Dept. of Radiology, Stanford University, Stanford, CA, United States

Computer 6 4596. In Vivo T₂ Mapping of Hyperpolarized [1-¹³C] Pyruvate Using an Indirect Method Eunhae Joe¹, Joonsung Lee², Hansol Lee¹, Seungwook Yang¹, Young-suk Choi³, Eunkyung Wang³, Ho-Taek Song³, Dong-Hyun Kim¹ ¹School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea; ²Severance Biomedical Science Institute, Yonsei University, Seoul, Korea; ³Department of Radiology, Yonsei University College of Medicine, Seoul, Korea

Computer 7 **4597.** Hyperpolarized 1-13C Pyruvate Metabolism as Marker of Inflammation and Progression of Lung Injury Hoora Shaghaghi¹, Yi Xin¹, Sarmad Siddiqui¹, Stephen Kadlecek¹, Mehrdad Pourfathi¹, Maurizio Cereda², Harrilla Profka¹, Hooman Hamedani¹, Rahim R. Rizi¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States

Computer 8 4598. Voxel-By-Voxel Signal Correlations Between Carbon-13 Metabolic and Perfusion Agents in a Rat Breast Cancer Xenograft Model by Co-Polarization of Pyruvic Acid and HP001 Justin Y.C. Lau¹, ², Albert P. Chen³, Yiping Gu², William Dominguez-Viqueira², Charles H. Cunningham¹, ² ¹Dept. of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ²Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ³GE Healthcare, Toronto, Ontario, Canada

Computer 9 **4599.** Development of High Resolution 3D Hyperpolarized ¹³C Imaging Techniques Eugene Milshteyn¹, Cornelius von Morze¹, Galen D. Reed², Hong Shang¹, Peter J. Shin¹, Zihan Zhu¹, John Kurhanewicz¹, Robert Bok¹, Daniel B. Vigneron¹ ¹Radiology and Biomedical Imaging, UCSF, San Francisco, CA, United States; ²HeartVista, Menlo Park, CA, United States

Computer 10 4600. Hyperpolarized 1-13C Pyruvate Metabolism of Inflamed Lung Via Pulmonary Delivery: A Preliminary Study Hoora Shaghaghi¹, Stephen Kadlecek¹, Mehrdad Pourfathi¹, Sarmad Siddiqui¹, Harrilla Profka¹, Hooman Hamedani¹, Maurizio Cereda², Yi Xin¹, Rahim R. Rizi¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States

- Computer 11 4601. ParaHydrogen Induced Polarization Via Side Arm Hydrogenation (PHIP-SAH) Allows Hyperpolarization of Acetate and [1-13C] Pyruvate Francesca Reineri¹, Tommaso Boi², Silvio Aime³ ¹Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; ²Bracco Imaging Spa, Italy; ³Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Computer 12 4602. Observing Gluconeogenesis in Real-Time in the Zucker Rat Using Hyperpolarized [2-¹³C]Dihydroxyacetone Karlos Moreno¹, Jian-Xiong Wang², Leila Fidelino³, A. Dean Sherry³, Craig Malloy³, Matthew E. Merritt² ¹UT Southwestern Medical Center, Dallas, TX, United States; ²AIRC, UT Southwestern Medical Center, Dallas, TX, United States; ³AIRC, UT Southwestern Medical Center, TX, United States

Computer 13 4603. Strategies to Simplify and Generalize Hyperpolarization of Heteronuclei Invoking the Cost-Efficient SABRE Method

Thomas Theis¹, Milton Truong², Eduard Chekmenev³, Warren Warren⁴ ¹Chemistry, Duke University, Durham, NC, United States; ²Radiology, Vanderbilt University, Nashville, TN, United States; ³Radiology and BME, Vanderbilt University, Nashville, TN, United States; ⁴Chemistry, Physics, Radiology and BME, Duke University, Durham, NC, United States

Computer 14 4604. Hyperpolarized [U-2H, U-13C]glucose Reports on Glycolytic and Pentose Phosphate Pathway Activity in EL4 Tumors and Glycolytic Activity in Yeast Cells. *Kerstin N. Timm¹*, ², *Johannes Hartl¹*, *Markus Keller¹*, *De-En Hu¹*, ², *Alan J. Wright²*, *Mikko I. Kettunen¹*, ², *Tiago B. Rodrigues²*, *Susana Ros²*, *Markus Ralser¹*, ³, *Kevin M. Brindle¹*, ² ¹Department of Biochemistry, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ²CRUK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; ³MRC National Institute for Medical Research, London, United Kingdom

Computer 15 4605. Ramp-Sampled, Symmetric EPI for Rapid Dynamic Metabolic Imaging of Hyperpolarized ¹³C Substrates on a Clinical MRI Scanner Jeremy W. Gordon¹, Sonam Machingal¹, John Kurhanewicz¹, Daniel Vigneron¹, Peder Larson¹

Jeremy W. Gordon', Sonam Machingal', John Kurhanewicz', Daniel Vigneron', Peder Larso ¹Radiology & Biomedical Imaging, UCSF, San Francisco, CA, United States

Computer 16 4606.	Gadoxetate-Attenuated Hyperpolarized ¹³ C MRI for Selective Assessment of Liver Metabolism
	Michael Abram Ohliger ¹ , Cornelius von Morze ¹ , Jeremy Gordon ¹ , Robert Bok ¹ , Jane Z. Wang ¹ , Peter Shin ¹ , John
	Kurhanewicz ¹ , Daniel Vigneron ¹
	¹ Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States

Computer 17 4607. A Novel Bloch-McConnell Simulator for Perfused Hyperpolarized Substrates Christopher M. Walker¹, James Bankson¹ ¹Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, United States

Computer 18 4608. Characterization of Glycolytic Activity and Perfusion in a Renal Cell Carcinoma Model During Sunitinib Treatment and Resistance with Hyperpolarized ¹³C MRI Leo L. Tsai^l, Xiaoen Wang^l, Gopal Varma^l, David Alsop^l, Aaron K. Grant^l ¹Department of Radiology, Beth Israel Deaconess Medical Center, Boston, MA, United States

Computer 19 4609. On the Utility of Propionate as a Probe of Myocardial Energy Metabolism Using Hyperpolarization – Effects on Anaplerotic Flux and Substrate Preference Mukundan Ragavan¹, Xiaorong Fu¹, Shawn C. Burgess¹, Matthew E. Merritt¹ ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States

Computer 20 4610. Assessing Tumor Microenvironment in Rat Glioma Model Using Hyperpolarized 13C MRSI with a Sliding Window

Jae Mo Park¹, Ralph E. Hurd², Dirk Mayer³, Lawrence D. Recht⁴, Daniel M. Spielman¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²Applied Sciences Laboratory, GE Healthcare, Menlo Park, CA, United States; ³Diagnostic Radiology & Nuclear Medicine, University of Maryland, Baltimore, Baltimore, MD, United States; ⁴Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States

Computer 21 4611. Quantification of TAE-Induced Alterations in Tumor Metabolism Using Hyperpolarized ¹³C-MRSI Mehrdad Pourfathi¹, Terence Gade¹, Stephen Hunt¹, Stephen Pickup¹, Anthony Mancuso¹, Stephen Kadlecek¹, Neil Harrison¹, Gregory Nadolski¹, Rahim R. Rizi¹, Mitchell Schnall¹, Michael Soulen¹, Simon Celeste² ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Cell and Developmental Biology, University of Pennsylvania, PA, United States

Computer 22 4612. SNR Comparison of EPI and Spiral 3D Time Resolved Imaging of Hyperpolarized [1-¹³C]Pyruvate and [1-¹³C]Lactate

Benjamin J. Geraghty¹, ², Justin Y.C. Lau¹, ², Albert P. Chen³, William Dominguez-Viqueira¹, Charles H. Cunningham¹,

¹Imaging Research, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; ²Dept. of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; ³GE Healthcare, Toronto, Ontario, Canada

Electronic Poster MRS-Animal Models & Non-Proton MRI

 Exhibition Hall
 Thursday 13:30-14:30

 Computer 25
 4613.
 Gender Differences in the Effect of Acute Nicotine Administration in Rat Brain by MRS.

