Mohammadreza Soltany Sadrabadi

Email: mohammadrezaa.soltany@gmail.com Phone: (+1) 928-2867797 LinkedIn: https://www.linkedin.com/in/mohammadreza-soltany Google Scholar: https://scholar.google.com/citations?user=Xfj1T7MAAAAJhl=en

SUMMARY

- **Postdoctoral Fellow** at Barrow Neuro Center Innovations (BNCI), specializing in advanced **MRI processing**, **software development**, **imaging analytics**, as well as **machine learning** and **deep learning** applications in clinical research.
- Extensive background in computational mechanics (7+ years) and software development, with specialized expertise in cardiovascular biomechanics and disease modeling.
- Skilled in machine learning and deep learning (including physics-informed neural networks) to tackle both clinical imaging pipelines (MRI, CBCT) and simulation-based biomechanics problems.
- **Proficient in software development**: Python, MATLAB, R, and C, with hands-on experience in designing opensource tools and real-time imaging pipelines for **clinical environments**.

EDUCATION

2022-Present	Postdoc Fellow
	Barrow Neuorological Institute, Phoenix, AZ.
	"MRI Processing and Analysis in Neurological Disorders"
2018-2022	PhD in Bioengineering
	Mechanical Engineering Department, Northern Arizona University, Flagstaff, AZ.
	Thesis: "Mechanobiology of the aortic valve: a multiscale approach"
2014-2017	MSc in Aerospace Engineering
	Faculty of New Sciences and Technologies, The University of Tehran, Tehran, Iran
	Thesis: "FSI solution of Blood Flow in Circle of Willis in Alternative Gravity Conditions"
2007-2012	BSc in Mechanical Engineering
	School of Mechanical Engineering, The University of Shiraz, Shiraz, Iran
	Dissertation: "Data analysis of fluid flow in the combined cycle power plant of Fars"

PUBLICATIONS

- Mohammadreza Soltany Sadrabadi, Seungik Baek, Mohammad R. K. Mofrad, Amirhossein Arzani, "Benchmark problems for multiscale systems mechanobiology modeling of cardiovascular disease growth and remodeling." Journal of Biomechanical Engineering, March 2025.
- Maryam Aliakbari, Mohammadreza Soltany Sadrabadi, Peter Vadasz, Amirhossein Arzani, "Ensemble physics informed neural networks: A framework to improve inverse transport modeling in heterogeneous domains." Journal of Physics of Fluids, August 2023.
- Mohammadreza Soltany Sadrabadi, Mona Eskandari, Heidi P Feigenbaum, Amirhossein Arzani, "Local and global growth and remodeling in calcific aortic valve disease and aging" Journal of Biomechanics, Sep 2021.
- Mohammadreza Soltany Sadrabadi, Mohammadali Hedayati, Iman Borazjani, Amirhossein Arzani, "Fluid-structure coupled biotransport processes in aortic valve disease". Journal of Biomechanics, Jan 2021.
- B. Peik, M. Zare Naghadehi, R. Battulwar, B. Abbasi, J. Sattarvand, M. Soltany Sadrabadi, B Azarfar, "An Analytical Study of Rockfall Trajectory Simulation to Develop Hazard Maps for Open-Pit Mines". 54th US Rock Mechanics/Geomechanics Symposium, Sep 2020.
- Mohammadreza Soltany Sadrabadi, Bahman Vahidi, Roozbeh Riazi, "Blood flow analysis in the circle of Willis using computed tomography scan images and fluid-structure interactions method". Journal of Modeling in Engineering, March 2019.

CONFERENCE PRESENTATIONS

- Mohammadreza Soltany Sadrabadi, Richard Dortch, Ashley Stokes, Test-Retest Reliability of DSC-MRI Perfusion Metrics in Multiple Sclerosis Patients and Healthy Controls, ISMRM, 2025.
- <u>Marjan Ghaffarinia</u>, Mohammadreza Soltany Sadrabadi, Ashley Madern **Automatic Detection and Classifica**tion of Canal Morphology in Cone-Beam Computed Tomography Using Deep Learning , AAOMR, 2024.
- Mohammadreza Soltany Sadrabadi, Richard Dortch, Ashley Stokes, Advancing Clinical SIR Imaging for Myelin Quantification Through Nonlinear Anisotropic Filtering, ISMRM, 2024.

- Mohammadreza Soltany Sadrabadi, Richard Dortch, Ashley Stokes, Investigating the relationship between multi-scale perfusion and myelin content in MS, ISMRM, 2024.
- Mohammadreza Soltany, Richard Dortch, Ashley Stokes, Investigating Relationships Between Lesion Perfusion and Myelination in Multiple Sclerosis Using Advanced Quantitative Imaging, ACTRIMS, 2024.
- Mohammadreza Soltany Sadrabadi, Richard Dortch, Ashley Stokes, Enhanced Clinical SIR Scans for Myelin Quantification Using Anisotropic Filtering, ACTRIMS, 2024.
- Ping Wang, Mohammadreza Soltany Sadrabadi, Richard Dortch, **Comparisons of SENSE and Compressed SENSE** in the Acceleration of Whole-brain Myelin Imaging, ISMRM, 2023.
- Mohammadreza Soltany Sadrabadi, Iman Borazjani, Amirhossein Arzani, **Coupled fluid-structure interaction and mass transport in aortic valves**, APS Division of Fluid Dynamics (Seattle), 2019.
- Mohammadreza Soltany Sadrabadi, Seungik Baek, Mohammadreza Mofrad, Amirhossein Arzani, **Cell signaling pathways coupled with growth and remodeling in tissue level**, SB3C, 2022.
- Mohammadreza Soltany Sadrabadi, Iman Borazjani, Amirhossein Arzani, Fluid-structure interaction of aortic valve coupled with mass transport of biochemical materials, 9th International Bio-Fluid Mechanics and Vascular Mechano-Biology Symposiums (Tucson), 2020.
- Mohammadreza Soltany Sadrabadi, Mona Eskandari, Amirhossein Arzani, Aortic valve dynamics coupled with growth and remodeling due to aging and calcification, Summer Biomechanics, Bioengineering and Biotransport Conference (SB3C virtual), 2021.

