| ISMRM 21st Annual Meeting & Exhibition ○ 20-26 April 2013 ○ Salt Lake City, Utah, USA | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| Please see special note on Thursday's course below. | ||||||||||||||||||||||||||||||
|  | ||||||||||||||||||||||||||||||
| Tuesday, 23 April 2013 Image Reconstruction - Parallel Imaging Part 1 | ||||||||||||||||||||||||||||||
| OVERVIEW | ||||||||||||||||||||||||||||||
| This course covers key practical considerations to implement high-performance, production-level reconstruction algorithms beyond theoretical principles. Part I describes background materials to understand parallel imaging algorithms in general (image space, k-space, non-Cartesian), calibration data, coil sensitivity estimation, noise calibration and performance measurements (g-factor). | ||||||||||||||||||||||||||||||
| TARGET AUDIENCE | ||||||||||||||||||||||||||||||
| Anybody with an interest in parallel imaging beyond theoretical principles and would like the tools to implement practical, production-level parallel imaging reconstruction algorithms. | ||||||||||||||||||||||||||||||
| EDUCATIONAL OBJECTIVES Upon completion of this course, participants should be able to: | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| Image Reconstruction - Parallel Imaging | ||||||||||||||||||||||||||||||
| Moderators: Alexey Samsonov, Ph.D. & Jeffrey Tsao, Ph.D., M.B.A. | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
|  | ||||||||||||||||||||||||||||||
| Wednesday, 24 April 2013 Parallel Transmit, SAR | ||||||||||||||||||||||||||||||
| OVERVIEW | ||||||||||||||||||||||||||||||
| This course covers the principles of pulse design for parallel transmission, B1 shimming and SAR optimization. The B1 and E-field behaviors of different types of transmit arrays are discussed, following by techniques for optimizing B1 shimming, and pulse design for parallel transmission in conjunction with local/global SAR. | ||||||||||||||||||||||||||||||
| TARGET AUDIENCE | ||||||||||||||||||||||||||||||
| MR scientists, engineers, and technicians with an interest in understanding physical principles of parallel transmission, B1 shimming and SAR behavior within the context of high field MRI. | ||||||||||||||||||||||||||||||
| EDUCATIONAL OBJECTIVES Upon completion of this course, participants should be able to: | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| Parallel Transmit, SAR | ||||||||||||||||||||||||||||||
| Moderators: Alexey Samsonov, Ph.D. & Jeffrey Tsao, Ph.D., M.B.A. | ||||||||||||||||||||||||||||||
|  | ||||||||||||||||||||||||||||||
| Thursday, 25 April 2013 Image Reconstruction - Parallel Imaging Part 2 | ||||||||||||||||||||||||||||||
| OVERVIEW | ||||||||||||||||||||||||||||||
| The course is a hand-on session that builds on Part 1 by providing an interactive exploration of the previously introduced principles. Using software to be supplied, the audience is encouraged to participate as we develop a parallel image reconstruction pipeline from the most basic reconstruction to a more realistic, practical reconstruction algorithm that deals with noise calibration, coil sensitivity calibration, and performance measurements. The connection between image space and k-space algorithms, effects of inline calibration and external calibration, noise correlation, and regularization will be explored. | ||||||||||||||||||||||||||||||
| TARGET AUDIENCE | ||||||||||||||||||||||||||||||
| MR enthusiasts interested in the 
			under-the-hood implementation of advanced methodology in image 
			reconstruction and RF design. The audience is expected to bring a laptop with Matlab 6+ installed to follow the exercises. Please download exercises at http://gadgetron.sf.net/sunrise | ||||||||||||||||||||||||||||||
| EDUCATIONAL OBJECTIVES Upon completion of this course, participants should be able to: | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||
| Advanced Imaging Interactive Session | ||||||||||||||||||||||||||||||
| Moderators: Alexey Samsonov, Ph.D. & Jeffrey Tsao, Ph.D., M.B.A. | ||||||||||||||||||||||||||||||
| 
 | ||||||||||||||||||||||||||||||