 Tetyana Konak^l, Jaivijay Ramu^l, Serguei Liachenko^l
 'Neurotoxicology, NCTR / FDA, Jefferson, AR, United States

Computer 26 4614. Brain Energy Metabolism Measured by ¹³C MRS *In Vivo* Upon Infusion of [3-¹³C]lactate *Joao M.N. Duarte¹*, *Freya-Merret Girault¹*, *Rolf Gruetter¹*, ² ¹LIFMET, EPFL, Lausanne, Vaud, Switzerland; ²Radiology, UNIL and UNIGE, Lausanne and Geneva, Vaud & Geneva, Switzerland

Computer 27 4615. *CMRO*₂ Quantification by Direct ¹⁷O MRI at 7 T in the Macaque Brain: Assessment of Energy Metabolism Impairment *In Vivo Chloe Najac¹*, ², *Brice Tiret¹*, ², *Julien Flament¹*, ³, *Martine Guillermier¹*, ², *Diane Houitte¹*, ², *Romina Aron Badin¹*, ²,

Chloe Najac¹, ², Brice Tiret¹, ², Julien Flament¹, ³, Martine Guillermier¹, ², Diane Houitte¹, ², Romina Aron Badin¹, ², *Philippe Hantraye¹*, ², Emmanuel Brouillet¹, ², Vincent Lebon¹, ², Julien Valette¹, ²

¹CEA-MIRCen, Fontenay-aux-Roses, France; ²CEA-CNRS URA 2210, Fontenay-aux-Roses, France; ³Inserm US27, CRC-MIRCen, Fontenay-aux-Roses, France

- Computer 28 4616. Activity of Pentose Phosphate Pathway and Pyruvate Dehydrogenase Is Decreased in MPTP Model of Parkinson's Disease: A ¹³C NMR Study Puneet Bagga¹, Komal Kumari Mandal¹, Anant Bahadur Patel¹ ¹NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India
- Computer 29 4617. Comparative ¹H-MRS Study of IDH1 and IDH2 Mutated Gliomas in Rodent Brain at 9.4T Hyeong Hun Lee¹, ², Sungjin Kim, ¹², Hye Rim Cho, ¹², Hwon Heo¹, ², Seung Hong Choi, ¹², Hyeonjin Kim¹, ² ¹Biomedical Sciences, Seoul National University, Seoul, Korea; ²Radiology, Seoul National University Hospital, Seoul, Korea

Computer 30 4618. In-Vivo 13C MRS Detects an Increase in Lactate Production Associated with PDH Down-Regulation in Genetically Engineered Mutant IDH1 Glioma Tumors Jose Luis Izquierdo Garcia¹, Marina Radoul¹, Myriam M. Chaumeil¹, Pia Eriksson¹, Pavithra Luis Viswanath¹, Sabrina M. Ronen¹ ¹University California San Francisco, San Francisco, CA, United States

Computer 31 4619. Determination of Fatty Acid Profile of Intact Fish by Intermolecular Double-Quantum Coherence ¹H-NMR Spectroscopy Honghao Cai¹, Liangjie Lin¹, Xiaohong Cui¹, Zhong Chen¹

¹Electronic Science Department, Xiamen University, Xiamen, Fujian, China

- Computer 32 4620. Hippocampal Dependent Cognitive Dysfunction and Microstructural Changes During Early Delayed Phase After Whole Body Radiation Exposure Mamta Aryabhushan Gupta¹, Poonam Rana¹, Richa Trivedi¹, Seenu Haridas², Kailash Manda², B S Hemanth Kumar¹, Subash Khushu¹ ¹NMR Research Centre, INMAS,DRDO, Delhi, India; ²Division of Radiation Biosciences, INMAS,DRDO, Delhi, India
- Computer 33 4621. Early Hepatic Lipid Changes in Fatty Liver Rat Model by *In Vivo* Short-TE 1H-MRS at 3T *Hyeon-Man Baek*¹, ², *Jooyun Kim*¹, *Youngjae Jeon*¹, *Mirim Bang*¹ ¹Center for MR Research, Korea Basic Science Institute, Ochang, Chungbuk, Korea; ²Department of Bio-Analitical Science, University of Science & Technology, Daejeon, Chungnam, Korea
- Computer 34 4622. Regional Cerebral Metabolic Activity in Genetic Mouse Model of Parkinson's Disease: An NMR Investigation for Biomarkers

Puneet Bagga¹, Anup N. Chugani¹, Mavuri Suresh Kumar¹, Anant Bahadur Patel¹ ¹NMR Microimaging and Spectroscopy, Centre for Cellular and Molecular Biology, Hyderabad, Andhra Pradesh, India

- Computer 35 4623. Liver Metabolites in Rat Model of Non-Alcoholic Fatty Liver Disease: Quantification of Choline-Containing Compounds and Lipid Content by Using *In Vivo* Proton Magnetic Resonance Spectroscopy *Kyu-Ho Song¹*, *Hyeon-Man Baek²*, *Do-Wan Lee¹*, *Bo-Young Choe¹* ¹Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, Korea; ²Center for Magnetic Resonance Research, Korea Basic Science Institute, Chungbuk, Korea
- Computer 36 4624. Investigation of Early Biochemical Changes in Liver Fibrosis Using an Experimental Mouse Model Jadegoud Yaligar¹, Swee Shean Lee¹, Elma Faylon Ilanto², Sanjay K. Verma¹, Kanaga Sabapathy², S Sendhil Velan¹ ¹Laboratory of Molecular Imaging, Singapore Bioimaging Consortium, Singapore, Singapore; ²Laboratory of Molecular Carcinogenesis, National Cancer Center, Singapore, Singapore
- Computer 37 4625. Argon Augments Hypothermic Neuroprotection in a Perinatal Asphyxia Piglet Model: Evaluation by 31P and 1H MRS David Price¹, Alan Bainbridge¹, Kevin Broad², Go Kawano², Igor Fierens², Mojgan Ezzati², Magdalena Sokolska³, Aaron Oliver-Taylor², Jamshid Rostami², Robert Sanders⁴, Ernest Cady¹, Xavier Golay⁵, Nicola Robertson²

¹Dept Medical Physics & Bioengineering, UCLH NHS Foundation Trust, London, United Kingdom; ²Institute for Womens Health, University College London, London, United Kingdom; ³Dept. Medical Physics and Bioengineering, University College London, London, United Kingdom; ⁴Department of Anaesthesia & Surgical Outcomes Research Centre, University College London, London, United Kingdom; ⁵Institute of Neurology, University College London, London, United Kingdom

Computer 38 4626. ¹H-[¹³C]-NMR Study of Brain Energy Metabolism in AlCl₃ Model of Alzheimer's Disease: Improvement of Energy Metabolism with Rasa-Sindoor Intervention Kamal Saba¹, Niharika Rajnala¹, Subhash Chandra Lakhotia², Anant Bahadur Patel¹ ¹Centre for Cellular and Molecular Biology, Hyderabad, India; ²Department of Zoology, Banaras Hindu University, Varanasi, India

Computer 39 4627. Local Glial Energy Metabolism Supports Glutamatergic Neurotransmission During Increased Focal Cortical Activity: A ¹³C MRS Study in the Rat Cortex *In Vivo*

Sarah Sonnay¹, Nathalie Just², Rolf Gruetter³, ⁴, João M.N. Duarte¹

¹Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ²Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ³Center for Biomedical Imaging (CIBM) and Laboratory of Functional and Metabolic Imaging (LIFMET), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; ⁴Department of Radiology, University of Geneva and Lausanne, Switzerland

Computer 40 4628. Simultaneous B1 Mapping and Tissue Sodium Content Quantification by MRI at 3 Tesla

Jonathan Lommen¹, ², Simon Konstandin, ¹³, Lothar R. Schad⁴

¹Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany; ²Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ³MR-Imaging and Spectroscopy, Faculty 01 (Physics/Electrical Engineering), University of Bremen, Bremen, Germany; ⁴Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany

