Introduction

Abnormal iron regulation in neural tissues is implicated in numerous neurodegenerative conditions [1]. Visualization and quantification of brain iron could enable clinical exploitation of this biomarker.

The transverse relaxation rate (R_2) is correlated with iron concentration and increases linearly with field strength as a result of iron $[2, 3]$. Direct R_2 measurements are confounded by water content while high field specific acquisition and processing challenges preclude widespread implementation.

We revisit the variable interecho spacing (ESP) method for iron detection [4, 5] at | high field using recent methodological advances. We investigate the relationships between relaxation rates, their interecho dependence, and non-heme brain iron at 4.7 T to elucidate the merits of transverse relaxometry with single or multiple ESP for iron detection.

We employed the B_1 insensitive multiecho spin echo R_2 mapping method [6] to image a single slice $(1.5 \times 1.5 \times 4.5 \text{ mm}^3)$ through the basal ganglia of seven healthy volunteers (40±9.6 years old; 6 m, 1 f) at 4.7 T.

R₂ maps were obtained with ESPs of 6.0, 10, 15, 20, 30, and 45 ms; echo trains were 180 ms long, except ESP=6 ms, which was 120 ms. TR was 2.8 s; all other parameters were held constant.

Region-of-interest (ROI) analysis was performed on frontal white matter (WM), frontal gray matter (GM), occipital GM, caudate nucleus, putamen, globus pallidus, and thalamus to obtain average R₂ values. Two analyses were performed:

Results (continued)

With variable ESP, a linear increase in slope is observed with non-heme iron, Fig 3b. A lower correlation coefficient (R^2 =0.42) is measured than with R_2 vs. iron, but systematic regional bias is reduced and an insignificant baseline is observed.

i) R_2 values measured with ESP=6 ms were correlated with non-heme iron levels, estimated from a post-mortem study accounting for brain region and subject age [7]. ii) Regression of R₂ versus log(ESP) was performed to obtain a slope; these slopes were then correlated to estimated non-heme iron levels.

Methods

 T_2 -weighted images and R_2 maps obtained with ESP=6 and 30 ms are shown in Fig 1. Hypo-intensity in the globus pallidus (red arrow) is visible at ESP=6 ms and obvious at 30 ms; quantitative ROI analysis reveals a near linear increase in R_2 as a function of $log(ESP)$ in all regions measured, Fig 2. Regression of R_2 vs. non-heme iron provides a high correlation coefficient ($R^2=0.77$), but yields a non-zero intercept and three regions (FWM, OGM, Thalamus) are offset from a stronger linear trend through the remaining regions, Fig 3a.

Figure 2: R₂ versus ESP for seven Figure 3: Fig. 3: (a) R2 with ESP=6 ms **brain regions, as labeled, for a healthy (first points on Fig. 2) and (b) Slope of R2 vs. ESP against brain iron.**

References

[1] Schenck JF and Zimmerman EA, NMR Biomed 17(7) 2004. **[2]** Bartha R et al. MRM 47(4) 2002. **[3]** Mitsumori F et al. MRM 62(5) 2009. **[4]** Ye FQ et al. MRM 35 (3) 1996. **[5]** Vymazal J et al. MRM 35(1) 1996. **[6]** Lebel RM and Wilman AH, MRM 64(4) 2010. **[7]** Hallgren B and Sourander P. J Neurochem, 3(1) 1958.

Direct R_2 measurements correlate well with non-heme iron and are very sensitive (iron induced relaxation is equal to spin-spin relaxation at 4.7 T, Fig 3a), but lack specificity due to a confound with the water content/macromolecular fraction [3]. Multiple ESPs reduce the water content confound by measuring changes in the relaxation rate. In this case, the rate of change of R_2 with ESP is linearly depedent on non-heme iron for all regions investigated. The current study excludes the heme iron contribution to brain iron; this may account for some variation observed in Fig 3. The mulitple ESP method is limited by sensitivity and acquisition challenges. Sensitivity increases with field strength, making ultra-high field systems ideal for iron detection with single or multiple ESPs (inherent spin-spin relaxation is largely fieldindependent while iron induced relaxation increases with main magnetic field strength). High field specific acquisition challenges – notably B_1 heterogeneity and SAR \vert – can be overcome with novel data processing and new acquisition methods. In conclusion, transverse relaxometry at high field is possible. A strong correlation is observed between non-heme iron and R_2 ; multiple ESPs reduce confounds that typically preclude iron measurments with a single ESP and may be a promissing method for iron quantification at high field.

Results

High field quantification of brain iron with

R₂ mapping at multiple interecho spacings
 R. Marc Lebel, Catherine A. Lebel, Alan H. Wilman

Department of Biomedical Engineering

University of Alberta, Edmonton, Canada High field quantification of brain iron with R2 mapping at multiple interecho spacings

Figure 1: T2-w images (a, b) and R2 maps (c, d; scaled 0 to 40 s-1). ESP is 6.0 (a, c) and 30 (b, d) ms. Contrast and R₂ differences between 6.0 and 30 ms are visible **in the globus pallidus (red arrow) and other basal ganglia structures.**

Interecho Spacing (sec)

35 year old subject.

Brain Iron $(mg/100g)$

Discussion and Conclusion

Contact

RML: mlebel@gmail.com CAL: catherine.lebel@gmail.com AHW: alan.wilman@ualberta.ca

R. Marc Lebel, Catherine A. Lebel, Alan H. Wilman

Department of Biomedical Engineering University of Alberta, Edmonton, Canada

