Xiaochen LIU

E-mail: XLIU67@mgh.harvard.edu Phone: (+1) 7815264915

Working \diamond Research Fellow (Jun. 2022 – Now)

Experience

Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital & Harvard Medical School

- Education \diamond Ph.D. student in College of Information Science and Electronic Engineering Zhejiang University, R.P. China (Sep. 2016 – Dec. 2021)
 - ♦ **B.S.** in College of Information Science and Electronic Engineering Zhejiang University, R.P. China (Sep. 2012 – Jun. 2016) Mixed Honors Class, Chu Kochen Honors College*, Zhejiang University,* Prestigious Program gathering top 5% of students for their first two years of study at Zhejiang University

Skills

- Research Skills: Machine learning, Neural network, Multimodal biosignal analysis (fMRI, EEG, fiber photometry, ultrasound), Image Reconstruction, MR Physics, In vivo imaging, Pupil tracking.
- ♦ Technical Proficiencies: Proficient in Python, MATLAB, Bash, AFNI, DEEPLABCUT.

Experience

Research \diamond Functional MRI in Awake Animal Models Led the development of a novel awakemouse fMRI platform, integrating ultra high-field MRI with real-time physiological monitoring to investigate neural circuits, brain state dynamics, and neurovascular coupling.

· Investigating Alzheimer's Disease (AD) Pathophysiology:

- Engineered a novel platform for awake mouse fMRI, integrating real-time pupillometry and whisker tracking.
- Conducted pupillometric-fMRI analysis to identify dysfunction of neuromodulatory pathways affected by AD degeneration in the 5xFAD mice model.
- Applied an explainable AI (XAI) model to a 3D-CNN network to distinguish between AD and wild-type mice using fMRI maps to localize key pathological
- Implemented a deep learning super-resolution and vessel segmentation method to quantify cerebrovascular density from CBV images, revealing vascular abnormalities in AD.

· Mapping Brain-wide Vessel-related Oscillations:

- Detected vasomotion in awake mouse brains using high-resolution (100um) whole brain CBV fMRI and high-temporal-resolution (8Hz) cortical CBV fMRI. Spatialfrequency SVD analysis was successfully used to map global phase gradient and propagation speed patterns.

· Characterizing Brain State Dynamics and Biological Rhythms:

- Characterized brain-wide network dynamics during anesthesia-based changes in consciousness (awake to anesthetized and emergence). Whole-brain fMRI with real-time respiration recording and pupillometry was used to identify critical nodes in the reticular ascending pathway and cortico-thalamic circuits that govern changes in consciousness.
- Leveraged multimodal neuroimaging (high-resolution/high-speed BOLD fMRI, CS-F flow, and CBFv) to identify and model physiological alterations related to circadian rhythms.

- ♦ EEG Analysis for Clinical Neuroscience Designed and executed studies using EEG/iEEG to identify biomarkers and neural networks in human subjects, focusing on epilepsy and cognitive function.
 - · Epilepsy Biomarker Identification and Seizure Onset Zone Localization:
 - Created a MATLAB application for automated high-frequency oscillation (HFO) detection in extended iEEG recordings of patients with epilepsy.
 - Proposed a multi-domain feature-extraction method and a transfer-learning based classifier to automatically distinguish between epileptic, interictal, and healthy EEG signals.
 - Developed a Graph Convolutional Network (GCN) framework to identify seizure onset zones through the integration of seizure and HFO propagation networks.
 - Analyzed P300 event-related potentials and spike event features to quantitatively assess memory and cognitive deficits in patients with epilepsy.

Journal **Papers**

- ♦ Xiaochen Liu, David Hike, Sangcheon Choi, Weitao Man, Chongzhao Ran, Xiaoqing Alice Zhou, Yuanyuan Jiang, and Xin Yu "Identifying the bioimaging features of Alzheimers disease based on pupillary light response-driven brain-wide fMRI in awake mice". Nature Communications, 2024, 15(1): 9657.
- ♦ David Hike, Xiaochen Liu, Zeping Xie, Bei Zhang, Sangcheon Choi, Xiaoqing Alice Zhou, Andy Liu, Alyssa Murstein, Yuanyuan Jiang, Anna Devor, and Xin Yu. "High-resolution awake mouse fMRI at 14 Tesla". Elife, 13: RP95528, 2025.
- ♦ Xiaoqing Alice Zhou, Xiaochen Liu, Hongwei Bran Li, David Hike, Yuanyuan Jiang, Matthew S. Rosen, Juan Eugenio Iglesias, and Xin Yu "Mapping the Cerebrovascular Abnormality in Transgenic Alzheimers Disease (AD) Mice with deep-learning-based superresolution cerebral blood volume (CBV)-MRI". Advanced Science, under revision.
- ♦ Xiaochen Liu, Lingli Hu, Shuang Wang, and Jizhong Shen. "Localization of seizure onset zone with epilepsy propagation networks based on graph convolutional network". Biomedical Signal Processing and Control, 74: 103489, 2022.
- ♦ Xiaochen Liu, Lingli Hu, Chenglin Xu, Shuai Xu, Shuang Wang, Zhong Chen, and Jizhong Shen. "An Automatic HFO detection method combining visual inspection features with multi-domain features".

Neuroscience Bulletin, 37: 777-788, 2021.

- ♦ Xiaochen Liu, Jizhong Shen, and Wufeng Zhao. "Epileptic EEG identification based on hybrid feature extraction". Journal of Mechanics in Medicine and Biology, 20: 2050025, 2020.
- ♦ Jizhong Shen, Jianwei Liang, and Xiaochen Liu. "P300-based deception detection in simulated network fraud condition". Electronics Letters, 52: 1136-1138, 2016.

Papers and Abstracts

- Conference & Xiaochen Liu, David Hike, Xiaoqing Alice Zhou, and Xin Yu. "Detecting vasomotion of awake mice with 14T CBV fMRI." International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting & Exhibition, Honolulu, Hawaii, USA, 2025.
 - ♦ Xiaochen Liu, William Xu, David Hike, Zeping Xie, Andy Liu, Sangcheon Choi, Biyue Zhu, Chongzhao Ran, Yuanyuan Jiang, and Xin Yu. "Pupil-fMRI correlation-based explainable AI to classify Alzheimer's disease." International Society for Magnetic Resonance in Medicine (ISMRM) Annual Meeting & Exhibition, Singapore, 2024.
 - ♦ Xiaochen Liu, Jizhong Shen, and Wufeng Zhao. "P300-based deception detection of mock network fraud with modified genetic algorithm and combined classification." 7th International Winter Conference on Brain-Computer Interface (BCI), Gangwon, Korea (South), 2019.