Computer 41 4629. Combined Sodium NODDI: Towards Quantitative *In Vivo* Intracellular and Intraneurite Sodium Measures at 3T

Bhavana S. Solanky¹, Patricia Alves Da Mota¹, Ferran Prados², Torben Schneider¹, Frank Riemer¹, Wallace Brownlee¹, Francesco Grussu¹, Manuel Jorge Cardoso², Sebastian Ourselin², Hui Zhang³, David H. Miller¹, Xavier Golay⁴, Claudia A M Wheeler-Kingshott¹

¹NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL, Institute of Neurology, London, England, United Kingdom; ²Translational Imaging Group, CMIC, Department of Medical Physics & Biomedical Engineering, UCL, London, England, United Kingdom; ³CMIC, Department of Computer Science, UCL, London, England, United Kingdom; ⁴Brain Repair & Rehabilitation, Institute of Neurology, UCL, London, England, United Kingdom

Computer 42 4630. Bilateral In Vivo Mapping of Sodium Relaxation Times in Breasts at 7T Stefan Zbyn¹, Vladimir Juras¹, Nadia Benkhedah², Olgica Zaric¹, Vladimir Mlynarik¹, Pavol Szomolanyi¹, Wolfgang Bogner¹, Armin M. Nagel², Siegfried Trattnig¹ ¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna,

¹High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Computer 43 4631. In Vivo Triple Quantum Filtered Potassium (³⁹K) MR Imaging of Human Thigh Muscle Manuela B. Rösler¹, Nadia Benkhedah¹, Armin M. Nagel¹, Peter Bachert¹, Reiner Umathum¹ ¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

Computer 44 4632. Triple-Quantum-Filtered Sodium Imaging at 9.4 Tesla *Christian Mirkes¹*, ², *G. Shajan¹*, *Jonas Bause¹*, *Kai Buckenmaier¹*, *Jens Hoffmann¹*, *Klaus Scheffler¹*, ² ¹High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tuebingen, BW, Germany; ²Department for Biomedical Magnetic Resonance, University of Tübingen, BW, Germany

Computer 45 4633. Dynamic ¹⁷O-MRI at 3 Tesla for *In Vivo* CMRO₂ Quantification

*Robert Borowiak*¹, ², *Dmitry Kurzhunov*², *Philipp Wagner*², *Marco Reisert*², *Michael Bock*² ¹German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; ²Dept. of Radiology · Medical Physics, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany

Electronic Poster

Hu

Computer 46 4634. Quantitative Sodium Breast MRI: A Pilot Study for Estimating (Pseudo) Intracellular Sodium Concentration and (Pseudo) Extracellular Volume Fraction In Vivo

Guillaume Madelin¹, Ryan Brown¹, Linda Moy¹ ¹Department of Radiology, New York University Langone Medical Center, New York, NY, United States

Computer 47 4635. Quadruple Interleaved ²³Na and ¹H Acquisition at 7T Paul W. de Bruin¹, Maarten J. Versluis², Peter Koken³, Sebastian A. Aussenhofer¹, Wouter den Hollander⁴, Ingrid Meulenbelt⁴, Peter Börnert, ¹³, Andrew G. Webb¹ ¹Radiology, Leiden University Medical Center, Leiden, Netherlands; ²Philips Healthcare, Eindhoven, Netherlands; ³Philips Research Hamburg, Germany; ⁴Medical Statistics and Bioinformatics, Molecular Epidemiology, Leiden University Medical Center, Netherlands

Computer 48 4636. Development of Theranostics Imaging Probe for MRI and EPR Imaging Miho EMOTO¹, Shingo Sato², Hirotada G. Fujii¹ ¹Center for Medical Education, Sapporo Medical University, Sapporo, Hokkaido, Japan; ²Graduate school of Science and Engineering, Yamagata University, Yamagata, Japan

Human Brain MRS		
Exhibition	Hall	Thursday 13:30-14:30
Computer 49	4637.	Interregional Associations Between Excitatory and Inhibitory Neurotransmitters in the Resting Human Brain <i>Marianne Cleve¹, Alexander Gussew¹, Lisa Janetzki², Constanze Borys², Jürgen R. Reichenbach¹</i> ¹ Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany; ² Institute of Psychosocial Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
Computer 50	4638.	fMRS of Visual Cortex at 3T with Periodic Averaging of a Block Design Paradigm Miguel Martínez-Maestro ¹ , Maria Guidi ¹ , Laurentius Huber ¹ , Štefan Holiga ¹ , Jöran Lepsien ¹ , Henrik Marschner ¹ , Harald E. Möller ¹ , Christian Labadie ¹ ¹ Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Computer 51	4639.	Examination of the GABA-BOLD Relationship in Multiple Brain Regions Ashley D. Harris ¹ , ² , Nicolaas AJ Puts ¹ , ² , Brian A. Anderson ³ , Steven Yantis ³ , James J. Pekar ¹ , ² , Peter B. Barker ¹ , ² , Richard A. E. Edden ¹ , ² ¹ The Russell H Morgan Department of Radiology and Radiological Sciences, The John Hopkins School of Medicine, Baltimore, MD, United States; ² F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States; ³ Department of Psychological and Brain Sciences, The Johns Hopkins University, Baltimore, MD, United States
Computer 52	4640.	Metabolite Concentrations in the Basal Ganglia of Depressed Patients with High Inflammation <i>Candace C. Fleischer¹, ², Xiaoping Hu¹, ², Andrew H. Miller³, ⁴, Ebrahim Haroon³, ⁴</i> ¹ Biomedical Imaging Technology Center, Emory University, Atlanta, GA, United States; ² Biomedical Engineering, Emory University, Atlanta, GA, United States; ³ Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, United States; ⁴ Winship Cancer Institute, Atlanta, GA, United States
Computer 53	4641.	 Decreased Auditory GABA+ Concentrations in Presbycusis Demonstrated by Edited Magnetic Resonance Spectroscopy Fei Gao¹, Bin Zhao¹, Guangbin Wang¹, Wen Ma², Muwei Li³, Fuxin Ren¹, Bo Liu¹, Weibo Chen⁴, Richard A.E. Edden⁵, ¹Shandong Medical Imaging Research Institute, Shandong University, Jinan, China; ²The Central Hospital of Jinan City, Shandong University, Jinan, China; ³College of Electronics and Information Engineering, Sichuan University, Chengdu, China; ⁴Philips Healthcare, Shanghai, China; ⁵Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, MD, United States; ⁶FM Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, MD, United States
Computer 54	4642.	Brain Phenylalanine Levels in Phenylketonuria Using 2D Correlated Spectroscopy Alexander Peter Lin ¹ , Sai Krishna Merugumala ¹ , ² , Vera Anastosie ³ , Stephanie Couchell ³ , Xi April Long ¹ , Huijun Vicky Liao ¹ , Susan Waisbren ³

¹Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, United States; ²Texas Tech University Health Sciences Center, Lubbock, TX, United States; ³Metabolism Research, Boston Children's Hospital, Boston, MA, United States

- Computer 55 4643. Neurometabolite Alterations in Hippocampus in Hypothyroid Patients: An In-Vivo 1H MRS Study Subash Khushu¹, Sadhana Singh¹, Poonam Rana¹, Pawan Kumar¹, L Ravi Shankar² ¹NMR Research Centre, INMAS, DRDO, Delhi, India; ²Thyroid Research Centre, INMAS, DRDO, Delhi, India
- Computer 56 4644. Investigation of Brain GABA Levels in Hypothyroidism Patients by MEGA-Editing Proton MR Spectroscopy Bo Liu¹, Bin Zhao¹, Guangbin Wang¹, Fei Gao¹, Zhensong Wang¹, Weibo Chen² ¹Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China; ²Philips Healthcare, Shanghai, China

Computer 57 4645. The Relationship Between 1H MRS and Brain Morphology at the Corresponding Locations in Methamphetamine Users

