Simulation of Flowing Spins in MRI using the Lattice Boltzmann Method
Ansgar Adler1, Jost M. Kollmeier2, Nick Scholand1, Sebastian Rosenzweig1, Yong Wang3, and Martin Uecker1,4
1Institute for Diagnostic and Interventional Radiology, (UMG) University Medical Center Göttingen, Göttingen, Germany, 2Biomedical NMR, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, 3Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany, 4DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
The lattice Boltzmann method (LBM) is a versatile numerical technique for simulating complex fluid dynamical systems and beyond. Here, we describe an extension of the LBM to flow systems in external magnetic fields. The model is verified numerically and by a simple flow experiment.
Figure 3: The mean signal values from the center region are shown in dependency of flip angle (a) and slice thickness (b) for different pump levels for numerical simulation (dashed) and experiment (solid). The error bar shows the standard deviation. The left figure is for a slice thickness of 6 mm and the right is for a flip angle of 20°.
Figure 2: The numerical (dashed) and experimental (solid) velocity (a) and signal (b) profiles for different pump-levels are plotted for the intersecting line inside the pipe. The region in the center is used in further comparisons (gray).