EXPERIENCE

2022-Present: Research Fellow at Barrow Neurology Institute (BNI)

- Advanced MRI Processing and Software Development for MS Research
 - **Developing open-source MRI software**: Creating pipelines to enable real-time or near-real-time postprocessing on Philips scanners, directly supporting clinicians diagnosing and monitoring Multiple Sclerosis (MS).
 - MRI Perfusion and Myelin Quantification: Implementing and evaluating advanced techniques (e.g., *Dynamic Susceptibility Contrast (DSC)-MRI, SIR imaging,* and *nonlinear anisotropic filtering*) to quantify myelin content in MS lesions and analyze lesion perfusion.
 - **Comparisons of SENSE and Compressed SENSE**: Investigating acceleration methods for whole-brain myelin imaging, refining scanning protocols for faster image acquisition without sacrificing quality.
 - **Test-Retest Reliability Studies**: Examining the consistency of DSC-MRI perfusion metrics in both MS patients and healthy controls, identifying robust imaging biomarkers for clinical assessments.
 - **Investigating Multi-Scale Perfusion and Myelin Content**: Integrating multi-scale imaging data to understand how perfusion at the vascular level correlates with local myelin integrity, bridging knowledge gaps in MS pathology.
 - Lesion Perfusion-Myelination Relationship: Using advanced quantitative imaging methods (including SIR) to correlate lesion blood flow dynamics with demyelination severity, improving insights into MS progression.

2024: Collaboration with Dental School at Midwestern University

- Automatic Detection and Classification of Canal Morphology in Cone-Beam Computed Tomography (CBCT) Using Deep Learning
 - Developed convolutional neural network (CNN) models to automate detection and classification of canal morphology according to Weine's classification.
 - Enhanced endodontic diagnostics by integrating robust feature-extraction techniques for CBCT data.
 - Refined data preprocessing pipelines to ensure consistently high-quality input data in a clinical environment.

2018-2022: Research Assistant at Northern Arizona University

• Software Development for Growth and Remodeling Caused by Diseases

- Created open-source software and codes (NSF-funded) using advanced math, continuum mechanics, and finite element methods to simulate tissue growth and remodeling.
- Modeled cardiovascular disease mechanisms, focusing on calcific aortic valve disease and other structural pathologies.
- Tools: Solidworks, STL, VTK, Simvascular, Python, FEniCS, Paraview, Git.
- · Physics-Informed Neural Networks (PINN) in Forward and Inverse Tissue Dynamic Problems
 - Leveraged deep neural networks to approximate elastodynamics modeling, enabling surrogate-based simulations and inverse analysis of tissue properties.
 - Identified constitutive equations and material properties of moving tissues with machine learning approaches.
 - Tools: Python, FEniCS, Pytorch, Numpy, VTK, Paraview.
- FSI Simulation of Mass Transport near Aortic Valves
 - Modeled hemodynamics near aortic valves using fluid-structure interaction (FSI) methods.
 - Coupled FSI simulations with mass transport equations to investigate biochemical concentration profiles.
 - Tools: Spaceclaim, Ansys Workbench, Fluent, System-Coupling.
- Developing Python Visualization Toolkit (VTK) Codes for Efficient Mesh Processing
 - Automated pre- and post-processing steps for finite element mesh data, facilitating faster analysis cycles.
 - Tools: Simvascular, STL, Python, Meshmixer, VTK, Paraview.
- Relations between Hemodynamics in Aneurysms and Wall Enhancement in MRI
 - Collected MRI data from Mayo Clinic to investigate vessel wall enhancement in cerebral aneurysms.
 - Modeled CFD and near-wall mass transport in aneurysm geometries to link hemodynamics with imaging findings.
 - Tools: Horos, Simvascular, Python, FEniCS, Paraview.

2014-2017: Research Assistant, University of Tehran, Iran

- Modeling Blood Flow Circulation in the Circle of Willis
 - Constructed patient-specific tissue geometries from CT/MRI data.
 - Performed FSI simulations to capture realistic blood flow patterns in the circle of Willis.
 - Tools: Materialise Mimics, Solidworks, Altair Hyperworks, ADINA.

TECHNICAL SKILLS

- Programming
 - Python, MATLAB, R, and C
 - Packages: Numpy, Scipy, Matplotlib, VTK, STL, Dolfin, Pytorch, TensorFlow
 - Version control system: Git (Object-oriented developer)
- Software
 - Expert in ITK-SNAP, Ansys, FEniCS, Solidworks, Simvascular, Adina, Altair Hyperworks, Materialise Mimics, Meshmixer, Paraview, K3DSurf

REFERENCES

- Dr. Amirhossein Arzani, University of Utah, Salt Lake City, UT, US Amir.Arzani@sci.utah.edu
- Dr. Richard Dortch, BNI Department at St. Joseph Medical Center, Phoenix, AZ, US richard.dortch@barrownneuro.org
- Dr. Ashley Stokes, BNCI Department at St. Joseph Medical Center, Phoenix, AZ, US ashley.stokes@barrownneuro.org