Nuttawadee Intachai¹, Artit Rodkong¹, Suwit Saekho¹, ², Napapon Sailasuta³, Apinun Aramrattanan⁴, Kanok Uttawichai⁵, Mekkla Thomson⁶, Bangorn Sirirojn⁷, Daralak Thavornprasit⁷, Sineenart Taejaroenkul⁷, Kamolrawee Sintupat⁷, Victor Valcour⁸, Robert Paul⁹

¹Department of Radiological Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; ²Biomedical Engineering Center, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand; ³Huntington Medical Research Institute, CA, United States; ⁴Department of Family Medicine, Faculty of medicine, Chiang Mai University, Chiang Mai, Thailand; ⁵Thanyarak Hospital, Chaing Mai, Thailand; ⁶Westat, MD, United States; ⁷Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand; ⁸Department of Neurology, University of California, San Francisco, CA, United States; ⁹Department of Psychology, Behavioral Neuroscience, University of Missouri-St.Louis, St. Louis, United States

- Computer 58 4646. 7T Brain MRS in HIV Infection: Effects of Serostatus and Cognitive Impairment Mona A. Mohamed¹, Peter B. Barker¹, Richard L. Skolaskv², Heidi Vornbrock Roosa³, Ned Sacktor³ ¹Radiology, Johns Hopkins Medical Institutions, Baltimore, MD, United States; ²Orthopedic Surgery, Johns Hopkins Medical Institutions, MD, United States; ³Neurology, Johns Hopkins Medical Institutions, MD, United States
- Computer 59 4647. Diffusion Weighted Magnetic Resonance Spectroscopy in Different Stages of MELAS Patient Dandan Zheng⁷, Bing Wu⁷, Huimao Zhang², Jue Zhang³, Zhenyu Zhou¹ ¹GE Healthcare China, Beijing, China; ²Radiology Department, The First Hospital of Jilin University, Changchun, Jilin, China; ³Peking University, Beijing, China
- Computer 60 4648. Elevated Glutamate Concentrations in the Visual Cortex of Migraine Without Aura Detected at 7 Tesla. Jannie P. Wijnen¹,², Ronald Zielman³, Gerrit L.J. Onderwater³, Andrew Webb², Gisela M. Terwindt³, Michel Ferrari³, Hermien E. Kan², Mark C. Kruit² ¹University Medical Centre Utrecht, Utrecht, Netherlands; ²Radiology, Leiden University Medical Centre, Leiden, Zuid Holland, Netherlands; ³Neurology, Leiden University Medical Centre, Leiden, Zuid Holland, Netherlands
- Computer 61 4649. Investigating Metabolic and Functional Profiles of Mild and Moderate Cervical Spondylotic Myelopathy: A MRS and fMRI Study

Izabela Aleksanderek¹,², Todd K. Stevens², Sandy Goncalves¹,², Robert Bartha¹,², Neil Duggal¹,³ ¹Medical Biophysics, Western University, London, Ontario, Canada; ²Robarts Research Institute, London, Ontario, Canada; ³University Hospital, LHSC, London, Ontario, Canada

Computer 62 4650. Increased GABA Levels in Manganese Neurotoxicity: Biochemical Effect or Mn-Induced Change of GABA T1 **Relaxation Time?** Ruoyun Ma¹,², Anne Lotz³, Ulrike Dydak¹,²

School of Health Sciences, Purdue University, West Lafayette, IN, United States; ²Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States; ³Center of Epidemiology, Institute for Prevention and Occupational Medicine of the DGUV, Institute of the Ruhr-Universitӓt Bochum, Bochum, Germany

Computer 63 4651. Evidence of Altered High-Energy Phosphate and Membrane Phospholipid Metabolism in Pelizaeus-Merzbacher Patients with PLP1 Duplications Using ³¹P Magnetic Resonance Spectroscopy ismem merit award magna cum laude

Anirudha S. Rathnam¹, Jasloveleen Soht², Dalal Khatib³, Jeremy J. Laukka⁴, John Kamholz², ⁵, Jeffrey Stanley³

¹Wayne State University School of Medicine, Detroit, MI, United States; ²Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, MI, United States; ³Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, MI, United States; ⁴Neurosciences, The University of Toledo, OH, United States; ⁵Psychiatry, University of Iowa Carver College of Medicine, MI, United States

Computer 64 4652. Quantitative Characterization of Tumor Microstructural Variations in Response to Chemotherapy Using Temporal Diffusion Spectroscopy

Xiaoyu Jiang¹, Hua Li¹, Ping Zhao¹, Jingping Xie¹, Stephanie L. Barnes¹, Thomas Yankeelov¹, Junzhong Xu¹, John C. Gore¹

¹Institute of Imaging Science, vanderbilt university, nashville, TN, United States

Computer 65 4653. Localized ¹H-MRS of Brain Phenylalanine in Adults with Phenylketonuria

A. J. Bakermans¹, A. J. Nederveen¹, C. E. M. Hollak², J. Booij³, A. M. Bosch⁴, L. J. Bour⁵, S. C. J. Huijbregts⁶, R. Jahja⁷, F. J. van Spronsen⁷, D. H. Nieman⁸, N. G. G. M. Abeling⁹, E. Boot³ ¹Department of Radiology, Academic Medical Center, Amsterdam, Netherlands; ²Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands; ³Department of Nuclear Medicine, Academic Medical Center, Amsterdam, Netherlands; ⁶Department of Pediatrics, Academic Medical Center, Amsterdam, Netherlands; ⁶Department of Clinical Child and Adolescent Studies, Leiden University, Leiden, Netherlands; ⁷Department of Metabolic Diseases, University Medical Center Groningen, Groningen, Netherlands; ⁸Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands; ⁹Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands; ⁹Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, Netherlands;

Computer 66 4654. Ketone Bodies and Glucose in Human Brain During Ketogenic Diet and Fasting *Florian Schubert¹*, *Ralf Mekle¹*, *Bernd Ittermann¹*, *Markus Bock²* ¹Physikalisch-Technische Bundesanstalt, Berlin, Germany; ²ECRC, Charité Universitätsmedizin, Berlin, Germany

Computer 67 4655. Comparison of Healthy Young and Elderly: A Study Using Automated Whole-Brain N-Acetylaspartate Quantification

William E. Wu¹, Marc Sollberger², Lidia Glodzik³, Andreas U. Monsch², Achim Gass⁴, Oded Gonen¹ ¹Radiology, New York University School of Medicine, New York, NY, United States; ²Neurology and Neuroradiology, University Hospital Basel, Basel, Switzerland; ³Psychiatry, New York University School of Medicine, New York, NY, United States; ⁴Neurology, University of Heidelberg, Mannheim, Germany

Computer 68 4656. Reproducibility and Effect of Voxel Compartments on Cerebellar GABA MRS in an Elderly Population Zaiyang Long¹, Jonathan P. Dyke², Ruoyun Ma³, ⁴, Chaorui C. Huang⁵, Elan D. Louis⁶, ⁷, Ulrike Dydak³, ⁴ ¹Department of Radiology, Mayo Clinic, Rochester, MN, United States; ²Department of Radiology, Weill Cornell Medical College, New York, NY, United States; ³School of Health Sciences, Purdue University, West Lafayette, IN, United States; ⁴Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States; ⁵Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY, United States; ⁶College of Physicians and Surgeons, Columbia University, New York, NY, United States; ⁷Mailman School of Public Health, Columbia University, New York, NY, United States

Computer 69 4657. Correlation of MRS Water Proton Resonance Frequency with ADC in Childhood Brain Tumours Ben Babourina-Brooks¹, ², Theodoros N. Arvanitis, ²³, Andrew C. Peet¹, ², Nigel P. Davies, ¹⁴ ¹School of Cancer Sciences, University of Birmingham, Birmingham, West Midlands, United Kingdom; ²Birmingham Children's Hospital NHS Foundation Trust, Birmingham, West Midlands, United Kingdom; ³3Institute of Digital Healthcare, WMG,, University of Warwick, Coventry, West Midlands, United Kingdom; ⁴Imaging & Medical Physics,, University Hospitals Birmingham NHS Foundation Trust, West Midlands, United Kingdom

Computer 70 4658. Altered Macromolecular Pattern in Aging Brain Malgorzata Marjanska¹, J. Riley McCarten², Laura S. Hemmy², Melissa Terpstra¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Minneapolis VA Medical Center, Geriatric Research and Clinical Center, MN, United States

Computer 71 4659. Reproducibility of Glutamate, GABA and Glycine in Human Brain, as Measured by Optimized ¹H MRS at 7T *Zhongxu An¹*, *Sandeep Ganji¹*, *Changho Choi¹* ¹Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
Computer 72 4660. Towards Translation of Advanced MRS Methodology to Clinical Setting Dinesh K. Deelchand¹, Kejal Kantarci², Lynn E. Eberly³, Gulin Oz¹ ¹Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; ²Department of Radiology, Mayo Clinic, Rochester, MN, United States; ³Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States

Electronic Poster Molecular Imaging		
Exhibition Computer 1	<u>1 Hall</u> 4661.	Biodistribution of Lanthanide-Based MRI Contrast Agents Assessed by BIRDS <i>Yuegao Huang¹, Peter Herman¹, Daniel Coman¹, Samuel Maritim², Fahmeed Hyder¹, ²</i> ¹ Diagnostic Radiology, Yale University, New Haven, CT, United States; ² Biomedical Engineering, Yale University, New Haven, CT, United States
Computer 2	4662.	Fe2O3/AgI Core/Shell Nanoparticles for Dual Modal Computed Tomography and Magnetic Resonance Imaging Applications. <i>Anamaria Orza¹, Xiangyang Tang², Yi Yang¹, Hui We², Run Lin¹, Liya Wang¹, Hui Mao²</i> ¹ Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States; ² Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
Computer 3	4663.	Fast Relaxing Contrast Agent for Fluorine MRI <i>Vít Herynek¹, Andrea Gálisová¹, Jan Blahut², Jan Kotek², Milan Hájek¹</i> ¹ Institute for Clinical and Experimental Medicine, Prague, Czech Republic; ² Faculty of Science, Charles University, Prague, Czech Republic
Computer 4	4664.	Physical Principles of Transient T1-Lengthening by Hemodilution: Applications to Perfusion MRI with Normal Saline Injections (NSI) Hernan Jara ¹ , Osamu Sakai ¹ , Asim Z. Mian ¹ , Stephan Anderson ¹ , Jorge A. Soto ¹ , Alexander M. Norbash ¹ ¹ Boston University, Boston, MA, United States
Computer 5	4665.	Dual Functional Graphene Quantum Dots for Targeted Multimodal Imaging and Therapy <i>Shizhen Chen¹</i> , <i>Yuqi Yang¹</i> , <i>Qing Luo¹</i> , <i>Xin Zhou¹</i> ¹ National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Wuhan, Hubei, China
Computer 6	4666.	A Novel CEST-MRI Ratiometric Approach for <i>In Vivo</i> PH Imaging Dario Livio Longo ¹ , Phillip Zhe Sun ² , Lorena Consolino ³ , ⁴ , Filippo Michelotti ⁵ , Fulvio Uggeri ⁶ , Silvio Aime ³ , ⁴ ¹ Institute of Biostructure and Bioimaging, CNR, Torino, Italy; ² MGH and Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Cherlestown, MA, United States; ³ Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy; ⁴ Molecular Imaging Center, University of Torino, Torino, Italy; ⁵ Department of Preclinical Imaging and Radiopharmacy, University of Tubingen, Tubingen, Germany; ⁶ Bracco Imaging SpA, Milano, Italy
Computer 7	4667.	Imaging Developing Neural Structures in Chick Embryo Using Novel Gd₂O₃ Contrast Agent <i>Gary R. Stinnett¹, Nasim Taheri², Stacey M. Glasgow³, Benjamin Deneen⁴, Vicki L. Colvin², Robia G. Pautler⁵</i> ¹ Baylor College of Medicine, Houston, TX, United States; ² Chemistry, Rice University, Houston, TX, United States; ³ Ctr Stem& Regen, Baylor College of Medicine, Houston, TX, United States; ⁴ Neuroscience, Baylor College of Medicine, Houston, TX, United States; ⁵ Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, United States
Computer 8	4668.	Developing Hyperpolarized Silicon Micro and Nanoparticles for Targeted Molecular Imaging of Ovarian Cancer Nicholas Whiting ¹ , Jingzhe Hu ¹ , ² , Niki Zacharias Millward ¹ , Rajesha Rupaimoole ³ , David Gorenstein ⁴ , Anil Sood ³ , Pratip Bhattacharya ¹ ¹ Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; ² Department of Bioengineering, Rice University, Houston, TX, United States; ³ Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; ⁴ Nanomedicine and Biomedical Engineering, The University of Texas Health Science Center at Houston, Houston, TX, United States

Computer 9 4669. Motexafin Gadolinium (MGd)-Enhanced Molecular MR and Optical Imaging of Rat Gliomas for Potential **Intraoperative Determination of Tumor Margins**

Longhua Qiu¹,², Feng Zhang¹, Yaoping Shi¹, Zhibin Bai¹, Jianfeng Wang¹, Donghoon Lee¹, Xiaoyuan Feng², Xiaoming Yang

¹Image-Guided Biomolecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States; ²Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China

Computer 10 4670. MRI of Liver Fibrosis with a Fibrin-Specific Probe

Iliyana Atanasova¹, Lan Wei², Helen Day³, Boris Keil³, Francesco Blasi³, Bryan C. Fuchs², Peter Caravan³ ¹Madrid-MIT MVision Consortium, MIT, Cambridge, MA, United States; ²Division of Surgical Oncology, Massachusetts General Hospital, Boston, MA, United States; ³A. A. Martinos Center for Biomedical Imagin, Massachusetts General Hospital, Charlestown, MA. United States

Computer 11 4671. A Comparison of [11C]-(R)PK11195 Tracer Kinetics and MRI-Based Vascularity-Related Parameters in Gliomas

Chao Li¹,², Zhangjie Su¹, Ka-Loh Li¹, Alex Gerhard¹, Gerard Thompson¹, Xiaoping Zhu¹, Rainer Hinz¹, Federico Roncaroli³. Karl Herholz¹. Alan Jackson¹

¹Wolfson Molecular Imaging Centre, The University of Manchester, Manchester, United Kingdom; ²Department of Neurosurgery, Shanghai First People's Hospital, Shanghai, China;³ "John Fulcher" Neuro-Oncology Lab, Imperial College London, London, United Kingdom

Computer 12 4672. Magnetic Brain Cell Stimulation Using an MRI Contrast Agent: Superparamagnetic Iron Oxide Nanoparticles (SPIONs)

Yichao Yu¹, Chris Pavne¹, Vitaliv Kasymov², Bernard Siow¹, Ouentin Pankhurst³, Alexander Gourine², Mark F. Lythgoe¹

¹Centre for Advanced Biomedical Imaging, University College London, London, United Kingdom; ²Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom; ³Institute of Biomedical Engineering, University College London, London, United Kingdom

Computer 13 4673. MEMRI and Tumors: a Method for the Evaluation of the Contribution of Mn(II) Ions in the Intra- And Extra-**Cellular Compartments**

Eliana Gianolio¹, Francesca Arena¹, Enza Di Gregorio¹, Roberto Pagliarin², Martina Delbianco², Gabriella Baio³, Silvio Aime¹

¹Molecular Biotecnologies and Health Sciences, University of Torino, Torino, Italy, Italy, ²Chemistry, University of Milano, MIlano, Italy, Italy; ³Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, Scotland, United Kingdom

Computer 14 4674. Manganese-Enhanced MRI (MEMRI) Enables Measurement of Regional Myocardial Viability and to Evaluate the Regenerative Effects by Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (ICMs) Atsushi Tachibana¹, Morteza Mahmoudi¹, Yuka Matsuura¹, Rajesh Dash¹, Eric Rulifson¹, Phillip Yang¹ ¹Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, United States

Computer 15 4675. Functional Imaging of Brown Fat in Mouse Hussein SROUR⁷, Kai Hsiang CHUANG¹ ¹Singapore BioImaging Consortium, Singapore, Singapore

Computer 16 4676. Evaluation of PET/DWI Registration Quality in PET/MR Hybrid Scanner: Zoomed DWI Vs. Conventional DWI

Koji Sagiyama¹, Yuji Watanabe², Ryotaro Kamei¹, Shingo Baba¹, Takuro Isoda¹, Osamu Togao¹, Michinobu Nagao², Satoshi Kawanami², Akihiro Nishie¹, Hiroshi Honda¹ ¹Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan; ²Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan

Computer 17 4677. Metabolic Imaging to Differentiate Aggressive Versus Indolent Prostate Cancer Niki Zacharias Millward¹, Christopher McCullough¹, Youngbok Lee², Jingzhe Hu¹, ³, Prasanta Dutta¹, David Piwnica-Worms¹. Pratip Bhattacharva¹

¹Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; ²Department of Applied Chemistry, Hanyang University, Korea; ³Rice University, TX, United States

Computer 18 4678. Monitoring the Pancreatic Islets Implantation in the Subcutaneous Polymeric Scaffolds by DCE-MRI and Optical Imaging

Andrea Gálisová¹, Daniel Jirák¹, Eva Fábryová², Vít Herynek¹, Lucie Kosinová², Jan Kříž², Milan Hájek¹ ¹MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; ²Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic

Computer 19 4679. Improvements of Quantitative Oxygenation Levels in Venous Blood (Y_v) Measurements Based on QUIXOTIC *Klaus Möllenhoff¹*, *Nadim Jon Shah¹*, ² ¹Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH, Jülich, NRW, Germany; ²Faculty of Medicine, Department of Neurology, JARA, RWTH Aachen University, Aachen, NRW, Germany

Computer 20 4680. Optimization of Pulsed CEST Imaging Using Genetic Algorithm Eriko Yoshimaru¹, Edward Randtke¹, Mark D. Pagel¹, Julio Cárdenas-Rodríguez¹ ¹Biomedical Engineering, University of Arizona, Tucson, AZ, United States

Computer 21 4681. Tri-Modal In Vivo Imaging of the Rodent Pancreatic Islets Transplanted in the Subcutaneous Site Sayuan Liang¹, Karim Louchami¹, ², Bryan Holvoet¹, Rein Verbeke³, Bella Manshian¹, Willy J Malaisse², Abdullah Sener², Ine Lentacker³, Uwe Himmelreich¹ ¹Department of Imaging & Pathology, KU Leuven, Leuven, Flemish Brabant, Belgium; ²Laboratory of Experimental Hormonology, Université Libre de Bruxelles, Brussels, Belgium; ³Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Ghent, East Flanders, Belgium

Computer 22 4682. Normal Saline Injections with Dynamic Inversion Recovery Pulse Sequences: Dynamic Parameter Mappings with Signal Polarity Correction

Hernan Jara¹, Asim Z. Mian¹, Osamu Sakai¹, Stephan Anderson¹, Jorge A. Soto¹, Alexander M. Norbash¹ ¹Boston University, Boston, MA, United States

Electronic Poster

SV MRS Acquisition Methods

Exhibition Hall Thursday 14:30-15:30 Computer 25 4683. Comparison of MEGA-PRESS and A-PRESS for the Measurements for GABA Concentration in the Brain of Healthy Volunteers Zhengsong Wang¹,², Caroline Rae³, Guanggiang Geng⁴, Weibo Chen⁵, Fei Gao¹, Bo Liu¹, Jie Gan², Xue Bai⁶, Bin Zhao¹, Guangbin Wang¹ ¹Shandong Medical Imaging Research Institute, Shandong University, Jinan, Shandong, China; ²Second Affiliated Hospital of Shandong university of Traditional Chinese Medicine, Jinan, Shandong, China; ³Neuroscience Research Australia, UNSW, Sydney, Australia; ⁴Philips Healthcare MR R&D, Suzhou, Jiangsu, China; ⁵Philips Healthcare, Shanghai, China; ⁶QIlu Hospital, Shandong University, Jinan, Shandong, China Computer 26 4684. Non Uniform Sampling for Sparse 2D Correlated MRS: A Quantitative Point of View Dimitri Martel¹, Dany Merhej², Remy Prost¹, Denis Friboulet¹, Helene Ratiney¹ ¹CREATIS; CNRS UMR 5220; INSERM U1044; Université Lyon 1; INSA Lyon, Villeurbanne, France; ²ISAE CNAM, Beirut, Lebanon Computer 27 4685. Line Broadening Interference for High-Resolution MRS Under Inhomogeneous Magnetic Fields Zhiliang Wei¹, Zhong Chen¹ ¹Department of Electronic Science, Xiamen University, Xiamen, Fujian, China Computer 28 4686. Heteronuclear Single Quantum Coherence (HSQC) MRS in Humans at 7 T

Computer 28 4686. Heteronuclear Single Quantum Coherence (HSQC) MRS in Humans at 7 T Robin A. de Graaf¹, Henk M. De Feyter¹, Douglas L. Rothman¹ ¹MRRC, Yale University, New Haven, CT, United States

Computer 29 4687. J-Difference Editing of GABA with Extended Echo-Times

Jamie Near¹,², Chathura Kumaragamage³

¹Department of Psychiatry, McGill University, Montreal, Quebec, Canada; ²Centre d'Imagerie Cérébrale, Douglas Institute, Montreal, Quebec, Canada; ³Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada

- Computer 30 4688. Sparse Reconstruction of Localized Correlated Spectroscopy: From Sub-Sampled Priors to Fast Acquisition Mohammad Abdi-Shektaei¹, Abbas Nasiraei Moghaddam¹, ², Rajakumar Nagarajan³, M. Albert Thomas³ ¹BME, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; ²School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; ³Radiological Sciences, UCLA School of Medicine, Los Angeles, CA, United States
- Computer 31 4689. Average Weighted Acquisition for Faster Acquisition of *In Vivo* Localized Two Dimensional Correlation Spectroscopy of the Brain

Gaurav Verma¹, Michael Albert Thomas², Harish Poptani¹ ¹Radiology, University of Pennsylvania, Philadelphia, PA, United States; ²Radiology, University of California at Los Angeles, Los Angeles, CA, United States

- Computer 32 4690. An Optimized PRESS Sequence for the Detection of Glycine at 9.4 T Brennen J. Dobberthien¹, Anthony G. Tessier¹, ², B. Gino Fallone¹, ², Atiyah Yahya¹, ² ¹Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; ²Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada
- Computer 33 4691. Accurate Compressive Sensing of 1H MR Spectroscopic Imaging in Brain Tumors Mohammad Abdi-Shektaei¹, Felix Raschke², Franklyn A. Howe³, Abbas Nasiraei Moghaddam¹, ⁴ ¹BME, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran; ²Radiological Sciences, Division of Clinical Neuroscience, University of Nottingham, Nottingham, United Kingdom; ³Cardiovascular and Cell Sciences Research Institute, St George's, University of London, London, United Kingdom; ⁴School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Computer 34 4692. Macromolecule Suppressed GABA Editing with Single Spin-Echo and Out-Of-Voxel Artifact Suppression Meng Gu¹, Ralph Hurd², Ralph Noeske³, Ariel Rokem⁴, Laima Baltusis⁵, Daniel Spielman¹ ¹Radiology, Stanford University, Stanford, CA, United States; ²GE Healthcare, Menlo Park, CA, United States; ³MR Application & Workflow Development, GE Healthcare, Berlin, Germany; ⁴Psychology, Stanford University, Stanford, CA, United States; ⁵Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA, United States
- Computer 35 4693. In Vivo Detection of Lactate at 7T Using Long TE SLASER and MEGA-SLASER Chen Chen¹, Peter Morris¹, Susan Francis¹, Penny Gowland¹ ¹Sir Peter Mansfield Imaging Centre (SPMIC), University of Nottingham, Nottingham, Nottinghamshire, United Kingdom
- Computer 36 4694. Optimization of MEGA-PRESS for the Simultaneous Detection of Glutamate and Glutamine, and GABA Karim Snoussi¹, ², Subechhya Pradhan¹, ², Ashley D. Harris¹, ², Richard A.E. Edden¹, ², Peter B. Barker¹, ² ¹Russel H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medidine, Baltimore, MD, United States; ²Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States
- Computer 37 4695. Improving Robustness for Voxel Based Transmit Gain Calibration Using Bloch-Siegert Shift Method for MR Spectroscopy at 7T *Alessandra Toncelli¹, Ralph Noeske², Mauro Costagli³, Michela Tosetti³, ⁴* ¹INFN and Department of Physics, University of Pisa, Pisa, Italy; ²GE Healthcare, Berlin, Germany; ³Fondazione Imago7, Italy; ⁴Stella Maris Scientific Institute, Italy
- Computer 38 4696. Metabolite Cycled Single Voxel ¹H Spectroscopy at 9.4T Ioannis Angelos Giapitzakis¹, Sahar Nassirpour¹, Nikolai Avdievich¹, Roland Kreis², Anke Henning¹, ³ ¹Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany; ²Departments of Radiology and Clinical Research, University of Bern, Bern, Switzerland; ³Institute for Biomedical Engineering, UZH and ETH Zurich, Zurich, Switzerland

Computer 39 4697. Multi-Echo Echo-Planar J-Resolved Spectroscopy of Human Brain Using Semi-LASER Pulses Manoj Kumar Sarma¹, Rajakumar Nagarajana¹, Paul Michael Macey², M. Albert Thomas¹ ¹Radiological Sciences, UCLA School of Medicine, Los angeles, CA, United States; ²School of Nursing, UCLA School of Medicine, Los angeles, CA, United States

Computer 40 4698. High-Resolution Spatially Encoded Intermolecular Double-Quantum Coherence NMR Spectroscopy for Biological Systems Kaiyu Wang¹, Hao Chen¹, Zhiyong Zhang¹, Yuqing Huang¹, Zhong Chen¹ ¹Electronic Science, Xiamen University, Xiamen, Fujian, China

Computer 41 4699. Volumetric Navigated MEGA-SPECIAL for Real-Time Motion Corrected GABA MRS *Muhammad Gulamabbas Saleh¹*, A. Alhamud¹, Lindie Du Plessis¹, André J.W. van der Kouwe², Jamie Near³, Ernesta M. Meintjes¹ ¹Department of Human Biology, MRC/UCT Medical Imaging Research Unit, University of Cape Town, Cape Town, Western Cape, South Africa; ²Massachusetts General Hospital, Charlestown, MA, United States; ³Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, Canada

Computer 42 4700. The Effects of Gadolinium on the Hyperpolarization of [1-¹³C]pyruvate at 3.35 T and 5 T *Michael S. Dodd¹, Jack J. Miller¹, ², Damian J. Tyler¹* ¹Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom; ²Department of Physics, University of Oxford, Oxford, United Kingdom

Computer 43 4701. ¹³C Signal Enhancement in Human Brain at 7T by NOE and Stochastic Proton Decoupling Shizhe S. Li¹, Li An¹, Maria Ferraris Araneta¹, Christopher Johnson¹, Jun Shen¹ ¹NIMH, National Institutes of Health, Bethesda, MD, United States

Computer 44 4702. MR Spectroscopy of Very Small Volumes (<0.4 μl) of 13C-Labelled Metabolites Using Microcoil Detection: Application to Online Measurements of Cerebral Microdialysate Silvia Rizzitelli¹, Alan Wong², Guillaume Radecki³, Luisa Ciobanu³, Gerard Raffard¹, Stephane Sanchez¹, Veronique Bouchaud¹, Leslie Mazuel¹, Anne-Karine Bouzier-Sore¹, Yannick Crémillieux¹ ¹CRSMB, University of Bordeaux, Bordeaux, France, France; ²NIMBE/LSDRM, CEA-Saclay, Gif-sur-Yvette, France, France; ³CEA I2BM NeuroSpin, Gif-sur-Yvette, France, France

Computer 45 4703. Reproducibility of Dynamic Phosphorus MRS of Plantar Flexion: Influence of Ergometer Design, Magnetic Field Strength, and RF-Coil Design Petr Šedivý¹, Monika Christina Kipfelsberger², Miloslav Drobný¹, Martin Krššák², ³, Jan Rydlo¹, Marek Chmelík², Marjeta Tušek Jelenc², Milan Hájek¹, Siegfried Trattnig², Monika Dezortová¹, Ladislav Valkovic², ⁴ ¹MR-Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; ²High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ³Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; ⁴Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia

Computer 46 4704. Feasibility and Repeatability of the Localized ³¹P MRS Four-Angle Saturation Transfer (FAST) of the Human Gastrocnemius Muscle Using Surface Coil at 7T

Marjeta Tušek Jelenc¹, Marek Chmelík¹, Wolfgang Bogner¹, Martin Krššák¹, ², Siegfried Trattnig¹, Ladislav Valkovic¹, ³

¹High Field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; ²Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria; ³Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia

Computer 47 4705. Proton Magnetic Resonance Spectroscopy Techniques to Measure the Lipid Olefinic Resonance In Vivo Atiyah Yahya¹,²

¹Department of Oncology, University of Alberta, Edmonton, Alberta, Canada; ²Department of Medical Physics, Cross Cancer Institute, Edmonton, Alberta, Canada

Computer 48 4706. Potential Effects of Superficial Fat on Metabolite Concentrations Determined by Water Referencing Studied with Various Acquisition Settings

Sreenath Pruthviraj Kyathanahally¹, Nicole D Fichtner¹, Victor J Adalid¹, Roland Kreis¹ ¹Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland

Electronic Poster

MRS Data Processing Quantitation of MRSI Aquirition Method

Thursday 14:30-15:30 Exhibition Hall Computer 49 4707. A Pilot Validation of Accelerated Multi-Echo Based Echo-Planar Correlated Spectroscopic Imaging in Human Calf Muscles Manoj Kumar Sarma¹, Zohaib Iqbal¹, Brian Burns¹, Rajakumar Nagarajana¹, Cathy C. Lee², M. Albert Thomas¹ ¹Radiological Sciences, UCLA School of Medicine, Los angeles, CA, United States; ²Geriatrics, VA Greater Los Angeles Healthcare System, Los angeles, CA, United States Computer 50 4708. Spectral-Spatial-Spiral MRSI: Fast Prostate MR Spectroscopic Imaging with Low SAR on 7T Bart Philips¹, Miriam W. van de Stadt-Lagemaat¹, Mark J. van Uden¹, Eline K. Vos¹, Borjan Gagoski², Adam B. Kerr³, Marnix C. Maas¹. Tom W.J. Scheenen¹ ¹Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, Gelderland, Netherlands; ²Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States; ³Magnetic Resonance Systems Research Lab, Electrical Engineering, Stanford University, Stanford, CA, United States Computer 51 4709. Compressed Sensing of Non-Uniformly Undersampled 3D EPSI of Healty Brain Rajakumar Nagarajan¹, Zohaib Iqbal¹, Manoj K. Sarma¹, M.Albert Thomas¹ ¹Radiological Sciences, UCLA School of Medicine, Los Angeles, CA, United States Computer 52 4710. Fast and Simple Water Signal Acquisition Sequence for Quantification of ¹H Metabolites in the Brain Michal Bittsansky¹, Petra Hnilicova¹, Dusan Dobrota¹ ¹Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia, Slovakia Computer 53 4711. Accelerated Multi-Slice ¹H FID-MRSI in the Human Brain at 9.4 T Sahar Nassirpour¹, Thomas Kirchner², Ioannis Angelos Giapitzakis¹, Anke Henning, ¹² ¹Max Planck Institute for Biological Cybernetics, Tübingen, Germany; ²Institute for Biomedical Engineering, UZH and ETH Zürich, Zürich, Switzerland Computer 54 4712. GRAPPA Accelerated CSI and Its Impacts for Metabolites Quantifications Tiejun Zhao¹, Julie W. Pan², Hoby P. Hetherington² ¹Siemens Medical Solutions USA, Inc., Pittsburgh, PA, United States; ²Department of Radiology, Pittsburgh, PA, United States Computer 55 4713. To NOE or Not to NOE? - A Study About the Use of the Nuclear Overhauser Effect in ³¹P MRSI of the Brain at Miriam W. van de Stadt-Lagemaat¹, Bart L. van de Bank¹, Marnix C. Maas¹, Tom WJ Scheenen¹,² ¹Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, Netherlands; ²Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany Computer 56 4714. Fast 31P Chemical Shift Imaging Using Multi-Spiral Acquisition at 9.4T *Yuchi Liu¹, Yun Jiang¹, Charlie Yi Wang¹, Mark Alan Griswold¹, ², Xin Yu¹, ²* ¹Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; ²Radiology, Case Western Reserve University, Cleveland, OH, United States

Computer 57 4715. Implementation and Comparison of LASER- And Semi-LASER-Based MRSI Pulse Sequences at 9.4T Sungjin Kim¹, ², Hyeonjin Kim¹, ² ¹Radiology, Seoul National University Hospital, Seoul, Korea; ²Biomedical Sciences, Seoul National University, Seoul, Korea

Computer 58 4716. A Surface Crusher Coil for Human Cardiac Phosphorus (³¹P) MR Spectroscopic Imaging Study at 7 Tesla Benoit Schaller¹, William Clarke¹, Stefan Neubauer¹, Matthew Robson¹, Christopher Rodgers¹ ¹Cardiovascular Department, Oxford Centre for Clinical Magnetic Resonance Research, Oxford, Oxfordshire, United Kingdom

Computer 59 4717. Correction for Off-Resonance-Induced Displacement in Spectrally Undersampled Hyperpolarized 13C Echo-Planar Spectroscopic Imaging Peng Cao¹, Hsin-Yu Chen¹, Jeremy Gordon¹, Peter Shin¹, Wenwen Jiang¹, Peder Larson¹ ¹University of California, San Francisco, San Francisco, CA, United States

Computer 60 4718. Quantitative Study of RF Field Transmission and Detection Sensitivity Improvements for 3D 31P CSI with Ultrahigh Dielectric Constant Material at 7.0 T Byeong-Yeul Lee¹, Sebastian Rupprecht², Xiao-Hong Zhu¹, Qing X. Yang³, Wei Chen¹

¹Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States; ²Center for Magnetic Resonance Research, Department of Radiology, he Pennsylvania State University College of Medicine, Hershey, Hershey, PA, United States; ³Center for NMR Research, Department of Radiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States

Computer 61 4719. In Vivo Application of 3D Deuterium (²H) CSI for Quantitative Imaging of Cerebral Glucose Metabolism at Ultrahigh Field

Ming Lu^l, Xiao-Hong Zhu^l, Yi Zhang^l, Wei Chen^l ¹Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States

Computer 62 4720. Performance Optimized Lipid Artifact Removal (POLAR) with BASE-SLIM of Full FOV Human Brain 1H MRS

Peter Adany¹, In-Young Choi¹, ², Phil Lee¹, ³ ¹Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; ²Neurology, University of Kansas Medical Center, Kansas City, KS, United States; ³Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States

Computer 63 4721. Imaging of Tumor Glycolysis with 2D Heteronuclear Multiple Quantum Coherence: Accelerated Acquisitions Using Compressed Sensing Hirohiko Imai¹, Kei Sano¹, Shota Momma¹, Toshiyuki Tanaka¹, Tetsuya Matsuda¹ ¹Department of Systems Science, Graduate School of Informatics, Kyoto University, Sakyo-ku, Kyoto, Japan

Computer 64 4722. Human Brain 1H MRS of GM and WM: A Comparison of BASE-SLIM and CSI Regression Peter Adany^l, Phil Lee^l, ², In-Young Choi^l, ³ ¹Hoglund Brain Imaging Center, University of Kansas Medical Center, Kansas City, KS, United States; ²Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, United States; ³Neurology, University of Kansas Medical Center, Kansas City, KS, United States

Computer 65 4723. A Pilot Study on Measurement of Metabolites in the Hippocampal Subfields: Based on Multivoxel 1HMRS and Segmentation from High Resolution Volumetric MRI Wenqing Liao #¹, Wenbo Wu #², Yu Sun #¹, Renyuan Liu³, Zhenyu Yin², Huiting Wang³, Xin Zhang³, Ming Li³, Chuanshuai Tian³, Kun Wang³, Haiping Yu³, Weibo Chen⁴, Bin Zhu³, Suiren Wan^{*1}, Yun Xu^{*2}, Bing Zhang^{*3} ¹The Laboratory for Medical Electronics, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China; ²Department of Neurology, The Affiliated Drum Tower Hospital of Nanjing Medical University, Nanjing, China; ³Department of Radiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; ⁴Philips Healthcare, Shanghai, China

Computer 66 4724. Lineshape Compensation Methods for Modeling of 2DJ Spectra *Victor Javier Adalid¹*, Chris Boesch¹, Christine S. Bolliger¹, Roland Kreis¹ Depts. Radiology and Clinical Research, University Bern, Bern, Switzerland

Computer 67 4725. Automated Pipeline for Processing and Analyzing MR Spectroscopic Imaging and Segmentation Data of Human Brain

Victor E. Yushmanov¹, Yoojin Lee¹, Claudiu Schirda¹, Hoby P. Hetherington¹, Jullie W. Pan¹, ² ¹Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States; ²Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States

Computer 68 4726. FID-A: an Open-Source, MATLAB-Based Toolbox for Magnetic Resonance Spectroscopy Simulation and Data Processing

Jamie Near¹, ², Gabriel A. Devenyi³, Robin Simpson⁴ ¹Department of Psychiatry, McGill University, Montreal, Quebec, Canada; ²Centre d'Imagerie Cérébrale, Douglas Institute, Montreal, Quebec, Canada; ³Centre d'Imagerie Cérébrale, Douglas Institute, Montréal, Quebec, Canada; ⁴Department of Medical Physics, Freiburg University, Freiburg, Germany

Computer 69 4727. Spectral Registration: a Simple New Method for Frequency and Phase Drift Correction of Magnetic Resonance Spectroscopy Data

Jamie Near², ², Richard Edden³, John Evans⁴, Raphael Paquin⁵, Ashley Harris³, Peter Jezzard⁶ ¹Department of Psychiatry, McGill University, Montreal, Quebec, Canada; ²Centre d'Imagerie Cérébrale, Douglas Institute, Montreal, Quebec, Canada; ³Kennedy Krieger Institute, Johns Hopkins University, Baltimore, MD, United States; ⁴Cardiff University, Cardiff, Wales, United Kingdom; ⁵Healthcare, Siemens Canada Limited, Montreal, Quebec, Canada; ⁶FMRIB Centre, University of Oxford, Oxford, Oxfordshire, United Kingdom

Computer 70 4728. Multi-Channel Reconstruction in Single Voxel Spectroscopy Carlos E. Garrido Salmon¹, ², Emma Louise Hall¹, Carolina Fernandes¹, Chen Chen¹, Peter G. Morris¹ ¹Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, Nottinghamshire, United Kingdom; ²Department of Physics, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil

Computer 71 **4729.** Spectral Fitting Using Basis Set Distorted by Measured B0 Field Distribution Ningzhi Li^l, Li An^l, Shizhe S. Li^l, Jun Shen^l ¹National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States

Computer 72 4730. Phasing and Curve Fitting of Highly Resolved 2D Constant Time PRESS Spectra for Quantitation of Glutamate, GABA and Glutamine

Hidehiro Watanabe¹, Nobuhiro Takaya¹, Fumiyuki Mitsumori¹ ¹Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan